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How to Believe a Machine-Checked Proof1

Robert Pollack
BRICS, 2 Computer Science Dept., Aarhus University

DK-8000 Aarhus C, Denmark

1 Introduction
Suppose I say “Here is a machine-checked proof of Fermat’s last theorem (FLT)”.
How can you use my putative machine-checked proof as evidence for belief in
FLT? I start from the position that you must have some personal experience of
understanding to attain belief, and to have this experience you must engage your
intuition and other mental processes which are impossible to formalise.

By machine-checked proof I mean a formal derivation in some given formal
system; I am talking about derivability, not about truth. Further, I want to
talk about actually believing an actual formal proof, not about formal proofs
in principle; to be interesting, any approach to this problem must be feasible.
You might try to read my proof, just as you would a proof in a journal; how-
ever, with the current state of the art, this proof will surely be too long for you
to have confidence that you have understood it. This paper presents a tech-
nological approach for reducing the problem of believing a formal proof to the
same psychological and philosophical issues as believing a conventional proof in
a mathematics journal. The approach is not entirely successful philosophically
as there seems to be a fundamental difference between machine checked math-
ematics, which depends on empirical knowledge about the physical world, and
informal mathematics, which needs no such knowledge (see section 3.2.2).

In the rest of this introduction I outline the approach and mention related
work. In following sections I discuss what we expect from a proof, add details to
the approach, pointing out problems that arise, and concentrate on what I believe
is the primary technical problem: expressiveness and feasibility for checking of
formal systems and representations of mathematical notions.

1.1 Outline of the approach

The problem is how to believe FLT when given only a putative proof formalised in
a given logic. Assume it is a logic that you believe is consistent, and appropriate
for FLT. The “thing” I give you is some computer files. There may be questions
about the physical and abstract representations of the files (how to physically

1A version of this paper appears in Sambin and Smith (editors) Twenty Five Years of
Constructive Type Theory, Oxford University Press.

2Basic Research in Computer Science, Centre of the Danish National Research Foundation.
The author also thanks Edinburgh University and Chalmers University.
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2 R. Pollack

read them and how to parse them as a proof), and correctness of the hardware
and software to do these things; ignore them until section 3.1.

My approach is to separate the problem into two subproblems: • deciding
whether the putative formal proof is really a derivation in the given formal system
(a formal question), and • deciding if what it proves really has the informal
meaning claimed for it (an informal question).

Is it a theorem? Is the putative proof really a derivation in the given formal
system? This is a formal question; it can be answered by a machine. The
difficulty is how can you believe the machine’s answer; i.e. do you trust the the
proof-checking program, the compiler it was processed by, the operating system
supporting it, the hardware, etc. This is usually taken to be the crux of the
problem of believing machine-checked theorems.

To address this problem, you can independently check the putative proof
using a simple proof checking program for the given logic, written in some meta-
language, e.g. a programming language or a logical framework. In order to believe
the putative derivation is correct, you must believe this simple proof checker is
correct. I have in mind a proof checking program that only checks explicit
derivations in the given logic, verifying that each step in the derivation actually
follows by a specified rule of the logic; no heuristics, decision procedures, or proof
search is required for checking, although these techniques may have been used in
constructing the proof in the first place. Such a simple proof checking program
is a formal object that is much smaller and easier to understand than almost
any non-trivial formal proof, so this approach greatly simplifies the problem3

(see section 3.2). I am not suggesting such a simple proof checker be used to
discover or construct formal proofs, only to check proofs constructed with more
user-friendly tools.

Since my goal is to reduce believing a formal proof to the same issues as
believing a conventional proof, my favored technique for believing the correct-
ness of a simple proof checker is to read and understand the program in light
of your knowledge of the logic being checked and the semantics of the meta-
language in which the checker is written. We should use available techniques to
make this task as simple as possible; e.g. using LCF style4 (Gordon, Milner and
Wadsworth 1979) to implement the simple checker, so very few lines of code are
critical for its correctness, or using an executable specification of the logic in a
logical framework or generic proof checker. If the logic is simple enough, and the
meta-language has a simple enough semantics, then the sum total of what you

3Conversely, J Moore once commented that, until Shankar did his NQTHM proof of Gödel’s
Incompleteness Theorem, if you wanted to believe everything checked by NQTHM, you would
do better to read all the proofs than to read the code of NQTHM, as the code was longer than
all the proofs.

4LCF style is an architecture for proof checker implementation using a strongly typed
programming language such as Standard ML, such that object logic theorems form a type, and
the construction of theorems is controlled for soundness by the programming language type
system. Pollack (1995) gives a modern view and some variations.
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are required to read and understand is neither longer nor more difficult to under-
stand than a conventional proof, and belief in the putative derivation is attained
through your personal experience of understanding a simple proof checker. This
approach differs from the conventional one, of reading and understanding the
proof yourself, only in being indirect, a kind of cut rule at the meta-level of the
readers’ understanding; rather than using personal intuition to believe a proof,
you use personal intuition to believe a mechanism to check proofs. If you have
understood a simple proof checker, and believe it correctly checks derivations in
the given formal system, then you have reason to believe the correctness of a
derivation it accepts.

You can also use other techniques to gain confidence in the proof. You can
recheck it with another proof checker, perhaps one publicly available from a
library of checkers that are refereed by experts, and that have high confidence
from being used to check previous examples. If a few logics become accepted
as appropriate for formalisation, and large bodies of formal mathematics are
developed in these few logics, then only a few independently refereed simple
proof checkers are necessary, even though users may prefer many different tools
for constructing proofs in the first place. These techniques are similar to those
used to gain confidence in conventional proofs, and seem to be even more reliable
in the present approach.

What theorem is it? Having believed that my putative proof is actually a
derivation in the claimed formal system, you ask “does it prove FLT?” Is the
meaning of the formal theorem really what is claimed? This is an informal ques-
tion; it cannot be answered by a machine, as one side of the “equivalence” is
informal5. You must bridge this fundamental gap by using your own understand-
ing; you will want to consider the formal theorem in light of your understanding
of the formal system (the logic) being used, any assumptions used in the proof,
and all the definitions used in stating the formal theorem. The difficulty is how
can you read the formal proof to decide its meaning for yourself, given the size
and obscure presentation of formal proofs. This issue is sometimes overlooked
in discussions of reliability of formal proof.

You don’t need to read the entire proof in order to believe the theorem. Given
that you have reason to believe the putative proof is a correct derivation in the
given logic (by independent checking), only the outstanding assumptions, the
formal statement of the theorem, and the definitions used hereditarily in stating
the formal theorem must be read. Although the formal proof, perhaps partially
generated by machine, may contain many definitions and lemmas, these need not
be read, as we trust that they are all correctly formulated and used as allowed
by the logic, since they are checked by our trusted proof checker. You can use

5In the (distant?) future all the work of bridging the informal-formal gap may have been
done; i.e. the gap is bridged at some foundational level. When all mathematics is done formally,
using accepted formal definitions for the basic mathematical notions, then new definitions and
conjectures will be stated in terms of already formal notions, and no question will arise about
whether some string of symbols is really FLT.
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the trusted proof checker to print out the parts of the formal proof you need to
read. (It is necessary to trust the tool that shows us the assumptions used in the
proof, as the formal proof is too big to ascertain for ourselves that these really
are all the assumptions used.) Then it is up you, using your own understanding
of the formal system, to decide if the formal statement means what is informally
claimed. But this is anyway a subtask of believing a conventional proof; so
this second subproblem of believing a formal proof is no more difficult than the
corresponding aspect of believing a conventional proof. Having used your own
understanding, you can gain confidence by discussing the problem with other
knowledgeable readers, as in the first step of the approach.

1.2 Related work

The prototypical paper on this topic is DeMillo, Lipton and Perlis (1979), where
it is argued that “Mathematical proofs increase our confidence in the truth
of mathematical statements only after they have been subjected to the social
mechanisms of the mathematical community”, whereas machine-checked proofs
“. . . cannot acquire credibility gradually, as a mathematical theorem does; one
either believes them blindly as a pure act of faith, or not at all.” I agree with
the first statement, but completely disagree with the second, and present the
means for social mechanisms of the mathematical community to operate on for-
mal proofs, namely independent checking.

Independent checking is not a new idea. It has been discussed for increasing
confidence in computer-based enumerative search (Lam 1990) (see section 2.2
below). It is considered the standard approach in tasks such as computing many
digits of π. It is mentioned by Cohn (1989). A proposal similar to the present
paper (“verify the proofs rather than the programs which produce them”) is
made, in less detail, by Slaney (1994).

There has recently been discussion of the possibility and desirability of pur-
suing formal mathematics (Boyer 1994, Harrison 1996). My guess is that tech-
nologies of automated proof search will be highly developed because of economic
pressure for reliable hardware and software, and these, applied as tactics to proof
checking, will make formal mathematics a practical reality in the foreseeable fu-
ture. This paper addresses some points necessary for this program.

2 What can we expect from a proof?
All belief held by a human being is based on that person’s experiences of un-
derstanding, and all experiences of understanding derive from perception of evi-
dence. In certain areas of discourse, like law and mathematics, there are more or
less precise rules about what kind of perceptions should be accepted as evidence.
No matter how precise the rules about evidence, it still depends on some opera-
tions of human consciousness to apply the rules and experience understanding or
not. Without claiming anything deep about operations of human consciousness,
there are some things we can say about human beliefs.
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2.1 Truth

If God has mathematics of his own that needs to be done, let him do
it himself.

Bishop (1967)

We have no access to truth in any aspect of human experience, including either
formal or informal mathematics; predictions about the world might always be
falsified by experiment. Even when we formally verify that some hardware or
software meets its specification, there is uncertainty about the behavior of the
physical object, since the specification is with respect to some model of the
physical world, and we can never completely model the world.

For me this is neither a deep claim nor a serious limitation on our practice of
mathematics. The problem stems from too broad a notion of truth; I will restrict
my comments to proof, suggesting how to approach the question of whether
Peano Arithmetic (or ZF set theory, or the calculus of constructions (CC), . . . )
proves FLT for some given definitions of “natural number”, “addition”, etc.

2.2 Certainty

At the moment you find an error, your brain may disappear because
of the Heisenberg uncertainty principle, and be replaced by a new
brain that thinks the proof is correct.

L.A. Levin, quoted in (Horgan 1993)

Everyone has had the experience of understanding and believing a proof at one
time, and later seeing an error in it. After such an experience, you must acknowl-
edge that it might happen again. Therefore the notion of certainty, like that of
truth, is not relevant to human knowledge. This view is not always accepted in
conventional mathematics, where practitioners often talk of the certainty of a
(correct?) proof. For example Lam (1990), talking about reliability of enumer-
ative searches by computer, cautions “Notice that the assertion of correctness
is not absolute, but only nearly certain, which is a special characteristic of
a computer-based result.” (Lam’s italics, but my bold, to show the con-
trast with my belief that no knowledge is absolute.) No useful analysis seems
possible of the probability of error caused by software bugs in big calculations,
and I don’t think this is what readers of proofs want. What is important is how
knowledgeable people working in a field attain belief. Lam is commenting on
his own proof that there do not exist any finite projective planes of order 10,
which uses several thousand hours of supercomputer time, running many highly
optimised (hence complicated) programs for different cases. It is clear that belief
in such an argument is hard to come by, even with independent checking (which
Lam suggests), not because it isn’t “absolutely certain”, but because there is no
way for a reader to apply her own intuition to attain belief.

As an aside, my approach does raise a possibility that enumerative searches
such as Lam’s proof and the famous Appel and Haken (1977) proof of the four
color theorem, which can never be accepted as conventional proofs, might be
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made into formal proofs that are believable by the indirect means of independent
checking. For example in type theory we might construct an inhabitant of the
four color theorem (not just a believable argument, but a formal object) by
proving that some program (lambda term) correctly tests numbers for certain
properties, proving that if a certain finite set of numbers have those properties
then every map is four-colorable, and executing the program on that finite set
(showing that two lambda terms are convertible by computation).

Probabilistic proofs A red herring sometimes arises (DeMillo et al. 1979):
since all proof is uncertain, why not abandon deterministic notions of proof
in favor of probabilistic proof. Proof systems involving random choices (coin
tosses) can have much smaller derivations than their deterministic counterparts.
While they carry a probability of error, this probability is bounded, and can be
reduced to any desired positive number. But the probabilistic nature of such
systems doesn’t mean you are allowed to make mistakes in applying their rules.
Further, since “random choices” must be independent of each other, a trace of all
the steps of a probabilistic proof is not convincing at all: if I toss the coin myself
I may believe a probabilistic proof, but if I only see a written trace of the proof
the coin toss outcomes may have been faked to give the desired result. Thus
probabilistic approaches do not support a claim that the appropriate warrant
for proof correctness is direct understanding of the proof; it is the procedure
for probabilistic testing (that asks for occasional random input) that must be
believed, not the proof itself, and in this indirectness probabilistic proof is similar
to my suggestion of indirect checking.

2.3 Explanation

Explanation is the purely informal pointing out of what the author of the proof
wants the reader to see. This pointing out is a kind of abstraction, and is at least
as useful for a formal proof as for an informal proof. In formal mathematics,
explanation has no bearing on the correctness of a putative proof, but may be
very important in the process of constructing a proof, and in the reader’s work of
bridging the formal-informal gap to see that the formal theorem expresses what
it informally claims.

3 Some details of the approach
This section treats some points that were postponed or suppressed in section 1.1,
and concludes with an overview of what has been gained.

3.1 Reading the files

Both parts of the approach, independent checking and understanding the state-
ment of the theorem, require examining the proof files. Questions arise about
• correctness of hardware and software to read the files as a long ascii string, and
• correctness of software to parse this ascii string as a proof, and to pretty-print
parts of it so you can read them. The former is the job of the software/hardware
platform (section 3.2.2). Here I consider parsing and pretty-printing.
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The second part of my approach requires us to read the formula that is de-
rived, and verify that it is really FLT. We read a concrete representation of the
formula (an ascii string), but the proof checker uses an abstract representation
(an abstract syntax tree). If we don’t understand the relationship between these
representations, then nothing the proof checker says can be believed, no matter
how trustworthy the checker is at the level of abstract representation. (This is
often overlooked in discussing LCF style proof checkers, where correctness of the
kernel, implementing abstract proof constructors, is taken to be the only critical
part of the program.) Consequently the language of our formal system must
be parseable in a simple and formally explained way. Some proof tools support
complex user-extensible syntax, and even unparseable syntax entered using con-
trol keys and special editors. This may be helpful to users while constructing
proofs and browsing libraries, but to believe such a checker, it must also support
an official syntax that is parseable and printable.

3.2 Is it a theorem?

How is the putative formal proof of FLT constructed? Users interacting with
some proof tool (Alf, Coq, HOL, Isabelle, LEGO, NQTHM, . . . ), develop a
file that stimulates the tool to print “QED”. This proof script is not a formal
derivation, but contains instructions to the proof tool to find a derivation, i.e. the
script refers to heuristics, decision procedures, tactics, etc., that are particular
to that proof tool. These are programs to compute derivations in the official
formal system; e.g. derivable rules, or arbitrary searches that may fail (Pollack
1995). For example, many proof tools support tautology checking and equality
rewriting tactics.

Crucially, there is no need for you to understand any of the tactics or heuris-
tics in order to independently check the claimed proof of FLT. In principle such
tactics, when they succeed at their task, check that their results follow by official
derivations: this is the definition of proof checking. The proof tool can write out
the complete official derivation it constructs from the proof script. Since check-
ing a derivation is a simple thing, you should be able to independently check
this official derivation of FLT using a simple proof checker that you trust. The
questions to ask are • is it feasible to write out the official derivation and to
check it, and • how can you trust any proof checker. The former question is
addressed in section 4; here we consider the latter.

The hardware/software stack How can you have confidence in a proof just
because it was machine checked? There are many layers of hardware and software
involved in checking the proof of FLT. The top layer is a simple proof checking
program for some specified formal system, coded in some programming language.
The bottom layer is a physical machine. Intermediate layers include compiler,
linker, operating system, etc. Bevier, Hunt, Moore and Young (1989) show that
such a system can be formalised as a stack of abstract machines. Interfaces
in this stack are specified, for example, by programming language semantics,
operating system definition and hardware definition. Each layer implements its
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specification in terms of the next layer down, and if each layer is verified then the
whole stack is a verified implementation of the top layer specification in terms
of the physical model of the machine at the bottom layer. The work of Bevier
et al. (1989) is the limit of current technology, and in current practice, very few
of these layers are formally specified, let alone verified.

Every (unverified) computer system has bugs, but we have confidence in the
behavior of a general purpose computing environment because there are many
users “testing” the environment over time, allowing a consensus to develop. Fur-
ther, lower layers of the stack are largely interchangeable, allowing for indepen-
dent checking. For example if I’ve coded my LCF style proof checker in Standard
ML (SML), I can compile it using different SML implementations and run it on
different operating system/processor platforms; then a proof can be re-checked
without depending on any particular system platform. It is unlikely that a bug
in the computing platform causes a proof checker to erroneously accept a proof,
and incredible that independent platforms erroneously agree, but a bug in the
proof checking program itself may cause an erroneous proof to be accepted when
checked using independent platforms. Thus in practice we are more interested
in validating the proof checking program than the rest of the computing envi-
ronment; we can try to verify it and we can also use independent simple proof
checkers for the same logic that have gained a consensus of trust over time.
For these reasons, most people feel that machine checking a proof increases its
reliability even if the system platform is not verified.

But my approach calls for more than consensus by random testing; it calls
for consensus among readers who have each attained belief by personal intuition
applied directly or indirectly. The top layer of the stack, the simple proof checker
program itself, can be believed by direct understanding of a small amount of
code; this is discussed in section 3.2.1. That the rest of the stack is not so easy
to believe, even when verified, is discussed in section 3.2.2.

3.2.1 How to believe a proof checking program

The top layer of the hardware/software stack is a simple proof checking program.
Its specification is a definition of the formal system to be checked,9 and its job is
to implement this definition in terms of the specification of the next layer in the
stack, i.e. the programming language in which it is coded. We want to believe
that the checking program is correct by understanding an amount of code that
is small compared to the size of a formal proof, but in order to understand any
code at all we must understand the semantics of the programming language it
is written in, and we will use non-trivial properties of the semantics to attain
belief in the checker. For example, if the checker is coded in LCF style, we are
depending on strong type correctness properties of the SML definition (Milner,
Tofte and Harper 1990), not just of particular SML implementations, when we

9The question whether this definition captures our informal understanding of the logic is not
about correctness of the checker, but about bridging the formal-informal gap, and is treated
in step two of my approach.
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claim that no non-theorem can be in the type of theorems. Thus we must use a
programming language with a simple formal semantics and study the properties
that are needed to trust a proof checker in this language. SML is perhaps too
complicated to do this; e.g. see (Kahrs 1993) and (VanInwegen 1996).

The three-level approach. I suggest that the “programming language” for
the checking program be a logical framework, i.e. a formal meta-theory, enabling
precise and concrete presentations of a class of formal systems. I have in mind
such formalisms as the Edinburgh Logical Framework (ELF) (Harper, Honsell
and Plotkin 1993), Martin-Löf’s framework (Nordström, Petersson and Smith
1990), FS0 (Feferman 1988), and Isabelle (Paulson 1994). These frameworks
are precisely and concretely specified and are designed for representing formal
systems. The user gives a definition of the object logic to be checked (details
vary), and either the implementation of the framework itself becomes a checker,
or we program a checker in the internal language of the framework which is
formally proved to be correct w.r.t. the definition (Pollack 1994, Barras 1996).
The latter of these variations can be seen as an application of LCF style to
type systems more expressive than SML (Pollack 1995) and supports LCF style
tactics. For technical reasons, classical LCF tactics must be expanded to official
proofs (which can be very costly) even when they are meta-theoretically proved
to be sound, while the suggestion of Pollack (1995) allows admissible rules as
tactics that don’t have to be computed to official proofs. This is very important
for feasibility of checking. Considerable progress is being made in the theory and
application of logical frameworks, e.g. (McDowell and Miller 1997).

The question then arises: where will we find a believable implementation of a
logical framework? We can use classic LCF style, with an SML-like programming
language (perhaps simpler than SML). Isabelle (Paulson 1994) is an example of
this approach: an LCF style implementation of a higher order logic is used as
a logical framework; you get a proof checker for your chosen object logic by
specifying it in a high-level logical form. But Isabelle is not a perfect realization
of my proposal for two reasons. • Higher-order unification is part of the safe
kernel; I suggest a kernel supporting the programming of unification as a tactic
in terms of simpler atomic actions. • Due to its style of framework, Isabelle
supports derivable rules but not admissible rules of encoded object logics.

This three-level approach (programming language, logical framework, object
logic) places few restrictions on the object logic; some frameworks restrict the
induction principles available for defining object logics, but this is not a problem
in practice. There is a different proposal in the literature, called reflection (Allen,
Constable, Howe and Aitken 1990, Harrison 1995), that collapses the framework
and the object logic in order to provide admissible rules that can safely be used
without expansion. However reflection distorts the object logic (with an added
reflection rule), and is much harder to believe.
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3.2.2 Believing the hardware/software stack and the philosophical claim

It seems that a computer system (CPU, operating system, compiler, . . . ), is
too complex to believe by direct understanding10. Thus the only possibility is
to attempt indirect belief by verification. I think this must fail, but I want
to make clear that I am not criticising verification as such; it clearly improves
the reliability of computer systems. I am questioning whether verification can
satisfy my goal to reduce believing a formal proof to the same psychological and
philosophical issues as believing a conventional proof. Assume we have a verified
hardware/software stack whose top layer is a simple proof checking program.
The the formal-informal gap at the top of the stack has been mentioned in
section 3.2.1, and does not challenge the philosophical goal. I see two other
problems: • the formal-physical gap at the bottom of the stack, and • believing
the verification of the stack itself.

At the bottom of the stack is a formal model of the behavior of physical
hardware, predicted by quantum mechanics and tested by experiment. Belief in
machine checked mathematics must depend on scientific theory, i.e. empirical
knowledge about the physical world whose correctness cannot be believed by in-
dividual understanding. In order to believe conventional mathematics by direct
understanding we must believe that our own computational platform, our ner-
vous system, behaves correctly, e.g. that we identify symbols consistently, and
that our short term memory is correct. But there is no question of belief in con-
ventional mathematics depending on empirical knowledge for two reasons: • we
don’t (yet) have an empirical theory of cognition, and • the operations we would
seek to explain by such a theory are subjective, and cannot be invalidated by
failure of such a theory. Thus my philosophical goal is not met for the paradox-
ical reason that we demand more justification for indirect belief than for direct
belief, since its physical foundation includes non-subjective aspects.

The verification of the stack itself is another formal proof that must be
believed. Since this proof is surely too big to believe directly, we must believe it
indirectly by independent checking with a trusted proof checker. But this cannot
be well founded, as the problem we are now addressing is how to trust a proof
checker.12 This problem, too, will prevent meeting my philosophical goal.

The philosophical claim Subjective experience depends for its interpreta-
tion on abstract correctness assumptions about experience itself. In believing
a formal proof indirectly by believing a proof checker, we are shifting this ab-
straction to some computational platform outside of our consciousness. This is
not simply giving up; just as we are careful about checking that our experiences
are internally consistent and match with that of other people, so we are careful
about the computational platform we use, and compare it with other indepen-

10A system architecture designed specifically for simplicity might overcome this problem.
12This might be overcome by using a very simple directly believable computing platform to

check the verification of a more realistic platform.
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dent platforms. Such a shift of abstraction seems unavoidable if we are ever to
accept as a correct a putative proof that cannot actually be checked by a person.

3.3 What theorem is it?

You now have a file that you believe is a derivation in the given formal system. Is
the derived formula really FLT? You must interpret the formula with your own
understanding. This is exactly how informal mathematics is done; no matter how
big the formal proof, this process must be tractable, as the formal statement of
FLT is not significantly different than the informal statement.

One apparent difference is that informally we don’t redefine the natural num-
bers and all their basic operations, and prove the properties of these operations
for every theorem we want to believe. Conventional mathematics rests on a
basis of mathematical knowledge that is previously believed, and formal mathe-
matics must proceed in the same way, developing libraries of formal knowledge
covering this mathematical basis. Such libraries should be developed, indepen-
dently checked and widely used by a community of mathematicians. Then we
can have confidence, not only that their theorems are provable, but also that
their definitions mean what they informally claim.

3.4 What have we gained, and where has it come from?

I have suggested how belief in correctness of a formal proof comes from engaging
our own understanding to check it (and recheck it if necessary), and from the
social process of many knowledgeable readers independently checking it. The
only way this differs from informal mathematics is the extra indirectness in our
checking, where we allow a machine to do the mechanical steps of pattern match-
ing, substitution, etc. This extra indirectness is not a trivial matter: due to it
we allow more things as proofs, e.g. derivations that are too big, or too combi-
natorially complicated, to be checked by a person, as mentioned in section 2.2.

An advantage hinted at above is that proofs in the same logic can be shared
by different proof checkers for that logic if a standard syntax can be found (or
mechanical translations believed), because the official proofs don’t depend on
the tactics that are particular to individual proof tools. In current practice this
idea is a can of worms, and the phrase “in the same logic” causes experts in the
field to roll on the floor with laughter. However, alternative suggestions such as
using cryptographic means to certify that a theorem has been checked by some
proof tool (Grundy 1996) break the primary abstraction: the only way a proof
checker can accept a theorem as proved is to actually check a proof of it.

It is necessary to restrict the notion of “proof checking program” to programs
that actually check derivations in some given formal system, and to restrict
the acceptable formal systems by criteria of feasibility of communicating and
checking official derivations (section 4).

The eschewing of absoluteness is crucial to my argument. This is obvious,
since absolute correctness cannot be attained by any means at all. However,
some criticism of formalisation seems based on the subtext that formal proof is
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not good enough since it cannot guarantee correctness. Formal proof can attain
higher confidence than conventional proof, and can do so for more arguments.

4 About feasible formalisation
While correctness of derivations is defined ideally in conventional logic (e.g. the
size of a derivation has no bearing on its correctness14), we are only interested
in actually checked derivations.

4.1 Presentations of formal systems

For the purpose of formal mathematics, we are sensitive to properties of a formal
system such as how large or complicated it is, for two distinct reasons: • we must
understand a logic in order to believe a theorem it proves, • its derivations must
be feasible to check. Thus it is the presentation of a formal system that interests
us, not just the consequence relation it defines.

How to believe a formal system. We are interested in believing mathemat-
ical statements from formal proofs, so we must be able to read and understand
the formal system we are checking; this is an essential part of bridging the gap
between a formal property and our informal belief. From this perspective, var-
ious presentations of first order logic (FOL) are suitable formal systems: there
are few rules, they are organized around useful principles (introduction, elimina-
tion), and it is widely studied and accepted. On the other hand, the Nuprl logic
(Constable et al. 1986) is less satisfactory in this regard, as it has many rules
and some complicated side conditions.15

By meta mathematical study of a complex formal system, we may see how it is
related to some simpler or better known system. For example in 1987 I struggled
with ELF (with 3 classes of terms, 5 judgements and 17 rules) until I realized it
translates into a subsystem of CC (with one class of terms, 2 judgements and 8
rules). One theme of this paper is using computers as a tool to bridge the gap
between a large formal object and our informal understanding of it; since formal
systems can themselves be studied mathematically in simpler meta-systems (e.g.
logical frameworks), we can apply the same technique to gain understanding of
a formal system that is otherwise too large or complicated by formally proving
some of its properties. Of course there are limitations to this approach, and
system presentations that are too complicated (e.g. Nuprl or the SML definition)
may not be considered formal at all.

Formal systems that are feasible to check. The second reason we care
about intensional properties of a formal system is that we want to actually
check derivations of non-trivial statements, so the size of derivations, and more
generally the feasibility of checking derivations is important. In section 4.2 I

14But both Hilbert and Wittgenstein require a proof be surveyable, or “given as such to our
perceptual intuition”, i.e. a feasible object.

15I count 108 rules in (Constable et al. 1986). There are several pages of informal mathe-
matical text describing side conditions.
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discuss styles of proof for feasible checking. Here I am interested in the formal
system itself, and finding alternative presentations deriving the same judgements
with better intensional properties: smaller derivations, or ones that are easier
to check. More generally, we can look for a different formal system (different
language, deriving different judgements) that allows us to more feasibly check
the original system in some indirect way. Two things can make a formal system
computationally expensive to check: the derivations can be big and the side
conditions (non-recursive premises) can be expensive to check.

As an example of big derivations, the Gentzen cut-free system for FOL is
completely infeasible. It is well known that adding the cut rule does not change
the derivable judgements and allows much smaller derivations; the system with
cut is a better presentation (for formal mathematics) of the same consequence
relation. Section 3.2.1 discusses how a simple proof checker can support meta-
theoretic extensibility by adding admissible rules (such as cut) to a logic.

Another way to reduce the size of derivations is to eliminate duplicate sub-
derivations. In a derivation tree, subderivations may have repeated occurrences
at different places in the tree. By using a linear presentation of derivations, where
each line names the previous lines it depends on, only one occurrence of each
subderivation is required; the indirectness of naming lines allows sharing.16 Ex-
tending a formal system with definitions allows a similar kind of sharing. In the
cases just mentioned, we depend on ad-hoc identification of common substruc-
tures by the user, but some formal systems duplicate work in such a uniform way
that we can give an alternative presentation that shares some common substruc-
tures by construction. Martin-Löf (1971) gives an algorithm for type synthesis
that transforms official derivations to avoid duplication of context validity check-
ing. This idea is used by Huet (1989) in the Constructive Engine, and abstractly
explained and proved by Pollack (1994).

The other computational expense in checking a formal system is the side
conditions. For example in CC the rule of type conversion has convertibility of
two well-typed terms as a side condition. This is decidable, but certainly not
feasible in general, so neither is proof checking. For the purpose of independent
checking we can trade derivation size for computation of side conditions. For
example if I have constructed some proof in CC, I can annotate the proof with
the conversion paths found by my proof checker, which must be feasible if I
did actually check the proof. (However, the size of the annotations may be
prohibitive; we must work to find good annotations.) To independently re-check
the proof, your checker need only follow the annotations (checking that they are
legal), not discover a conversion path for itself. In this way, independent checking
doesn’t depend on heuristics for feasibility any more than for proof discovery.

Annotation of judgements can allow smaller derivations: with annotation, a
full derivation of a judgement may be mechanically constructed from the judge-

16This interesting way of viewing linear derivations was pointed out to me by Harold Sim-
mons. Automath used naming of expressions, lines, and contexts to avoid duplication.
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ment itself so full derivations don’t have to be constructed or communicated.
This idea underlies the use of decidable type checking as a tool for proof check-
ing; the proof terms are annotations that can be expanded into full derivations.
Equivalently, we can think of omitting parts of official derivations that can be
mechanically reconstructed; e.g. in CC, terms are essentially derivations with
instances of the conversion rule and variable lookup elided. There is a tradeoff:
the more information we elide from derivations (making them smaller, so eas-
ier to communicate) the more has to be mechanically reconstructed (so making
them more difficult to check).

4.2 Feasible formal proofs

In the preceeding section I discussed choosing formal systems that are suitable
for actual checking. This section discusses how to make formal proofs, and
more generally, whole bodies of formal mathematics, suitable for actual check-
ing. In programming it is well known that there are feasible functions with
infeasible implementations; e.g. the natural recursive definition of the fibonacci
function is exponential in its input, while an alternative definition is linear. Anal-
ogously, even a well-behaved formal system will have proofs that are infeasible
because of proof style. For example, if ack is the Ackermann function, trying to
prove ack(100)− ack(100) = 0 by computing ack(100) is hopeless, while proving
∀n.n− n = 0 is trivial, and gives a trivial proof of the goal.

Representation In proof, just as in programming, unsuitable representation
of the objects of discourse is a cause of infeasibility. This is especially so because
we are used to representations from conventional mathematics, which were never
intended to be used in actual formalisation. When formalising a mathematical
notion we make choices about representation, but there is no reason to believe
there is a single “best” representation that leads to natural statements and short
proofs. We can make several definitions for a concept, prove something about
their relationship, and move between them as convenient; this is done implicitly
in informal presentation. Also note that our choice of representations is con-
strained by our underlying formal system (e.g. FS0 cannot express generalized
induction, while Martin-Löf’s framework can), and this may be a reason for
choosing one framework over another.

An example is the use of unary vs. base representation for natural numbers.
We probably want to use unary representation as the official definition of the
naturals, and base representation for actual computation, e.g. the computational
content extracted from constructive proofs. In order to do this, elementary
school arithmetic must be formalised, i.e. the correctness of various algorithms
for arithmetic operations on base representation numbers.

An often mentioned example of a notion that is hard to reason about formally
is binding, and there are many representations of λ terms in the literature,
including naive variable names (with or without a total ordering on variables),
de Bruijn indexes, higher order abstract syntax (Pfenning and Elliott 1988), an
axiomatic approach (Gordon and Melham 1996), and an approach using distinct
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classes of free and bound names (Coquand 1991, McKinna and Pollack 1993).
These representations are not all “isomorphic”, e.g. some distinguish between α-
equivalent terms, some do not. They have different theorems, e.g. a presentation
of type theory using free and bound names (McKinna and Pollack 1993) has
a thinning lemma which is close to the informal statement, while one using
de Bruijn indexes (Barras 1996) requires explicit variable lifting.

By formalising the relationship between various representations, theorems
can be stated and proved in natural forms, and used in different forms when
needed. It may not be obvious what the official formalisation of some concept
should be (e.g. are de Bruijn terms the “real meaning” of λ terms, or just a
convenient representation), but formal mathematics doesn’t have to split hope-
lessly over such questions. As long as your favorite definition can be shown to
be appropriately related to other definitions in the formal literature, you can use
existing results.

Even what I have said about new and different representations for mathe-
matical notions is too restricted. We can look for entirely new ways to do mathe-
matics that are especially suited for formalisation. An example of this is the use
of formal topological models that has recently received interest in the type the-
ory community. Following the ideas of Sambin (1995), Persson (1996) describes
the formalisation of a completeness theorem for intuitionistic first-order logic
using formal topological models. Coquand (1995) proposes a program of proof-
theoretic analysis of non effective arguments using formal topological models.
Such problems seemed impossible to formalise until this approach was devel-
oped.

4.3 The business of formal mathematics

Many people who pursue formal mathematics are seeking the beauty of complete
concreteness, which contributes to their own appreciation of the material being
formalised, while to many outside the field formalisation is “just filling in the
details” of conventional mathematics. But “just” might be infeasible unless
serious thought is given to representation of both the logic of formalisation and
the mathematics being formalised. This can be viewed as an annoying hassle, or
as the business of formal mathematics. The latter view leads us to be interested
in areas of feasibility and expressiveness of formal systems and the power of
formal systems to represent algorithms (Cardone 1995, Colson 1991, Fredholm
1995), and to seriously study formal representations of mathematical notions.
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