
B
R

IC
S

R
S

-97-17
P.B

.M
iltersen:

D
eterm

inistic
D

ynam
ic

D
ictionaries

BRICS
Basic Research in Computer Science

Error Correcting Codes,
Perfect Hashing Circuits, and
Deterministic Dynamic Dictionaries

Peter Bro Miltersen

BRICS Report Series RS-97-17

ISSN 0909-0878 June 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/17/

Error Correcting Codes, Perfect Hashing
Circuits, and Deterministic Dynamic

Dictionaries

Peter Bro Miltersen∗

BRICS†, University of Aarhus.
Email: bromille@brics.dk

Abstract

We consider dictionaries of size n over the finite universe U =
{0, 1}w and introduce a new technique for their implementation: error
correcting codes. The use of such codes makes it possible to replace
the use of strong forms of hashing, such as universal hashing, with
much weaker forms, such as clustering.

We use our approach to construct, for any ε > 0, a deterministic
solution to the dynamic dictionary problem using linear space, with
worst case time O(nε) for insertions and deletions, and worst case time
O(1) for lookups. This is the first deterministic solution to the dy-
namic dictionary problem with linear space, constant query time, and
non-trivial update time. In particular, we get a solution to the static
dictionary problem with O(n) space, worst case query time O(1), and
deterministic initialization time O(n1+ε). The best previous deter-
ministic initialization time for such dictionaries, due to Andersson, is
O(n2+ε). The model of computation for these bounds is a unit cost

∗Supported by the ESPRIT Long Term Research Programme of the EU under project
number 20244 (ALCOM-IT).
†Basic Research in Computer Science, Centre of the Danish National Research

Foundation

1

RAM with word size w (i.e. matching the universe), and a standard
instruction set. The constants in the big-O’s are independent upon
w. The solutions are weakly non-uniform in w, i.e. the code of the
algorithm contains word sized constants, depending on w, which must
be computed at compile-time, rather than at run-time, for the stated
run-time bounds to hold.

An ingredient of our proofs, which may be interesting in its own
right, is the following observation: A good error correcting code for
a bit vector fitting into a word can be computed in O(1) time on a
RAM with unit cost multiplication.

As another application of our technique in a different model of
computation, we give a new construction of perfect hashing circuits,
improving a construction by Goldreich and Wigderson. In particular,
we show that for any set S ⊆ {0, 1}w of size n, there is a Boolean
circuit C of size O(w logw) with w inputs and 2 log n outputs so that
the function defined by C is 1-1 on S. The best previous bound on
the size of such a circuit was O(w logw log logw).

1 Introduction

The static dictionary problem is the following: Given a set of keys S ⊆
{0, 1}w with |S| = n, construct a data structure using O(n) registers, so
that membership queries “Is x in S?” can be answered efficiently, and, if
x ∈ S, some information associated with x can be retrieved. In the dynamic
dictionary problem, we must also be able to support insertions and deletions
of keys.

We consider solutions to the dictionary problem on a RAM with registers
containing w bits, i.e. we assume that the word size matches the size of
the universe (this is often known as the trans-dichotomous model [16]). The
RAM operates on its registers with a standard instruction set of direct and
indirect addressing, conditional jump, addition, subtraction, bitwise Boolean
operations, shifts, and multiplication. All instructions are unit cost.

The seminal result of Fredman, Komlós, and Szemerédi [14] shows that in
this model, it is possible to construct static dictionaries for sets of size n using
O(n) registers, so that queries can be answered in time O(1). Their solution
is based on universal hashing [6]. Since then, several variations of their
scheme, all with constant query time, but with different additional desirable

2

properties have appeared, all based on universal hashing [13, 7, 8, 9, 10, 20, 1].
In this paper we introduce an alternative to universal hashing for imple-

menting linear space dictionaries with constant query time: Error correcting
codes combined with clustering, a weak form of hashing introduced by An-
dersson et al [2], used to partition an input set into Hamming balls. In [2],
a full solution to the dictionary problem was obtained by applying a special
purpose hash function, a cluster buster, after the application of a clustering
function. The central and very simple observation of this paper is that if
we apply an error-correcting code to our keys before applying the cluster-
ing function, clustering works almost as well as universal hashing, and since
clustering works in a more transparent way, it makes efficient construction
of the involved structures easier.

We use our approach to show

Theorem 1 For any ε > 0, there is a deterministic solution to the dynamic
dictionary problem using space O(n), with worst case time O(nε) for inser-
tions and deletions and worst case time O(1) for queries. Here, n is the
current size of the set of keys in the dictionary.

We prove Theorem 1 by a simple dynamization of the following static
structure:

Theorem 2 For any ε > 0, there is a solution to the static dictionary
problem with domain {0, 1}w using space O(n), with deterministic worst
case query time O(1) and with deterministic worst case initialization time
O(n1+ε).

Previously, no linear space deterministic solution to the dictionary prob-
lem with constant query time and non-trivial update time has been given,
but there has been a sequence of results on deterministically initializing static
dictionaries. Fredman, Komlós, and Szemerédi [14] proved that their dictio-
nary can be initialized deterministically in time O(n3w). Raman [20] shows
that by derandomizing multiplicative hashing [9] using conditional probabil-
ities, this can be improved to O(n2w). Finally, Andersson [1] shows that
Raman’s solution can be modified to give a time bound O(n2+ε), i.e., that
the dependence on w can be removed. Interestingly, Andersson uses fusion
trees [15], and this introduces a flaw, weak non-uniformity into the solution.

3

In the terminology of Ben-Amram and Galil [3], a trans-dichotomous algo-
rithm is called uniform if the code runs within the stated bounds even if the
word size of the machine is not known until “run-time”, i.e., if the run-time
code of the algorithm takes w as an input. It is called weakly non-uniform if
the code of the algorithm contains descriptions of word sized constants, de-
pending on w (such as masks), which must be computed at “compile-time”
without charge, in order for the stated bounds to hold at run-time. Weak
non-uniformity should hardly come as an esoteric concept for people used
to real programming, where computation at compile-time is common-place.
The constants of fusion trees are easily computed in time polynomial in w,
so, informally speaking, Andersson’s solution can be compiled in time poly-
nomial in w.

Our static and dynamic dictionaries are also weakly non-uniform. We
shall need an O(w)-bit constant a with the property that the binary repre-
sentation of na contains Ω(w) blocks of ones for every n ≤ 2w (this will ensure
that x → ax is a good error-correcting code). Unfortunately, while we can
show that such a constant exists, we don’t know if it can be determined in
time wO(1), so we don’t know if we can compile our deterministic solution in
time polynomial in the word size of the machine. Thus, the non-uniformity
of our solution may seem somewhat more serious than the non-uniformity of
Andersson’s solution.

Fortunately, if the constant is just picked at random, it will work with high
probability. Thus, for people not happy about calling a solution using non-
constructive constants for deterministic, here is an alternative interpretation
of the theorems: There is a slightly randomized, completely explicit and
uniform, solution to the dynamic dictionary problem using linear space, with
update time O(nε) and query time O(1). This means that we select O(1)
words at random when we buy our machine or install our dictionary software,
and pre-process using time wO(1). After this, we never make another random
choice, and with probability 1−ε, we will never exceed the stated time bounds
for any operation on any dictionary we may care to initialize and operate on
in the future, even if the operations are given by an adversary who saw the
random choice we made.

As another application of our technique in a different model of compu-
tation, we give a new construction of perfect hashing circuits, improving a
construction by Goldreich and Wigderson [17]. They considered the following
problem: Given an arbitrary subset S ⊆ {0, 1}w of size 2k, and a parameter

4

m ≥ k, we want to construct a Boolean circuit C : {0, 1}w → {0, 1}m, so
that for all x 6= y ∈ S, C(x) 6= C(y). Goldreich and Wigderson show the
following bound:

Theorem 3 (Goldreich and Wigderson) For every w, k, and k ≤ m ≤
2k, and for every S ⊆ {0, 1}w of size 2k, there is a circuit of size 22k−mwO(1)

mapping S 1-1 to {0, 1}m.

Goldreich and Wigderson show their bound to be tight, but only up to
a polynomial in w. Here, we look more closely at the dependence upon w.
Examining the dependence of their bounds on w, we find that for m = 2k,
their construction gives at best a circuit of size O(w logw log logw). This
is because their construction is based on universal hashing, and the best
known circuits for universal hashing (with the weakest possible definition of
universal) are based on Schönhage and Strassen’s multiplication circuit which
has the stated size. For m < 2k, the situation becomes worse: If the proofs
of [17] are left unmodified, the dependence on w becomes cubic. This can
be optimized somewhat, but since the circuits of [17] are based on circuits
for w-wise independent hashfunctions, it is not obvious how to get an o(w2)
bound.

Using error correcting codes with linear sized encoding circuits [12, 21]
combined with clustering, we obtain the following improved bounds:

Theorem 4 For every S ⊆ {0, 1}w of size 2k, the following circuits exist:

• For any ε > 0, a circuit of size O(w) mapping S 1-1 to (2 + ε)k bits.

• A circuit of size O(w + k log k) mapping S 1-1 to 2k bits.

• A circuit of size O(w+ k22k−m + k log k), mapping S 1-1 to m bits for
k ≤ m ≤ 2k.

• A circuit of size O(w + k2k), mapping S 1-1 to k bits.

The paper is organized as follows: In Section 2 we show how to do error
correcting codes in constant time on a RAM with unit cost multiplication, a
technique which we think may be interesting in its own right. In Section 3
we reprove a lemma about clustering functions from [2] in a stronger form.
In Section 4, we show how to combine error correcting codes and clustering

5

with the static dictionaries of Raman and Andersson to get the improved
initialization time for static dictionaries. In Section 5 we show how to dy-
namize our solution. Raman’s solution uses derandomized universal hashing,
and thus, universal hashing is still present in our structure. In order to argue
the (mainly philosophical) point that error correcting codes combined with
clustering yields a true alternative to universal hashing, we present, in Sec-
tion 6, an alternative implementation, replacing Raman’s structure with the
double displacement structure of Tarjan and Yao [24]. This solution uses a
non-standard instruction set. Finally, in Section 7 we prove our results on
perfect hashing circuits.

Notation

When x and y are bit strings of equal length, we denote by x and y the bitwise
Boolean AND of x and y. x[i] denotes the i’th bit of x from the left. If I =
[i, j] = {i, i+ 1, . . . , j} is an interval of bits, x[I] denotes x[i]x[i + 1] . . . x[j].
We denote by w the word size of the machine. Words are considered bit
strings of length w. The domain of w-bit bit strings {0, 1}w and the domain
{0, 1, . . . , 2w − 1} of w-bit integers will be identified in the natural way. All
log’s are base 2.

2 Multiplicative error correcting codes

Here, we show how to do error correcting codes on words in constant time
with multiplication. The similarity to multiplicative hashing by Dietzfel-
binger et al [9] is obvious.

Let e : {0, 1}w → {0, 1}kw. We say that e is an error correcting code with
rate 1/k and minimum distance d, if, for all x 6= y ∈ {0, 1}w, the Hamming
distance between e(x) and e(y) is at least d. It has relative minimum distance
δ if it has minimum distance δkw.

Lemma 5 Given w, there exists an integer a between 0 and 2(k+1)w − 1, so
that ea : {0, . . . , 2w − 1} → {0, . . . , 2kw − 1} defined by

ea(x) = (ax mod 2(k+1)w) div 2w

is an error correcting code with rate 1/k and relative minimum distance at
least δ for any δ < 1

2
satisfying 1

k
≤ 1 − H(δ) − δ. Here, H is the binary

6

entropy function H(p) = −p log p − (1 − p) log(1 − p). Furthermore, if a is
chosen at random, ea is an error correcting code with rate 1/k and relative
minimum distance at least δ with probability at least 1 − ε for any δ < 1

2

satisfying 1
k
≤ 1−H(δ)− δ − log(1/ε)

kw
.

Proof Let x, y ∈ {0, 1}w with x > y. Let a be a random integer between 0
and 2(k+1)w − 1. We shall bound the probability that ea(x) and ea(y) have
Hamming distance strictly less than d = dδkwe. If this is the case, there
exists 0 ≤ s, t < 2kw such that

• the sum of the Hamming weights of s and t is less than d,

• s and t have their 1-bits in disjoint positions,

• ea(x) = ea(y) + s− t.

For use in the discussion after the proof, we note that the binary represen-
tation of s− t contains less than d blocks of ones.

Thus we have

(ax mod 2(k+1)w) div 2w = (ay mod 2(k+1)w) div 2w + s− t,

i.e., that
ax mod 2(k+1)w = ay mod 2(k+1)w + (s− t)2w + u

for some u between −2w + 1 and 2w − 1. That is,

a(x− y) ≡ (s− t)2w + u (mod 2(k+1)w).

Write x− y as z2i for an odd z. We have

az2i ≡ (s− t)2w + u (mod 2(k+1)w).

Thus we must have u = u′2i for some u′ and

az ≡ (s− t)2w−i + u′ (mod 2(k+1)w−i).

Since z is odd, it has an inverse z′ modulo 2(k+1)w−i, so we have

a ≡ ((s− t)2w−i + u′)z′ (mod 2(k+1)w−i)

7

for some s, t, u′. The number of ways to choose s, t, u′ is (
∑d−1
j=0

(
kw
j

)
2j)2w−i.

Any value of a modulo 2(k+1)w−i is equally likely. Thus, the probability that
ea(x) and ea(y) have Hamming distance less than d is at most

(
d−1∑
j=0

(
kw

j

)
2j)2w−i2−(k+1)w+i = (

d−1∑
j=0

(
kw

j

)
2j)2−kw

.
This probability depends only on the value of x−y. There are only 2w−1

possible values of x− y. So, plugging in d = dδkwe, the probability of small
Hamming distance for some x, y is at most

Pw,k,δ = (
dδkwe−1∑
j=0

(
kw

j

)
2j)2−kw(2w − 1). (1)

For δ < 1
2

the inequality
∑bδnc
j=0

(
n
j

)
≤ 2nH(δ) holds (see e.g. [18, page 310]).

From this, we see that Pw,k.δ is smaller than a given value ε if H(δ)kw +
δkw − (k − 1)w < log ε. ¿From this, the statement of the lemma follows. 2

For the asymptotic behavior of the application to dictionaries, all we
actually need is the following version of the lemma

Lemma 6 For any ε > 0, there is a δ > 0, so that for all sufficiently large
w, if a random b(1/δ − 1)wc-bit integer a is chosen, with probability at least
1 − ε, x → ax defines an error correcting code mapping {0, . . . , 2w − 1} to
{0, . . . , 2bw/δc − 1} with rate and relative minium distance at least δ.

We will assume that such an a is available to our algorithm at run-time,
making it possible for the algorithm to compute an error correcting code for a
word in constant time. This is the weakly non-uniform part of our algorithm.

For practical considerations, the exact rate and minimum distance of
the code are of course relevant. Here is an example: For w = 16, and
k = 4, equation (1) guarantees us the existence of an 80-bit number a so
that x → (ax mod 280) div 216 is an error correcting code with minimum
distance 11, i.e. relative minimum distance 11/64, and that, in fact, more
than a 0.39 fraction of the possible a’s have this property. However, one can
actually do better: By a computer search, we have verified that

8

a = 0111000000110110001110010111110001100010
1110001101010100010101000110010010010101

is an 80-bit number leading to a code with minimum distance exactly 13.
We haven’t found any 80-bit numbers leading to a code with minimum dis-
tance 14.

We know no efficient algorithm for finding a and verifying that it has the
right property. It would be nice to have a polynomial (in w) algorithm, as this
would make the non-uniformity of our solution more like the non-uniformity
of fusion trees, whose “magical constants” have this property. Therefore, a
solution to the following problem would be interesting:
Problem: Given w, construct in time polynomial in w, an O(w)-bit number
a, so the binary representation of na for all n between 1 and 2w− 1 contains
at least Ω(w) blocks of ones.

The existence of such an a follows from the proof of lemma 5, and so does
the fact that x → ax is a good error correcting code. We now just want to
construct one deterministically in time polynomial in w. We conjecture that
this is possible.

As a final remark, let us note that the correspondence between hashing
and error correction is quite strong and that the similarity between multi-
plicative hashing and multiplicative error correction is no accident. Indeed,
the following proposition holds.

Proposition 7 Fix any pairwise independent family H of hash functions
mapping {0, 1}w → {0, 1}kw. Then, some member of the family is an error
correcting code with rate 1/k and relative minimum distance at least δ for any
δ < 1

2
satisfying 2

k
≤ 1−H(δ). Also, a random member of the family is, with

probability at least 1− ε, an error-correcting code with rate 1/k and relative

minimum distance at least δ for any δ < 1
2

satisfying 2
k
≤ 1−H(δ)− log(1/ε)

kw
.

Proof That H is pairwise independent means that for fixed x1, x2 ∈ {0, 1}w
and y1, y2 ∈ {0, 1}kw, if h ∈ H is chosen at random,

Pr[h(x1) = y1 ∧ h(x2) = y2] = 1/22kw.

Let d = dδkwe. For any particular value of y, only
∑d−1
j=0

(
kw
j

)
vectors in

{0, 1}kw have Hamming distance less than d to y. Thus, for any x1 and x2,

there are at most 2kw
∑d−1
j=0

(
kw
j

)
values of (y1, y2), so that h(x1) = y1 and

9

h(x2) = y2 would violate the distance requirement for h(x1) and h(x2). So,
if h is chosen at random, the probability that the distance requirement for
h(x1) and h(x2) is violated is at most 2−2kw2kw

∑d−1
j=0

(
kw
j

)
, and the prob-

ability that the distance requirement is violated for some pair is at most
22w2−2kw2kw

∑d−1
j=0

(
kw
j

)
. The statement of the lemma follows by a derivation

similar to the one in Lemma 5. 2
Thus, an alternative proof for showing that multiplication yields good

error correcting codes is to combine the above proposition with Dietzfel-
binger’s result [11] that the family of functions of the form ea is a pairwise
independent family. If one is interested in a self-contained proof, one should
note that Dietzfelbinger’s proof of pairwise independence is much more com-
plicated than the proof of Lemma 5. For concrete values of w and k, the
concrete minimum distance guarantee we get from the proof of Proposition
7 is often worse than the one we get from Lemma 5 (for instance, taking the
previous example of expanding 16 bits to 64 bits, the proof of Proposition
7 only guarantees us a value of a yielding a code with minimum distance
8). However, for small rates, Proposition 7 will give a better bound on the
minimum distance than Lemma 5.

Proposition 7 shows that most members of a pairwise independent family
must be error correcting codes. Pairwise independence being a generaliza-
tion of universality, it is interesting to note that Bierbrauer et al [4] show a
completely different connection between error correcting codes and univer-
sal families; namely that a good error correcting code can be used to derive
a (nearly) universal family of hash functions on an exponentially smaller
domain. For a nice survey of this correspondence and its applications, see
Stinton [22].

3 Clustering

The following Lemma is proved in a weaker form in [2]. Here, what is im-
portant to us is the good dependence on n in the time bound.

Lemma 8 Let S be a set of vectors in {0, 1}w with the property that the
Hamming distance between any two vectors in S is at least δw for some
constant δ > 0. Then, using time O(wn logn), we can find a word m of
Hamming weight O(logn) so that π(x) = x and m is 1-1 on S.

10

Proof Initially, let m be the all-0 word. We shall select bits i1, . . . , ir to
be set to one, one by one. Let mj be the appearance of m after j bits have
been set and let πj(x) = x and mj . Let Pj = {{x, y} ∈ S|πj(x) = πj(y)}.
Suppose i1, i2, . . . , ij have been selected. If we pick ij+1 at random, for any
particular pair in Pj , the probability that the pair is in Pj+1 is at most 1− δ.
Thus, by an averaging argument, we can pick ij+1, so that |Pj+1| ≤ (1−δ)|Pj|.
Since |P0| =

(
n
2

)
, we can ensure that |Pr| ≤ (1−δ)rn2, so r = O(logn) suffices

for πr to be 1-1 on S, if we, for each j, pick ij+1 so that |Pj+1| becomes as
small as possible. We should now argue that we can do this within the
stated time bound. For this, we maintain the equivalence classes induced
by πj in a family of linked lists. For any particular choice of ij+1, the finer
equivalence classes induced by πj+1 can be found in linear time by a linear
pass through these lists; this is because each equivalence class is split in
(at most) two by the additional bit added. Let the new equivalence classes
be E1, E2, . . . , Es. Then, if ij+1 is the chosen bit positions, we will have
|Pj+1| =

∑s
i=1 |Ei|(|Ei| − 1); this value is easily determined in linear time.

Thus, for any particular choice of ij+1, we can find the corresponding value
of |Pj+1| in time O(n), so we can find the best choice in time O(wn). Since
we only have to choose O(logn) bit positions, the time bound stated in the
lemma follows. 2

4 A static dictionary with fast deterministic

initialization

We now present our scheme for static dictionaries, proving Theorem 2 stated
in the introduction. As lemmas, we need two of the previous results on
initializing static dictionaries deterministically. The first is from [20]:

Theorem 9 (Raman) A static dictionary using linear space and with worst
case constant query time for a set of keys S ⊆ {0, 1}w of size n can be
constructed in worst case deterministic time O(n2w).

Although Andersson does not state the following lemma explicitly in [1],
it is the essence of the proof of his Observation 1.

Lemma 10 (Andersson) Suppose a linear space, constant query time static
dictionary for a set of keys S can be constructed in time f(n)wO(1) for some

11

function f(n) ≥ n. Then for any given ε > 0, we can also construct such a
dictionary in time f(n)nε.

Our scheme for storing a set of keys S ⊆ {0, 1}w is the following. First,
using Lemma 6, we apply a good error correcting code to all keys in S.
Let the set of the encoded keys be S′. The keys in S ′ are strings of length
w′ = O(w), so we can operate on them with unit cost. We apply Lemma
8 and construct the mask m ∈ {0, 1}w′, where only bits i1 < i2 < · · · < ir
are set. Apply the function x → x and m to all the keys in S′ and let the
resulting set of keys be S′′.

Let kj = ijε logn, for j ∈ {1, . . . , s}, with s = r
ε logn

(we assume for conve-

nience that ε log n is an integer that divides r). Since r = O(logn), we have
s = O(1).

Now view each key x = x[1]x[2] . . . x[w′] in S ′′ as the following string of
length s:

x[1 . . . k1] x[k1 + 1 . . . k2] . . . x[ks−2 + 1 . . . ks−1] x[ks−1 + 1 . . . ks].

Thus, the symbols of the string are substrings of x of varying length. The
individual symbols of the string can be extracted in constant time using the
standard instruction set. We will store our keys in a path compressed trie
representing these strings. Each leaf of the trie corresponds to a transformed
key; we put in each leaf a pointer to the corresponding original key of S. Each
node of the trie contains a subset of the possible symbols at some position,
and for each symbol present, an associated pointer to a son of the node.
We represent the node by a static dictionary implemented using Theorem
9. Thus, the entire data structure will clearly use space O(n) (we do not
mention this in the statement of the theorem, but note that the constant in
the big-O is even independent on ε). By Theorem 9, we can initialize a trie
node of size v in time O(v2w′). However, by construction, only ε log n bit
positions can have a non-zero value for any particular symbol position, so
each trie node has size less than nε. Thus, a node of size v can be initialized
in time O(vnεw′) and since the sizes of the nodes sum to n, the entire trie
can be initialized in time O(n · nεw′) = O(n1+εw′).

We now have a construction with deterministic initialization time O(n+
w′n logn + n1+εw′) = O(n1+εw). It is easily checked that we can answer
queries in constant time; given an input x, we apply the same sequence of
transformations to it as we did to the keys of S; look up the transformed key

12

in the (constant depth) trie, and, if we get to a leaf, check if the value in the
leaf matches x.

We now finalize the construction by using Lemma 10 and get a solution
with deterministic initialization time O(n1+2ε). Since ε was arbitrary, we are
done.

5 Dynamization

In this section we sketch how to dynamize our solution so that we can han-
dle insertions and deletions deterministically in worst case time O(nε) and
lookups deterministically in worst case time O(1), proving Theorem 1 stated
in the introduction. Apart from some tuning of parameters, the dynamic
solution is a standard dynamization of the static solution (see Mehlhorn and
Tsakalidis [19, Section 10] for a survey on dynamization). The concrete de-
tails of the dynamization are copied more or less verbatim from Thorup’s
elegant description of his merge heaps [25].

We first construct a solution with a fixed capacity N , space O(N) and
with update time O(N ε). Given a parameter ε = 1/k, we keep in the dynamic
structure k substructures D1, D2, D3, . . . , Dk. The structure Di consists of
2 static dictionaries D1

i and D2
i , one or both may be empty. If D1

i is not
empty, it has size between N (i−1)ε and N iε. If D2

i is not empty, it has size
between N (i−1)ε and N (i−1)ε + 2N (i−2)ε

If D1
i and D2

i are both non-empty, we are somewhere in the process of
constructing a dictionary of their union, using our efficient deterministic
initialization scheme.

When doing a lookup, we simply look in all dictionaries in the structure.
There are a constant number, so the worst case complexity is constant.

When doing an insert of a key x, we put x in the empty one-word slot
D2

1, rebuild D1
1 as the union of D1

1 and D2
1, and throw away D2

1. If the size
of D1

1 grows to be more than N ε, we move D1
1 to D2

2, which will be empty.
In general, for each insert, we do a 1/N (i−1)ε fraction of the construction of
the union dictionary at level i. If this completes the construction, we throw
away D1

i and D2
i and put in the union in the place of D1

i , unless it is too
large, in which case we move it to D2

i+1. The complexity of the operation is
O(N2ε). Since ε was arbitrary, this is as desired.

When doing a delete, we locate the element and mark it as deleted in

13

its dictionary and in the partially constructed union. When we start a new
construction of a union, we don’t include any elements which were marked
at the start. The complexity of the delete operation is O(1).

Getting a solution with space bound O(n), time bound O(nε) for inser-
tions and deletions and time bound O(1) for lookups from a solution with
space bound O(N), time bound O(N ε) for insertions, and time bound O(1)
for deletions and lookups, is standard global rebuilding.

6 A solution with no trace of universal hash-

ing

In the introduction, we presented the error correction/clustering-combination
as an alternative to universal hashing. Note, however, that our solution uses
Raman’s static structure as a substructure and since this is based on universal
hashing, this presentation may seem misleading. However, in this section we
present a different implementation which does not use Raman’s structure and
where universal hashing plays no role whatsoever. The solution has the flaw
of not using a standard instruction set, so it is best understood in the cell
probe model of computation. It is mainly interesting from a philosophical
point of view, as the first dictionary with linear space and constant query
time (in the cell probe model) for general values of n and w with no trace of
universal hashing anywhere.

The non-standard unit cost instructions we need are error : {0, 1}w →
{0, 1}O(w) which computes an explicit good error correcting code, such as a
Justesen code (see, for instance, MacWilliams and Sloan [18]), and collect,
which takes as inputs a word containing a mask m and a word x and returns
the concatenation of the bits of x which are marked by m. For instance,
collect(0100100001001001, 1101011110111010) = 10010. The error in-
struction is used to replace multiplicative error correcting codes, so that we
will not be accused of sneaking in universal hashing through the back door.
The collect instruction plays a more indispensable role.

In analogy with the previous scheme, we start by applying error to
each key of the set S and get the set S ′ of keys of length w′ = O(w). We
apply Lemma 8 to S ′ and construct the mask m. Now we use the instruction
x′′ = collect(m,x′) on all keys x of S ′ and get the set S ′′. The keys in S ′′

14

have length w′′ = O(logn). Now, we store the keys of S′′ using Tarjan and
Yao’s double displacement scheme [24]. This is a scheme, with no trace of
universal hashing (it was invented in 1978), for the static dictionary problem
for a set S ⊆ {0, 1}w of size n with space O(n) and query time O(w/ logn).
In our case, S ′′ ⊆ {0, 1}w′′ with w′′ = O(logn), so the query time becomes
O(1). This completes the construction.

As stated in their paper, Tarjan and Yao’s has deterministic initialization
time O(n2). Thus, it seems that this alternative solution not only uses a
non-standard instruction set, but also kills the main point of this paper,
efficient deterministic operations. However, it is actually possible to improve
Tarjan and Yao’s scheme so that the initialization time becomes O(n1+ε).
The key point to observe is that the high time bound of Tarjan and Yao’s
algorithm is due to heavy string matching which is done using techniques
which were state of the art in 1978. Using more modern data structures for
maintaining strings, in particular Sahinalp and Vishkin’s dynamic pattern
matching algorithm [23] yields the improved initialization time. Of course,
the main point of this section is to present a static dictionary with O(n) space
and O(1) query time with no trace of universal hashing, and this main point
is safe, no matter how much time is used for initialization, so we will not
present the somewhat technical details of the improved initialization here.

7 Improved perfect hashing circuits

We show the following theorem, from which Theorem 4 stated in the intro-
duction follows (for the first bound, put l = log(1/3ε); the theorem is valid,
even for m > 2k, for the rest, put l = 1 + log k).

Theorem 11 For every w, k ≤ w, l ≥ 1, and m ≥ k, and for every S ⊆
{0, 1}w of size 2k, there is a Boolean circuit C of size O(w+k22k−m+m/2l+lm)
mapping {0, 1}w to {0, 1}m so that the function defined by C is 1-1 on S.

Proof
Gelfand, Dobrushin, and Pinsker [12] have shown that good error correct-

ing codes with linear sized encoding circuits exists, that is, for any w, there
is a circuit E of size O(w) mapping {0, 1}w to {0, 1}w′ with w′ = O(w) so
that for all x, y ∈ {0, 1}w, the Hamming distance between E(x) and E(y) is
at least δw′ for a certain constant δ > 0. A more recent reference for such

15

codes is Spielman [21]; his codes can also be decoded in linear time, but we
only need the encoding circuits.

Step 1. As basis for our perfect hashing circuit we take a copy of E,
applied to the input vector. Let z1, z2, . . . , zw′ be the output bits of E.

As in Lemma 8, we will select a subset zi1 , zi2 , . . . , zir of the outputs with
r = d2k/ log 1

1−δ + 1e, and disregard the rest. Call the resulting circuit E′,
mapping {0, 1}w → {0, 1}r. We shall make sure that E′ is 1-1 on S. Let
Ej be the circuit mapping the input to zi1 , zi2 , . . . zij Let Pj = {{x, y} ∈
S|Ej(x) = Ej(y)}. Suppose zi1 , zi2, . . . , zij have been selected. If we pick
zij+1 at random, for any particular pair in Pj , the probability that the pair
is in Pj+1 is at most 1 − δ. Thus, by an averaging argument, we can pick

zij+1 , so that |Pj+1| ≤ (1 − δ)|Pj|. Since |P0| =
(

2k

2

)
, we can ensure that

|Pr| ≤ (1− δ)r22k < 1, and since it is an integer, it is 0, so E′ = Er is 1-1. So
far, we have constructed a circuit of size O(w) mapping S 1-1 to r = O(k)
bits.

Step 2. We now construct another circuit with r inputs and m outputs
which will be 1-1 on E′(S).

Again we use an error correcting circuit, defining an error correcting code
with relative minimum distance at least δ, this time with number of inputs
r, number of outputs r′ = O(r), and size O(r) = O(k). Let the outputs be
q1, . . . , qr′ . We define gates o1, o2, . . . , om−1 as XOR-gates of odd fan-in l′ ≥
d(l + 1)/ log(1

1−2δ
)e, each adding size l′ to the circuit, each taking a subset

of the qi’s as inputs (here, we are essentially using one of the more powerful
clustering functions from [2]). We will fix the inputs of the oi’s iteratively.
Suppose o1, . . . , oi have been fixed and let Ci be the circuit mapping the input
to o1, o2, . . . oi. Let Pi = {{x, y} ∈ E′(S)|Ci(x) = Ci(y)}. Now suppose we
pick the l′ inputs of oi+1 randomly from the qj ’s. As observed in [2], for each
{x, y} ∈ Pi, the probability that {x, y} is in Pi+1 is at most 1

2
(1+(1−2δ)l

′
) ≤

1
2
(1 + 2−(l+1)). Thus, we can pick a setting of the inputs so that |Pi+1| ≤

1
2
(1 + 2−(l+1))|Pi|, and thus ensure that |Pr| ≤ 22k−m+1(1 + 2−(l+1))m−1 ≤

22k−m+1+m/2l . Call this last quantity u. Let C1 be the circuit, resulting from
disregarding all outputs but the oi’s. We can remove a subset T of size u
from E′(S) so that C1 is 1-1 on E′(S) − T . Let C2 be the obvious perfect
hashing circuit for T of size O(ur). There is also an obvious circuit of size
O(ur) deciding membership of T . Now let C(x) = 0 ◦ C2(x) if x ∈ T and
C(x) = 1 ◦ C1(x) otherwise.

16

Step 3. The desired circuit is E′ composed with C. The size of this circuit
is O(w + k +ml + ku) = O(w + k22k−m+m/2l + lm), as desired. 2

8 Acknowledgement

I would like to thank Martin Dietzfelbinger for very helpful discussions about
the material of Section 2.

References

[1] A. Andersson. Faster deterministic sorting and searching in linear space
In 37th IEEE Symposium on Foundations of Computer Science, pages
135–141, Burlington, Vermont, 1996.

[2] A. Andersson, P.B. Miltersen, S. Riis, and M. Thorup. Static dictio-

naries on AC0 RAMs: Query time Θ(
√

log n/ log logn) is necessary and
sufficient. In 36th IEEE Symposium on Foundations of Computer Sci-
ence, pages 538–546, Burlington, Vermont, 1996.

[3] A.M. Ben-Amram and Z. Galil. When can we sort in o(n logn) time?
In 34th IEEE Symposium on Foundations of Computer Science, pages
538–546, Palo Alto, California, 1993.

[4] J. Bierbrauer, I. Johansson, G. Kabatianskii, and B. Smeets. On families
of hash functions via geometric codes and concatenation. In: Advances
in Cryptology - CRYPTO ’93, Lecture Notes in Computer Science vol.
773, pp. 331–342, Springer, 1993.

[5] A. Brodnik and J.I. Munro. Membership in constant time and minimum
space. In: Proceedings of the 1st European Symposium on Algorithms,
Lecture Notes in Computer Science, Vol. 855, page 72, 1994.

[6] J.L. Carter and M.N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, April 1979.

[7] M. Dietzfelbinger and F. Meyer auf der Heide, Dynamic hashing in real
time, in: J. Buchmann, H. Ganzinger, W. J. Paul (Eds.): Informatik ·

17

Festschrift zum 60. Geburtstag von Günter Hotz, Teubner-Texte zur In-
formatik, Band 1, B. G. Teubner, 1992, pp. 95–119. (A preliminary ver-
sion appeared under the title “A New Universal Class of Hash Functions
and Dynamic Hashing in Real Time” in ICALP’90.)

[8] M. Dietzfelbinger, J. Gil, Y. Matias and N. Pippenger. Polynomial hash
functions are reliable. In: Proc. 19th Int’l. Colloq. on Automata, Lan-
guages and Programming, Lecture Notes in Computer Science Vol. 623,
pages 235-246, Springer-Verlag, July 1992.

[9] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A
reliable randomized algorithm for the closest-pair problem. Technical
Report 513, Fachbereich Informatik, Universität Dortmund, Dortmund,
Germany, 1993.

[10] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer Auf Der Heide,
H. Rohnert, R .E. Tarjan, Dynamic perfect hashing: upper and lower
bounds, SIAM J. Comput. 23 (1994) 738–761.

[11] M. Dietzfelbinger. Universal Hashing and k-wise Independent Random
Variables via Integer Arithmetic without Primes. In Proc. 13th Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes
in Computer Science vol. 1046, pp. 569-580, Springer, 1996.

[12] S.I. Gelfand, R.L. Dobrushin, and M.S. Pinsker. On the complexity
of coding. In Second International Symposium on Information Theory,
pages 177–184, Akademiai Kiado, Budapest, 1973.

[13] A. Fiat, M. Naor, J.P. Schmidt and A. Siegel, Non-Oblivious Hashing.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, pages 367–376, 1988.

[14] M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table
with O(1) worst case access time. Journal of the ACM, 31(3):538–544,
July 1984.

[15] M.L. Fredman and D.E. Willard. Surpassing the information theoretic
bound with fusion trees. Journal of Computer and System Sciences,
47:424–436, 1993.

18

[16] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. Journal of Computer and
System Sciences, 48(3):533–551, June 1994.

[17] O. Goldreich and A. Wigderson, On the Circuit Complexity of Perfect
Hashing, Electronic Colloquium on Computational Complexity, TR96-
04, 1996.

[18] F.J. MacWilliams and N.J.A Sloane. The Theory of Error-Correcting
Codes. North Holland, Amsterdam, 1977.

[19] K. Mehlhorn and A. Tsakalidis. Data Structures. In: Handbook of
Theoretical Computer Science, Vol. A: Algorithms and complexity, pp.
303–341, MIT Press, 1994.

[20] R. Raman. Priority queues: Small, monotone, and trans-dichotomus.
In Proceedings 4th European Symposium on Algorithms, volume 1136
of Lecture Notes in Computer Science, pages 121–137. Springer-Verlag,
1996.

[21] D.A. Spielman. Linear-time encodable and decodable error-correcting
codes. In Proceedings 27th annual ACM symposium on the theory of
computing, pages 388–397, Las Vegas, Nevada, 1994.

[22] D.R. Stinton. On the connections between universal hashing, combi-
natorial designs and error-correcting codes. Electronic Colloquium on
Computational Complexity, TR95-052, 1995.

[23] S.C. Sahinalp and U. Vishkin. Efficient approximate and dynamic
matching of patterns using a labelling paradigm. In 36th IEEE Sympo-
sium on Foundations of Computer Science, pages 320–328, Burlington,
Vermont, 1996.

[24] R.E. Tarjan and A.C. Yao. Storing a sparse table. Communications of
the ACM, 22(11):606–611.

[25] M. Thorup. On RAM priority queues. In 7th ACM-SIAM Symposium
on Discrete Algorithms, pages 59–67, Atlanta, Georgia, 1996.

19

Recent BRICS Report Series Publications

RS-97-17 Peter Bro Miltersen. Error Correcting Codes, Perfect Hashing
Circuits, and Deterministic Dynamic Dictionaries. June 1997.
19 pp. To appear inThe Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’98.

RS-97-16 Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez
Petrank, and Gábor Tardos. Linear Hashing. June 1997. 22 pp.
A preliminary version appeared with the title Is Linear Hash-
ing Good? in The Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 465–474.

RS-97-15 Pierre-Louis Curien, Gordon Plotkin, and Glynn Winskel.
Bistructures, Bidomains and Linear Logic. June 1997. 41 pp.

RS-97-14 Arne Andersson, Peter Bro Miltersen, Søren Riis, and
Mikkel Thorup. Dictionaries onAC0 RAMs: Query Time
Θ(
√

logn/ log logn) is Necessary and Sufficient. June 1997.
18 pp. Appears in37th Annual Symposium on Foundations of
Computer Science, FOCS ’96 Proceedings, pages 441–450.

RS-97-13 Jørgen H. Andersen and Kim G. Larsen.Compositional Safety
Logics. June 1997. 16 pp.

RS-97-12 Andrej Brodnik, Peter Bro Miltersen, and J. Ian Munro.
Trans-Dichotomous Algorithms without Multiplication — some
Upper and Lower Bounds. May 1997. 19 pp. Appears in Dehne,
Rau-Chaulin, Sack and Tamassio, editors,Algorithms and Data
Structures: 5th International Workshop, WADS ’97 Proceed-
ings, LNCS 1272, 1997, pages 426–439.

RS-97-11 K̄arlis Čerāns, Jens Chr. Godskesen, and Kim G. Larsen.
Timed Modal Specification — Theory and Tools. April 1997.
32 pp.

RS-97-10 Thomas Troels Hildebrandt and Vladimiro Sassone.Transition
Systems with Independence and Multi-Arcs. April 1997. 20 pp.
Appears in Peled, Pratt and Holzmann, editors, DIMACS
Workshop on Partial Order Methods in Verification, POMIV ’96,
pages 273–288.

