
B
R

IC
S

R
S

-97-12
B

rodnik
etal.:

Trans-D
ichotom

ous
A

lgorithm
s

w
ithoutM

ultiplication

BRICS
Basic Research in Computer Science

Trans-Dichotomous Algorithms
without Multiplication
— some Upper and Lower Bounds

Andrej Brodnik
Peter Bro Miltersen
J. Ian Munro

BRICS Report Series RS-97-12

ISSN 0909-0878 May 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/12/

Trans-Dichotomous Algorithms
without Multiplication

— some Upper and Lower Bounds

Andrej Brodnik∗. Peter Bro Miltersen† J. Ian Munro‡

May, 1997

Abstract

We show that on a RAM with addition, subtraction, bitwise
Boolean operations and shifts, but no multiplication, there is a
trans-dichotomous solution to the static dictionary problem us-

ing linear space and with query time
√

log n(log log n)1+o(1). On
the way, we show that two w-bit words can be multiplied in
time (logw)1+o(1) and that time Ω(logw) is necessary, and that
Θ(log logw) time is necessary and sufficient for identifying the
least significant set bit of a word.

1 Introduction

Consider a problem (like sorting or searching) whose instances consists
of collections of members of the universe U = {0, 1}w of w-bit bit strings

∗Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia and Lule̊a
University, Lule̊a, Sweden. Email Andrej.Brodnik@IMFM.Uni-Lj.SI. Some of the
results of this paper appeared in the PhD thesis of this author
†BRICS, Basic Research in Computer Science, Centre of the Danish National

Research Foundation, University of Aarhus, Denmark. Email bromille@brics.dk.
Supported by the ESPRIT Long Term Research Programme of the EU under project
number 20244 (ALCOM-IT). Part of this work was done while the author was at the
University of Toronto.
‡Department of Computer Science, University of Waterloo, Canada. Email

imunro@uwaterloo.ca. This research was supported by a grant from the Natural
Science and Engineering Council of Canada.

1

(or numbers between 0 and 2w − 1). An increasingly popular theoreti-
cal model for studying such problems is the trans-dichotomous model of
computation [13, 14, 1, 7, 8, 3, 2, 20, 18, 9, 4, 21, 6], where one assumes a
random access machine where each register is capable of holding exactly
one element of the universe, i.e. we assume that the word size of the
machine matches the “word size” of the universe. We can operate on the
registers using at least a basic instruction set consisting of: Direct and
indirect addressing, conditional jump, and a number of computational
instructions, including addition, subtraction, bitwise Boolean operations
and left and right shifts. All operations are unit cost. An important
ingredient of many trans-dichotomous algorithms is exploiting the unit
cost assumption by doing parallel operations on the word level. It is well
known that such “tricks” often speed programs up in practice, and we
can view trans-dichotomous algorithms as theory’s contribution to the
understanding of this phenomenon.

In this paper, we consider trans-dichotomous algorithms for the static
dictionary problem: Given a set of keys S ⊆ {0, 1}w, construct a data
structure using O(n) registers, with n = |S|, so that membership queries
“Is x in S?” can be answered efficiently, and, if x ∈ S, some information
associated with x can be retrived.

It is well known that if the computational instructions also include
multiplication, the static dictionary problem can be solved using only
O(1) query time [12, 11] and even in space within an additive low order
term of the information theoretic minimum [8]. However, in many ar-
chitectures encountered in practice, multiplication is more expensive to
perform than the basic operations mentioned above, so it seems natural
to disallow it as a unit cost operation in our theoretical model. Indeed,
this approach is taken in [2, 18, 21], and we shall also take it here.

Andersson et al [4] show that if only the basic instruction set is

used, worst case query time Ω(
√

log n/ log logn) is necessary. This lower
bound is also valid under extended computational instruction sets, as
long as all instructions can be computed by AC0 circuits (multiplica-
tion can not [15]). Andersson et al show that a matching upper bound

O(
√

logn/ log logn) can be obtained, if various exotic AC0 instructions

(clustering functions and cluster busters) are allowed.

One of the main results of the present paper is that with only the
basic instruction set of addition, subtraction, bitwise Boolean operations,

and shifts, worst case query time
√

log n(log logn)1+o(1) is possible. This

leaves only a (log log n)1+o(1) gap to the lower bound.

2

The technique is basically a variation of the technique of Andersson
et al [4], combining range reduction with packed B-trees. In order to
carry this approach through in the setting of the basic instruction set,
we introduce some techniques and subroutines which may be useful for
trans-dichotomous computation in general, namely bit permutation, cir-
cuit evaluation, and locating the least significant bit of a word. We also
show lower bounds for these problems, in some cases establishing opti-
mality of our subroutines. Thus, we note that any fixed permutation of
the bits of a word can be realized in time O(logw) and that reversing
a word requires time Ω(logw). We show that multiplying two words
can be done in time (logw)1+o(1) and that Ω(logw) is a lower bound.
We show that finding the least significant 1-bit in a word can be done
in time O(log logw) and that this is optimal. The lower bounds hold,
even if a precomputed table of size O(2w

ε
) for a small constant ε > 0

is allowed. Our lower bound technique is essentially an extension of the
locality-technique of [17].

The existence of a static dictionary with sublogarithmic query time
on a RAM with the basic instruction set disproves a conjecture of the
second author [17]. It is, however, not a practical solution, and is intended
only to demonstrate an asymptotic upper bound; having disallowed unit
cost multiplication from the instruction set, we base our upper bound on
reintroducing it as a subroutine on subwords: An essential part of the
algorithm is the parallel execution of several instances of Schönhage and
Strassen’s multiplication algorithm on parts of a word using word level
parallelism.

The paper is structured as follows: in Section 2, we construct our
general subroutines. In Section 3, we show how to use them to solve the
static dictionary problem, and in Section 4, we show the lower bounds.

Notation

When x and y are bit strings of equal length, we denote by x and y,
x or y, x nand y, not x, and x xor y the bitwise Boolean operations on
x and y. x[i] denotes the i’th bit of x from the left. Words are considered
bit strings of length w. Note that when a word x is interpreted as an
unsigned integer, the least significant bit is x[w] and the most significant
bit is x[1]. This might be slightly confusing, but most often we view
words as strings, rather than integers. If I = [i, j] = {i, i+1, . . . , j} is an
interval of bits, x[I] denotes x[i]x[i + 1] . . . x[j]. When x is a bit string,
and i a positive integer, we denote by x ↑ i the result of shifting x i

3

positions to the left (padding the rightmost part of the result with zeros,
and killing off the i leftmost positions of x). Similarly, x ↓ i denotes
shifting x i positions to the right (padding the leftmost part of the result
with zeros, and killing off the i rightmost positions of x). If i is negative,
x ↑ i = x ↓ −i and vice versa. We denote by w the word size of the
machine. We shall assume that w is a power of two. We will assume that
bit strings are stored packed, i.e. a bit string of length m is stored in
dm/we machine words. Note that if we want to do the above mentioned
operations on strings of length m, we can do so in time O(dm/we) by
using the basic bit manipulation instructions of our machine.

2 Useful subroutines

Permuting and circuit evaluation

Proposition 1 Consider a fixed permutation π on m symbols. Given a
bit vector x[1]x[2] . . . x[m], we can compute its permutation

permπ(x) = x[π(1)]x[π(2)]x[π(3)] . . . x[π(m)]

in time O(dm/we logm).

Proof Assume without loss of generality that m is a power of two. It
is well known that a butterfly network with m sources and m sinks is a
permutation network for m packages. Given the permutation π, in this
graph we can find edge disjoint paths from source π(i) to sink i. Given
an input x ∈ {0, 1}m, mark all nodes along the path from π(i) to i with
label x[π(i)]. Now, each column in the graph is marked with a bit vector
in {0, 1}m. The first column is marked with the input, the last column
with the desired output. It is easily checked that given the mark of one
column, we can compute the mark of the next in time O(dm/we), using
only shifts and bitwise Boolean operations (bitwise and to mask out bits,
and bitwise or to combine masks). 2

Proposition 2 Let m,m′ be given, and let i1 + i2 + · · · + im = m′.
Consider a map expand : {0, 1}m → {0, 1}m′, defined by

expand(x[1]x[2] . . . x[m]) = x[1]i1x[2]i2 . . . x[m]im .

Then, expand(x) can be computed in time O(d(m+m′)/we log(m+m′)).

4

Proof For convenience of notation, we assume that ij > 0 for all j and
hence m′ ≥ m; the general case is similar. We also assume that m is
even. First compute, using Proposition 1,

x′ = permπ(x0m
′−m) = 0i1−1x[1]0i2−1x[2] . . . 0im−1x[m]

in time O(dm′/we logm′). Let y = 1i10i21i3 . . . 1im−10im. Now, compute

• z1 = y and not[(y and x′) + y)],

• z2 = (not y) and not[((not y) and x′) + (not y)],

• z = z1 or z2

Then z is x[1]i1x[2]i2 . . . x[m]im , as desired. 2
Let m′,m be given. A monotone projection is a map f : {0, 1}m →

{0, 1}m′ of the form f(x)[i] = ρ(i), with ρ(i) ∈ {0, 1, x[1], x[2], . . . , x[m]}.
Proposition 3 Any monotone projection can be computed in time
O(d(m′ +m)/we log(m′ +m)).

Proof Write the projection as a composition of an expansion, a permu-
tation, and bitwise Boolean operations with masks, and use Propositions
1 and 2. 2

Lemma 4 Let C be a Boolean circuit of depth d, fan-in 2, and size
s ≥ m,m′, computing a map {0, 1}m → {0, 1}m′. Given x, C(x) can be
computed in time O(ds/wed log s).

Proof Convert C to C ′ of the following normal form:

• All negations of C ′ occur at inputs.

• C ′ is constructed on levels 0..2d+ 1, with and-gates on even levels
and or-gates on odd levels. The inputs to gates at level l are either
constants or outputs of gates at level l−1. The inputs and negations
to inputs are regarded as level 0 gates, and the outputs as level
2d + 1 gates. There are exactly s gates on each level, except level
0, with 2m gates, and level 2d+ 1, with m′ gates.

Note that the connection between two levels can be described as a mono-
tone projection. Given input x ∈ {0, 1}m, we can now compute C(x) by
first computing the concatenation of x and not x and then computing d
blocks of operations, each consisting of a monotone projection, a bitwise
Boolean or, a monotone projection, and a bitwise Boolean and. Finally,
we compute a last projection. Total time is O(ds/wed log s). 2

5

Corollary 5 Multiplying two w-bit words can be done in time (logw)3+o(1).

Proof Apply Lemma 4 to Schönhage and Strassen’s multiplication cir-
cuit [19] of size w(logw)(log logw) and depth (logw)(log logw). 2

Since multiplication is of primary importance, we want to optimize
the above corollary a bit. Using the general circuit simulation algo-
rithm is a bit of an overkill. Schönhage and Strassen have two multi-
plication circuits, one of size w(logw)(log logw)(log log logw) . . ., based
on the Fourier transform over the complex numbers, and one of size
w(logw)(log logw), based on the Fourier transform over finite rings. By
examining the first algorithm in details (which we won’t go into here)
one finds that it word parallelizes perfectly, i.e. it can be implemented
using bitwise Boolean operations and shifts (and no additions) with only
a constant factor of overhead, i.e. we get the following proposition:

Proposition 6 Multiplying two w-bit words can be done in time
O((logw)(log logw)(log log logw) . . .).

The second multiplication circuit does not seem to word parallelize per-
fectly, the obstacle being that different parts of a word must be shifted by
different amounts, so we don’t know if we can improve this toO((logw)(log logw)).

We need Fact 6 to get the
√

log n(log logn)1+o(1) bound for the static
dictionary problem in the next section. However, readers who prefer a

presentation without gaps can use Fact 5 instead and still get a
√

logn(log log n)O(1)

solution.
Note that all of the above upper algorithms use various word-sized

constants containing masks depending on the word size w. We cannot
afford to compute these constants at run-time, so we assume that they
have been determined and hard-wired into the algorithm at compile-time.
Following the terminology of Ben-Amram and Galil [5], such solutions
are called weakly non-uniform. Fredman and Willard’s fusion tree [13] is
another example of a weakly non-uniform algorithm. We do not consider
weak non-uniformity as a serious deficiency of the algorithms; comput-
ing useful constants at compile-time is hardly an esoteric phenomenon.
Note that in our solution to the static dictionary where the subroutines
will be used, we can eliminate the non-uniformity by simply making the
constants part of the static data structure instead of the query program.

Simulating circuits in trans-dichotomous algorithms is not a new idea;
indeed, the word merging algorithm of Albers and Hagerup [1] which is
often used in trans-dichotomous algorithms is essentially a simulation of

6

Batcher’s bitonic merging network. Thorup, in his paper on sorting with
the basic instruction set [21], shows a different simulation result:

Theorem 7 (Thorup) Given a Boolean circuit C, mapping w bits to
w bits. Suppose w instances x1, x2, . . . , xw are given. The sequence
C(x1), C(x2), . . . , C(xw) can be computed in time O(s+ logw).

Thus, by applying “mass production” and performing several evalu-
ations simultaneously, Thorup avoids the multiplicative d log s penalty
we have to pay. However, for our purposes, we have to consider the
evaluation of a single instance.

The rightmost set bit of a word

Consider the function RightmostOne, giving the position of the rightmost
set bit of a word. For example, RightmostOne(0010001010000000) = 9.

Lemma 8 RightmostOne(x) can be computed in time O(log logw)

Proof

1. Given a word x with least significant 1-bit in position i. Let 1w be
the all-1 string and consider the two words x+1w and x xor 1w. It
is easily seen that they are different on bits 1, 2, . . . , i, but the same
on bits i+1, i+2, . . . , w. Thus, if we let y = (x+1w) xor (x xor 1w)
and let z = y xor (y ↑ 1), z will be the word with a 1 in position
i and 0 elsewhere.

2. Do a binary search for the single 1 bit in z. Stop after log logw
steps. We now have an integer r, so that we know the 1-bit is in
the subword x′ = x[r . . . r + s− 1] with s = dw/ logwe.

3. Move x′ to the leftmost end of the word, i.e. perform x := x ↑
(r − 1) Note that we now have a word where the least significant
bit is between 1 and s. If we find the position and add r − 1, we
are done.

4. Make a bit string x′′ containing j = dlog se consecutive copies of
x′. This can be done in time O(log s) = O(log logw) [2]. The bit
string x′′ can be stored in ≤ 2 words, so we can operate on it with
unit cost.

7

5. To avoid cumbersome notation, the next step is most easily ex-
plained by example. Suppose that w = 64, then s = 11 and j = 4.
Suppose x′ = 00001000000. We want to return 5. We have

x′′ = 00001000000|00001000000|00001000000|00001000000.

Let p be the constant bit string

p = 00000001111|00011110000|01100110011|10101010101.

In general, each block of p contains a sequence of alternating blocks
of 0’s and 1’s, in the i’th block from the right, the blocks have size
2i. The first 0 of each block is chopped off. Let g = x′′ and p.
Then

g = 00000000000|000010000000|000000000000|0000100000.

Now, the i’th block from the right of g contains a 1, if and only if
the i’th least significant bit of the answer is a 1. We want to move
these 1’s to specified positions.

6. Let h = g + a, where

a = 01111111111|01111111111|01111111111|01111111111.

Now, for i = 0 . . . j − 1, position is + 1 of h is a 1 if and only if
the i’th most significant bit of the desired answer is a 1. But using
time O(log logw) time, we can move position is + 1 to position
w − (j − 1) + i for all i, and we are done.

2

We shall actually use the following slight generalisation, which is a
corollary of the proof:

Corollary 9 Let RightmostField(x, d) be the function which looks at bits
1, d+ 1, 2d+ 1, . . . , in the word x, and returns the largest i, for which bit
id is 1. RightmostField(x, d) can be computed in time O(log log(w/d)).

Remarks: Gerth Brodal (personal communication) has noted that a
slight modification of the above algorithm can also be used to find the
most significant set bit of a word. When multiplication is allowed, both
operations can be done in constant time [13, 7, 3].

3 The static dictionary problem

We shall use the subroutine u← InterleavedMult(x, y, l,m). Here, l and
m are positive integers, and x and y are two bit strings (actually single

8

a[1] b[1] z[1] a[l] b[l] z[l]

A[1] B[1] Z[1] A[l] B[l] Z[l]

a[1] b[1] z[1]

a[2l] b[2l] z[2l]

where a = a ∗A, b = b ∗B, . . . , z = z ∗ Z

x =

y =

InterleavedMult(x, y, l, 26) =

...

...

...

...

.......

.......

Figure 1: The InterleavedMult function

words) of length at most lm ≤ w; x and y are interpreted as consisting
of the binary notation of m positive integers, each containing at most l
bits, stored in interleaved fashion (see figure 1). The subroutine returns
all of the m pairwise products stored in a bit string of length 2lm. Using
the general circuit simulation lemma, we get

Lemma 10 InterleavedMult(x, y, l,m) can be computed in time O((log l)3+o(1)).

Readers preferring a presentation without gaps can use this bound in
Theorem 13 and obtain a slightly weaker bound than stated there. For
the best bound we know, we need

Lemma 11 InterleavedMult(x, y, l,m) can be computed in time O((log l)1+o(1)).

Proof We use Fact 6. Since the algorithm proving this fact can be imple-
mented without additions, we can execute m instances of the algorithm,
with the instances given in interleaved form, without any overhead. 2

Lemma 12 Let S ⊆ {0, 1}b be a set of b-bit keys of size n with n ≥
4dlogne2. There is an interval I ⊆ {0, . . . , b−1} of size at most b/ logn,
so that for some a ∈ {0, 1}b, fa(x) = InterleavedMult(x, a, 4dlogne2, db/4dlog ne2e)[I]
defines a 1-1 function on S. (Recall that x[I] selects the bits marked by
I from x).

9

Proof We shall use the following fact, due to Dietzfelbinger et al [11]:
The class of hash functions Hk,l = {ha : {0, . . . , 2k − 1} → {0, . . . , 2l −
1}|0 < a < 2k and a odd} given by ha(x) = (ax mod 2k) div 2k−l is
nearly universal, i.e. for fixed x and y with 0 ≤ x, y < 2k, if a is chosen
at random, then Pr[ha(x) = ha(y)] ≤ 2/2l. A value a ∈ {0, 1}b can
be interpreted as db/4dlog ne2e 4dlogne2-bit words stored in interleaved
fashion. The InterleavedMult function multiplies each of these with the
corresponding segment in x. If each of these functions are injective on
S (restricted to the corresponding segment), the entire function will be
injective. In general, if we are given a set S of size n taken from some
universe, and a family of nearly universal hash functions mapping the
universe to a set of size n2, some member of the family will be injective
on S [10]. Thus, we have that for each segment, there is a value of
the restriction of a to that segment, so that when the multiplication is
performed, and a certain sub-segment of length 2dlog ne of the result
is extracted, this will be an injective function on S, restricted to the
corresponding segment. But since we store the segments in interleaved
fashion, the union of all the subsegments is an interval of size

2dlognedb/4dlog ne2e ≤ 2dlog ne(b

4dlog ne2 +1) ≤ b

2 logn
+2dlog ne ≤ b/ log n.

This is the interval I, and the proof of the lemma is complete. 2Note why
we multiply segments stored in interleaved fashion, rather than concate-
nated fashion: we could also have implemented a BlockMult, multiplying
a number of continuous blocks with the same time bound, but we would
have no way of collecting the various subsegments from each block into a
single interval within a sufficiently small time bound; this can be shown
using our lower bounds techniques of Section 4. However, Thorup [21]
has found an application for such a BlockMult subroutine.

We are now ready for the main theorem of this section.

Theorem 13 There is a solution to the static dictionary problem for
sets S ⊆ {0, 1}w of size n using n+ o(n) memory cells, each containing

w bits and with worst case query time
√

logn(log log n)1+o(1) with a query
algorithm only using the basic instruction set.

Proof Assume first that w ≥ 4dlog ne2. Using Lemma 12 with b = w,
we choose a word a such that fa is 1-1 on A. We store a in our data
structure and use fa to hash our elements, thereby reducing them to size
b′ ≤ w/ logn. By Lemma 11, computing the hash function on a single

10

element requires time (log logn)1+o(1). Now, let b = b′ and repeat. In
general, after t iterations, we have reduced our keys to word size less than
≤ w/(logn)t, unless we arrive at a key size which is less than 4dlogne2.
If we do arrive at such a word size, we stop. Otherwise we continue for

t =
√

log n/ log logn iterations. In the first case we have found a sequence
of hash functions whose composition is an injective function mapping S
to {0, 1}4dlogne2 . In the latter case, we have found a sequence of hash
functions whose composition is an injective function mapping S to the
domain {0, 1}bw/(logn)tc.

In the first case, we store the reduced elements in a two level hash
table, following Fredman, Komlos, and Szemeredi [12], except that we use
the hash function of Dietzfelbinger et al (the analysis of [12] goes through
for any nearly universal family). The multiplicative hash function can be
evaluated using lemma 6, using time (log logn)1+o(1). The search time is

O((t+ 1)(log log n)1+o(1)) ≤
√

logn(log logn)1+o(1), as desired.

In the second case, we store the reduced elements in a packed B-tree
of degree D ≥ b(log n)tc, following Andersson [2]. In Andersson’s paper,
it was shown how to search a packed B-tree in time O(logD n) using
the basic RAM instruction set. However, he had to use a huge table in
order to determine the rank of a given element in a B-tree node and we
want linear space. Examining his algorithm, we find that the obstacle
is precisely the computation of the RightmostField function, or, to be
completely precise, the analogous LeftmostField function. By storing
each B-tree node in reverse sorted order, we can use the RightmostField
subroutine instead, and search the B-tree in time O((log logD)(logD n)).

We now clearly have a data structure of size n + o(n). The search
time is

t(log log n)1+o(1)+O(
log n

log((logn)t)
(log log(log n)t))) =

√
logn(log log n)1+o(1),

as desired. 2

Remark: Combining the above techniques with techniques of the first
and third author [8], it is possible to improve the space bound in Theorem
13 to B + o(B) bits, where B is the information theoretic minimum

log
(

2w

n

)
, in the case where we only want to test membership and not

retrieve associated information.

11

4 Lower bounds

In this section, we show lower bounds for some of our subroutines; namely
reversing a word, multiplying two words, and locating the least (or most)
significant bit of a word, using the basic instruction set. As mentioned in
the introduction, a lower bound for the static dictionary problem itself
is shown in [4]. Note that since the problems only involve O(1) words,
they can be solved in constant time if a precomputed array containing
a table of the function is allowed, but this table will be very large. Our
lower bounds hold even in the presence of precomputed tables, as long as
the precomputed table has size less than 2w

ε
for certain constants ε > 0.

For the lower bounds, we need to specify and simplify our model
slightly: we have a RAM with a certain fixed number of CPU-registers,
say registers a, . . . , z, and a random access memory which can be accessed
from the CPU using direct and indirect reads and writes. We have con-
ditional jump (if a = 0 then branch) and the following computational
instructions operating on CPU-registers: +, nand (this is sufficient to
simulate all the bitwise Boolean operations) and ↑.

As an aid in showing our lower bounds, we shall consider non-Boolean
word circuits computing on words. Each wire of such a circuit C holds
a word x ∈ W = {0, 1}w. It may contain three kinds of gates: +-gates,
nand-gates, and ↑r-gates for various constants r, with ↑r (x) = x ↑ r.
Arbitrary constants c ∈W may also be fed into the circuit. The size of a
circuit is the number of gates it contains. A circuit with one source and
one sink computes a function W →W in the natural way.

The following general lemma is the key to all lower bounds.

Lemma 14 Let C be a word circuit of size s. Let u ∈W be a word with
a single block of ones in the left end, i.e. u = 1k0w−k for some k.

Then, there is a bit string v with the following properties:

• v has length 3w and will be indexed v[−w] . . . v[−1]v[1]v[2] . . . v[2w],
so when we do a bitwise and with v and a word, only the middle
part of v will matter.

• v has Hamming weight at most 2sk

• For any i between 0 and w−k, if x varies, but the value of x and (v ↓
i) is fixed (i.e. we only vary x on the bits where v ↓ i is 0),
C(x) and (u ↓ i) takes on at most 222s

values.

12

Proof The proof is an induction in s. For s = 0 (i.e. C(x) = x or
C(x) = c), the claim clearly holds, if we let v = u, padded with 0’s.

Suppose the top gate of C is a +-gate, i.e. C(x) = C1(x) + C2(x),
where C1 and C2 are smaller circuits than C. By induction, let v1 and
v2 be given, and let v = v1 or v2. Now, if the bits of x and (v ↓ i) are
fixed, C1(x) and (u ↓ i) and C2(x) and (u ↓ i) each take on at most

222(s−1)
different values. Furthermore, since the word u ↓ i is a word with

only a single interval of set bits, we have that if C1(x) and (u ↓ i) and
C2(x) and (u ↓ i) are fixed, C(x) and (u ↓ i) take on at most 2 different
values, corresponding to whether a carry bit is propagated to the interval
or not. Thus, C(x) and (u ↓ i) takes on at most 222s−2 · 222s−2 · 2 ≤ 222s

different values when the bits of x and (v ↓ i) are fixed.
The case where the top gate of C is a nand-gate is handled similarly

to the +-gate case.
Now suppose the top gate of C is an ↑r gate with input C1. By

induction, let v1 be given, and let v = v1 ↓ r. If x and (v ↓ i) =
x and (v1 ↓ (i+ r)) is fixed, C1(x) and (u ↓ (i+ r)) takes on at most

222(s−1)
values, and C1(x) and (u ↓ (i+ r)) determines C(x) and (u ↓ i).

2

Theorem 15 Any RAM program computing the rightmost (or leftmost)
set bit of a word uses time Ω(log logw). This is true, even if a precom-
puted table of size O(2w

1−ε
) is allowed, for any constant ε > 0.

Proof Let w be sufficiently large. Let ei = 0i−110w−i. Let U =
{e1, e2, . . . , ew}, i.e., the set of words with Hamming weight one. Given
ei in U , a least significant bit algorithm returns i. Suppose an algorithm
exists which gives this answer in less than (log logw)/10 steps. We shall
show that it gives the same answer on i, j ∈ U with i 6= j and thus cannot
be correct.

Consider executing the algorithm on each x ∈ U . After t steps, the
random access machine is in some configuration K(x, t).

We shall show that for any t < log logw/10, we can find a subset
Ut ⊆ U and word circuits A1, C1, A2, C2, . . . , At, Ct, Da, . . . , Dz, so that

• |Ut| ≥ |U |/224t
,

• the size of each Ai, Ci, and Di is at most t.

• For all x ∈ Ut, in all configurations K(x, t), the program counter is
at the same location, and furthermore, the memory has the same

13

appearance as originally, except that in memory register Ai(x),
the new value Ci(x) can be found. If for more than one value
i1 < i2 < · · · < ir, we have Ai1(x) = Ai2(x) = · · · = Air(x), the
value of the register is Cir(x), i.e. the largest index “wins”. The
value of CPU-register i is Di(x).

Let us first see that if we can show that this invariant can be upheld
for any algorithm, we get the theorem. We can assume, without loss of
generality, that the value is returned in CPU-register a, i.e. for members
of UT , with T = (log logw)/10, the returned value is Da(x). Note that
all bits of the result are zero, except the least significant logw. According
to Lemma 14, there is a bit string v of Hamming weight at most (logw)2,
so that if the bits of v are all zero, the result is member of a set of size
22log logw/5

. This means that for x ∈ UT − B, for a certain set B of size
(logw)2, only 22log logw/5

different answers are obtained. Since UT −B �
22log logw/5

, two elements return the same answer and the algorithm is
incorrect.

We should now check that the invariant can be upheld. The cases
of direct and indirect write, conditional jump, and computation using
nand and + are all straightforward. The interesting cases are read and
computation using ↑. Suppose we do an indirect read, e.g., let CPU
register a be equal to memory cell u, where u is the value of CPU register
b. The value of u for members x ∈ Ut is described by a word circuit
Db(x). For each member x of Ut, it is either the case that Db(x) is
the address of one of the undisturbed values in the precomputed table,
it is one of the previously written addresses A1(x), . . . , At(x), or it is
neither. Thus, we get the set Ut partitioned into t + 2 subset. Take
the largest of these, V . If V corresponds to one of the t + 1 last cases,
we can let Ut+1 = V and easily uphold the invariant. In the first case,
we read some precomputed value. Only the w1−ε least significant bits
of the address are non-zero. By Lemma 14, there is a bit string v of
Hamming weight at most (logw)w1−ε, so that if x and v = 0, the result
is member of a set of size 22wt . This means that for x ∈ V − B, for a
certain set B of size (logw)w1−ε, only 222t

different addresses are read.
We get V − B partitioned into 222t

subsets. Let Ut+1 be the largest of
these. The invariant can now easily be upheld.

The case of a computation using ↑ is very similar. The reason that ↑
is more difficult to handle than the other computational instructions is
that ↑ is a binary predicate, but in our word circuits, we only allow unary
↑r- gates with fixed second argument r. But we can handle ↑ instructions

14

similarly to reads, by noting that only the logw+1 least significant bits of
the second argument are relevant. By Lemma 14, we find a large subset
of Ut for which the second argument is the same and we are done. 2

The lower bound for reverse follows a slightly different strategy. We
consider reversing a subword of length b ≤ w; reverse(x[1]x[2] . . . x[b]) =
x[b] . . . x[2]x[1].

Lemma 16 Let b ≤ w. A word circuit of size ≤ 1
10

log b correctly com-

putes reverse on at most a 2−b
1/4

fraction of {0, 1}b.

Proof Let k = bb1/3c. Let a word circuit C be given. By Lemma 14,
we can find a word v of Hamming weight at most b1/10b1/3 so that the
statement of the lemma holds for u = 1k0w−k, i.e. if x and (v ↓ i) is

fixed, C(x) and (u ↓ i) takes on at most 2b
1/5

different values.
Let T = {0, 1, 2, . . . , b − bb1/3c − 1}. We claim that for some i ∈ T ,

v ↓ i and reverse(u ↓ i) are disjoint, i.e. they do not contain set bits in
overlapping positions. Note that v ↓ i and reverse(u ↓ i) are disjoint if
b− u1 − i 6= v1 + i for all indices u1, v1 so that u[u1] = v[v1] = 1. This is
equivalent to i 6= (b − u1 − v1)/2, i.e. for any particular (u1, v1) pair, at
most one i goes wrong. Since there are only |u|h|v|h ≤ b1/3b1/10b1/3 < #T
pairs, some i ∈ T is good for all pairs.

Now fix the bits of x which are 1 in v ↓ i to any value and select
all other bits at random. We want to find the probability that C(x) =

reverse(x). We know that C(x) and (u ↓ i) takes on at most 2b
1/5

different values. Note that reverse(x) and (u ↓ i) is determined 1-1 by
x and reverse(u ↓ i), and since reverse(u ↓ i) is disjoint from the set

of fixed bits of x, all 2bb
1/3c possible values of reverse(x) and (u ↓ i)

are equally likely. The probability that reverse(x) and (u ↓ i) has one
of the different possible values of C(x) and (u ↓ i) is thus at most

2b
1/5
/2bb

1/3c < 2−bb
1/3c/2 < 2−b

1/4
. This is also an upper bound on the

probability that the circuit is correct for random x (since the bits of x,
marked by v ↓ i were fixed arbitrarily). 2

Theorem 17 Computing reverse of a b-bit string, (logw)10 ≤ b ≤ w,

requires time Ω(log b), even when a precomputed table of size 2b
1/10

is
given.

Proof The strategy is to find a small set of word circuits, so that for
a non-negligible subset of the possible inputs, every value found in the
random access memory is the value of one of the circuits on the input.

15

Unlike the lower bound proof for the least significant bit problem, we
only have to argue about the set of values in the random access memory,
not where they are located.

We will show: For any t > 0, there is a subset of Ut of U = {0, 1}b
and an (unordered) set of word circuits Ct so that

• #Ct ≤ 2b
1/10

+ t+ 1

• For each C ∈ Ct, the size of C is at most t.

• #Ut ≥ 2b/(#Ct)2t.

• For any x ∈ Ut, if we run the algorithm on x for t steps, the set of
non-zero values in the memory is a subset of Ct(x). Furthermore,
the program counter points to the same location in the program
for all x ∈ Ut.

We first show why this implies our theorem. After running T =
1
10

log b steps, we find slightly more than 2b
1/10

word circuits of size at most
T and a set UT of size at least 2b−o(b). Each of these circuits are correct
on at most a 2−b

1/4
fraction of U . Therefore on at most a (#CT) · 2−b1/4

fraction of x ∈ U will the value of even one of the circuits be reverse(x).
Since UT forms a greater fraction of U than that, we have for some x in
UT , the value reverse(x) is not found in any memory location. Therefore
the program is not correct.

The proof that we can maintain the invariant is similar to the proof
for the least significant bit, only simpler. The proof is an induction in t.
For t = 0 the lemma clearly holds, we just let the initial Ci’s be trivial
circuits containing the constants of the precomputed table, except for
one circuit, the identity circuit mapping x to x. Also, U0 = U .

A conditional jump divides Ut in two sets, of which we let Ut+1 be
the larger one. A direct or indirect read or write does not change the
set of values. A computation combines two previously computed values.
For addition and bitwise nand, for each x ∈ Ut, the two arguments are
described by two circuits from the set Ct. Thus, Ut is partitioned into
(#Ct)2 subsets, of which we let Ut+1 be the larger. For ↑, take the most
commonly occurring circuit appearing as first argument, and the most
commonly occurring integer between 0 and w − 1 appearing as second
argument, given the first argument. This reduces the set with a factor
at most w(#Ct). Thus, the invariant can be upheld and we are done. 2

The lower bound for multiplication is most conveniently shown by a
reduction. The following lemma, which may be useful in other contexts,

16

shows that if unit cost multiplication is allowed, we can reverse medium
sized subwords in constant time.

Lemma 18 On a RAM with unit cost multiplication in addition to the
basic instruction set, reversing a string containing s ≤ √w bits can be
done in constant time.

Proof Assume that the subword is in the right hand side of the word.
The algorithm works in two steps. In the first step, it makes copies
of the s least significant bits across the word and applies masks to get
one copy of each of the bits of s in equidistant positions, but in reverse
order. The second step gathers the bits together again. We use a result
of Fredman and Willard [13] that guarantees that if y is a word with set
bits on equidistant positions only, then for some w constants a and b, the
expression ((a ∗ y) and b) ↓ w gathers these bits together on the least
significant positions in a word in the same order as they were in y. The
entire algorithm for reversing an s-bit string x is:

• y = ((x · d) and m) ↓ (s− 1)

• return (a · y) ↓ ((s− 1)s+ 1) and b

where a =
∑s−1
i=0 2(s−i−1)s+(i+1), b =

∑s−1
i=0 2i, d =

∑s−1
i=0 2i(s+1) and m =∑s−1

i=0 2i(s+1)+s−1−i. 2

Theorem 19 Any RAM program multiplying two w-bit words using the
basic instruction set uses time Ω(logw). This is true, even if a precom-

puted table of size O(2w
1/20

) is allowed.

Proof Combine Lemma 18 and Theorem 17. 2
It is interesting to note that the following somewhat weaker lower

bound follows more or less directly from H̊astad’s size-depth tradeoff for
unbounded fan-in circuits computing multiplication [16]: time Ω(logw/ log logw)
is necessary, even if a precomputed table of size wO(1) is allowed. This is
not the case for the other two lower bounds, as reverse and least signifi-
cant bit are AC0 functions.

References

[1] S. Albers and T. Hagerup. Improved parallel integer sorting with-
out concurrent writting. In 3rd ACM-SIAM Symposium on Discrete
Algorithms, pages 463–472, Orlando, Florida, 1992.

17

[2] A. Andersson. Sublogarithmic searching without multiplications. In
36th IEEE Symposium on Foundations of Computer Science, pages
655–663, 1995.

[3] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in
linear time? In 27th ACM Symposium on Theory of Computing,
pages 427–436, Las Vegas, Nevada, 1995.

[4] A. Andersson, P.B. Miltersen, S. Riis, and M. Thorup. Static dictio-
naries on AC0 RAMs: Query time Θ(

√
logn log logn) is necessary

and sufficient. In 37th IEEE Symposium on Foundations of Com-
puter Science, pages 538–546, Burlington, Vermont, 1996.

[5] A.M. Ben-Amram and Z. Galil. When can we sort in o(n logn)
time? In 34th IEEE Symposium on Foundations of Computer Sci-
ence, pages 538–546, Palo Alto, California, 1993.

[6] G.S. Brodal. Predecessor queries in dynamic integer sets. In Proceed-
ings 10th Symposium on Theoretical Aspects of Computer Science.
Springer-Verlag, 1997 (To appear).

[7] A. Brodnik. Computation of the least significant set bit. In Proceed-
ings Electrotechnical and Computer Science Conference, volume B,
pages 7–10, Portorož, Slovenia, 1993.

[8] A. Brodnik and J.I. Munro. Membership in a constant time and
a minimum space. In Proceedings 2nd European Symposium on Al-
gorithms, volume 855 of Lecture Notes in Computer Science, pages
72–81. Springer-Verlag, 1994.

[9] A. Brodnik and J.I. Munro. Neighbours on a grid. In Proceedings
5th Scandinavian Workshop on Algorithm Theory, volume 1097 of
Lecture Notes in Computer Science, pages 307–320. Springer-Verlag,
1996.

[10] J.L. Carter and M.N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143–154,
April 1979.

[11] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen.
A reliable randomized algorithm for the closest-pair problem. Tech-
nical Report 513, Fachbereich Informatik, Universität Dortmund,
Dortmund, Germany, 1993.

18

[12] M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table
with O(1) worst case access time. Journal of the ACM, 31(3):538–
544, July 1984.

[13] M.L. Fredman and D.E. Willard. Surpassing the information the-
oretic bound with fusion trees. Journal of Computer and System
Sciences, 47:424–436, 1993.

[14] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. Journal of Computer
and System Sciences, 48(3):533–551, June 1994.

[15] M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–
27, April 1984.

[16] J. H̊astad. Almost optimal lower bounds for small depth circuits. In
18th ACM Symposium on Theory of Computing, pages 6–20, Berke-
ley, California, 1986.

[17] P.B. Miltersen. Lower bounds for static dictionaries on RAMs with
bit operations but no multiplication. In Proceedings 23rd Interna-
tional Colloquium on Automata, Languages and Programming, vol-
ume 1099 of Lecture Notes in Computer Science, pages 442–451.
Springer-Verlag, 1996.

[18] R. Raman. Priority queues: Small, monotone, and trans-
dichotomus. In Proceedings 4th European Symposium on Algorithms,
volume 1136 of Lecture Notes in Computer Science, pages 121–137.
Springer-Verlag, 1996.

[19] A. Schönhage and V. Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281–292, 1971.

[20] M. Thorup. On RAM priority queues. In 7th ACM-SIAM Symposium
on Discrete Algorithms, pages 59–67, Atlanta, Georgia, 1996.

[21] M. Thorup. Randomized sorting in O(n log log n) time and linear
space using addition, shift, and bit-wise boolean operations. In
8th ACM-SIAM Symposium on Discrete Algorithms, pages 352–359,
New Orleans, Louisiana, 1997.

19

Recent BRICS Report Series Publications

RS-97-12 Andrej Brodnik, Peter Bro Miltersen, and J. Ian Munro.
Trans-Dichotomous Algorithms without Multiplication — some
Upper and Lower Bounds. May 1997. 19 pp.

RS-97-11 K̄arlis Čerāns, Jens Chr. Godskesen, and Kim G. Larsen.
Timed Modal Specification — Theory and Tools. April 1997.
32 pp.

RS-97-10 Thomas Troels Hildebrandt and Vladimiro Sassone.Transition
Systems with Independence and Multi-Arcs. April 1997. 20 pp.
Appears in Peled, Pratt and Holzmann, editors, DIMACS
Workshop on Partial Order Methods in Verification, POMIV ’96,
pages 273–288.

RS-97-9 Jesper G. Henriksen and P. S. Thiagarajan.A Product Version
of Dynamic Linear Time Temporal Logic. April 1997. 18 pp. To
appear in Concurrency Theory: 7th International Conference,
CONCUR ’97 Proceedings, LNCS, 1997.

RS-97-8 Jesper G. Henriksen and P. S. Thiagarajan.Dynamic Linear
Time Temporal Logic. April 1997. 33 pp.

RS-97-7 John Hatcliff and Olivier Danvy. Thunks and theλ-Calculus
(Extended Version). March 1997. 55 pp. Extended version of
article to appear in the Journal of Functional Programming.

RS-97-6 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. March 1997. 53 pp. Extended version of an article
to appear in the 1997 ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation
(PEPM ’97), Amsterdam, The Netherlands, June 1997.

RS-97-5 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke.First-
Order Logic with Two Variables and Unary Temporal Logic.
March 1997. 18 pp. To appear inTwelfth Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’97 Proceedings.

RS-97-4 Richard Blute, Jośee Desharnais, Abbas Edalat, and Prakash
Panangaden. Bisimulation for Labelled Markov Processes.
March 1997. 48 pp. To appear inTwelfth Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’97 Proceedings.

