
B
R

IC
S

R
S

-96-56
B

enaissa
etal.:

M
odeling

S
haring

and
R

ecursion
forW

eak
R

eduction
S

trategies

BRICS
Basic Research in Computer Science

Modeling Sharing and Recursion for
Weak Reduction Strategies using
Explicit Substitution

Zine-El-Abidine Benaissa
Pierre Lescanne
Kristoffer H. Rose

BRICS Report Series RS-96-56

ISSN 0909-0878 December 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryRS/96/56/

Modeling Sharing and Recursion
for Weak Reduction Strategies

using Explicit Substitution

Zine-El-Abidine Benaissa, Pierre Lescanne
INRIA Lorraine & CRIN, Nancy∗

Kristoffer H. Rose
BRICS, University of Aarhus†

December 1996

∗INRIA-Lorraine & CRIN, Bâtiment LORIA, 615, rue du Jardin Botanique, BP 101,
F–54602 Villers les Nancy Cedex (France). E-mail: {benaissa,lescanne}@loria.fr.
†Basic Research in Computer Science (Centre of the Danish National Research Founda-

tion), Dept. of Computer Science, University of Aarhus, Ny Munkegade bld.540, DK–8000
Aarhus C (Denmark). E-mail: krisrose@brics.dk.

1

Abstract

We present the λσaw-calculus, a formal synthesis of the concepts of
sharing and explicit substitution for weak reduction. We show how
λσaw can be used as a foundation of implementations of functional
programming languages by modeling the essential ingredients of such
implementations, namely weak reduction strategies, recursion, space
leaks, recursive data structures, and parallel evaluation, in a uniform
way.

First, we give a precise account of the major reduction strategies
used in functional programming and the consequences of choosing λ-
graph-reduction vs. environment-based evaluation. Second, we show
how to add constructors and explicit recursion to give a precise ac-
count of recursive functions and data structures even with respect to
space complexity. Third, we formalize the notion of space leaks in λσaw
and use this to define a space leak free calculus; this suggests optimisa-
tions for call-by-need reduction that prevent space leaking and enables
us to prove that the “trimming” performed by the STG machine does
not leak space.

In summary we give a formal account of several implementation
techniques used by state of the art implementations of functional pro-
gramming languages.

Keywords. Implementation of functional programming, lambda
calculus, weak reduction, explicit substitution, sharing, recursion, space
leaks.

2

Contents

1 Introduction 4
1.1 Complexity of functional computations 4
1.2 Sharing and strategies . 5
1.3 Generic descriptions of implementations 6
1.4 Plan . 7

2 Preliminaries 7

3 Calculi for Weak Reduction with Sharing 9
3.1 Explicit substitution and sharing 11
3.2 Addresses and parallel reduction 12
3.3 Explicit substitution with addresses 16

4 Reduction Strategies 17
4.1 Address-controlled strategies 17
4.2 “Call-by-Need” strategies . 20

5 Constructors and Recursion 26
5.1 Algebraic data structure . 27
5.2 Recursive code and data . 27

6 “Trim:” A Space leak free calculus 32

7 Conclusions 36

3

1 Introduction

The aim of this paper is to present a framework for several forms of implemen-
tation of functional programming languages. It is often said that there are
essentially two main classes of implementation, namely those based on graph
reduction and those based on environments. The first ones are efficient in
that they optimize the code sharing, the second in that they allow a design of
the implementation closer to the hardware. These two classes are tradition-
ally split into subclasses according to the strategy which is used (evaluation
of the value first, of the functional body first, or by need). However, in our
approach a strategy is not an ingredient of a specific implementation, but
something which is defined fully independently of the chosen form of im-
plementation (graph reduction or environments). Our unifying framework
is a calculus which describes faithfully and in detail all the mechanisms in-
volved in weak reduction. Rather naturally we have chosen a weak calculus
of explicit substitution (Curien, Hardin & Lévy 1992) as the basis, extending
it with global addresses. This way, we can talk easily, and at a high level
of detail, about addresses and sharing. At first, the calculus is not tied to
any kind of implementation: the separation between graph reduction and
environment-based evaluation emerges naturally when studying how to as-
sign an address to the result of a successful variable lookup. Strategies come
later as restrictions of the calculus. In this paper we study call-by-value and
call-by-name of Plotkin (1975) as well as the not yet fully understood call-by-
need strategy, and we show how parallel strategies can be devised. Finally
we treat an important problem of implementation for which people propose
ad-hoc solutions, namely space leaking : we propose a natural and efficient
solution to prevent it (which we prove correct).

1.1 Complexity of functional computations

Computer science is rooted in the notion of computability and decidability
which was developed in the 30s by Turing (1936) and Church (1936) as an
answer to Hilbert and Gödel (1931). While the purpose of these studies
was merely to define the “effectively computable” functions by establishing
what could possibly be computed in a mechanical way, the formulation still
ended up having a profound influence on what was to be known as “high-level
programming languages” since few other notations were (and are) known for
expressing problems in a way that is guaranteed to be computable.

4

For the languages inspired by “Turing Machines” (TMs), now known as
imperative programming languages, there is a natural notion of a compu-
tation step. As a consequence, the study of computational complexity of
algorithms expressed as imperative programs is well established, and precise
measures for the time (and space) resources required to solve many com-
putable problems exist, all based on the assumption that the step (and data
structure) of a TM provides a fair unit of computational time (and space).

For languages based on Church’s “λ-calculus” the issue is not so clear,
however: there never was a properly established notion of “computation step”
for the λ-calculus: the original notion of contraction using the rule

(λx.M)N →M [x := N] (β)

was recognized from the start as not fulfilling this purpose, because it is not
clear that there is a bound on the amount of work involved in the substitution
of N for x in M since M can contain an arbitrary number of xs. This was
recognized as a problem and a first solution was found: combinatory logic in-
troduced by Schönfinkel (1924) and (see Curry & Feys (1958) for a discussion
Curry 1930) gives a truly stepwise realization of the λ-calculus and hence as-
signs a complexity to reduction of λ-terms. However, this measure is far too
pessimistic for realistic use for two reasons: first it duplicates computation,
second it strictly enforces a particular sequence of evaluation, third the cod-
ing of λ-terms into combinatory logic changes the structure of the term in
a way that may increase the size quadratically. Thus for a while there was
no real way to assign complexity to algorithms based on their formulation in
λ-calculus (or languages based on λ-calculus – the functional languages1).

1.2 Sharing and strategies

The seminal fundamental study of the complexity of λ-evaluation was Landin’s
(1965) SECD machine which was the first device described to mechanically
evaluate λ-terms. The technique used is as follows. First one translates the
λ-expressions into a sequence of “instructions”, second one reduces those in-
structions sequentially using a complicated system of stacks to keep track of
the code to be executed later. The complexity boils down to a measure w.r.t.

1Strictly speaking, functional languages are based on the notion of recursive equations
as explained by McCarthy (1960) which is λ-calculus plus an explicit recursion operator;
we return to this subtle point in the paper.

5

a specific strategy and makes the mentioned duplication implicit in the data
structures. Later abstract machines include some variation in the used re-
duction strategy but remain dedicated to one (some early, seminal examples
are Plotkin 1977, Henderson 1980, Cardelli 1983).

The first issue, sharing to avoid duplication, was addressed already by
Wadsworth (1971) who proposed λ-graph reduction which is the simple idea
that duplication should be delayed as long as possible by representing sub-
terms of common origin by identical subgraphs. This way all “duplicates”
profit from any reductions happening to that particular subterm (or -graph,
as it were). This technique was combined with combinator reduction by
Turner (1979) and generalized by Hughes (1982) into supercombinator graph
reduction which is the computational model underlying most implementa-
tions of functional languages today.

The second issue, evaluation sequence, was addressed partly by Plotkin
(1975) who identified the difference between the evaluation sequence or re-
duction strategy used in all implementations at the time, call-by-value, and
the simplest normalizing strategy known to normalize, call-by-name. The is-
sue of the complexity of evaluation was not addressed, however. The work on
categorical combinatory logic introduced by Curien (1983) and the following
explicit substitutions (Abadi, Cardelli, Curien & Lévy 1991) permitted this
to be repaired: here any strategy can be used and the complexity in each
case is represented by the reduction length in that substitution is defined
in a stepwise manner such that each step can conceivably be implemented
in constant time and hence serve as the basis for the study and systematic
derivation of efficient implementations.

1.3 Generic descriptions of implementations

The aim of providing an accurate analysis of the complexity of computations
of functional programs including achieving a clear and independent integra-
tion of sharing and description of the restriction to a strategy, has lead us
to a new approach to the description of abstract machines. Indeed, if those
three aspects can be fully dissociated we can to propose a generic description
of abstract machines, yielding each specific machine as a particular instan-
tiation of several parameters. This is clearly illustrated by Table 4. In this
convenient framework we were able to formalize other aspects of functional
programming languages, namely recursive definitions, constructors and space
leak freeness.

6

1.4 Plan

We achieve our aim by providing a solution to the three issues exemplified in
the previous sections: we obtain a computational models that, in a general
fashion, is a realistic computational model for weak λ-calculus reduction
incorporating both realistic sharing to avoid duplicating work and a realistic
measure of the complexity of substitution and leading to a generic description
of abstract machines

We start in Section 3 by combining sharing and explicit substitution for
weak λ-calculus (reflecting that functional languages share the restriction
that reduction never happens under a λ) into a calculus, λσaw, with explicit
substitution, naming, and addresses. Moreover, it naturally permits two
update principles that are readily identifiable as graph reduction (Wadsworth
1971) and environment-based evaluation (Curien 1991). In Section 4 we show
how λσaw adequately describes sharing with any (weak) reduction strategy;
the proof is particularly simple because it can be tied directly to addresses;
to illustrate this we prove that λσaw includes the “λlet” calculus of Ariola,
Felleisen, Maraist, Odersky & Wadler (1995). In Section 5 we study how the
usual extensions of explicit recursion and data constructors can be added to
give the full expressive power of functional programming. In Section 6, we
illustrate the adaptability of this calculus by defining the notion of a space
leaking, and we study a class of space leak free subcalculi. As a corollary we
get that the trimming used in the “STG” calculus of Peyton Jones (1992) is
safe.

2 Preliminaries

We start by summarizing certain standard concepts and notations that will
prove convenient throughout.

Notation 2.1 (relations). We designate binary relations by arrows, follow-
ing Klop (1992). Let →,−→

1
,−→

2
⊆ A×A be such relations and let a, b ∈ A.

1. −−→
1+2

= −→
1
∪ −→

2
and −→

1
· −→

2
denotes the composition of −→

1
and −→

2
.

2. →→ is the transitive reflexive closure of →.

3. We use Rosen’s (1973) stencil diagrams to express propositions (sev-
eral examples are given below), with solid arrows and nodes denoting

7

(outer) universally quantified relations and objects, and dotted arrows
and hollow nodes denoting (inner) existentially quantified relations and
objects, respectively.

4. → is confluent if ←← ·→→ ⊆ →→ ·←←.

5. The→-normal forms are those a such that @b : a→ b. In other words,
a is a normal form if a→→ b implies a = b.

6. →→[is the normal form restriction of →→ that satisfies a→→[b iff a→→ b

and b is a →-normal form.

7. → is terminating if all sequences a1 → a2 → · · · are finite; it is conver-
gent if it is terminating and confluent.

Definition 2.2 (term rewriting). The following summarizes the main con-
cepts of term rewriting used in this paper.

1. We permit inductive definition of sets of terms using syntax produc-
tions. Furthermore, we write C{−} for a context.

2. A term rewrite system is a set rules `i → ri, where `i and ri are terms
called the left-hand side (lhs) and ri the right-hand side (rhs), respec-
tively. Furthermore, all variables in a rhs also occur in the associated
lhs.

3. A substitution σ is a map from variables to terms; this is homeomorphi-
cally extended to any term t such that σ(t) denotes the term obtained
by replacing all variables x in t with σ(x). A redex is a term of the form
σ(`) for some substitution σ and some rewrite rule ` → r. A rewrite
step is the procedure of replacing a redex in some context C{−} with
its reduct C{σ(r)}; we then write C{σ(`)} → C{σ(r)}.

4. We say that two rewrite rules `1 → r1 and `2 → r2 overlap if there exists
substitutions σ1, σ2, a (possibly trivial) context C1{−}, and a term t2,
such that σ1(`1) = C1{t2} and σ2(`2) = t2 but @σ : σ(`1) = C1{x}. A
term rewrite system is orthogonal if it has no overlaps and is left-linear
(no variable occurs more than once in any lhs).

5. Let the overlining of a term t, t, be obtained by replacing all the symbols
in t with (new and unique) “overlined” symbols. For a term rewrite

8

system R with rewrite rules ` → r let R have rules ` → r. Clearly, if
we overline the symbols of a redex for the R-rule ` → r in a term t,
then this will now instead be a redex for the R-rule `→ r. If t contains
several R-rule redexes, in particular one such that t = C{σ(`)} for the
R-rule ` → r, then the R-redexes remaining in the reduct C{σ(r)}
are called the residuals of the non-reduced R-redexes. Reducing to
R-normal form and then erasing all overlines is called a development ;
developing t is called a complete development since all redexes of t as
well as all the residuals are reduced.

Notation 2.3 (de Bruijn notation). We employ the “namefree” repre-
sentation of λ-terms invented by de Bruijn (1972): Each occurrence of a
variable in a λ-term is represented by a natural number, called the in-
dex, corresponding to the number of λ’s traversed from its binding λ to
it (so indices start at 0). The set of these terms is defined inductively by
M,N ::= λM | MN | n . The free indices of a term correspond to the
indices at the outermost level of what is usually known as the free variables
and is given by fi(M) = fi0(M) where fii is again defined inductively by
fii(MN) = fii(M) ∪ fii(N), fii(λM) = fii+1(M), and fii(n) = {n − i} when
n ≥ i but ∅ when n < i. We call this calculus λNF and when mixing it with
other calculi we will refer to λNF-terms as pure terms. In what follows, a
value is a term of the form λM [s] or nV1 . . . Vm where V1, . . . , Vm are also
values.

Finally, we base our work on the λσw-calculus, shown in Fig. 1, one of
several calculi of weak explicit substitution given by Curien et al. (1992).
The idea behind this calculus is to forbid substitution in abstractions: this
is accomplished by never propagating explicit substitutions inside abstrac-
tions yet requiring in (Bw) that a substitution is present in every redex. This
restriction gives a confluent weak calculus but necessitates using a term rep-
resentation with lists of bindings as originally found in the λρ-calculus of
Curien (1991).

3 Calculi for Weak Reduction with Sharing

In this section we generalize the weak explicit substitution calculus λσw de-
fined by Curien et al. (1992) to include addresses in order to explicit pointer
manipulations. Our starting point is reminiscent of the labeling used by

9

Terms. M and N denote pure λNF-terms. λσw-terms are ranged over by W
given by

W ::= n
∣∣WW

∣∣M [s] (Weak)

M,N ::= λM
∣∣MN

∣∣ n (Pure)

s ::= W · s
∣∣ id (Substitution)

Beta-reduction.

(λM)[s]W →M [W · s] (Bw)

Substitution elimination.

(MN)[s]→M [s]N [s] (App)

0 [W · s]→ W (FVar)

n+ 1 [W · s]→ n [s] (RVar)

n [id]→ n (VarId)

Figure 1: λσw.

10

Maranget (1991),2 however, our notion of “address” is more abstract and al-
lows us a better comprehension of implementations of machines for functional
programming languages and their optimizations.

3.1 Explicit substitution and sharing

Figure 3 presents the syntax and reduction rules of λσaw (it will be properly
stated in Definition 3.10 once the notion of address is formally established).
Like λσw it forbids substitution in abstractions by never propagating explicit
substitutions inside abstractions yet requiring that every redex must contain
a substitution. This restriction gives a confluent weak calculus but necessi-
tates using a term representation with lists of bindings as originally found in
the λρ calculus of Curien (1991).

λσaw includes the special rule (Collect) which is meant to save useless
computations and can be omitted: it collects “garbage” in the style of Bloo
& Rose (1995), i.e., terms in substitutions which are never substituted.
Although computation in such useless terms can be avoided using specific
strategies, the accumulation of useless terms in substitutions is a drawback
w.r.t. the size of terms, and hence w.r.t. space complexity. In Section 6, we
study a phenomenon well known in functional programming as the space leak
problem.

Furthermore, notice that the rules (FVarG) and (FVarE) have the same
left-hand side (LHS): the difference between these two rules is in the choice
of the address in the right-hand side (RHS) which is either b (FVarG) or
a (FVarE). This conceptual choice has a direct correspondence to the du-
plication versus sharing problem of implementations. This is illustrated by
the example in Fig. 2. We obtain four possible different resulting terms
namely (nb nb)a, (nb nd)a, (nc nb)a, and (nc nd)a. It is clear that erasing
the addresses of these four terms produces the same term, namely n n : the
difference between them is the amount of sharing (or shapes of the associ-
ated graph) we obtain, more precisely, the use of (FVarG) maintains sharing
whenever (FVarE) decreases it. Also notice that sharing is only increased
when a term with addresses in it is duplicated, i.e., when (App) is used with
some addresses inside s. As a consequence, further (parallel) rewriting of this
argument will be shared with all its other occurrences in the term: Assume
that the address is a, a copy of the term E at address b (or, to be precise,

2In particular the use of developments and parallel reduction to model sharing.

11

(0 [nb]c 0 [nb]d)a
(nb 0 [nb]d)a

(FVarG) 00 (nb nb)a
(FVarG) ..

(nb nd)a
(FVarE) 00

(nc 0 [nb]d)a
(FVarE)

.. (nc nb)a
(FVarG)

..

(nc nd)a

(FVarE)
00

Figure 2: Graph- vs. Environment reduction.

a copy of its root node because addresses of its subterms are not changed)
is performed. Then the term 0 [E · s] at address a is replaced by that copy
and later rewriting of this argument will not be shared. Thus we see that the
reduction −→

σ
contains two substitution elimination subreductions, −−→

σg
and

−−→
σe

. Let σ0 = {(App), (RVar), (VarId)}. Then σg = σ0 ∪ {(FVarG)} and

σe = σ0 ∪ {(FVarE)}.

3.2 Addresses and parallel reduction

So, a consequence of mixing those two systems is the creation of a critical
pair (non-determinism) and thus non-orthogonality. Fortunately, since this
critical pair is at the root, the residual redex notion (Huet & Lévy 1991)
can be extended in a straight-forward way: We just observe that there is
no residual redex of (FVarG) (resp. (FVarE)) after applying (FVarE) (resp.
(FVarG)). We first establish that this is safe before we give the definition
(Def. 3.7).

Definition 3.1. A complete development of a preterm T is a series of λσaw-
rewrites that rewrite all redexes of T until no residuals remain.

Thus the non deterministic choice between (FVarE) and (FVarG), dis-
cussed above, makes complete development nondeterministic. We will denote
the set of preterms obtained by all possible complete developments of T by
dev(T); notice that these preterms depend on the fresh addresses introduced
by (App).

Lemma 3.2. dev(T) is finite for any preterm T .

12

Syntax. The addressed preterms are defined inductively by

T, U, V ::= Ea
∣∣ ⊥ (Addressed)

E,F ::= M [s]
∣∣ UV ∣∣ n (Evaluation Context)

M,N ::= λM
∣∣MN

∣∣ n (Pure)

s, t ::= id
∣∣ U · s (Substitution)

where everywhere a, b, c range over an infinite set A of addresses.

Weak β-introduction prereduction. −−→
Bw

is defined by the rule

((λM)[s]b U)a →M [U · s]a (Bw)

Weak substitution elimination prereduction. −→
σ

is defined by the rules

(MN)[s]a → (M [s]bN [s]c)a b, c fresh (App)

0 [Eb · s]a → Eb (FVarG)

0 [Eb · s]a → Ea (FVarE)

n+ 1 [U · s]a → n [s]a (RVar)

n [id]a → na (VarId)

Collection prereduction. −−→
C

is defined by the rule

M [s]a →M [s|fi(M)]
a s 6= s|fi(M) (Collect)

where environment trimming is defined by s|I = s|0I where id|iI = id and
(U · s)|iI = U · s|i+1

I when i ∈ I but ⊥ · s|i+1
I when i /∈ I.

Figure 3: λσaw: syntax and reduction rules.

13

Proof. Clearly #dev(T) ≤ 2i where i is the number of (FVarG/E)-redexes
in T .

Definition 3.3 (sharing ordering). Let θ be a map on the set of ad-
dresses. The ordering Dθ is defined inductively by

• If for all i, 0 ≤ i ≤ n Ti Dθ T ′i then M [T0 · · ·Tn]a Dθ M [T ′0 · · ·T ′n]θ(a),

• na Dθ nθ(a), and

• if T Dθ T ′ and U Dθ U ′ then (TU)a Dθ (T ′U ′)θ(a).

we say that the addressed term T collapses in U , T D U if there exists a map
θ such that U Dθ (T).

Lemma 3.4. Let T be a preterm. (dev(T),D) is a finite complete partial
ordering (cpo).

Proof. The lower bound of two preterms T1 and T2 belonging to dev(T) is the
most general unifier of T1 and T2 where the addresses are interpreted as free
variables (and the result of course considered modulo renaming). Moreover,
D is a partial ordering.

The next lemma uses the translation function “erase” which deletes all ad-
dresses of an addressed term, obviously resulting in a λσw-term.

Lemma 3.5. Let P and Q be two preterms. If P −−−→
λσaw

Q then erase(P) −−−→
λσw

erase(Q).

Proof. Obvious.

Theorem 3.6 (finite development). Let T be a preterm. Then all com-
plete developments of T are finite

Proof. From Lemma 3.5, and the fact that λσw is orthogonal, we obtain that
λσaw has the finite development property.

Now we can define the parallel extension 7−7−−→
R

of a rewrite system R which

corresponds intuitively to the simultaneous reduction of all R-redexes of a
term T , e.g., one 7−7−−→

Bw
step is the simultaneous reduction of all Bw-redexes.

14

Definition 3.7 (parallel extension). Let T and U be two terms. Then
the parallel extension 7−7→ of the rewrite relation → is defined by T 7−7→ U iff
U ∈ dev(T).

The next definition shows how to determine when an ‘addressed term’
corresponds to a ‘directed acyclic graph:’ this should be the case exactly
when the ‘sharing information’ is non-ambiguous.

Definition 3.8 (addressing). Given some set of terms T with a notion of
address associated to some subterms (written as superscripts). Assume t ∈ T
is such a term and let a, b ∈ A range over the possible addresses.

1. The set of all addresses that occur in t is written addr(t).

2. The outermost a-addressed subterms of t is the set t@a = {sa1, . . . , san}
for which an n-ary context C{ } exists such that t = C{sa1, . . . , san} and
a /∈ addr(C{−, . . . , −}).

3. t is admissible if all addresses a ∈ addr(t) satisfy t@a = {sa} where
a /∈ addr(s) (this is a variant of a notion of Wadsworth 1971).

4. If → is a rewrite relation on T defined by a certain number of axioms,
then for each address a, a−→ is the address restriction of→ to only those

(proper) reductions where the redex has address a. This is generalized

to any set of addresses A = {a1, . . . , an}: A−−→ =
⋃
a∈A

a−→.

5. 7−7 a−→ (resp. 7−7 A−−→) is the parallel extension of a−→ (resp. A−−→).

6. Parallel →-reduction is 7−7 ∞−−→ =
⋃
A⊆A 7−7

A−−→.

7. n-parallel →-reduction is 7−7 n,−−→ =
⋃
A⊆A∧#A≤n 7−7

A−−→; in particular 7−7 1,−−→ is

called serial reduction.

Parallel reduction 7−7 ∞−−→ expresses not only sharing but also parallel compu-

tation because at each step a parallel computer can reduce a set of addresses
simultaneously. Notice that if a 6∈ addr(U) or A ∩ addr(U) = ∅ the reduc-

tions degenerate: {T | U a−→ T } = {T | U 7−7 a−→ T } = {T | U A−−→ T} = {T |
U 7−7 A−−→ T} = ∅.

15

Proposition 3.9. 7−7 ∞−−−−−→
Bw+σ+C

preserves admissibility.

Proof. By definition of parallel rewriting, one rewrite step rewrites all occur-
rences of an address a, hence admissibility is preserved.

3.3 Explicit substitution with addresses

Definition 3.10 (λσaw). Given the preterms and prereductions of Fig. 3.

1. The λσaw-terms are the admissible λσaw-preterms.

2. λσaw-substitution is the relation 7−7 ∞−−→
σ

,

3. λσaw-reduction is the relation 7−7 ∞−−−−−→
Bw+σ+C

which we will write as 7−7 ∞−−→ when

confusion is unlikely.

As for λσw one associates with the pure term M the λσaw-term M [id]a

which will then reduce to weak normal form modulo substitution under
abstraction. Normal forms, values V , are of the form λM [V1 · · ·Vn]a or
(. . . (naV1)b1 . . . Vm)bm.

The last two lemmas of this section establish the connection between λσaw
and λσw and together show the correctness and confluence modulo erasure
of λσaw.

Lemma 3.11 (projection). Let T and U be two addressed terms. If T 7−7 ∞−−→
U then erase(T) −−−→→

λσw
erase(U).

Proof. Easy induction on the structure of T .

• T = M [s]b, two cases are possible. If a = b, by case analysis on λσa-
rule, three rules can be applied namely (App), (FVarE), (FVarG), or
(RVar). If (App) is applied (that means that M = M1M2) then

erase(T) = M1M2[erase(s)] −−→
λσ

M1[erase(s)]M2[erase(s)] = erase(U)

if a 6= b, then all evaluation contexts labeled by a are subterms of T ,
and are equals and induction hypothesis applies.

• T = (T1T2)b, if a = b only Bw rule can be applied. if a 6= b then the
induction hypothesis applies.

16

Lemma 3.12. let W and W ′ be two λσ-terms. If W −−−→
λσw

W ′ then there

exists two addressed terms T and U such that W = erase(T), W ′ = erase(U),
and T 7−7 ∞−−→ U .

Proof. Label each subterm of W by its access path to ensure that each sub-
term has a unique address and then rewrite using the redex’s address. More
formally, we define the function (we called label) that translates λσ-terms to
evaluation contexts. This function assigns to each weak subterm of a weak
λσ-term its position relative to the root ensuring the uniqueness of addresses
to subterms.

label(T1T2)p = (label(T1)1plabel(T2)2p)
p

label(M [T1 · · ·Tn · id])p = M [label(T1)1p · · · label(Tn)np · id]p

label(n p) = np

Then it is easy to show that label(M) 7−7 a−→ label(N).

Notice that label is a naive translation function of λσ-terms because it
does not profit from the possible amount of sharing in λσa. For instance,
let R be a weak λσ-term then label(RR) = RaRb and thus reductions in the
left R and in the right will not be done simultaneously because they have
different addresses.

4 Reduction Strategies

In this section we show how conventional weak reduction strategies can be de-
scribed through restrictions of the λσaw-calculus. First we formalize the classic
sequential strategies call-by-name, call-by-value, and call-by-need. Second,
we formalize two common parallel reduction strategies: spine parallelism and
speculative parallelism.

4.1 Address-controlled strategies

The crucial difference from traditional expositions in both cases is that we
can exploit that all redexes have a unique address. We will thus define a
reduction with a strategy as a two-stage process (which can be merged in
actual implementations, of course): we first give an inference system for

17

“locating” a set of addresses where reduction can happen, and then we reduce
using the original reduction constrained to just those addresses.

Definition 4.1 (strategy for addressed terms). Given a reduction −−→
X

on a set of addressed terms.

1. A strategy S is a relation written U
S̀

A from addressed terms U to

sets of addresses A.

2. For a strategy S, S-reduction −−−→
X/S

is defined by U1 −−−→
X/S

U2 iff U1 S̀
A and U1

A−−→
X

U2.

We begin with the possible reduction in context inference rules which
make possible to restrict the addresses at which the rewrite rules can be
applied.

Definition 4.2 (strategy rules). The λσaw-strategy rules are the following:

M [s]a ` {a} (Scl)
U ` A1 U ` A2

U ` A A = A1 ∪ A2 (Par)

s ` A
M [s]a ` A (Sub)

U ` A
U · s ` A (Hd)

s ` A
U · s ` A (Tl)

(UV)a ` {a} (Sap)
U ` A

(UV)a ` A (Lap)
V ` A

(UV)a ` A (Rap)

where we furthermore require for (Scl) and (Sap) that some λσaw-rule is,
indeed, applicable. A λσaw-strategy S is specified by giving a list of conditions
for application of each rule; this defines the relation

S̀
. Notice that the

normal forms (or values) for some strategies are not λσaw-values, i.e., closed
weak normal forms. For instance, if (Rap) is disallowed then normal forms
correspond to closed weak head normal forms (whnf) of shape (λM)[s]a.

Figure 4 shows the conditions for several strategies. Notice that when
(Sub) is disabled then (Hd) and (Tl) are not reachable.

For the remainder of the section we will discuss these strategies. Notice
that there are two forms of non determinism in the strategies. One is due to
(Par), the only rule which contains the union operator and can yield more
than one address for reduction. The other form of nondeterminism already

18

Strategy (FVar?) (Scl) (Par) (Sub) (Hd) (Tl) (Sap) (Lap) (Rap)
X E or G X X X X X X X X

CBN E X × × 1, ¬ 1, ×
CBV E X × × 1,∧ 2, ¬ 1, 1,∧ ¬ 2,

CBNeedE E 3, × ¬ 3, X × 1, ¬ 1, ×
CBNeedG G X × × 1, ¬ 1, ×
Specul-‖n E X 4, X X X X X X
Spine-‖n E X 4, X X X X X ×

X: “always applicable;” ×: “never applicable;” blank: “don’t
care;” 1,: U is a value; 2,: V is a value; 3,: if s = U · s′ and
M = 0 and U is a value; and 4,: #A ≤ n.

Figure 4: Strategies for λσaw.

mentioned in Section 3 (and here permitted only in the first strategy) is the
choice between (FVarE) and (FVarG).

The first strategy, “X,” allows every rule and gives us the full λσaw-
calculus.

Proposition 4.3. 7−7−−−→
X/X = 7−7−−→

X
.

Proof. An easy induction over λσaw-terms shows that T X̀ A if and only if

∅ ⊂ A ⊆ addr(U).

Thus it is clear that all other strategies specified this way define reductions
weaker than λσaw. CBN and CBV are just the the call-by-name and call-
by-value strategies of Plotkin (1975). They both use (FVarE) in order to
prevent any sharing of subterms.

The next two strategies are like CBN but add sharing in the way used
by functional language implementation: CBNeedE is the call-by-need strat-
egy (Launchbury 1993, Ariola et al. 1995); CBNeedG is an adaption of
Wadsworth’s (1971) “λ-graph reduction” to weak reduction (we return to
these below).

The last two strategies realize n-parallelism with sharing. The Specul-‖n
picks addresses everywhere in the term expecting that some reductions will
be useful and the Spine-‖n selects addresses in the head subterm disallowing

19

(Rap) rule in order to compute the weak head normal form. The simple
formulation we have found has promise for proving properties of parallel
reduction, however, parallel reductions are otherwise outside the scope of
this paper and the rest of this section focuses on sequential reduction.

4.2 “Call-by-Need” strategies

We start by stating some structural properties of terms preserved by sequen-
tial reduction. We restrict our attention to just “Call-by-Need-like” strate-
gies. Our intuition about such reduction strategies is that they only reduce
a redex in a certain part of a term. This is captured by the following:

Definition 4.4 (Argument local terms). Given T and a, b ∈ addr(T),
b is the right subaddress of a if b occurs only in contexts C{(U Eb)a}. T is
argument local if for each address b ∈ addr(T) which is subaddress of some a
then b occurs only in configuration C ′{(U F b)a} for the same a.

Definition 4.5 (Head Terms).

Closure Terms are admissible closed addressed terms and defined induc-
tively by

P ::= M [s]a
∣∣ (PM [s]a)b such that a 6∈ addr(P) (Head Term)

s ::= P · s
∣∣ ⊥ · s ∣∣ id (LSubstitution)

We call terms of the form −[−] closures.

Head Terms are closure terms that are argument local.

The insight is that these term classes capture the essence of sequential
and call-by-name/call-by-need reduction. Argument local terms ensure that
right arguments of applications are never reduced since they cannot occur in
the right argument of an application. In fact, only terms in substitutions are
updated.

Proposition 4.6. Given two terms P and T and a strategy S, such that
P 7−7−−→

/S
T . If S disables (Rap) and enables (FVarE) only when E (in 0 [Eb·s]a)

is a value then if P is a head term then T is a head term.

20

Proof. Since T is a head term then it has the form

(· · · (N0[s0]a0 N1[s1]a1)b1 · · ·Nn[sn]an)bn

where the si’s contain only terms of this form, and the ai do not belong to
addr(N0[s0]a0). The proof is by case analysis of each rule of λσaw.

Bw

T = C{((λM)[s]c N [t]b)a} → C{M [N [t]b · s]a} = P

Since T is a head term, then each occurrence of the subterm ((λM)[s]c N [t]b)a

is not a right argument of an application. Hence replacing this subterm
by M [N [t]b · s]a preserves head term property.

FvarE
T = C{ 0 [(λM)[s]b · t]a} → C{(λM [s]a} = P

(FvarE) is restricted to values and this obviously preserves head term
property. if it is not restricted then one can get non argument local
terms.

Apply the same reasoning to the other rules.

Corollary 4.7. Given a reduction M [id]a 7−7−→→
/S

T using a strategy S. If S is
Call-by-needE, Call-by-NeedG, or some combined Call-by-Need strategy3 then
T is a head term

We conclude this section by relating the system we have developed to
Ariola et al.’s (1995) “standard call-by-need λlet-calculus” shown in Fig. 5.
In λlet, a substitution is represented by nested lets which means that sharing
is tied to the term structure. This corresponds to machines with “shared en-
vironments” (i.e., using a linked list of frames) hence λlet corresponds to λσaw
with an environment-based evaluation strategy (the proof is given below).
Notice that, strictly speaking, the above rewrite system is higher order since
E{x}4 in the left-hand side of (lets-V) means that x is the head subterm,
i.e., the left-innermost subterm. Indeed, this notation capture the following
inductive class of terms

E{x} ::= x | E{x}M | let y = N in E{x} (1)

3We mean a strategy that uses both rules (FvarE) and (FvarG).
4The notation E{−} is not a context but an evaluation context, i.e., a window in a

term that enables us to decide the redex to reduce.

21

Syntax.

M,N ::= x
∣∣ V ∣∣MN

∣∣ let x = M in N (Terms)

V ::= λx.M (Values)

A ::= V
∣∣ let x = M in A (Answers)

E,F ::= []
∣∣ EM ∣∣ let x = M in E

∣∣ let x = E in F{x} (Eval. Contexts)

Reduction. −−→
let

is defined by the rules

(λx.M)N → let x = N in M (lets-I)

let x = V in E{x} → let x = V in E{V } (lets-V)

(let x = M in A)N → let x = M in AN (lets-C)

let x = (let y = M in A) in E → let y = M in let x = A in E (lets-A)

Figure 5: Ariola et al.’s “standard call-by-need calculus,” λlet.

To show the equivalence between our call by need and that of Ariola et al.
we have to translate expressions of the λlet-calculus into addressed terms and
vice versa. ρ and ρ′ are lists of variables (x, y, · · ·), where ρ+ ρ′ is the result
of appending ρ and ρ′, and ρ(n) is ρ’s n’th variable.

Definition 4.8 (translation λlet → λσaw). Let ρ and ρ′ be lists of variables
(x, y, · · ·). ρ + ρ′ is the result of appending ρ and ρ′ and ρ(n) is ρ’s n’th
variable. S JMK means S JMK id () given by

− S J−K sρ S ′ J−K ρ
x (S ′ JxK ρ) [s]a n such that ρ(n) = x

λx.M (S ′ Jλx.MK ρ) [s]a λ(S ′ JMK (x · ρ))

MN ((S JMK sρ) (S ′ JNK ρ)[s]a)b S ′ JMK ρ S ′ JNK ρ
let x = N in M S JMK ((S JNK sρ) · s) (x · ρ) (λ(S ′ JMK (x · ρ))) (S ′ JNK ρ)

with a and b fresh everywhere.

Lemma 4.9. Given a λlet-term M , a λσaw-substitution s, and an environ-
ment ρ. Then there exist two λσaw-terms N1 and N2 such that N1 = (S ′ JMK ρ)[s]a,
N2 = S JMK s ρ, and N1 −−−→→

λσaw
N2.

22

Proof. The proof is by induction on the structure of M .

• if M = let x = N in M then

N1 = (S ′ Jlet x = N in MK ρ)[s]a

= ((λ(S ′ JMK (x · ρ))) (S ′ JNK ρ))[s]a by definition

−−−−−→
App+Bw

(S ′ JMK (x · ρ))[(S ′ JNK ρ)[s]b · s]a

= S JMK ((S JNK sρ) · s) (x · ρ) by induction hypothesis

= S Jlet x = N in MK s ρ by definition

= N2

A similar proof applies to the other cases.

The main difficulty is to capture the sharing contained in a λσaw-term
expressed by several occurrences of a term labelled with the same address in a
let-term. For instance, the term EaEa is translated to let a = JEKLET in a a.

Definition 4.10 (partial translation λσaw → λlet). For an argument local
term Ea, L JEaK means A(C JEK∅) where

− A(M, −) where

{Eb} ∪ S A(let b = M ′ in M,S) (M ′,S′) = C JEK S

∅ M

C J − K S

EaM [s]b (M ′ (V JM [s]K ()) , S′) (M ′,S′) = C JEK S ∪ {s}
M [s] (V JM [s]K () , S ∪ {s})

V J − K ρ
M [Eb · s] V JM [s]K (ρ+ b)

M [id] V JMK ρ
λM λx.(V JMK (x · ρ)) x a fresh variable

MN (V JMK ρ) (V JNK ρ)

n ρ(n)

Lemma 4.11. If two de Bruijn terms M and N , a λσaw-substitution s, and
an environment ρ, then

V JMN [s]K ρ = (V JM [s]K ρ)(V JN [s]K ρ)

23

Proof. Induction on the structure of s.

Lemma 4.12 (projections). The projection diagrams, in Figure 6 are cor-
rect.

•
CBNeedE

//
_

J·Klet

•
_

J·Klet

◦
let
// //_____ ◦

and

•
let
//

_

J·Kλσaw

•
_

J·Kλσaw

◦
CBNeedE

// //_____ ◦

Figure 6: Soundness and Completeness.

Proof. 1. projection of λlet in CBNeedE. The proof is by induction on
the structure of the evaluation context E. If the rewrite is at the root,
we proceed by case analysis of λlet-rules:

lets-I

S J(λx.M)NK id () = ((λS ′ JMK (x · ρ))(S ′ JNK ())[id]c)a

−−−→
λσaw

(S ′ JMK (x · ρ))[(S ′ JNK ())[id]c · id]a

= S JMK ((S JNK id ()) · id) (x · ρ)

= S Jlet x = N in MK id ()

The other cases are similar and the most tedious case (lets-V) requires
an induction on the evaluation context E{x} to distribute the substi-
tution through the term.

If E = E1M such that E1 −−→
λlet

E2 then by the induction hypothesis

S JE1K id () −−−−−→→
CBNeedE

S JE2K id () holds.

S JE1MK id () = ((S JE1K id ())(S ′ JMK ())[id]b)a

−−−−−→→
CBNeedE

((S JE2K id ())(S ′ JMK ())[id]b)a

= S JE2MK id ()

24

If E = let x = E1 in F{x} such that E1 −−→
λlet

E2 and by induction

hypothesis S JE1K id () −−−−−→→
CBNeedE

S JE2K id ()

S JEK id () = S JF{x}K ((S JEK id ()) · id) (x · ())

then by induction on F{x}, we can show that it is a CBNeedE rewrite.

2. Projection of CBNeedE to λlet. The proof is by induction on the
structure of the head term P following the condition of CBNeedE. If
the rewrite is at the root, we proceed by case analysis of λσaw-rules:

App

L JMN [s]aK = A(C JMN [s]K∅)

= A(V JMN [s]K (), s)

= A(V JM [s]K ()V JN [s]K (), s) by lemma 4.11

= A(C
q
M [s]bN [s]c

y
∅) b and c are fresh addresses

= L
q
(M [s]bN [s]c)a

y

The other cases are similar.

If P = (QM [s]b)a such that Q −−−−−→
CBNeedE

Q′ and by induction hypoth-

esis D : L JQK =−−→
λlet

L JQ′K. Notice that, in general, rewriting with

CBNeedE the term P gives (Q′M [s′]b)a and not (Q′M [s]b)a.

L JP K = A(C
q
(QM [s]b)a

y
∅)

= A(M ′(V JM [s]K ()), S ′)

such that (M ′, S ′) = C JQK s
=−−→
λlet
A(M ′′(V JM [s]K ()), S ′′) using the same derivation D

= A(C
q
(Q′M [s′]b)a

y
∅)

= L
q
(Q′M [s′]b)a

y

If P = 0 [Q · s]a and Q −−−−−→
CBNeedE

Q′ and by induction hypothesis D′ :

L JQK =−−→
λlet
L JQ′K. Notice that, in general, rewriting with CBNeedE

25

the term P gives 0 [Q′ · s′]a and not 0 [Q′ · s]a.

L JP K = A(C J 0 [Q · s]K∅)

= A(V J 0 [Q · s]K (), Q · s)
= A(b, Eb · s) Q = Eb

A(let b = M in b, S) where (M,S) = C JEK s
=−−→
λlet
A(let b = M ′ in b, S ′) using the same derivation D′

= A(C J 0 [Q′ · s′]K∅
= L J 0 [Q′ · s′]aK

The diagrams in Figure 6 do not express a one-to-one correspondence among
computation steps. This comes from the way substitutions are performed in
the two calculi. λσaw works at a more primitive level w.r.t. substitutions: it is
a “small step” calculus in the sense that basic and constant-time operations
are implemented. This sometimes requires distribution of the substitution
of the evaluation context E{x} to get to the redex to reduce whereas in λlet

this action is performed in one step.
But, the λlet-calculus is primitive enough to reason (equationally) about

properties of call-by-need strategy.

Proposition 4.13. CBNeedE is sound and complete w.r.t. λlet.

Proof. A way to convince ourselves of the soundness and completeness of the
two calculi is to compare the number of Bw-redex and lets-I-redex (which are
β − redex) starting with a λ-term. By the previous lemma we can notice
that there are one to one correspondence between these two rules, and (Bw)
is never used to project another rule.

5 Constructors and Recursion

In this section, we deal with two important features of functional program-
ming languages, namely algebraic data structures in the form of constructors
that can be investigated using a ‘case’ selector statement, and recursion in
the form of an explicit fixed point operator.

26

5.1 Algebraic data structure

Definition 5.1. λσcaw is the system obtained by extending the definition of
λσaw (pure) preterms to include

M,N ::= · · ·
∣∣ Ci ∣∣ 〈C1 : M1, . . . , Cm : Mm〉

where the Ci range over some finite set of constructors of fixed arity, ar(Ci),
such that fi(Ci) = {0, . . . , ar(Ci)−1}. The rule (Case) is a kind of application
defined by

(Ci[~T · s]b
〈
~C : ~N

〉
[t]c)a → Ni[~T · t]a (Case)

with ~T · s = T1 · · ·Tar(Ci) · s1 · s2 · . . . and
〈
~C : ~N

〉
= 〈C1 : N1, . . . , Cn : Nn〉.

The definition highlights that the only reduction involving data is to select
an entry of a case argument corresponding to which particular Ci it was built
with. Also addresses are never allowed inside constructions in accordance
with the tradition that constructed objects are considered as values similar
to abstractions and hence no strategy should be allowed to reduce “inside.”

Example 5.2. Suppose we have two constructors Z of arity 0 and S of arity 1.
Consider the reduction of the term (λ 0 〈Z : I, S : K〉)Z.

((λ 0 〈Z : I, S : K〉)Z)[id]a → ((λ 0 〈Z : I, S : K〉)[id]bZ[id]c)a

→ (0 〈Z : I, S : K〉)[Z[id]c · id]a

→ (0 [Z[id]c · id]d 〈Z : I, S : K〉 [Z[id]c · id]e)a

→ (Z[id]c 〈Z : I, S : K〉 [Z[id]c · id]e)a

→ I[Z[id]c · id]a

5.2 Recursive code and data

Recursion is somewhat more involved. λσcµaw denotes the easy solution,
which is to reduce terms of the form µM by unfolding with

µM [s]a →M [µM [s]a · s]b b fresh (Unfold)

(Unfold) must of course be applied lazily to avoid infinite unfolding.
Another solution consists in delaying unfolding until needed. The trick

is to augment the explicit “horizontal” sharing that we have introduced in

27

previous sections through addresses with explicit “vertical” sharing (using
the terminology of Ariola & Klop 1994). We have chosen to do this using the
•a “backpointer” syntax (Felleisen & Friedman 1989, Rose 1996): reducing a
fixed point operator places a • at the location where unfolding should happen
when (if) it is needed.

The difference is illustrated by Fig. 7. Consider the initial term with a

Figure 7: A recursive redex occurrence.

large (shaded) µ-redex containing a smaller (white) redex. Now, we wish
to reduce the outer and then the inner redex. The top reduction shows
what happens with (Unfold): the redex is duplicated before it is reduced. In
contrast using an explicit backpointer, illustrated at the bottom, makes it
possible to share the redex by delaying the unfolding until the reduction has
happened. The price to pay is that all redexes of a term are no longer present
in any of its representation, since backpointers can block specific redexes.
Moreover, the admissibility definition becomes slightly more complicated and
hence its preservation after a rewriting with λσcaw-rules has to be addressed
carefully.

Definition 5.3 (cyclic addressing). Cyclic addressing is the following gen-
eralization of Def. 3.8; assume a set of addressed terms T:

1. The cyclic addressed preterms : T• allow subterms of the form •a wher-
ever an address is otherwise allowed.

2. t is graphic if all addresses a ∈ addr(t) satisfy either t@a = {•a}, or

28

t@a = {sa} where s@a ⊆ {•a}. Admissible preterms are called terms;
terms without • are acyclic.

3. Given a rewrite relation→ on (acyclic terms) T. The cyclic extension,
◦→, is the rewrite relation defined as follows. Assume t → u. For
each backpointer where admissibility is violated: unfold the original
definition for each possible C with u = C{•a} and a /∈ addr(C{ }), i.e.,
replace C{•a} with C{t@a}.

Notice that the cyclic extension of a set of rules can be derived by inserting
explicit unfolding where an address is removed.

Definition 5.4 (λσcµa•w).

1. λσcµa•w -terms are cyclic addressed λσcaw-terms extended with recursion
terms:

M,N ::= · · ·
∣∣ µM

2. λσcµa•w -reduction, ◦7−7→, is the cyclic extension of λσcaw-reduction and the
rule

µM [s]a →M [•a · s]a (Cycle)

Let us briefly consider what “cyclic extension” means. It is clear that
(Cycle) itself preserves (cyclic) admissibility but not all the other rules do.
Fortunately we can systematically reformulate the rules in order to insert
the unfoldings which are needed explicitly. If we write T{•a := U} for the
operation which replaces each •a in T by U , then the principle is simple:
whenever an address a is removed from a subterm t then all occurrences of
•a inside t must be unfolded to the value of the entire subterm. This affects
the λσaw-rules from Fig. 3 as follows:

((λM)[s]b U)a →M [U · (s{•b := λM [s]b})]a (B•w)

0 [Eb · s]a → (E{•a := 0 [Eb · s]a})b (FVarG•)

0 [Eb · s]a → (E{•b := Eb})a (FVarE•)

and (Case) from above changes as follows:

(Ci[~T · s]b
〈
~C : ~N

〉
[t]c)a → Ni[~T ′ · t′]a (Case•)

29

with ~T = T1 · . . . ·Tar(Ci), ~T
′ = ~T {•b := Ci[~T · s]b}, t′ = t{•c :=

〈
~C : ~N

〉
[t]c}.

We are going to prove that cycling rewriting implies unfolding rewriting .
To do that we use an intermediate rewriting which we call cycling rewriting
with history whose main idea is to keep track of substitutions of • along a
cycling rewriting. A sequence of such • assignments is called a history.

Definition 5.5 (History). A history is a sequence ρ of the form

{•a1 := µM1[s1], . . . , •an := µMn[sn]}

Assigning a history ρ to an addressed term P yields a term Pρ that substi-
tutes all • of ρ by their corresponding terms addressed with fresh addresses.
A formal definition is left to the reader.

Definition 5.6 (Cycling rewriting with history). Cycling rewriting with
history λσcµa•w ρ rewrites a pair of a term and a history (P, ρ) to a similar
pair (Q, π) such that P ◦7−7−−−−→

λσcµa•w
Q and ρ = π except when the rewrite from

P to Q is a (Cycle) µM [s]a →M [•a · s]a whereas π = {•a := µM [s]ρ} ∪ ρ.

Lemma 5.7. Given an addressed term P ∈ λσcµaw-term5. If (P, {}) −−−−→→
λσcµa•w ρ

(Q, ρ) then Qρ ∈ λσcµaw, i.e., Q contains no terms of the form •a.

Proof. Obvious.

Lemma 5.8. If P ◦7−7−−−−→
λσcµa•w

Q then ρ and ρ′ exist such that (P, ρ) ◦7−7−−−−−→
λσcµa•w ρ

(Q, ρ′).

Proof. The proof is by analysis of each rule of λσcµa•w . Assume ρ = {}.

Lemma 5.9. If D : (P, {}) ◦7−7−−−−→→
λσcµa•w ρ

(Q, ρ) such that P is a λσcµaw-term,

then P 7−7−−−→→
λσcµaw

Q′ρ where Q′ is an address renaming6 of Q.

Proof. The proof is by induction on the length of D (denoted by |D|).

• If |D| = 1 then by induction on the structure of P . If the rewrite is at
the root the proof is by case analysis on the possible rule of λσcµa•w ρ.
For instance, consider that P is Bw redex and since P = (λM [s]bT)a is
λσcµaw-term then λM [s]b contains no •b subterms.

5The important point here is that P contains no •a.
6The renaming doesn’t affect terms of the form •a.

30

• If |D| = n+1 then D = (P, {}) ◦7−7 n−−−−−→
λσcµa•w ρ

(P ′, ρ′) ◦7−7−−−−−→
λσcµa•w ρ

(Q, ρ) and by

induction hypothesis P 7−7−−−→→
λσcµaw

P ′′ρ′ where P ′′ is an address renaming

of P ′. We proceed by induction on the structure of P ′. If the rewrite
is at the root then one has to analyze each rule of λσcµa•w ρ.

Cycle P ′ = µM [s]a

(µM [s]a, ρ) 7−7−−−→
Cycle

(M [•a · s]a, {•a := µM [s]ρ} ∪ ρ)

µM [s]aρ 7−7−−−→
Unfold

M [µM [s]b]aρ b fresh address

= M [•a · s]a{•a := µM [s]ρ} ∪ ρ

B•w P ′ = (λM [s]bT)a. Two cases are possible:

If λM [s]b contains occurences of •b then ρ = {•b := µM ′[s′]} ∪ ρ′
and we have

(R, {}) ◦7−7−−−−→→
λσcµa•w ρ

(C{µM ′[s′′]b}, ρ′′) ◦7−7−−−−→→
λσcµa•w ρ

((λM [s]bT)a, ρ)

such that µM ′[s′′]bρ′′ = µM ′[s′]b. Then there exists a reduction
(µM ′[s′]b, {}) m−−−−−→

λσcµa•w ρ
(λM [s]b, ρ) and m ≤ n. By induction hy-

pothesis µM ′[s′]b 7−7−−−→→
λσcµaw

λM [s3]bρ where s3 is an address renaming

of s.

(λM [s]bT)a, ρ) −−−→
B•wρ

(M [T · (s{•b := λM [s]b})]a, ({•b := µM ′[s′]} ∪ ρ′))

(λM [s]bT)aρ = (λM [s{µM ′[s′]c}]bT)aρ′ c fresh

−−→
Bw

M [T · s{µM ′[s′]c}]aρ′

−−−→
Unfold

M [T · s{M ′[µM ′[s′]d · s′]c}]aρ′ d fresh

−−−→→
λσcµaw

M [T · s{λM [s′′]c}]aρ′ where s′′ = s3{•b := µM ′[s′]d}

= M [T · s{λM [s3]c}]a({•b := µM ′[s′]} ∪ ρ′)
≈M [T · s{λM [s]b}]a({•b := µM ′[s′]} ∪ ρ′)

since b is fresh w.r.t the term M [T · s{λM [s′′]c}]aρ′

(Unfold) introduces a new address whereas (B•w)7 reuse the ad-
dress b since it becomes fresh after a B•w rewrite step. In fact, B•w

7Also (FVarE•), (FVarG•), and (Case•) reuses addresses when they make the unfolding.

31

performs two tasks namely to reduce the β-redex and to unfold
the recursive function of this redex. This explains why a renaming
of addresses is necessary.

The other cases are similar to the two previous ones.

Theorem 5.10. If P ◦7−7−−−→→
λσcµa•w

Q such that P is a λσcµaw-term then ρ exists

such that P 7−7−−−→→
λσcµaw

Q′ρ, where Q′ is an address renaming of Q.

Proof. Combine Lemmas 5.8 and 5.9.

6 “Trim:” A Space leak free calculus

In this section, we present the Trim-calculus. Its main point is to (Collect)
just what is necessary to preserve garbage-freeness (a concept we introduce).
We first introduce the general calculus, then we study its restrictions to the
call-by-need strategy using environments, finally we use this to show that the
STG (Spineless Tagless Graph-reduction) machine of Peyton Jones (1992)
does not leak space.

Definition 6.1. Garbage-free terms are characterized by

Tf ::= M [sf]a | (TfTf)a | na | ⊥ with sf = sf |fi(M)

sf ::= id | Tf · sf
Proposition 6.2. If T 7−7addr(T)−−−−→

C
U , then U is a garbage-free term.

Proof. The rule (Collect) collects all unreachable subterms.

Space leak freeness (precisely formulated for a lazy abstract machine by
Sestoft 1997) means that every (Collect)-redex will eventually disappear in
a computation. In other words, no unreachable subterm stays indefinitely.

Definition 6.3 (space leak free reduction). Let D be a λσaw-reduction
path starting at a garbage-free term T0:

D : T0 7−7 I1−−→ T1 7−7 I2−−→ T2 7−7 I3−−→ · · ·

D is space leak free if when Tn = C{Eb} such that Eb is garbage then there
exists m > n such that Eb is collected in Tm. A reduction relation −−→

R

(of λσaw-calculus) is space leak free if all its reduction paths starting at a
garbage-free term are space leak free.

32

7−7→ is not a space leak free reduction. A naive way to provide space
leak reductions is to normalize w.r.t. (Collect) after several steps of Bw + σ

rewriting. This corresponds to garbage collection.

Proposition 6.4. 7−7−−−→→
Bw+σ

· 7−7−−→
C

is space leak free.

Proof. By proposition 6.2, it is clear that after each reduction step, there
remain no addressed subterms which are garbage.

When analyzing the rules of λσaw, one notices that only (Bw) and (App)
produce unreachable terms: (App) introduces two new subaddressed terms
of the form −[−]a (closures) on which an application of (Collect) might be
necessary, and (Bw) adds a new addressed term (argument) to the function’s
substitution. If we know that the Bw-redex is garbage free then it is necessary
to check only whether the argument is reachable or not. The rule (Case) can
also introduce unreachable terms in the substitution T1 · . . . · Tm · t. Hence,
we need to apply (Collect). Thus, we replace these rules with the following:

(λM [s]bT)a a−→
{
M [⊥ · s] 0 6∈ fi(M)

M [T · s] 0 ∈ fi(M)
(TBw)

(MN)[s]a a−→(M [s|fi(M)]
bN [s|fi(N)]

c)a b, c fresh (TApp)

(Ci[~T]b 〈C1 : N1, . . . , Cm : Nm〉 [t]c)a a−→ Ni[(~T · t)|fi(Ni)] (TCase)

With ~T = T1 · . . . ·Tar(Ci). Note that none of the recursion rules (Unfold) and
(Cycle) introduce space leaks.

Definition 6.5. The Trim-calculus is the calculus over addressed terms com-
bining the original (FVarE), (FVarG) and (RVar), with the new (TBw),
(TApp), and (TCase). We write this reduction 7−7−−→

T
.

Remark 6.6. Notice that 7−7 a−−−−→
(TApp)

= 7−7 a−−−→
(App)

· b−−→
C
· c−−→

C
, and 7−7 a−−−−→

(TCase)
= 7−7 a−−−→

(Case)
·

7−7 a,d1,...dm−−−−−→
C

where the di are the addresses of the Ti.

Theorem 6.7 (Preservation). Let T be a garbage-free term. If T 7−7−−→
T

U

then U is a garbage-free term.

Proof. By case analysis of each rule of 7−7−−→
T

.

33

Corollary 6.8. Trim is space leak free.

Since we cannot rewrite in useless terms, we can claim that Trim is iso-
morphic modulo substitution under λ to the weak version of Wadsworth’s
(1971) “λ-graph reduction.” The Trim-calculus ensures that all its strategies
are space leak free. However, we remind the reader that collecting incurs an
overhead, so one has to minimize this task.

In the remainder of this section, we study optimization of call-by-need
w.r.t. space leak freeness, in particular we show that STG does not leak space.
One feature of call-by-need is that it always selects the leftmost outermost
redex. If we apply (App) to the term C{(MN)[s]} then we know that the
left term (namely, M [s]) will be evaluated first. Hence trimming this term is
unnecessary w.r.t. space leaking. Similarly, a trimmed version of (Bw) and
(Case) are not necessary. The trimmed (App) for call by need becomes

(MN)[s]a a−→ (M [s]bN [s|fi(N)]
c)a b, c fresh (TAppN)

Replacing (App) of the λσaw-calculus by (TAppN) forms TrimN.

Theorem 6.9. TrimN is space leak free for call by name (CBN) and call by
need CBNeedE and CBNeedG.

Proof. TrimN trims all terms where computations is postponed, namely, right
argument of applications.

The STG-language, described in Figure 8, is a subset of λ-calculus8 en-
riched with local definitions (let-expressions), constructors including built-in
functions and literals (constants), selection instruction (case), and explicit
recursion (letrec). It is not difficult to define a map from the STG-language
to our λσcµa•w -terms. The STG-machine uses update technique, i.e., updates
the argument in the heap after its evaluation for further use, and hence the
strategy underlining the STG-machine is Call-by-NeedE. As we can see in
Figure 8, the rule (let) creates closures by assigning the environment ρ to the
bounded expressions Ni’s and stores them in the heap. Each environment of
Ni is trimmed to its free variables. This operation is expressed in the Figure8
by (ρ vsi). We conclude that the STG-machine is a duplicated environment
machine.

8This subset is called restricted λ-calculus, it imposes that the second argument of
applications are made of variables only

34

Syntax. The language of the STG is defined inductively by

e ::= let (var = vsf \π vsb → e)+ in e (Local definition)

| letrec (var = vsf \π vsb → e)+ in e (Local recursion)

| case e of ((const vs | var | literal)→ e)+ (Case expression)

| var (var | literal)∗ (Application)

| const (var | literal)∗ (Saturated constructor)

| prim (var | literal)∗ (Saturated Built-in op)

| literal

where the’vsf and the’vsb are the free and bound variables of e. π is mark
to determine if the expression has been updated.
State. contains seven components of four kinds:
Code: as described above. Environments : There are two environments: the
local ρ and global σ. They are defined by a map from variables to addresses in
the heap. Heap: h, is defined by a map from addresses to closures, defined by
a couple of code and local environment, Stacks: There are three kind of stacks:
the argument stack as, the return stack rs that contains continuations, and
the update stack us
Evaluation. We present just the rule for evaluating let as this is the main
one for us (other rules are described by Peyton Jones 1992).

Eval

let x1 = vs1 \π1 xs1 → e1

. . .
xn = vsn \πn xsn → en

in e

 ρ as rs us h σ

−→ Eval e ρ′ as rs us h′ σ

where ρ′ = ρ [x1 7→ Addr a1, . . . , xn 7→ Addr an]

h′ = h

 a1 7→ (vs1 \π1 xs1 → e1)(ρrhs vs1)
. . .
an 7→ (vsn \πn xsn → en)(ρrhs vsn)

ρrhs = ρ

For the letrec rule,

replace ρrhs by ρ′ instead of ρ.

Figure 8: Part of the STG-machine

35

Corollary 6.10. Peyton Jones’s (1992) STG-machine does not leak space.

Proof. In the STG-language, the arguments of applications and constructors
must be variables which are bound by a let expression. Consider the term
MN1 . . .Nn which is written let x1 = N1, . . . xn = Nn in Mx1 . . . xn where
N1, . . . , Nn are annotated with their free variables. Hence, it suffices to trim
the environment in let expressions w.r.t free variable of the Ni’s which is
done by the let-rule of the STG-machine (see figure 8).

7 Conclusions

We have studied calculi of weak reduction with sharing, and proposed original
solutions to several problems well-known from implementations, e.g., under-
standing the consequences of sharing and cycles on correctness, proving an
adequate model for call-by-need, space leaking, and on a generic implemen-
tation design.

Acknowledgements. The authors would like to thank Eva Rose and the
anonymous referees for useful suggestions to the manuscript. Finally, the
third author is grateful to INRIA Lorraine for funding while this work was
undertaken.

References

Abadi, M., Cardelli, L., Curien, P.-L. & Lévy, J.-J. (1991), ‘Explicit substi-
tutions’, Journ. Funct. Progr. 1(4), 375–416.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. & Wadler, P. (1995),
A call-by-need lambda calculus, in ‘22nd Principles of Programming
Languages’, San Francisco, California, pp. 233–246.

Ariola, Z. M. & Klop, J. W. (1994), Cyclic lambda graph rewriting, in ‘Logic
in Computer Science’, IEEE Computer Society Press, Paris, France,
pp. 416–425.

Bloo, R. & Rose, K. H. (1995), Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection, in ‘CSN

36

’95 – Computer Science in the Netherlands’, pp. 62–72.
〈url:ftp://ftp.diku.dk/diku/semantics/papers/D-246.ps〉

Cardelli, L. (1983), The functional abstract machine, Technical Report TR-
107, Bell Labs.

Church, A. (1936), ‘An unsolvable problem of elementary number theory’,
Amer. J. Math. 39, 472–482.

Curien, P.-L. (1983), Combinateurs catégoriques, algorithmes séquentiels
et programmation applicative, Thèse de Doctorat d’Etat, Université
Paris 7.

Curien, P.-L. (1991), ‘An abstract framework for environment machines’,
Theor. Comp. Sci. 82, 389–402.

Curien, P.-L., Hardin, T. & Lévy, J.-J. (1992), Confluence properties of weak
and strong calculi of explicit substitutions, Rapport de Recherche 1617,
INRIA. To appear in Journ. ACM.

Curry, H. (1930), ‘Grundlagen der kombinatorischen logik’, American Jour-
nal of Mathematics 52, 509–536, 789–834.

Curry, H. B. & Feys (1958), Combinatory Logic, Vol. 1, Elsevier Science
Publishers B. V. (North-Holland), Amsterdam.

de Bruijn, N. G. (1972), ‘Lambda calculus with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-
Rosser theorem’, Proc. Koninkl. Nederl. Akademie van Wetenschappen
75(5), 381–392.

Felleisen, M. & Friedman, D. P. (1989), ‘A syntactic theory of sequential
state’, Theor. Comp. Sci. 69, 243–287.

Gödel, K. (1931), ‘Über formal unentscheidbare Sätze der Principia Math-
emathica und verwandter Systeme I’, Monatsh für Math. u Phys.
12(XXXVIII), 173–198.

Henderson, P. (1980), Functional Programming—Application and Implemen-
tation, Prentice-Hall.

37

Huet, G. & Lévy, J.-J. (1991), Computations in orthogonal rewriting systems,
II, in J.-L. Lassez & G. Plotkin, eds, ‘Computational Logic’, The MIT
press, chapter 12, pp. 415–443.

Hughes, J. M. (1982), Super-combinators: A new implementation method
for applicative languages, in ‘1982 ACM Symposium on LISP and Func-
tional Programming’, Pittsburgh, Pensylvania, pp. 1–10.

Klop, J. W. (1992), Term rewriting systems, in S. Abramsky, D. M. Gabbay
& T. S. E. Maibaum, eds, ‘Handbook of Logic in Computer Science’,
Vol. 2, Oxford University Press, pp. 1–116.

Landin, P. J. (1965), ‘A correspondance between ALGOL 60 and Church’s
lambda notation’, Comm. ACM 8, 89–101 and 158–165.

Launchbury, J. (1993), A natural semantics for lazy evaluation, in ‘20th
Principles of Programming Languages’, pp. 144–154.

Maranget, L. (1991), Optimal derivations in weak lambda calculi and in
orthogonal rewriting systems, in ‘18th Principles of Programming Lan-
guages’, pp. 255–268.

McCarthy, J. (1960), ‘Recursive functions of symbolic expressions’, Comm.
ACM 3(4), 184–195.

Peyton Jones, S. L. (1992), ‘Implementing lazy functional programming lan-
guages on stock hardware: the spineless tagless G-machine’, Journ.
Funct. Progr. 2(2), 127–202.

Plotkin, G. D. (1975), ‘Call-by-name, call-by-value, and the λ-calculus’,
Theor. Comp. Sci. 1, 125–159.

Plotkin, G. D. (1977), ‘LCF considered as a programming language’, Theor.
Comp. Sci. 5, 223–255.

Rose, K. H. (1996), Operational Reduction Models for Functional Program-
ming Languages, PhD thesis, DIKU, Dept. of Computer Science, Univ.
of Copenhagen, Universitetsparken 1, DK-2100 København Ø. DIKU
report 96/1.

Rosen, B. K. (1973), ‘Tree-manipulating systems and Church-Rosser theo-
rems’, Journ. ACM 20(1), 160–187.

38

Schönfinkel, M. (1924), ‘Über die Bausteine der mathematischen Logik’,
Math. Ann. 92, 305–316.

Sestoft, P. (1997), ‘Deriving a lazy abstract machine’, Journ. Funct. Progr.
7(3).
〈url:ftp://ftp.dina.kvl.dk/pub/Staff/Peter.Sestoft/papers/
amlazy5.ps.gz〉

Turing, A. M. (1936), On computable numbers, with an application to
the entscheidungsproblem, in ‘Proc. London Math. Soc.’, Vol. 42 of 2,
pp. 230–265.

Turner, D. A. (1979), ‘A new implementation technique for applicative lan-
guages’, Software and Practice and Experience 9, 31–49.

Wadsworth, C. (1971), Semantics and pragmatics of the lambda calculus,
PhD thesis, Oxford.

39

Recent Publications in the BRICS Report Series

RS-96-56 Zine-El-Abidine Benaissa, Pierre Lescanne, and Kristof-
fer H. Rose.Modeling Sharing and Recursion for Weak Re-
duction Strategies using Explicit Substitution. December
1996. 35 pp. Appears in Kuchen and Swierstra, editors,
8th International Symposium on Programming Languages,
Implementations, Logics, and Programs, PLILP ’96 Pro-
ceedings, LNCS 1140, 1996, pages 393–407.

RS-96-55 K̊are J. Kristoffersen, François Laroussinie, Kim G.
Larsen, Paul Pettersson, and Wang Yi.A Compositional
Proof of a Real-Time Mutual Exclusion Protocol. Decem-
ber 1996. 14 pp. To appear in Dauchet and Bidoit, editors,
Theory and Practice of Software Development. 7th Inter-
national Joint Conference CAAP/FASE, TAPSOFT ’97
Proceedings, LNCS, 1997.

RS-96-54 Igor Walukiewicz. Pushdown Processes: Games and
Model Checking. December 1996. 31 pp. Appears in
Alur and Henzinger, editors, 8th International Confer-
ence on Computer-Aided Verification, CAV ’96 Proceed-
ings, LNCS 1102, 1996, pages 62–74.

RS-96-53 Peter D. Mosses.Theory and Practice of Action Semantics.
December 1996. 26 pp. Appears in Penczek and Szalas,
editors, Mathematical Foundations of Computer Science:
21st International Symposium, MFCS ’96 Proceedings,
LNCS 1113, 1996, pages 37–61.

RS-96-52 Claus Hintermeier, H́elène Kirchner, and Peter D.
Mosses.Combining Algebraic and Set-Theoretic Specifica-
tions (Extended Version). December 1996. 26 pp. Appears
in Haveraaen, Owe and Dahl, editors,Recent Trends in
Data Type Specification: 11th Workshop on Specification
of Abstract Data Types, joint with 8th COMPASS Work-
shop, Selected Papers, LNCS 1130, 1996, pages 255–274.

RS-96-51 Claus Hintermeier, H́elène Kirchner, and Peter D.
Mosses. Rn- and Gn-Logics. December 1996. 19 pp.
Appears in Gilles, Heering, Meinke and Möller, edi-
tors, Higher-Order Algebra, Logic, and Term-Rewriting:
2nd International Workshop, HOA ’95 Proceedings,
LNCS 1074, 1996, pages 90–108.

