
B
R

IC
S

R
S

-96-43
A

.Inǵolfsdóttir:
W

eak
S

em
antics

B
ased

on
Lighted

B
utton

P
ressing

E
xperim

ents

BRICS
Basic Research in Computer Science

Weak Semantics Based on
Lighted Button Pressing Experiments
An Alternative Characterization of the Readiness Semantics

Anna Ingólfsdóttir

BRICS Report Series RS-96-43

ISSN 0909-0878 November 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/pub/BRICS
This document in subdirectoryRS/96/43/

Weak Semantics Based on Lighted Button
Pressing Experiments

An Alternative Characterizations of the Readiness Semantics

Anna Ingólfsdóttir
BRICS ∗

Department of Computer Science, Aalborg University, Denmark†

Abstract

Imposing certain restrictions on the transition system that defines the
behaviour of a process allows us to characterize the readiness semantics of
[OH86] by means of black–box testing experiments, or more precisely by
lighted button testing experiments [BM92]. As divergence is considered
we give the semantics as a preorder, the readiness preorder, which kernel
coincides with the readiness equivalence of [OH86]. This leads to a bisimu-
lation like characterization and a modal characterization of the semantics.
A concrete language, recursive free CCS without τ , is introduced, a proof
system defined and it is shown to be sound and complete with respect to
the readiness preorder. In the completeness proof the modal characteri-
zation plays an important role as it allows us to prove algebraicity of the
preorder purely operationally.

1 Introduction

The behaviour of concurrent processes or complex systems is often given by op-
erational semantics [Mil80]. Usually the operational semantics is based on a
two level approach. The first level consists of assigning to the process a state
transition graph which gives the different states the process can enter and the
transitions between these together with informations about which action the pro-
cess has to perform in a given state to enter another state. This level is usually
modelled by a labelled transition system. As the labelled transition systems only
describe the stepwise computation the process may perform, it is in general too
concrete to abstract away from unimportant differences in the behaviour of two
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
†email: annai@iesd.auc.dk

processes. To overcome this problem equivalences have been introduced on top of
the labelled transition systems to identify processes with the same or similar be-
haviour. These relations are usually based on the idea that two processes should
be identified behaviourally unless an external observer can tell them apart. The
precise definition of the relation then depends on how powerful the external ob-
server is both what concerns what she can observe and how she can interact with
the process being observed.

One way of identifying processes is by performing a so-called button-pressing
experiment on them. In [BM92] this set up is described as follows.

A process is thought of as a black box with an interface which is
equipped with one button for each possible action it can make and
possibly some other control devices. The observer presses the buttons.
Either the button is locked and the experiment fails or it goes down
and the process changes to another state. The observer then either
has completed the experiment with success, or she may continue the
experiment in the new state.

In this study we use the convention that the observer performs an experiment
by applying a test on the process, by which we mean a description of how the
button pressing is going to take place depending on how the process reacts. If
the experiment fails the process is said to fail the test and if it is successful we
say that the process passes the test. Because of the possibility of nondeterminism
in the behaviour of the process, a process may sometimes pass a given test and
sometimes not. Two processes are considered behaviourally equivalent if and only
if the may pass exactly the same tests.

The outcome of a black box experiment strongly depends on what behavioural
aspects of the process are immediately observable and what kinds of tests the
observer has in her power. For instance the buttons of the black box interface
might have lights inside them so the observer can immediately see which actions
are available in a given state without pressing the buttons and thereby the process
changing state. This testing scenario is referred to as lighted button pressing
experiments in [BM92]. Alternatively there might be no lights inside the buttons
in which case the observer has to press the button and possibly change the state of
the process to observe the ability of performing that action (blind button pressing
experiments). Also the tests which are allowed in the experiments can be specified
in different ways.

It has become a standard practice to distinguish between external and internal
actions that occur in a computation of a process. (An internal action occurs for
instance when a system of two parallel processes changes state as a consequence
of a private communication.) In the literature researchers distinguish between
strong semantics, which allows the observer to record the internal actions, and
the weak semantics where the internal actions ar not observable. The button
pressing experiments in [BM92] only concerns the strong semantic approach. In

2

[Gla90] and [Gla93] van Glabbeek gives a very thorough study of most known
behavioural preorders and equivalences both based on the strong and the weak
semantic approach. However his main focus is on comparing the different rela-
tions, i. e. ordering them with respect to inclusion. In this paper we will study
a version of the lighted button pressing scenario based on the idea of readiness
semantics introduced by Olderog and Hoare in [OH86]. Unlike in [Gla93] our
main purpose is to use the button pressing characterization to derive hopefully a
rather simple theory to reason about process behaviour. The readiness semantics
of [OH86] may be described as follows:

The meaning of a process is given by a set of observations. The
observation space is the set of all elements which either are of the
form s or sA where s is a sequence of actions and A is a finite set
of actions. We say that a process is stable if it can not perform an
internal action and divergent if it can perform an infinite sequence
of internal actions. The set of observations of a process, p, obs(p) is
defined as the least set that satisfies:

• If p can perform the sequence s (possibly interspersed with in-
ternal actions) then s ∈ obs(p),
• if p can perform the sequence s and thereby reach a stable state
p′ where A is exactly the set of actions p′ can perform then
sA ∈ obs(p),
• if p diverges on s (i.e. p may perform a prefix of the string s and

thereby reach a divergent state) then obs(p) contains s and sA
for all A.

Two processes are behaviourally equivalent if their sets of observations
coincide. In particular this means that the set of observations for any
divergent process is equal to the whole observation space Obs. There-
fore all divergent processes are identified with the inactive divergent
process which in the reference mentioned above is called div.

As this semantics adopts the weak approach we have to decide how to extend
the button pressing scenario described above accordingly. Here there are a few
questions which have to be addressed and some assumption are to be made. In-
troducing internal actions into the semantics implies the possibility of divergence.
How is this to be observed by an external observer? There are several possible
choices but in this first approach we make the following assumption: a divergent
process does not react on any experiment. We do not assume that the divergent
process fails the experiment but rather take an intuitionistic point of view by
saying that we do not know if it does or not. The experiment is simply aborted
if the process enters a divergent state, i.e. no test terminates when applied to
a divergent state. Only when the process is convergent we may say something

3

about the outcome of an experiment. This means in particular that failing and
passing an experiment are not complementary in the sense that we may have a
process where we can not decide whether it may fail or pass a given experiment.
However, although divergent processes can not be tested we assume that diver-
gence is in some sense observable. For instance we may assume a “time out” for
the process to reach a stable state after a fixed period of time.

When divergence sensitive behavioural semantics is given for processes it has
become standard to compare processes by a preorder rather than an equivalence.
Intuitively “a process p is smaller than q” if they “have the same behaviour but
p may diverge more often than q”. Following this approach we say that “p is
smaller than q” iff “whenever t must terminate when applied to p and p may
pass t, then t must terminate on q and also q may pass t” and “whenever t must
terminate when applied to p and p must fail t, then the same must hold for q”.

The next assumption we want to make is that we only need to test a conver-
gent process when it has reached a stable state. In particular this means that we
assume that the process does not lose any of its communication abilities, i. e. abil-
ities to output and input, by performing an internal action. In terms of process
description languages like CCS this means that, if p a−→ p′ and p

τ−→ p′′, then
p′′

a−→ p′, which is in general not true for this calculus. However this condition
holds for the language we considered, which is the regular sub-language of the
language considered in [Hen88], basically the standard CCS where the internal
action τ is replaced by the internal choice operator ⊕. A drawback with this
approach is that this condition does not hold if the parallel operator | is allowed
with the standard definition of the operational semantics for it. Whether the
definition of the behaviour of | can be modified in such a way that it fits into this
set–up is an open question.

For the readiness semantics described above the restriction we impose on the
labelled transition system implies that we do not have to consider separately the
observations of the form s as whenever p may perform a sequence s it can perform
s and thereby go to a stable state and will therefore have an observation of the
form sA.

Based on the considerations above we make the following assumptions about
the transition system that describes the behaviour of the process:

• Internal actions preserve the ability of performing external actions (in the
sense described above).

• The process can only perform a finite number of different actions in its
convergent states during its whole lifetime (weak sort finiteness).

• Each convergent state can only perform a finite number of actions, external
or internal, leading to different states (weak finite branching).

Now we describe the black–box interface as follows.

4

• The control panel of the black-box machine has one button for each poten-
tial action of the process. The buttons are labelled with the actions and
have lights inside them. It also has a red and a green control lamp. These
are the only control devices.

• For all processes either the red or the green lamp will eventually light after
a limited amount of time.

• If the process enters a divergent state the red lamp lights and all buttons
are blocked.

• If the process converges the green lamp lights and some button lights come
on as well; the experiment may start (or continue if it has already started
in a previous state).

Our next task is to describe the class of tests needed in the experiments in
order to characterize the readiness semantics and how the observer applies them
on the process.

The tests have the form a1.a2. · · · an.A, n ≥ 0 where a1.a2. . . . an is a
sequence of visible or external actions and A is a finite sets of such
actions. They are applied as follows: The observer waits for the
control light. If it is red the experiment is aborted. If it is green, we
have the following cases:

• If n = 0 she checks if A coincides with the set of labels of the
lighted buttons.

• If n > 0 and a1 is not in A she records failure, otherwise she
presses the a1-button. Then she continues by applying the re-
mainder of the test, a2. · · · an.A in the new state.

This testing scenario induces a preorder which we refer to as the readiness pre-
order. Not so surprisingly it turns out that the equivalence induced by this
preorder is exactly the readiness equivalence given our constraints on the transi-
tion system. However this is only true if the set of all possible actions is infinite.
The following example shows this.

Let a be the only possible action. Then

Obs = {anA, an|n ≥ 0 and A = {a}, ∅}.

Assume furthermore that the set of states is given by {s1, s2, s3, s4},
the internal actions by �→ and the external ones by a−→ where

s1 �→ s2
a−→ s1, s1 �→ s3 and s4 �→ s4.

5

It is easy to see that obs(s1) = obs(s4) = Obs. However s1 6vR s4 as
s1 ↓ and may be accepted by the test a.∅ but s4 ↑ and does not react
on any test. Thus the readiness semantics in [OH86] does not detect
divergence if the set of labels is finite.

The aim of this study is to show that this characterization of the readiness se-
mantics leads to a rather simple bisimulation like characterization; the preorder
is obtained as a least fixed point to a monotonic function on a complete lattice.
We also define a modal logic to reason about process behaviour and show that
it characterizes exactly the readiness preorder. Then we introduce a concrete
language, CCS⊕, regular CCS with τ replaced by the internal choice operator
⊕, and give it an axiomatic semantics by means of an equationally based proof
system. We prove that it is sound and complete with respect to the readiness
preorder. The proof system is a slight modification of the system introduced in
[BKO88]. However in that reference only a sub-language consisting of recursion
free terms of ACP is considered.

The logical characterization gives us an interesting and strong proof technique
for proving properties of the behavioural preorder. Like in [AH92] we use it to
prove that the preorder is finitary in the sense of [Abr91]. However here we go a
step further and prove the algebraicity, in the sense of [Hen88], of the preorder
by using its modal characterization. This allows us to reduce the proof of the
completeness of the proof system to only proving the completeness over finite or
recursion free terms. This proof technique is interesting in itself as the algebraicity
usually follows only as a corollary to a full abstractness result with respect to a
denotational model defined in terms of an algebraic domain. See for instance
[Hen88, AH92, HI93, Ing95] for this.

The structure of what remains of the paper is as follows: In the next section
we define the readiness preorder as an abstraction on the stepwise semantics given
by labelled transition systems. We also give a bisimulation like characterization of
the preorder. Section 3 is devoted to a modal characterization of the preorder. In
Section 4 we introduce the language CCS⊕ and apply the theory to it, introduce
a proof system and prove its soundness and completeness with respect to the
readiness preorder. We complete the paper by pointing out some directions for
further work in Section 5.

2 Operational Semantics

We describe the behaviour of processes by means of a slight modification of the
standard labelled transition system, extended labelled transition system [Hen88],
where the internal actions are given by the transition relation �→ instead of the
more standard notation τ−→.

6

Definition 2.1 We define an extended labelled transition system (LTS) as
〈States, Lab,−→,�→〉 where

• States is a set of states, ranged over by s,

• Lab is a set of labels, ranged over by l,

• −→⊆ States× Lab× States is an external transition relation,

• �→⊆ States× States is an internal transition relation.

We let Λ range over all LTS’s. 2

As usual, we write (s, s′) ∈�→ as s �→ s′ (read “s may evolve spontaneously to
s′”) and (s, l, s′) ∈ −→ as s l−→ s′ (read “s may perform l and thereby become
s′”). We define ε=⇒ as �→∗, l=⇒ (the weak l-action) as �→∗ · l−→ · �→∗ and
σ=⇒ where σ ∈ Lab∗ similarly. We write s �→ if s �→ s′ for some s′ and s 6�→

if no such s′ exists. In this case we say that s is a stable state. We say that
s ↑ (read “s diverges” or “is divergent”) if there is an infinite sequence of states
s1, s2, . . . such that s �→ s1 �→ s2 That s ↓ (read s “converges” or “is
convergent”) is defined as ¬(s ↑). We also define s ↑ l (read “s diverges on l”) as
(s ↑ ∨∃s′.s l=⇒ s′ ∧ s′ ↑) and s ↓ l as ¬(s ↑ l). We define

• I(s) = {l ∈ Lab|s l−→}, the initial set of s

• I(S) = {I(s)|s ∈ S}, the ready set of S,

• I(S) =
⋃ I(S), the initial set of S,

• Int(s) = {s′|s �→ s′},

• Ext(s) = {s′|∃l ∈ Lab.s l−→ s′},

• Sortw(s) = {l ∈ Lab | ∃σ ∈ Act∗, s′ ∈ States. s′ ↓ ∧s σ=⇒ s′
l=⇒}.

We say that s is finitely branching if Int(s)∪Ext(s) is finite and that Λ is weakly
finitely branching if all its convergent states are finitely branching. A state, s, is
said to be weakly sort finite if Sortw(s) is finite. This definition extends to LTS’s
in the obvious way. If for all s ∈ States the following holds:

s
a−→ s′ and s �→ s′′ implies s′′ a−→ s′

we say that communication capabilities are preserved by �→. If this is the case
then it is easy to see that if s ↓ and s

a−→ s′ then there is a state s′′ 6�→ such
that s �→∗ s′′ a−→ s′. As explained in the Introduction we make the following
assumption.

7

Assumption 2.2 Throughout the paper we assume that all LTS’s are weakly
sort-finite and weakly finitely branching and that communication capabilities are
preserved by �→.

In the Introduction we made the assumption that we are not able to test divergent
processes, i.e. no tests terminate when applied to them, and that we only perform
experiments on processes when they have reached a stable state. Therefore we
model a convergent process as the set of stable states it can reach internally and
a divergent process as the singleton set {⊥}. Furthermore, as we want to model
when two processes s and t may pass the same tests, we have to compare the set
of all possible stable states s may reach when performing a weak l-action to the
set of all possible stable states t may reach when performing the same action. To
model this we define the l-derative, Der(l, S) of a set of stable states, S, where
l ∈ I(S), as the set of stable states which can be reached from the states in S
by performing a weak l-action if all its states converge on l and {⊥} otherwise.
In this way any labelled transition system, Λ, induces a deterministic labelled
transition system where the new states are either finite sets of stable states of the
original one or the singleton set {⊥}. To ensure that this approach makes sense
we prove the following property.

Lemma 2.3 For all s ∈ States the following holds.

1. If s ↓ then {s′|s �→∗ s′} is finite.

2. If s ↓ l then {s′|s l=⇒ s′} is finite.

Proof Follows by a simple application of Köning’s Lemma [Knu73]. 2

Next we define some notation we use throughout the paper.

• Stb(s) = {s′|s �→∗ s′ 6�→}: the set of stable states of s,

• Stbw(s) =
{
Stb(s) if s ↓
{⊥} if s ↑ : the set of weakly stable states of s and

• Stb = {s|s 6�→}: the set of stable states.

By Lemma 2.3, Stbw(s) is finite for all s ∈ States. We let S= P+
fin(Stb)∪{{⊥}},

where P+
fin(Stb) denotes the family of finite non-empty subsets of Stb. For S ∈ S

we define

• S ↑ iff S = {⊥},

• S ↓ iff ¬(S ↑),

• S ↑ l iff S ↑ or ∃s ∈ S.s ↑ l,

8

• S ↓ l iff ¬(S ↑ l),

• for l ∈ I(S) we let

Der(l, S) =

{s′ | ∃s ∈ S. s l=⇒ s′

ands′ 6�→} if S ↓ l
{⊥} if S ↑ l

: the l-derivative of S.

Again Lemma 2.3 ensures that Der : Lab × S ↪→ S is well-defined this way as
a partial function. In what follows we will define the readiness preorder, vR.
For this purpose we give a formal definition of the class of tests we apply in the
experiments. We also define predicates which tell when a process may or may not
pass a given test. Because of our intuitionistic approach, i.e. that the divergent
states are not testable, we need two predicates, one to record when a process may
pass the test and another one to tell when it must fail.

Definition 2.4 (Readiness Tests) The set T of readiness tests is defined as
the least set which satisfies:

1. A ⊆fin Lab implies A ∈ T ,

2. γ ∈ T , l ∈ Lab implies l.γ ∈ T .

The success functions MayPass,MustFail : T × S −→ Bool are defined as
follows:

For all S ∈ S

1. MayPass(A, S) = S ↓ ∧A ∈ I(S),

2. MayPass(l.γ, S) = S ↓ ∧ l ∈ I(S) ∧MayPass(γ,Der(l, S)).

1. MustFail(A, S) = S ↓ ∧A 6∈ I(S),

2. MustFail(l.γ, S) = S ↓ ∧ (l ∈ I(S)⇒MustFail(γ,Der(l, S))).

2

We define the readiness preorder by

Definition 2.5 (Readiness Preorder)

S vR T iff ∀γ ∈ T . MayPass(γ, S)⇒MayPass(γ, T)∧
MustFail(γ, S)⇒MustFail(γ, T).

and for s, t ∈ State
s vR t iff Stbw(s) vR Stbw(t).

The derived equivalence is denoted by =R. 2

9

Example 2.6 Let γ1 = {l}, γ2 = l.∅ and S = {l.Ω}, where Ω ↑. It is easy to
see that MayPass(γ1, S) is true and MustFail(γ1, S) is not. On the other hand
neither MayPass(γ2, S) nor MustFail(γ2, S) is true.

We have the following result which is proved in Appendix A.

Theorem 2.7 If the set of labels, Lab, is infinite then the equivalence =R co-
incides with the readiness equivalence of [OH86].

Next we give a bisimulation like characterization of the relation vR, i.e. we obtain
the preorder as the greatest fixed point to a monotonic endofunction over the
complete lattice (S × S,⊆).

Definition 2.8 (Alternative Readiness Preorder) Let F : S ×S −→ S ×S
be defined by:

F(R) = {(S, T)|S ↓ implies 1. T ↓,
2. I(S) = I(T) and
4. ∀l ∈ I(S).(Der(l, S), Der(l, T)) ∈ R}.

The alternative readiness preorder � is defined as the greatest fixed-point to F .
We define

s1 � s2 iff Stbw(s1) � Stbw(s2).

2

R is said to be an alternative readiness relation if R ⊆ F(R). By the standard
fixed point theory [Tar55],

�=
⋃
{R ⊆ S × S |R ⊆ F(R)},

or equivalently

S1 � S2 iff (S1, S2) ∈ R for some alternative readiness relation R.

The ω-alternative readiness preorder �ω is defined as follows.

1. �0= S × S,

2. �n+1= F(�n),

3. �ω=
⋂
n∈ω �n

and as before
s1 �ω s2 iff Stbw(s1) �ω Stbw(s2).

In what follows we state that the two preorders � and �ω coincide and that
they actually are preorders.

10

Lemma 2.9

I. �=�ω.

II. � is a preorder. We refer to its kernel as '.

Proof Obviously it is sufficient to prove the statements for � in S × S instead
of States× States. We prove each of the statements separately.

I. It is easy to see that �⊆�n for all n and therefore that �⊆�ω. To prove that
�ω⊆� it is sufficient to prove that �ω is a readiness preorder. This in turn
follows easily from the fact that the transition relation is deterministic on
S.

II. To prove the reflexivity we note that �n is reflexive for all n. To prove the
transitivity it is sufficient to prove that �n is transitive for all n. We proceed
by induction on n. The base case n = 0 is trivial. For the inductive step
we assume that S1 �n+1 S2 and S2 �n+1 S3, we will prove that S1 �n+1 S3,
i.e. that S1F(�n)S3. We proceed as follows.

Assume S1 ↓.
1. This implies that S2 ↓ and therefore that S3 ↓.
2. Assume S1 ↓, S2 ↓ and S3 ↓. As S1 �n+1 S2, I(S1) = I(S2).

As S2 �n+1 S3, I(S2) = I(S3), i.e. I(S1) = I(S3).
3. Again assume S1 ↓, S2 ↓ and S3 ↓, I(S1) = I(S2) and that
l ∈ I(S1). Then l ∈ I(S2). Furthermore, by assumption,
Der(l, S1) �n Der(l, S2) and Der(l, S2) �n Der(l, S3). By
induction Der(l, S1) �n Der(l, S3).

2

The following theorem states the equivalence between the two relations defined
above.

Theorem 2.10 (Alternative characterization) For all s, t ∈ States

s � t iff s vR t.

Proof It is sufficient to prove the theorem for S, T ∈ S.

“only if”: Assume that S � T , we will prove that

∀γ ∈ T . 1.MayPass(γ, S)⇒MayPass(γ, T) and
2.MustFail(γ, S)⇒MustFail(γ, T).

11

We proceed by induction on the definition of γ and consider each statement,
1. and 2., separately. First we note that S � T and S ↓ implies I(T) = I(T).
Now we proceed as follows.

1. For the base case assume A ⊆fin Lab. Then we have

MayPass(A, S) ⇒ S ↓ ∧A ∈ I(S) (by def. of MayPass)

⇒ T ↓ ∧A ∈ I(T) (as S � T)

⇒MayPass(A, T) .

For the inductive step assume l ∈ Lab and γ ∈ T .

MayPass(l.γ, S) ⇒ S ↓ ∧l ∈ I(S) ∧MayPass(γ,Der(l, S))
(by def. of MayPass)

⇒ T ↓ ∧l ∈ I(T) ∧MayPass(γ,Der(l, T))
(by ind. as S � T)

⇒MayPass(l.γ, T).

2. For the base case, as before, assume A ⊆fin Lab. We have

MustFail(A, S)⇒ S ↓ ∧A 6∈ I(S) (by def. of MustFail)

⇒ T ↓ ∧A 6∈ I(S) (as S � T)

⇒MustFail(A, T).

For the inductive step we have:

MustFail(l.γ, S) ⇒ S ↓ ∧(l ∈ I(S)⇒MustFail(γ,Der(l, S))
(by def. of MustFail)

⇒ T ↓ ∧(l ∈ I(T)⇒MustFail(γ,Der(l, T))
(by ind. as S � T

⇒MustFail(l.γ, T).

“if”: It is sufficient to prove the following statement:

(∀n.S 6�n T) implies ∃γ ∈ T . (MayPass(γ, S) ∧ ¬MayPass(γ, T))∨
(MustFail(γ, S)∧ ¬MustFail(γ, T)).

We prove this statement by induction on n where the base case n = 0 is
trivial. For the inductive step we proceed by considering the following cases
according to why S �n+1 T fails.

12

S ↓ but T ↑: Let A ∈ I(S). Then MayPass(A, S) but ¬MayPass(A, T).

S ↓ and T ↓ but I(S) \ I(T) 6= ∅ : Let A ∈ I(S) \ I(T). As before
MayPass(A, S) but ¬MayPass(A, T).

S ↓ and T ↓ but I(T) \ I(S) 6= ∅ : Let A ∈ I(T) \ I(S). Then
MustFail(A, S) but ¬MustFail(A, T).

S ↓, T ↓, I(S) = I(T) and l ∈ I(S) = I(T) but Der(l, S) 6�n Der(l, T):
By induction there is a γ ∈ T such that either of the following holds:

MayPass(γ,Der(l, S)) but ¬MayPass(γ,Der(l, T)):
In this case MayPass(l.γ, S) but ¬MayPass(l.γ, T).

MustFail(γ,Der(l, S)) but ¬MustFail(γ,Der(l, T)):
Then MustFail(l.γ, S) but ¬MustFail(l.γ, T).

2

As the preorders � and vR coincide from now on we refer to both of them as
the readiness preorder.

3 Modal Characterization

In this section we give a modal characterization of the readiness preorder. This
characterization will be an important tool in proving properties of the preorder.
The modal logic L is generated by the following syntax

φ ::= A [l]φ φ ∧ φ.

where A ⊆ Pfin(Lab)1. The satisfaction relation |=⊆ S×L, is defined inductively
by:

1. S |= A iff S ↓ and I(S) = A,

2. S |= [l]φ iff S ↓ ∧(l ∈ I(S)⇒ Der(l, S) |= φ),

3. S |= φ1 ∧ φ2 iff S |= φ1 and S |= φ2.

As ∧ is commutative and associative we often write φ1 ∧ φ2 ∧ . . . ∧ φn without
giving the bracketing. Furthermore we let

s |= φ iff Stbw(s) |= φ.

In this case we say that s satisfies φ. Note that a state or a set of states satisfies
a formula in L only if it is convergent. This implies that S |= [l]φ and l ∈ I(S)
only if S ↓ l. The modal depth, md(φ), of a formula, φ is defined by

1the family of finite subsets of Lab

13

• md(A) = 1,

• md([l]φ) = 1 +md(φ) for l ∈ Lab,

• md(φ1 ∧ φ2) = max{md(φ1),md(φ2)}.

Also we define Ln = {φ ∈ L|md(φ) ≤ n} for n ≥ 0. We let L(S) = {φ ∈ L|S |=
φ} and Ln(S) = Ln ∩ L(S). We define L(s) and Ln(s) in the same way. The
modal characterization of the readiness preorder is the content of the following
theorem.

Theorem 3.1

1. For all S, T , ∀n. S �n T iff Ln(S) ⊆ Ln(T).

2. For all s, t, s � t iff L(s) ⊆ L(t)

Proof To prove 1. we proceed as follows:

“only if”: We prove the statement by induction on n. The base case n = 0
is obvious. For the inductive step assume S �n+1 T and S |= φ, where
md(φ) = n + 1. We will prove that T |= φ. We proceed by structural
induction on φ.

φ ≡ A:
S |= A ⇒ S ↓ ∧I(S) = A (Pr. def. of |=)

⇒ T ↓ ∧I(T) = A (as S �n+1 T)
⇒ T |= A (Pr. def. of |=)

φ ≡ [l]ψ: We recall that S |= [l]ψ is equivalent to

S ↓ ∧(l ∈ I(S)⇒ Der(l, S) |= ψ). (1)

We will prove that (1) holds for S replaced by T . As S �n+1 T ,
T ↓. So assume l ∈ I(T). Then l ∈ I(S) and by (1), Der(l, S) |= ψ.
As Der(l, S) �n Der(l, T) and md(ψ) = n, by the outer induction
Der(l, T) |= ψ. This implies T |= [l]ψ.

φ ≡ φ1 ∧ φ2: S |= φ1 ∧ φ2 implies S |= φ1 and S |= φ2. By the structural
induction T |= φ1 and T |= φ2, i.e. T |= φ1 ∧ φ2.

“if”: It is sufficient to prove that for all n.

S 6�n T ⇒ ∃φ ∈ Ln. S |= φ ∧ T 6|= φ.

We prove this statement by induction on n. The base case for the induction
is vacuously true. For the inductive step it is sufficient to consider following
cases according to why S 6�n+1 T .

14

S ↓ but T ↑: Then S |= I(S) but T 6|= I(S)

S ↓ and T ↓ and I(S) 6= I(T): Again S |= I(S) but T 6|= I(S).

S ↓, T ↓, I(S) = I(T) and l ∈ I(T) = I(S) but Der(l, S) 6�n Der(l, T):
By induction there is a ψ ∈ Ln such that Der(l, S) |= ψ butDer(l, T) 6|=
ψ. This implies that S |= [l]ψ but T 6|= [l]ψ.

Statement 2. follows directly from statement 1., Lemma 2.9 and the definitions
of s � t and L(s). 2

Theorem 3.1 says that the preorder is fully characterized by the logic L in-
terpreted over |=. Furthermore from the proof we see that the operator ∧ is not
needed in the characterization. However in what follows we show that each S ∈ S
that corresponds to a finite convergent process may be characterized up to � by
one single formula in L, i. e. every such S has a characteristic formula in the sense
of [SI94]. To obtain this result we need the ∧ operator. We start by defining
dpth(S) = sup{|s| |S σ=⇒}. We say that S is of finite depth if dpth(S) <∞.

Definition 3.2 (Characteristic formula) Let D ∈ S be convergent and of
finite depth. We define the characteristic formula, φD, for D by induction on
dpth(D) by:

dpth(D) = 0: φD ≡ {∅}.

dpth(D) = n+ 1: φD ≡ I(D) ∧ ∧{[l]φDer(l,D)|l ∈ I(D) ∧D ↓ l}.

2
We have the following characterization theorem

Theorem 3.3 For every convergent D ∈ S of finite depth following holds:

1. D |= φD and

2. ∀S. S |= φD ⇒ D � S.

Proof

1. We prove the statement by induction on dpth(D).

dpth(D) = 0: Obviously D |= {∅}.
dpth(D) = n + 1: Again it is obvious that D |= I(D). Furthermore,

if l ∈ I(D) and D ↓ l, then Der(l, D) ↓. By induction Der(l, D) |=
φDer(l,D) which in turn implies that D |= [l]φDer(l,S). We have therefore
that D |= ∧{[l]φDer(l,D)|l ∈ I(D) ∧ D ↓ l}. This completes the proof
of D |= φD.

15

2. Next assume that S |= φD. We will prove that D � S by showing that
the defining clauses for � are satisfied. Again we prove the statement by
induction on dpth(D).

dpth(D) = 0: It is easy to check that S |= {∅} implies D � S.

dpth(D) = n+ 1: Now we proceed as follows: We know that D ↓.
(a) As S |= φD, S ↓.
(b) As S |= I(D), I(S) = I(D)
(c) Let l ∈ I(S) = I(T). We have the following possibilities:

• Der(l, D) ↑: Then Der(l, D) � Der(l, S).
• Der(l, D) ↓: As S |= ∧{[l]φDer(l,D)|l ∈ I(D) ∧D ↓ l} this im-

pliesDer(l, S) |= φDer(l,D). By induction we get thatDer(l, D) �
Der(l, S).

2

4 Application to Regular CCS

In this section we give the syntax for a sublanguage of a slight modification of
the standard CCS and an operational semantics based on the ideas described in
the previous section.

4.1 Syntax

The language we investigate in this study is the set of regular processes of the
language CCS⊕, i. e. CCS where τ is replaced by the internal choice operator ⊕.
This language is studied in more detail for testing based semantics in [Hen88].

In the definition of the syntax we assume a predefined countably infinite set
of process variables PV ar ranged over by x,y, etc. and a set of of actions, Act,
ranged over by a,b, etc. The set of allowed operators is Θ, Ω of arity 0, a. ,
a ∈ Act of arity 1 and ⊕ and + of arity 2. We use Σ to denote this collection of
operators and Σk those of arity k. The set of (process) terms is then defined by
the BNF-definition

t ::= Θ Ω t + t t⊕ t a.t x recx.t.

The construction recx. binds occurrences of process names which gives rise in
the usual way to free and bound names and to closed and open terms. We use
t[u/x] to denote the term which results from substituting the term u for every free
occurrence of x in t. We will sometimes use a more general form of substitution.
If ρ is a mapping from PV ar to the set of terms then tρ is the term which results

16

1. a.p
a−→ p

2. p
a−→ p′ implies p + q

a−→ p′

q + p
a−→ p′

3. p⊕ q �→ p
p⊕ q �→ q

4. Ω �→ Ω

5. recx.t �→ t[recx.t/x]

6. p �→ p′ implies p+ q �→ p′ + q
q + p′ �→ q + p′

Figure 1: Rules for �→ and a−→

from simultaneously substituting ρ(x) for each free occurrence of x in t. The set
of processes, i.e. closed terms, is denoted by Proc ranged over by p and that of
recursion free processes by F inProc, ranged over by d.

4.2 The Operational Semantics

The concrete operational semantics for Proc is given by Figure 1. It is easy to
check that the labelled transition system defined this way, 〈Proc, Act,−→,�→
〉, satisfies the conditions described in Assumption 2.2. It turns out that the
readiness preorder is a precongruence with respect to the operators in Σ.

Lemma 4.1 � is a precongruence with respect to the operators in Σ.

Proof To prove that � is a precongruence it is sufficient to prove that for all n,
�n is preserved by the operators. We proceed by induction on n where the base
case, n = 0, is trivial. For the inductive step we consider each of the operators
separately:

a. : First we note that for any p, Stbw(a.p) = {a.p}. Now it is straight forward
to show that Stbw(p) �n+1 Stbw(q) implies {a.p} �n+1 {a.q}.

17

⊕: Here we note that for anyp1 and p2, p1⊕p2 ↓ iff p1 ↓ and p2 ↓. Furthermore,
if p1 ⊕ p2 ↓, then Stbw(p1 ⊕ p2) = Stbw(p1) ∪ Stbw(p2). Then we note that

∀S, T, U 6= {⊥}. S � T ⇒ S ∪ U � T ∪ U. (2)

Now the result follows easily by induction using these observations.

+: As before, for any p1 and p2, p1 + p2 ↓ iff p1 ↓ and p2 ↓. Now we proceed as
follows:

Assume Stbw(p1) �n+1 Stbw(q1) and Stbw(p2) �n+1 Stbw(q2).
We will prove that Stbw(p1 + p2) �n+1 Stbw(q1 + q2). So assume
Stbw(p1 + p2) ↓.

1. Then Stbw(p1) ↓ and Stbw(p2) ↓. This implies that Stbw(q1) ↓
and Stbw(q2) ↓ which in turn implies that Stbw(q1 + q2) ↓.

2. Next assume that Stbw(p1 + p2) ↓ and Stbw(q1 + q2) ↓.
(a) First let p ∈ Stb(p1 + p2). This implies that p = p′1 + p′2

where p′1 ∈ Stb(p1) and p′2 ∈ Stb(p2). Then there is a
q′1 ∈ Stb(q1) such that I(p′1) = I(q′1) and q′2 ∈ Stb(q2)
such that I(p′2) = I(q′2). This implies that I(p) = I(p′1 +
p′2) = I(q′1 + q′2) = I(q) where q′1 + q′2 ∈ Stb(q1 + q2).

(b) Now let Stbw(p1 +p2) ↓, Stbw(q1 + q2) ↓ and q ∈ Stbw(q).
As before we may conclude that I(p) = I(q) for some
p ∈ Stbw(p1 + p2).

(a) and (b) imply that I(Stb(p1 + p2)) = I(Stb(q1 + q2)).
3. Finally assume that Stbw(p1 + p2) ↓, Stbw(q1 + q2) ↓ and
a ∈ I(Stb(p1 + p2)) = I(Stb(q1 + q2)).
(a) First assume that p1 + p2 ↑ a. Then

Der(a, Stbw(p1 + p2)) = {⊥}

and therefore

Der(a, Stbw(p1 + p2)) � Der(a, Stbw(q1 + q2)).

(b) Next assume that p1 +p2 ↓ a. If a 6∈ I(pi) for either i = 1
or i = 2, say i = 1 then a 6∈ I(q1) and

Der(a, Stb(p)) = Der(a, Stb(p2)) �
Der(a, Stb(q2)) = Der(a, Stb(q)).

So assume a ∈ I(p1) ∩ I(p2). Then

Der(a, Stb(p1 +p2)) = Der(a, Stb(p1))∪Der(a, Stb(p2)).

18

As Stbw(p1) �n+1 Stbw(q1) and Stbw(p2) �n+1 Stbw(q2),
by (2)

Der(a, Stbw(p1 + p2)) =
Der(a, Stbw(p1)) ∪Der(a, Stbw(p2)) �n
Der(a, Stbw(q1)) ∪Der(a, Stbw(q2)) =
Der(a, Stbw(q1 + q2)).

2

4.3 The Proof System

In this section we introduce a proof system to reason about process behaviour.
The proof system consists of a set of equations, Figure 2, and an inference system,
Figure 3. The equations are a slight modification of those introduced in [BKO88]
due to a different language as in that reference a subset of recursive free processes
of ACP is considered. Furthermore the proof system is almost the same as for
the must testing preorder [Hen88] with the following differences.

• The (in)equations

(X + Y)⊕ Z = (X ⊕ Z) + (Y ⊕ Z)

and
X ⊕ Y v X

are omitted as they are not sound with respect to the readiness preorder.

• The equation

(a.X + Y)⊕ (a.Z +W) = (a.X + Y)⊕ (a.X +W)⊕ (a.Z +W)

has been added here but is derivable in the proof system that characterizes
the must testing.

For the motivation of these equations and the inference rules see the references
above.

The syntactical approximations pn that occur in the (ω)-rule are taken directly
from [Hen88] and are defined as follows:

• p0 = Ω

• pn+1 is defined inductively by:

– (op(p))n+1 = op(pn+1) for op ∈ Σ,

19

– (recx.u)n+1 = un+1[(recx.u)n/x].

We refer to the set of equations as E and let vE denote the preorder derived
from E and the finitary inference rules (least)–(axiom) in Figure 3, while vE−ωrec
is obtained by adding the rule (fix) and vErec is obtained by further adding the
rule (ω), i.e. the full system. The discussion above shows that these preorders
are strictly stronger than the corresponding ones for the must testing.

The following partial soundness result follows as an easy consequence of the
definition of �.

Lemma 4.2 (Partial soundness) The proof system consisting of the equa-
tions and the inference rules (least)–(fix) is sound with respect to the stable state
preorder, i.e.

∀p, q. p vE−ωrec q implies p � q.

Proof The inference rules (least)–(congr) only state that the relation is as pre-
congruence with Ω as a least element and are therefore sound for �. Also the rule
(fix) is obviously sound for �. Therefore it only remains to proof the soundness
of the rule (axiom), i.e. to check whether the equations are sound with respect
to �. This in turn is straight forward and is left to the reader. 2

Here we would like to point out that, at this point, we have not stated the sound-
ness of the ω-rule as the proof for this is non trivial and will be dealt with later.
In what remains of the paper we use the equations (⊕1)–(⊕3) and (+1)–(+4) to
rewrite process terms without further explanation. Now we will state a stan-
dard result that holds for all proof systems of this kind. For justification see for
instance [Hen88].

Lemma 4.3 For all d, p,

1. ∀n.pn vE−ωrec p,

2. d vErec p implies d vE−ωrec p,

3. d vErec p implies ∃n.d vE pn.

Proof All the statements are standard and a justification for them may be found
in for instance in [Hen88]. 2

Lemma 4.4 The following equation is derivable from E.

(a.X + Y)⊕ (a.Z +W) = (a.(X ⊕ Z) + Y)⊕ (a.(X ⊕ Z) +W) (Der).

20

⊕1 X ⊕ (Y ⊕ Z) = (X ⊕ Y)⊕ Z
⊕2 X ⊕ Y = Y ⊕X
⊕3 X ⊕X = X
⊕Ω X ⊕ Ω = Ω
+1 X + (Y + Z) = (X + Y) + Z
+2 X + Y = Y +X
+3 X +X = X
+4 X + Θ = X
+Ω X + Ω = Ω
pre +⊕1 a.X + a.Y = a.(X ⊕ Y)
pre +⊕2 a.X ⊕ a.Y = a.(X ⊕ Y)
+⊕ 1 X + (Y ⊕ Z) = (X + Y)⊕ (X + Z)
+⊕ 2 (a.X + Y) ⊕ (a.Z +W) = (a.X + Y)⊕ (a.X +W)⊕ (a.Z +W)

Figure 2: Equations

Proof The equation may be derived as follows:

(a.X + Y)⊕ (a.Z +W) =
(a.X + Y)⊕ (a.X +W)⊕ (a.Z + Y) ⊕ (a.Z +W) = (+⊕ 2)
(a.X + (Y ⊕W))⊕ (a.Z + (Y ⊕W)) = (+⊕ 1)
(a.X ⊕ a.Z) + (Y ⊕W) = (+⊕ 1)
a.(X ⊕ Z) + (Y ⊕W) = (pre +⊕2)
(a.(X ⊕ Z) + Y)⊕ (a.(X ⊕ Z) +W). (+⊕ 1)

2

4.4 Finitariness and Algebraicity

In this subsection we will show that the preorder � is finitary in the sense of
Abramsky [Abr91]. The proof is very similar to a proof of the same property
for a bisimulation based preorder in [AH92] and like in that reference we use
the logical characterization. However we go a step further and show that the
preorder is algebraic in the sense of [Hen88] (basically that the (ω)-rule is sound)
using similar techniques and by using the characteristic formula. This proof is of

21

(least) Ω v X

(preord) t v t
t v u, u v v

t v v

(congr)
ti v ui

op(t) v op(u)
for every op ∈ ∑

(axiom)
tρ v uρ

for every equation t v u and closed substitution ρ

(fixp)
recx.t = t[recx.t/x]

(ω)
∀n. tn v u
t v u

Figure 3: Proof System

some theoretical interest in itself as the algebraicity of the behavioural preorder,
and the soundness of the ω-rule are proved by using properties of the modal
logics, the operational semantics and of the proof system where the rule (ω) is
omitted. Normally this result follows as a consequence of a full abstractness
of the behavioural preorder with respect to a denotational model in terms of
an algebraic cpo [Hen88, AH92, HI93, Ing95]. Proving the algebraicity directly
allows us to reduce the proof of completeness of the proof system over the full
language to a completeness proof only over recursion free processes. We start by
giving Abramsky’s definition of when a preorder is finitary.

Definition 4.5 (Finitariness) The finitary part, ≤F , of a preorder, ≤, is de-
fined by

p ≤F q iff (∀d.d ≤ p⇒ d ≤ q).

A preorder ≤ is finitary if ≤F=≤. 2

We need the following lemma:

22

Lemma 4.6

1. For all p ∈ Proc, p 6�→ implies

p =E−ωrec

∑
{a.p′|p a−→ p′}.

2. For all p ∈ Proc, p ↓ implies

p =E−ωrec

∑
◦ Stb(p).

3. For all p ∈ Proc, p 6�→ and p ↓ a implies

p =E−ωrec

∑
{a.

∑
◦ Der(a, {p})|a ∈ I(p)}.

Proof

1. We will prove the statement by structural induction on p. The cases p ≡
Ω, p1 ⊕ p2, recx.u are trivial as p is not stable. Also the cases p ≡ Θ, a.p1

follow immediately. For the only remaining case, p ≡ p1 + p2, we proceed
as follows.

First we note that p a−→ p′1 iff p1
a−→ p′1 or p2

a−→ p′1. By
induction we have

p ≡ p1 + p2 =E−ωrec∑{a.p′1|p1
a−→ p′}+

∑{a.p′2|p2
a−→ p′} =E−ωrec∑{a.p′|p a−→ p′}.

2. First we note that the statement is true if p 6�→. Then we prove by struc-
tural induction that

p ↓ ∧p �→ implies p =E−ωrec

∑
◦ {p′|p �→ p′}.

For the only nontrivial case, p ≡ p1 + p2, we proceed as follows.

Assume p1 + p2 �→ p′. Then either p′ ≡ p′1 + p2 where p1 �→ p′1
or p′ ≡ p1 +p′2 where p2 �→ p′2. By the equation (⊕3), structural
induction and the equation (+⊕ 1), we have

p1 + p2 =E−ωrec
(p1 + p2)⊕ (p1 + p2)

=E−ωrec
(
∑◦ {p′1|p1 �→ p′1}+ p2)⊕ (p1 +

∑◦ {p′2|p2 �→ p′2})
=E−ωrec

∑◦ {p′1 + p2|p1 �→ p′1} ⊕
∑◦ {p1 + p′2|p2 �→ p′2}

=E−ωrec

∑◦ {p′|p1 + p2 �→ p′}.

Now the result follows easily by induction on the internal depth of p, i.e.
max{n|∃p′.p �→n p′}.

23

3. Let der(a, p) = {p′|p a−→ p′}. By 1. and equation (pre +⊕1),

p =E−ωrec

∑
{a.

∑
◦ der(a, p)|a ∈ I(p)}.

Furthermore
Der(a, {p}) = Stab(

∑
◦ der(a, p)).

By assumption,
∑◦ der(a, p) ↓ and thus, by 2.∑

◦ der(a, p) =
∑
◦ Der(a, {p})

and the result follows.

2

The key to the proof of the finitariness of � is the following proposition which
also is proved in [AH92] where, as mentioned before, a CCS-like language and
prebisimulation are considered.

Proposition 4.7 For all p and φ, if p |= φ then there is a finite d such that
d vE−ωrec p and d |= φ.

Proof We prove the statement by structural induction on φ and we proceed as
follows:

φ ≡ A: p |= A means that p ↓ and I(Stb(p)) = A. Let

d ≡
∑
◦ {

∑
{a.Ω|a ∈ I(p′)}|p′ ∈ Stb(p)}.

Obviously d |= A. Furthermore

d ≡ ∑◦ {∑{a.Ω|a ∈ I(p′)}|p′ ∈ Stb(p)}

v
E−ωrec

∑◦ {∑{a.p′′|p′ a−→ p′′}|p′ ∈ Stb(p)}

v
E−ωrec

p (by L.4.6.1,2)

φ ≡ [a]ψ: First we note that p |= [a]ψ implies p ↓. If a 6∈ I(Stb(p)) then
d defined as in the previous case satisfies the conditions. So assume a ∈
I(Stb(p)). Then Der(a, Stb(p)) |= ψ and thus p′ ≡ ∑◦ Der(a, Stb(p)) |= ψ.
By induction there is a d′ such that d′ |= ψ and d′ vE−ωrec p

′. Now let

d ≡
∑
◦ {

∑
{b.db|b ∈ I(p′)}|p′ ∈ Stb(p)},

where da ≡ d′ and db ≡ Ω if b 6= a. It is easy to see that d |= [a]ψ.
Furthermore

Der(a, Stb(p)) =
⋃
{Der(a, {p′})|p′ ∈ Stb(p)}.

24

Now we have

d ≡∑◦ {∑{b.db|b ∈ I(p′)}|p′ ∈ Stb(p)}

v
E−ωrec

∑◦ {∑ b.{∑◦ Der(b, Stb(p))|b ∈ I(p′)}|p′ ∈ Stb(p)} (by (least))

=E−ωrec

∑◦ {∑{b.∑◦ Der(b, {p′})|b ∈ I(p′)}|p′ ∈ Stb(p)} (by (Der))

=E−ωrec

∑◦ p′|p′ ∈ Stb(p)} (by Lem. 4.6.3)

=E−ωrec
p (by Lem. 4.6.1).

φ ≡ φ1∧φ2: We recall that p |= φ1∧φ2 iff p |= φ1 and p |= φ2. By the structural
induction there are d1 and d2 such that di |= φi and di vE−ωrec p for i = 1, 2.
By Lemma 4.3, for i = 1, 2 there is an ni such that di vE pni . Now let
n = max{n1, n2} and d ≡ pn. Then di vE−ωrec d

v
E−ωrec

p. As di |= φi, this and
Theorem 3.1 imply that d |= φ1 ∧ φ2.

2

Now we get that � is finitary and algebraic as a corollary to Proposition 4.7.
The finitariness is proved basically in the same way as a similar result in [AH92].

Corollary 4.8 (Finitariness) �F=�=�ω.

Proof It is sufficient to prove that �F=� as the second equality is the content
of Lemma 2.9. Obviously �⊆�F . To prove the opposite inclusion, by Theorem
3.1 it is sufficient to prove that

p �F q ⇒ L(p) ⊆ L(q).

To prove this we proceed as follows.

Assume that (∀d ↓ .d � p ⇒ d � q) and that p |= φ. We will prove
that q |= φ. By Proposition 4.7 there is a d such that d vE−ωrec p and
d |= φ. By the partial soundness d � p, by our assumption d � q and
by Theorem 3.1, q |= φ.

2

In the proof of the algebraicity we take advantage of the characteristic formu-
lae for processes of finite depth, that was defined for sets of states. We extend
this definition to recursion free processes by

∀d ↓ . φd ≡ φStb(d).

It is easy to see that φd is a characteristic formula for d in the sense of Theorem
3.3. The algebraicity of � is the content of the following corollary.

25

Corollary 4.9 (Algebraicity)

∀p, d. d � p⇒ ∃n.d � pn.

Proof If d ↑ we are done. So assume that d ↓ and d � p. Let φd be the
characteristic formula for d. Then d |= φd and therefore p |= φd, by Theorem
3.1. By Proposition 4.7, there is a recursion free d′ such that d′ vE−ωrec p and
d′ |= φd. Therefore d � d′ vE−ωrec p. Now, by Lemma 4.3, there exists an n such
that d′ vE pn. This implies d � pn. 2

From these corollaries we may derive the soundness of the (ω)-rule.

Corollary 4.10 (Soundness of the ω-rule) (∀n.pn � q) implies p � q.

Proof By Corollary 4.8 it is sufficient to prove that

(∀n.pn � q) implies (∀d.d � p⇒ d � q).

So assume (∀n.pn � q) and d � p. By Corollary 4.9, d � pn for some n and by
our assumption we get d � q. 2

4.5 Completeness of the Proof System

In this final subsection we will prove the completeness of the proof system with
respect to the readiness preorder, �. By the algebraicity of the preorder, stated
in Corollary 4.9, the proof of the completeness for the proof system with respect
to it may be reduced to proving the completeness for finite processes and then
applying the inference rule (ω). The proof of the completeness for the finite
processes is, as usual, based on the notion of normal forms.

Definition 4.11 (Normal forms) An n ∈ F inProc is in a normal form if either
n ≡ Ω, n ≡ Θ or it is of the form n ≡ ∑◦ j≤N

∑
i≤Nj a

j
i .n

j
i where the following

holds for all i, i1, i2, j, k, l, :

1. nji is a normal form,

2. if i1 6= i2 then aji1 6= aji2,

3. if aji = akl then nji ≡ nkl .

2
Next we show that any finite process is provably equal to a normal form.

26

Lemma 4.12 (Normalization) For all d ∈ F inProc there is a normal form
nf(d) such that d =E nf(d).

Proof Let dpth(d) = max{|σ| |d σ=⇒}. We prove the statement by induction on
dpth(d). The base case follows from an easy structural induction on d. To prove
the inductive step we also proceed by structural induction on d.

d ≡ Θ,Ω: Obvious.

d ≡ a.d1: By induction there is a normal form, nf(d1), such that nf(d1) =E d1.
Then a.nf(d1) =E a.d1, where a.nf(d1) is a normal form.

d ≡ d1 ⊕ d2: By structural induction d1 =E n1 and d2 =E n2 where n1 and n2

are normal forms. If either n1 ≡ Ω or n2 ≡ Ω, then d1 ⊕ d2 =E Ω where Ω
is a normal form. Also the case where ni ≡ Θ for i = 1 or i = 2 is trivial.
So assume

n1 ≡
∑
◦ j≤N

∑
i≤Nj

aji .n
j
i and n2 ≡

∑
◦ l≤M

∑
k≤Ml

blk.m
l
k.

Then
d1 ⊕ d2 =E n1 ⊕ n2 =E∑◦ j≤N

∑
i≤Nj a

j
i .n

j
i ⊕

∑◦ l≤M
∑
k≤Ml

blk.m
l
k =E∑◦ s≤N+Mds,

where ds ≡
∑
i≤Ns a

s
i .n

s
i for s ≤ N and dN+s ≡

∑
k≤Ms

bsk.m
s
k for s ≤ M .

Obviously condition 1. and 2. for normal forms hold. To ensure 3. we apply
the equation (Der) of Lemma 4.4 repeatedly. Now condition 2. and 3.
hold but 1. may not hold any more. However now we may apply the outer
induction hypothesis to rewrite the term to normal form.

d ≡ d1 + d2: By structural induction, for i = 1, 2, there is a normal form ni
such that di =E ni. This implies d =E n1 + n2. To rewrite n1 + n2 into a
normal form, using E, we proceed as follows: First we distribute + over ⊕,
i.e. apply (+⊕ 1), sufficiently often so we end up with a double sum of the
form

∑◦ s
∑
r α

s
r.η

s
r. Then we apply equation (pre + ⊕1) to obtain 2. Now

we may proceed as in the previous case.

2
The next step of the completeness proof is to prove the completeness for nor-
mal forms.

Lemma 4.13 (Partial Completeness) For all normal forms n,m

n � m iff n vE m.

27

Proof The “if” part of the statement follows from the soundness of the proof
system. Therefore we only have to prove the “only if” part. We proceed by
structural induction on n. If n ≡ Ω we are done. Also the case n ≡ Θ follows
easily. So assume n ≡ ∑◦ j≤N

∑
i≤Nj a

j
i .n

j
i . As n ↓ we have that m ↓ and has the

same form, m ≡ ∑◦ l≤M
∑
k≤Ml

blk.m
l
k. Let j ≤ N . As n � m there is an lj ≤ M

such that {aj1, . . . , ajNj} = {blj1 , . . . , b
lj
Mlj
}. This means that we may assume that

Nj = Mlj and aji = b
lj
i for j ≤ N . Because of the structure of the normal forms

Der(aji , Stb(n)) = Stbw(nji) and Der(blji , Stb(m)) = Stbw(mlj
i), i ≤ Nj. This

implies
Stbw(nji) � Stbw(mlj

i),

or equivalently that nji � m
lj
i . By induction nji vE m

lj
i . This implies∑

i≤Nj
aji .n

j
i
vE

∑
k≤Mlj

b
lj
k .m

lj
k . (3)

In a similar way we may show that for all l ≤M there is a jl ≤ N such that∑
i≤Njl

ajli .n
jl
i
vE

∑
k≤Ml

blk.m
l
k. (4)

From (3) and (4) we get

n ≡ ∑◦ j≤N
∑
i≤Nj a

j
i .n

j
i =E∑◦ j≤N

∑
i≤Nj a

j
i .n

j
i ⊕

∑◦ l≤M
∑
i≤Njl

ajli .n
jl
i
vE∑◦ j≤N

∑
k≤Ml

b
lj
k .m

lj
k ⊕

∑◦ l≤M
∑
k≤Ml

blk.m
l
k =E m.

This completes the proof of the theorem. 2

Finally we show the completeness for the full language Proc.

Theorem 4.14 (Completeness) For all p, q ∈ Proc

p � q iff p vErec q

Proof The “if” implication follows from the soundness of the proof system. For
the “only if” part we proceed as follows:

p � q ⇒ ∀n.pn � q (by Lem. 4.3 and 4.2)
⇒ ∀n∃m.pn � qm (by Cor. 4.9)
⇒ ∀n∃m.nf(pn) � nf(qm) (by Lem. 4.12)
⇒ ∀n∃m.nf(pn) vE nf(qm)(by Lem. 4.13)
⇒ ∀n∃m.pn vE qm (by Lem. 4.12)
⇒ ∀n.pn vErec q (by Lem. 4.3)
⇒ p vErec q (by the rule (ω)).

28

Here nf(pn) has the same meaning as in the normalization Theorem 4.12, i. e. nf(pn)
is a normal form where nf(pn) =E pn. 2

5 Conclusion

In this study we have given three characterizations of the readiness semantics,
one by means of lighted button pressing experiments, a bisimulation like one and
a modal characterization given some restrictions on the underlying LTS. The
most important of these restrictions is the assumption that the communication
capabilities are preserved by internal transitions which is not true for standard
process description languages likeCCS. We have applied the theory on a concrete
language that has this property, the regular sublanguage of CCS⊕, CCS without
τs. For this language we also characterized the readiness semantics by means of a
sound and complete proof system. We used the modal characterization to prove
the algebraicity of the behavioural preorder and thus reduced the completeness
proof to a completeness proof over recursion free terms.

To complete this study we would like to be able to reason about the full
language CCS⊕. As pointed out in the introduction, if we add the parallel
operator with the standard operational semantics to the language, the internal
actions do not preserve communication capabilities. A future task is therefore to
investigate whether the parallel operator may be modelled suitably so it fits into
this set–up. Another obvious extension of this work is to use similar methods to
obtain the same kind of characterization of the failures semantics [OH86] and the
must testing [DNH84]. Most of the work is already done by the author and will
be recorded elsewhere.

References

[Abr91] S. Abramsky. A domain equation for bisimulation. Information and
Computation, 92:161–218, 1991.

[AH92] L. Aceto and M. Hennessy. Termination, deadlock and divergence.
Journal of the ACM, 39(1):147–187, January 1992.

[BKO88] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in
the algebra of communicating processes. SIAM Journal on Computing,
17(6):1134–1177, 1988.

[BM92] B. Bloom and A.R. Meyer. Experimenting with process equivalence.
Theoretical Computer Science, 101(2):223-237, 1992.

29

[DNH84] DeNicola, R. and M. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.

[Gla90] R.J. van Glabbeek. The linear time – branching time spectrum. In
J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Am-
sterdam, volume 458 of Lecture Notes in Computer Science, pages 278–
297. Springer-Verlag, 1990.

[Gla93] Robert Jan van Glabbeek. The linear time – branching time spectrum
II: the semantics of sequential processes with silent moves. In E. Best,
editor, Proceedings CONCUR 93, Hildesheim, Germany, volume 715
of Lecture Notes in Computer Science, pages 66–81. Springer-Verlag,
1993.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge,
Massachusetts, 1988.

[HI93] M. Hennessy and A. Ingólfsdóttir. A theory of communicating pro-
cesses with value-passing. Information and Computation, 107(2):202–
236, 1993.

[Ing95] A. Ingólfsdóttir. A semantic theory for value-passing processes late
approach — Part II: A behavioural semantics and full abstractness.
Report RS–95–22, BRICS (Basic Research in Computer Science, Centre
of the Danish National Research Foundation), Institute for Electronic
Systems, Department of Mathematics and Computer Science, Aalborg
University Centre, April 1995.

[Knu73] D.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-
puter Programming. Addison-Wesley, Reading, Massachusetts, 1973.
Second edition.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for
communicating processes. Acta Informatica, 23:9–66, 1986.

[SI94] Bernhard Steffen and Anna Ingólfsdóttir. Characteristic formulae for
processes with divergence. Information and Computation, 110(1):149–
163, April 1994.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5, 1955.

30

A Proof of Theorem 2.6

First we state the following results.

Lemma A.1 Let s, t ∈ State, σ ∈ Lab∗ and l ∈ Lab. If s ↓ l and s
lσ=⇒ t 6�→

then s
ε=⇒ s′

l=⇒ t′
σ=⇒ t for some s′, t′ 6�→.

Proof Follows easily from Assumption 2.2. 2

In what follows we assume that the set Lab is infinite. To prove Theorem 2.7
first we review the definition of the readiness semantics as it is given in [OH86].
The set of observations Obs is given by

Obs = {σ, σA|σ ∈ Lab∗, A ⊆fin Lab}.

Then the set of observations of a state s, obs(s) is defined as the least set satisfying

1. s σ=⇒ implies σ ∈ obs(s),

2. s σ=⇒ s′ 6�→ and I(s′) = A implies σA ∈ obs(s),

3. s ↑ σ implies σ, σA ∈ obs(s) for all A ⊆fin Lab.

Then s and t are readiness equivalent iff obs(s) = obs(t). Now let

Obs∗ = {σA|s ∈ Lab∗, A ⊆fin Lab}.

and obs∗(s) be defined as the least set satisfying 2. and 3. in the definition of obs.
Then we have

Lemma A.2 For all s, t ∈ S and σ ∈ Lab∗,

1. obs∗(s) = obs∗(t) implies (∀σ.s ↓ σ ⇔ t ↓ σ),

2. obs(s) = obs(t) iff obs∗(s) = obs∗(t).

Proof

1. This may be proved as follows:

Assume obs∗(s) = obs∗(t) and s ↓ σ. We have the following cases:

s 6 σ=⇒: Then σA 6∈ obs∗(s) = obs∗(t) for all A. This in turn
implies t ↓ σ.

31

s
σ=⇒: Let A = {I(s′)|s σ=⇒ s′ 6�→}. By Lemma 2.3, A is finite
and as Lab is infinite we may choose a A ⊆fin Lab such that
A 6∈ A. Now it is easy to see that σA 6∈ obs∗(s) and therefore,
by our assumption, σA 6∈ obs∗(t). This in turn implies that
t ↓ σ.

The statement now follows by symmetry.

2. Now we proceed as follows:

“only if”: Follows immediately.

“if”: Assume obs∗(s) = obs∗(t). By symmetry it is sufficient to prove that
whenever o ∈ obs(s) then o ∈ obs(t). The only non-trivial case is when
o = σ. So assume σ ∈ obs(s). If s ↑ σ then, by part 1 of this lemma,
t ↑ σ and therefore σ ∈ obs(t). Next assume s ↓ σ. Then s

σ=⇒ s′

where s′ 6�→. This implies

σI(s′) ∈ obs∗(s) = obs∗(t) ⊆ obs(t),

which in turn implies σ ∈ obs(t).

2

To prove Theorem 2.7 it is now sufficient to prove that

s =R t iff obs∗(s) = obs∗(t).

To obtain this first we extend the transition function Der : Lab× S ↪→ S in the
standard way to a transition function of the functionality Der : Lab∗ × S ↪→ S
by

• Der(ε, S) = S,

• Der(lσ, S) = S ′ iff Der(l, S) = S ′′ for some S ′′ where Der(σ, S ′′) = S ′.

Sometimes we write S σ=⇒ S ′ if Der(σ, S) = S ′ and S
σ=⇒ if S σ=⇒ S ′ for some

S ′. Also the convergence predicate ↓ is extended by

• S ↓ ε iff S ↓,

• S ↓ lσ iff S ↓ and (l ∈ I(S) ⇒ Der(l, S) ↓ σ).

We need the following intermediate results.

Lemma A.3 ∀s ∈ State, σ ∈ Lab∗, A ⊆fin Lab, S ∈ S.

1. s ↓ σ iff Stbw(s) ↓ σ,

32

2. S ↓ σ implies

(a) S
σ=⇒ implies Der(σ, S) = {s′|∃s ∈ S.s σ=⇒ s′ ∧ s′ 6�→}

(b) {s′|∃s ∈ S.s σ=⇒ s′ ∧ s′ 6�→} 6= ∅ implies S σ=⇒.

3.

(a) MayPass(σA, Stb(s)) iff σA ∈ obs∗(s) ∧ s ↓ σ
(b) MustFail(σA, Stb(s)) iff σA 6∈ obs∗(s).

Proof

1. This statement follows from the following two statements:

s ↓ σ iff (∀s′ ∈ Stbw(s). s′ ↓ σ) (5)

and
S ↓ σ iff (∀s ∈ S. s ↓ σ). (6)

(where we use the convention ⊥ ↑). We prove each of these statements
separately.

Statement (5):
“only if”:We proceed by structural induction on σ. The base case

σ = ε follows immediately. For the inductive step assume s ↓ lρ
and s′ ∈ Stbw(s) and we will prove that s′ ↓ lρ. Obviously s′ ↓.
Next assume s′ l=⇒ s′′. Then s

l=⇒ s′′ and by assumption s′′ ↓ ρ.
This implies s′ ↓ lρ.

“if”: Again we proceed by induction on σ and again the base case
follows immediately. For the inductive step assume that for all
s′ ∈ Stbw(s), s′ ↓ lρ. In particular s′ ↓ for all s′ ∈ Stbw(s) and
by the base case, s ↓. So assume s l=⇒ s′′. Then, by Lemma
A.1, there is an s∗ ∈ Stbw(s) such that s∗ l=⇒ s′′. By assumption
s′′ ↓ ρ which implies that s ↓ lρ.

Statement (6):
“only if”: We proceed by induction in σ where the base cases σ = ε, l

follow immediately. For the inductive step, assume S ↓ lρ. Then
S ↓ l and therefore s ↓ l for all s ∈ S by the base case. In
particular s ↓ for all s ∈ S. Next assume s ∈ S and s

l=⇒ r′, we
will prove that r′ ↓ ρ. First we note that l ∈ I(S) and Der(l, S) ↓.
Furthermore r′ ↓ and Stbw(r′) ⊆ Der(l, S). By definition of ↓ ρ
on S, Der(l, S) ↓ ρ and by induction for all r′′ ∈ Der(l, S), r′′ ↓ ρ.
In particular this is true for all r′′ ∈ Stbw(r′). By the “if” part of
statement (5), r′ ↓ ρ as we wanted to prove.

33

“if”: Again we proceed by induction on σ and the base case follows
immediately. So assume s ↓ lρ for all s ∈ S. In particular this
means that s ↓ for all s ∈ S and therefore, by the base case
S ↓. Next assume l ∈ I(S), we will prove that Der(l, S) ↓ ρ. To
prove this assume r ∈ Der(l, S). Then s

l=⇒ r for some s ∈ S.
By assumption r ↓ ρ. As this is true for any r ∈ Der(l, S), by
induction Der(l, S) ↓ ρ, as wanted.

2. (a) Assume S ↓ σ and S
σ=⇒, i.e. Der(σ, S) exists and is different from

{⊥} and ∅. Let

D(σ, S) = {s′|∃s ∈ S.s σ=⇒ s′ ∧ s′ 6�→}.

We will prove that D(σ, S) = Der(σ, S) by induction on σ. The base
cases σ = ε and σ = l follow immediately. For the inductive step, by
definition of Der, by the case σ = l and by induction we get

Der(lσ′, S) = Der(σ′, Der(l, S)) = Der(σ′, D(l, S)) = D(σ′, D(l, S)).

Therefore it only remains to prove that

D(σ′, D(l, S)) = D(lσ′, S).

To prove this first assume s′ ∈ D(lσ′, S). This implies s lσ′=⇒ s′ 6�→ for
some s ∈ S. By Lemma A.1, s l=⇒ s′′′

σ′=⇒ s′ for some s′′′ 6�→, i.e. for
some s′′′ ∈ D(l, S). This implies that s′ ∈ D(σ′, D(l, S)).
Next assume s′ ∈ D(σ′, D(l, S)). This means that there is an s′′ ∈
D(l, S) such that s′′ σ′=⇒ s′. As s′′ ∈ D(l, S), s l=⇒ s′′ for some s ∈ S,
i.e. s lσ′=⇒ s′ and therefore s′ ∈ D(lσ′, S).

(b) We prove the statement by induction on σ. The base cases σ = ε and
σ = l are obvious. For the inductive step assume that there are s ∈ S
and s′ 6�→ such that s lσ=⇒ s′. Then s

l=⇒ s′′
σ=⇒ s′ for some s′′ 6�→,

i.e. for some s′′ ∈ Der(l, S). Furthermore Der(l, S) ↓ σ. By induction
Der(l, S) σ=⇒. As S l=⇒ Der(l, S) this implies S lσ=⇒.

3. (a) The result follows from the following two statements:

MayPass(σA, S) iff S ↓ σ, S σ=⇒ and A ∈ I(Der(σ, S)) (7)

Stbw(s) ↓ σ, Stbw(s) σ=⇒ and A ∈ I(Der(σ, Stbw(s)))
iff σA ∈ obs∗(s) ∧ s ↓ σ (8)

Statement (7):

34

“only if”: We proceed by induction on σ where the base case is
obvious. For the inductive step we proceed as follows. Assume
MayPass(lσA, S), i.e. S ↓, l ∈ I(S) and MayPass(σ,Der(l, S)).
By induction

Der(l, S) ↓ σ,Der(l, S) σ=⇒

and
A ∈ I(Der(σ,Der(l, S))) = I(Der(lσ, S)).

This implies that S ↓ lσ, S lσ=⇒ and A ∈ I(Der(lσ, S)).
“if”: Again we proceed by induction on σ where the base case is

obvious. For the inductive step we proceed as follows: Assume
S ↓ lσ, S lσ=⇒ and A ∈ I(Der(lσ, S)). Then

S
l=⇒ Der(l, S) σ=⇒ Der(σ,Der(l, S)) = Der(lσ, S)

and Der(l, S) ↓ σ. By induction MayPass(σA,Der(l, S)).
As l ∈ I(S) and S ↓ this implies MayPass(lσA, S).

Statement (8):
“only if”: Assume that

Stb(s) ↓ σ, Stb(s) σ=⇒ and A ∈ I(Der(σ, Stb(s)).

By 1. of this lemma, s ↓ σ. FurthermoreA ∈ I(Der(σ, Stb(s))
implies that I(s′) = A for some s′ ∈ Der(σ, Stb(s)). By 2.(a)
of this lemma there is an s′′ ∈ Stb(s) such that s′′ σ=⇒ s′,
which implies s σ=⇒ s′. This shows that σA ∈ obs∗(s).

“if”: Assume
σA ∈ obs∗(s) and s ↓ σ.

Again by 1. of this lemma, s ↓ σ implies Stb(s) ↓ σ. As
σA ∈ obs∗(s) and s ↓ σ then s

σ=⇒ s′ 6�→ for some s′ where
I(s′) = A. By Lemma A.1, there is an s′′ ∈ Stb(s) such that
s′′

σ=⇒ s′. By 2.(b) and (a) of this lemma, Stb(s) σ=⇒ and
s′ ∈ Der(σ, S). This implies that A ∈ I(Der(σ, S)).

(b) May be proved in a similar way by first proving the following two
statements

MustFail(σA, S) iff S ↓ σ, S σ=⇒ and A 6∈ I(Der(σ, S)) (9)

S ↓ σ, S σ=⇒ and A 6∈ I(Der(σ, S)) iff σA 6∈ obs∗(s). (10)

Here we note that σA 6∈ obs∗(s) implies s ↓ σ.

2

35

Proof of Theorem 2.7
As pointed out before it is sufficient to prove that

obs∗(s) = obs∗(t) iff s =R t.

We prove each implication separately.

“only if”: Let obs∗(s) = obs∗(t). First assume MayPass(σA, Stbw(s)), we
will prove that MayPass(σA, Stbw(t)). By Lemma A.3.3 we have that
σA ∈ obs∗(s) = obs∗(t) and s ↓ σ. Lemma A.2.1 implies t ↓ σ. Again
by Lemma A.3.3. we may conclude that MayPass(σA, Stb(t)). Similarly
we prove that MustFail(σ, Stbw(s)) implies MustFail(σ, Stbw(s)) and the
result follows by symmetry.

“if”: Assume that obs∗(s) 6= obs∗(t) witnessed by σA ∈ obs∗(s) but σA 6∈ obs∗(t).
By Lemma A.3.3, MustFail(σA,Stb(t)) and ¬MustFail(σA,Stb(s)).

36

Recent Publications in the BRICS Report Series

RS-96-43 Anna Inǵolfsdóttir. Weak Semantics Based on Lighted
Button Pressing Experiments: An Alternative Characteri-
zation of the Readiness Semantics. November 1996. 36 pp.
An extended abstract to appear in the proceedings of the
10th Annual International Conference of the European
Association for Computer Science Logic, CSL '96.

RS-96-42 Gerth Stølting Brodal and Sven Skyum.The Complexity
of Computing thek-ary Composition of a Binary Associa-
tive Operator. November 1996. 15 pp.

RS-96-41 Stefan Dziembowski. The Fixpoint Bounded-Variable
Queries are PSPACE-Complete. November 1996. 16 pp.
Presented at the10th Annual International Conference
of the European Association for Computer Science Logic,
CSL '96.

RS-96-40 Gerth Stølting Brodal, Shiva Chaudhuri, and Jaikumar
Radhakrishnan. The Randomized Complexity of Main-
taining the Minimum. November 1996. 20 pp. To appear
in a special issue ofNordic Journal of Computing de-
voted to the proceedings of SWAT '96. Appears in Karl-
son and Lingas, editors,Algorithm Theory: 5th Scandi-
navian Workshop, SWAT '96 Proceedings, LNCS 1097,
1996, pages 4–15.

RS-96-39 Hans Ḧuttel and Sandeep Shukla. On the Complexity
of Deciding Behavioural Equivalences and Preorders – A
Survey. October 1996. 36 pp.

RS-96-38 Hans Ḧuttel and Josva Kleist. Objects as Mobile Pro-
cesses. October 1996. 23 pp.

RS-96-37 Gerth Stølting Brodal and Chris Okasaki.Optimal Purely
Functional Priority Queues. October 1996. 27 pp. To ap-
pear in Journal of Functional Programming, 6(6), Decem-
ber 1996.

RS-96-36 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir.
On a Question of A. Salomaa: The Equational Theory
of Regular Expressions over a Singleton Alphabet is not
Finitely Based. October 1996. 16 pp.

