
B
R

IC
S

R
S

-96-34
H

atcliff&
D

anvy:
A

C
om

putationalF
orm

alization
for

P
artialE

valuation

BRICS
Basic Research in Computer Science

A Computational Formalization for
Partial Evaluation
(Extended Version)

John Hatcliff
Olivier Danvy

BRICS Report Series RS-96-34

ISSN 0909-0878 October 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryRS/96/34/

A Computational Formalization

for Partial Evaluation

(extended version) ∗

John Hatcliff Olivier Danvy

BRICS†

Oklahoma State University ‡ University of Aarhus §

Abstract

We formalize a partial evaluator for Eugenio Moggi’s computational
metalanguage. This formalization gives an evaluation-order indepen-
dent view of binding-time analysis and program specialization, includ-
ing a proper treatment of call unfolding, and enables us to express
the essence of “control-based binding-time improvements” for let ex-
pressions. Specifically, we prove that the binding-time improvements
given by “continuation-based specialization” can be expressed in the
metalanguage via monadic laws.

∗A shorter version of this paper (essentially, a version without the proofs of Appendix B)
will appear in a special issue of Mathematical Structures in Computer Science devoted to
the 1995 Workshop on Logic, Domains, and Programming Languages (LDPL’95) at which
this work was presented. The essential results of this work obtained during the fall of
1994 and refined throughout 1995 and 1996 while the first author was at the University
of Copenhagen.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
‡Department of Computer Science
219 Mathematical Sciences, Stillwater, OK 74078-1053, USA.
E-mail: hatcliff@a.cs.okstate.edu
§Department of Computer Science
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: danvy@brics.dk

1

1 Introduction

Partial evaluation is a program-transformation technique for specializing
programs, based on propagating constant values and folding constant expres-
sions [11, 42]. Over the last ten years, it has been organized as a two-phase
process: binding-time analysis and program specialization. Binding-time
analysis classifies which parts of the source program can be computed stat-
ically, i.e., at partial-evaluation time. Program specialization carries out
these static computations and residualizes the other computational steps.
This organization in two phases thus makes it clear that the more parts of a
source program are static, the more this source program is specialized. Over
the last five years, various pre-transformations have been investigated that
“improve binding times” (making binding-time analysis classify more parts
are static) and thus increase specialization.

Our goal is to formalize both the two-phase process of partial evalua-
tion and binding-time improvements, using Moggi’s computational meta-
language.

Moggi’s computational metalanguage distinguishes values (terms with
no remaining computation steps) and computations (terms with remaining
computation steps). This makes it possible to express a variety of evaluation
strategies (including call-by-name and call-by-value). In addition, programs
can be parameterized with various notions of computations, expressed as
computational monads. Monads are often claimed to make reasoning about
programs easier — but very few applications actually exploit the monadic
laws.

In this paper, we illustrate that the computational meta-language can
be a useful framework for partial evaluation. It allows a clear distinction
between static computation steps (to be performed at specialization time)
and dynamic computation steps (to be residualized at specialization time
and performed at run time). Moreover, it allows an evaluation-order inde-
pendent view of binding-time analysis and program specialization.

To this end, we present a PCF-like version of the computational metalan-
guage, and give it a structural operational semantics. We specify binding-
time analysis as a non-standard type inference, and then a specializer using
structural operational semantics. We prove the correctness of the binding-
time analysis and of the specializer.

The computational metalanguage enables us to formalize existing tech-
niques in partial evaluation — namely the linguistic device of let insertion,
and the partial-evaluation techniques of control-based binding-time improve-

2

ment and continuation-based specialization, which we achieve by incorpo-
rating the monadic laws into our binding-time analysis and our specializer.
We prove the equivalence between a continuation-based partial evaluator
and our partial evaluator that applies the monadic laws. This formalizes
binding-time improvements independently of any particular evaluation or-
der.

We believe that the computational metalanguage also enables new in-
sights and techniques, e.g., to process computational effects. Let us first
review each of these points, before outlining the rest of the paper.

1.1 Call unfolding and computation duplication

A partial evaluator unfolds function calls. Call unfolding is thus necessary
but in general it is unsound under call-by value. It is necessary to ex-
pose opportunities for constant propagation and folding. It is unsound un-
der call-by-value because it may alter termination properties and duplicate
computations. Since Similix [7], virtually all call-by-value partial evaluators
insert a let expression for every dynamic (i.e., unknown) parameter, at each
unfolding point. This insertion ensures sound call unfolding: termination
properties are preserved and both code and computation duplications are
avoided.

Moggi’s computational metalanguage specifies the order of computations
through let expressions. By expressing source programs in this metalan-
guage, let expressions appear naturally. By residualizing these let expres-
sions, sound call unfolding is achieved naturally.

For example, the call-by-value program

λz . (λ(x, y) . (x+ 1)− (y + y)) @ (10, z × z)

can be specialized as follows. The inner β-redex can be reduced (noting
application with the infix operator “@”), and the left-most addition can be
computed. The residual program reads:

λz . 11 − ((z × z) + (z × z))

It is unsatisfactory because the computation of z×z has been duplicated.
As mentioned above [7], call-by-value partial evaluators insert residual let
expressions to name dynamic expressions that should not be duplicated.
With such a strategy, the residual program reads:

λz . let a = z × z in 11− (a+ a)

3

This solution of inserting let expressions is effective, but ad hoc, in that
there were no corresponding let expressions in the source program. In con-
trast, let expressions are an integral part of Moggi’s computational meta-
language. Using this metalanguage, the source program can be rewritten as
follows.

λz . let a⇐ z × z
in (λ(x, y) . let v1 ⇐ x+ 1

in let v2 ⇐ y + y

in v1 − v2) @ (10, a)

Specializing this program amounts to β-reducing function applications
(which is always sound because their argument is a value, not a computa-
tion), δ-reducing static operations, and unfolding let expressions that bind
a unit computation.

Presently, the outer let expression is not unfolded because z is dynamic
(its value is unknown) and the function application is β-reduced. This leads
to:

λz . let a⇐ z × z
in let v1 ⇐ 10 + 1

in let v2 ⇐ a+ a

in v1 − v2

The static addition is performed, which leads to:

λz . let a⇐ z × z
in let v1 ⇐ unit 11

in let v2 ⇐ a+ a

in v1 − v2

The let expression declaring v1 is unfolded, and there is no other oppor-
tunity for static reduction. The result essentially coincides with the residual
program above.

1.2 Control-based binding-time improvements

The structure of source programs influences the precision of binding-time
analysis and thus the effectiveness of program specialization. A panoply of
“binding-time improvements” aiming at restructuring source programs has
been developed [42, Chapter 12] but they have not been formalized.

Essentially, a partial evaluator propagates static values into static con-
texts, where this propagation gives rise to a static computation. Binding-
time analysis thus refines the usual notions of data flow and control flow into

4

a static and a dynamic data flow, and a static and a dynamic control flow.
Data-flow and control-flow binding-time improvements respectively amount
to improve the static data flow and the static control flow of a source pro-
gram. The data-flow aspects have been recently clarified [17, 18], but the
control-flow aspects still remain a research topic [6, 8, 10, 39, 45].

The program calculus for Moggi’s computational metalanguage includes
monadic laws. Let us show how a partial evaluator applying monadic laws to
restructure source programs captures the essence of control-based binding-
time improvements.

For example, the program

λf . ((λx . 2) @ (f @ 1)) + 3

can be specialized as follows. The inner β-redex can be reduced but because
its argument is dynamic, a let expression must be inserted. The result reads:

λf . (let x = f @ 1 in 2) + 3

It would be unsound to unfold the let expression and discard f @ 1 from
the residual program because f could have a computational effect (e.g.,
divergence). A partial evaluator needs to perform some contorsions to move
the context of the let expression [·] + 3 in its body, yielding

λf . let x = f @ 1 in 5

Such restructurings are referred to as “control-based binding-time im-
provements” since they alter the control flow of the program so as to im-
prove binding times. They are usually achieved by maintaining an explicit
representation of control, using continuations. Specializers incorporating
these techniques are known as “continuation-based specializers” [6, 42, 45].
Essentially they mimic one-pass CPS transformations [15].

We formalize this technique with the associativity of let expressions in
Moggi’s computational metalanguage. Encoding the term above in the met-
alanguage yields:

λf . let v1 ⇐ let v2 ⇐ f @ 1
in (λx . unit 2) @ v2

in v1 + 3

Static reduction of the β-redex yields:

λf . let v1 ⇐ let v2 ⇐ f @ 1
in unit 2

in v1 + 3

5

Reassociating the let expression yields:

λf . let v2 ⇐ f @ 1
in let v1 ⇐ unit 2

in v1 + 3

Unfolding the inner let and statically reducing the addition yields:

λf . let v2 ⇐ f @ 1
in unit 5

The result essentially coincides with the residual program above.

1.3 Computational effects

Since Similix [7], partial evaluators classify computational effects (I/O, state,
etc.) as dynamic computations. The specializer’s only duty is to maintain
their order and to ensure that none disappears or is duplicated.

The computational metalanguage’s raison d’être is to provide a modular
specification of computational effects. Using this medium, we originally
planned to provide a sound treatment of side-effects that would be more
effective than systematic residualization. We envisioned for example to split
the store in regions: some side-effecting operations could then be classified
as static and performed statically (e.g., a symbol table in an interpreter
could be processed statically in a compiler) while others would be classified
as dynamic and delayed until runtime (e.g., an error message associated with
division by 0). This line of work is currently being pursued independently
by Dussart and Thiemann [22].

1.4 This paper

The rest of this paper is organized as follows. Section 2 presents a PCF-like
version of the computational metalanguage, Λml. We give it a structural
operational semantics. Section 3 presents an offline partial evaluator for
Λml. Section 4 addresses call unfolding. In Section 5, we return to the
monadic laws and incorporate them into the specializer — adjusting the
binding-time analysis accordingly. In Section 6, we prove the equivalence
between a continuation-based partial evaluator and our partial evaluator
that applies the monadic laws. After a review of related work in Section 7,
Section 8 concludes.

Appendix A gives the details for translating call-by-name and call-by-
value PCF into Λml. Appendix B gives proof details.

6

e ∈ Terms[Λml]

e ::= x | pnq | succ e | pred e | if0 e1 e2 e3 | λx . e | e0 @ e1 |
fixx. e | unit e | let x⇐ e1 in e2

τ ∈ Types[Λml]
τ ::= nat | τ1→ τ̃2 | τ̃

Γ ∈ Assumptions[Λml]
Γ ::= · | Γ, x :τ

Γ `ml pnq : nat
Γ `ml e : nat

Γ `ml succ e : ñat

Γ `ml e : nat

Γ `ml pred e : ñat

Γ `ml x : Γ(x)
Γ `ml e1 : nat Γ `ml e2 : τ̃ Γ `ml e3 : τ̃

Γ `ml if0 e1 e2 e3 : τ̃

Γ, x :τ1 `ml e : τ̃2

Γ `ml λx . e : τ1→ τ̃2

Γ `ml e0 : τ1→ τ̃2 Γ `ml e1 : τ1

Γ `ml e0 @ e1 : τ̃2

Γ, x : τ̃ `ml e : τ̃

Γ `ml fixx. e : τ̃

monadic
constructs:

Γ `ml e : τ

Γ `ml unit e : τ̃

Γ `ml e1 : τ̃1 Γ, x :τ1 `ml e2 : τ̃2

Γ `ml let x⇐ e1 in e2 : τ̃2

Figure 1: The computational meta-language Λml

2 The computational meta-language

2.1 Syntax

Figure 1 presents the language Λml based on Moggi’s computational meta-
language [48].1 The typing system of Λml captures the distinction be-

1We have added fix, succ, pred, and if0 to Moggi’s published description [48].

7

tween values (terms with no remaining computation steps) and computa-
tions (terms with remaining computation steps). Types of the form nat and
τ1→τ2 are value types. Accordingly, the rules for numerals and abstractions
belong to the introduction rules for value types. Types of the form τ̃ are
computation types. All functions have computational co-domains. Thus, all
applications have a computation type — capturing the fact that evaluating
a function application always requires one or more computational steps.

The monadic constructs are used to make the computational process
explicit.2 Intuitively, unit e is a trivial computation that simply yields the
value of e. let x ⇐ e1 in e2 forces the evaluation of e1. If that evaluation
terminates, the resulting value is substituted for x in e2, and evaluation
continues with the modified version of e2.

We identify terms up to renaming of bound variables (i.e., up to α-
equivalence) and use standard notation and conventions for substitution,
free variables, contexts, etc. [2]. We write e1 ≡ e2 when e1 and e2 are
α-equivalent.

We represent simultaneous substitutions e[x1 := e1 , ... , xn := en] using
a substitution function σ : Terms[Λml]→Terms[Λml] whose application is
denoted eσ. A substitution σ is closed if, for all x ∈ dom σ, xσ is a closed
term.

We write Γ `ml e1 , e2 : τ when both Γ `ml e1 : τ and Γ `ml e2 : τ .
A closed substitution σ is compatible with an assumption Γ, if for all x ∈
dom Γ, · `ml xσ : Γ(x). Programs are closed terms with type ñat.

2.2 Operational semantics

Figure 2 presents single-step evaluation rules for Λml.
3 Axioms such as

succ pnq 7−→i unit pn+ 1q define basic computation steps. The single infer-
ence rule describes contexts in which evaluation steps may occur.

The following lemma gives evaluation properties for closed terms at each
type τ . The intuition is that each well-typed term (a) is a canonical term of

2The exact connection to the structure of a monad can be found in Moggi’s original
work [48, page 61].

3Moggi originally gave a categorical interpretation for his computational meta-language
[48]. Crole and Pitts extended Moggi’s work with a fix-point operator and an associated
logic [13]. Later, Gordon developed an elegant operational theory for the meta-language
with a fixpoint operator and inductive and coinductive types [31]. Λml is basically a sub-
language of Gordon’s — except that we include directly type nat and associated operations
whereas Gordon constructs them via inductive types. Here, we follow Gordon and our
previous work [34, 36] and present a structural operational semantics for Λml.

8

succ pnq 7−→i unit pn+ 1q
(λx . e0) @ e1 7−→i e0[x := e1]

fixx. e 7−→i e[x := fixx. e]

let x⇐ unit e1 in e2 7−→i e2[x := e1]

pred pn+ 1q 7−→i unit pnq
pred p0q 7−→i unit p0q

if0 p0q e2 e3 7−→i e2

if0 pn+ 1q e2 e3 7−→i e3

e 7−→i e
′

Ei[e] 7−→i Ei[e
′]

Ei ::= let x⇐ [·] in e2

Figure 2: Interpretation steps for Λml

the corresponding type, or (b) can undergo an evaluation step that preserves
typing. In particular, there are no “stuck” [56, p. 151] terms.4

Lemma 1 (interpretation properties)

1. If · `ml e : nat then e ≡ pnq for some number n.

2. If · `ml e : τ1→ τ̃2 then e ≡ λx . e′ and x :τ1 `ml e′ : τ̃2.

3. If · `ml e : τ̃ then exactly one of the following statements holds:

(a) e = unit e′ and · `ml e′ : τ .

(b) e 7−→i e
′ and · `ml e′ : τ̃ .

Proof: by induction over the height of the derivation of · `ml e : τ relying
on the property that if Γ, x :τ1 `ml e0 : τ0 and Γ `ml e1 : τ1 then Γ `ml
e0[x := e1] : τ0. See the proof of Lemma 2 (which generalizes the current
lemma) given in Appendix B.

It is easy to check that e 7−→i e
′ and e 7−→i e

′′ implies e′ ≡ e′′. This
justifies the definition of the following (partial) function in terms of the
reflexive transitive closure of 7−→i.

4For example, the untypable term p3q@p2q is stuck: it cannot undergo an evaluation
step and it is not a proper canonical term for any type.

9

Definition 1 (interpreter)
For · `ml e : ñat,

int e = pnq iff e 7−→∗i unit pnq

We write int e↓ when int e is defined and int e↑ when int e is undefined.
As a consequence of Lemma 1, int e↑ implies that e heads an infinite sequence
of computation steps.

Observing termination of terms in program contexts gives the following
notion of operational approximation, which in turn, induces a notion of
operational equivalence.5

Definition 2 (operational approximation)
For Γ `ml e1 , e2 : τ , and for all contexts C such that C [e1] and C [e2] are
programs,

e1 � e2 iff int C [e1]↓ implies int C [e2]↓

Definition 3 (operational equivalence)
For Γ `ml e1 , e2 : τ ,

e1 ≈ e2 iff e1 � e2 and e2 � e1

Note that if · `ml e1 , e2 : ñat and e1 ≈ e2, then int e1 and int e2 are
both undefined, or else both are defined and there exists a number n such
that int e1 ≡ pnq ≡ int e2.

2.3 Equational reasoning

Figure 3 presents notions of reduction for the computational meta-language
Λml. −→ also denotes construct-compatible one-step reduction, −→−→ de-
notes the reflexive, transitive closure of −→, and =ml denotes the smallest
equivalence relation generated by −→ [2].

Theorem 1 (soundness of calculus) For Γ `ml e1 , e2 : τ ,

e1 =ml e2 ⇒ e1 ≈ e2

Proof: The proof follows by a straightforward adaptation of Gordon’s op-
erational theory [31, Chapters 3,4,5].

5It is sufficient to observe termination since one can always distinguish between nu-
merals using conditional expressions.

10

succ pnq −→ unit pn+ 1q
(λx . e0) @ e1 −→ e0[x := e1]

fixx. e −→ e[x := fixx. e]

pred pn+ 1q −→ unit pnq
pred p0q −→ unit p0q

if0 p0q e2 e3 −→ e2

if0 pn+ 1q e2 e3 −→ e3

Monadic reductions:

(let.β) let x⇐ unit e1 in e2 −→ e2[x := e1]

(let.η) let x⇐ e in unit x −→ e

(let.assoc) let x2 ⇐ let x1 ⇐ e1

in e2

in e3

−→ let x1 ⇐ e1

in let x2 ⇐ e2

in e3

x1 6∈ FV(e3)

Figure 3: Notions of reduction ml for Λml

2.4 Encoding evaluation strategies in Λml

A variety of evaluation strategies for a PCF-like language Λ can be encoded
in Λml due to Λml’s explicit distinction between values and computations.
In previous work [34, 36], we proved the correctness of an encoding En of a
call-by-name version of Λ into Λml, and an encoding Ev of a call-by-value
version of Λ into Λml. These encodings can be found in Appendix A.2.6

In summary, call-by-name Λ functions are encoded as functions from
computations to computations; call-by-value Λ functions are encoded as
functions from values to computations.7 Applications are translated as fol-
lows:

Call-by-name: En〈[e0 @ e1]〉 = let x0 ⇐ En〈[e0]〉 in x0 @ En〈[e1]〉
Call-by-value: Ev〈[e0 @ e1]〉 = let x0 ⇐ Ev〈[e0]〉 in let x1 ⇐ Ev〈[e1]〉 in x0 @x1

6These encodings are based on similar encodings given by e.g., Moggi [48] and Wadler
[67].

7Alternative call-by-value encodings exist that are similar to the encoding of call-by-
value procedures in the call-by-name programming language Algol 60 [36, Section 4].

11

Thus, evaluation of argument expressions in not forced in the call-by-name
encoding, but is forced in the call-by-value encoding.

In general (i.e., in all encodings), a let is inserted around each compu-
tation step — making the computational structure of a program explicit.
This property is crucial to the evaluation-order independent treatment of
binding-time analysis and program specialization presented in the following
section.

3 An offline partial evaluator for Λml

A partial evaluator takes a source program p and a subset s of p’s input,
and produces a residual program ps which is specialized with respect to
s. The correctness of the partial evaluator implies that running ps on p’s
remaining input d gives the same result as running p on the complete input
s and d. The data s and d are often referred to as static and dynamic data
(respectively) since s is fixed at specialization time whereas one may supply
various data d during runs of ps.

The specialized program ps is obtained from p by evaluating constructs
that depend only on s, while rebuilding constructs that may depend on
dynamic data. “Offline” partial evaluation accomplishes this in two phases:
(1) a binding-time analysis phase, and (2) a specialization phase.

1. Binding-time analysis: Given assumptions about which program
inputs are static and dynamic, binding-time analysis constructs an
annotated program where each program construct is annotated with
a specialization directive and a specialization type.

• Specialization directives: A construct is assigned a directive of
eliminable if it depends only on static data and thus can be com-
pletely evaluated during the specialization phase. A construct is
assigned a directive of residual if it may depend on dynamic data
and thus must be reconstructed in the specialization phase.

• Specialization types: The specialization types (a.k.a. binding
times) are the carriers of information during the analysis phase.
They describe the “knownness” or the “unknownness” of expres-
sions. This information is used to determine the specialization
directives assigned to constructs. For example, if the argument
of a destructor construct has a specialization type indicating that

12

w ∈ Terms[Λbtml]

w ::= x |
pnq | succ w | pred w | if0w1 w2 w3 | λx .w | w0 @w1 |
fixx.w | unit w | let x⇐ w1 inw2 |
n | succ w | pred w | if0w1 w2 w3 | λx .w | w0 @w1 |
fixx.w | unit w | let x⇐ w1 inw2 | liftw

Figure 4: The binding-time annotated meta-language Λbtml

it is unknown, then that construct cannot be evaluated at spe-
cialization time and must be given a residual directive.

2. Specialization: During the specialization phase, the specializer sim-
ply follows the directives assigned during binding-time analysis: elim-
inable constructs are evaluated (and thus eliminated); residual con-
structs are reconstructed (and thus appear in the residual program).8

3.1 Binding-time analysis

We first outline how binding-time information is expressed in a program
annotated with specialization directives and types. Following this, we give
a binding-time logic that determines which annotations are appropriate for
a given source language term.

3.1.1 Specialization directives

A binding-time analysis for Λml associates each Λml term with a term in the
annotated language Λbtml of Figure 4. Eliminable terms are non-underlined;
residual terms are underlined. Identifiers are not annotated since the ap-
propriate information can be determined from the environment. A coercion
construct lift is added to Λbtml to residualize the result of evaluating an elim-

8Following other formal treatments of partial evaluation [42, 54, 68], we simplify the
presentation by omitting folding and generalization strategies.

13

ϕnat ∈ STypes[nat]
ϕnat ::= s | d

ϕτ1→τ̃2 ∈ STypes[τ1→ τ̃2]

ϕτ1→τ̃2 ::= ϕτ1→ϕτ̃2 | d

ϕτ̃ ∈ STypes[τ̃]
ϕτ̃ ::= ϕ̃τ | d

τ ∈ Types[Λbtml]

τ ::= nat | τ1→ τ̃2 | τ̃
Γ ∈ Assumptions[Λbtml]

Γ ::= · | Γ, x :τ [ϕτ]

Figure 5: Specialization types and binding-time assumptions for Λbtml

inable term. This allows static computation to occur in a residual context.9

A term w ∈ Λbtml is completely residual if it consists of only underlined con-
structs and identifiers. Residual-terms[Λbtml] denotes the set of completely
residual terms. Intuitively, the specializer will output completely residual
terms — all eliminable constructs will have been evaluated (this will be
proved in Section 3.2).

3.1.2 Specialization types

Figure 5 presents a τ -indexed family of specialization types (STypes) for Λbtml
(we omit type indices on specialization types when they can be inferred from
the context). A specialization type ϕ is dynamic if ϕ = d; otherwise ϕ is
static.

• s ∈ STypes[nat] will tag expressions of type nat that are guaranteed to
evaluate to known data (i.e., numerals).

• d ∈ STypes[nat] will tag expressions of type nat whose evaluation may
depend on unknown data and thus cannot be guaranteed to evaluate

9We restrict lifting to base types for simplicity, as we wish to formalize control-flow
binding-time improvements. Defining lift at higher types would enable data-flow binding-
time improvements, as investigated elsewhere [17, 18]. This definition is also interesting
on its own [14].

14

to numerals. However, because nat is a value type, one does know
that the tagged expression will denote a value when dynamic data is
supplied.

• ϕτ1→ϕτ̃2 ∈ STypes[τ1→ τ̃2] will tag expressions of type τ1→ τ̃2 that
are guaranteed to evaluate to known data (i.e., abstractions).

• d ∈ STypes[τ1→ τ̃2] will tag expressions of type τ1→ τ̃2 whose evalua-
tion may depend on unknown data and thus cannot be guaranteed to
evaluate to an abstraction. However, because τ1→ τ̃2 is a value type,
one does know that the tagged expression will denote a value when
dynamic data is supplied.

• ϕ̃ ∈ STypes[τ̃] will tag expressions of type τ̃ that are guaranteed to
either diverge or to evaluate to a trivial computation (i.e., unit e for
some e ∈ Λml of type τ).

• d ∈ STypes[τ̃] will tag expressions of type τ̃ whose evaluation may
depend on unknown data and thus cannot be guaranteed to diverge
or evaluate to a trivial computation.

Figure 5 also presents type assumptions for Λbtml variables. If Γ, x :τ [d]
then x is a dynamic variable; if Γ, x :τ [ϕ] where ϕ is static then x is a static
variable. Γ(x).type and Γ(x).spec-type project types and specialization types
from an assumption for x ∈ dom Γ.

3.1.3 Binding-time analysis specification

Figures 6 and 7 present rules for deriving judgments of the form

Γ `bt e : τ [w : ϕτ].

Derivable judgements specify constraints that an actual binding-time analy-
sis algorithm must satisfy. Intuitively, if Γ `bt e : τ [w : ϕτ], then given initial
binding-time assumptions Γ that indicate which free variables are static or
dynamic, a binding-time analysis algorithm maps e ∈ Terms[Λml] of type
τ ∈ Types[Λml] to a directive annotated term w ∈ Terms[Λbtml] of special-
ization type ϕτ ∈ STypes[τ]. Specifying the analysis in this way allows one
to reason about correctness of the analysis independently of the actual al-
gorithm — proving correctness with respect to the constraints implies that
any algorithm satisfying the constraints will be correct.

15

Γ `bt x : Γ(x).type[x : Γ(x).spec-type]

Γ `bt pnq : nat[pnq : s] Γ `bt pnq : nat[pnq : d]

Γ `bt e : nat[w : s]

Γ `bt succ e : ñat [succ w : s̃]

Γ `bt e : nat[w : d]

Γ `bt succ e : ñat [succ w : d]

Γ `bt e : nat[w : s]

Γ `bt pred e : ñat [pred w : s̃]

Γ `bt e : nat[w : d]

Γ `bt pred e : ñat [pred w : d]

Γ `bt e1 : nat[w1 : s] Γ `bt e2 : τ̃ [w2 : ϕ] Γ `bt e3 : τ̃ [w3 : ϕ]

Γ `bt if0 e1 e2 e3 : τ̃ [if0 w1 w2 w3 : ϕ]

Γ `bt e1 : nat[w1 : d] Γ `bt e2 : τ̃ [w2 : d] Γ `bt e3 : τ̃ [w3 : d]

Γ `bt if0 e1 e2 e3 : τ̃ [if0 w1 w2 w3 : d]

Γ, x :τ1[ϕ1] `bt e : τ̃2[w : ϕ2]

Γ `bt λx . e : τ1→ τ̃2[λx .w : ϕ1→ϕ2]

Γ, x :τ1[d] `bt e : τ̃2[w : d]

Γ `bt λx . e : τ1→ τ̃2[λx .w : d]

Γ `bt e0 : τ1→ τ̃2[w0 : ϕ1→ϕ2] Γ `bt e1 : τ1[w1 : ϕ1]

Γ `bt e0 @ e1 : τ̃2[w0 @w1 : ϕ2]

Γ `bt e0 : τ1→ τ̃2[w0 : d] Γ `bt e1 : τ1[w1 : d]

Γ `bt e0 @ e1 : τ̃2[w0 @w1 : d]

Figure 6: Binding-time constraints (part 1)

16

Γ, x : τ̃ [ϕ̃] `bt e : τ̃ [w : ϕ̃]

Γ `bt fixx. e : τ̃ [fixx.w : ϕ̃]

Γ, x : τ̃ [d] `bt e : τ̃ [w : d]

Γ `bt fixx. e : τ̃ [fixx.w : d]

Γ `bt e : τ [w : ϕ]

Γ `bt unit e : τ̃ [unit w : ϕ̃]

Γ `bt e : τ [w : d]

Γ `bt unit e : τ̃ [unit w : d]

Γ `bt e1 : τ̃1[w1 : ϕ̃1] Γ, x :τ1[ϕ1] `bt e2 : τ̃2[w2 : ϕ2]

Γ `bt let x⇐ e1 in e2 : τ̃2[let x⇐ w1 in w2 : ϕ2]

Γ `bt e1 : τ̃1[w1 : d] Γ, x :τ1[d] `bt e2 : τ̃2[w2 : d]

Γ `bt let x⇐ e1 in e2 : τ̃2[let x⇐ w1 in w2 : d]
(∗)

Γ `bt e : nat[w : s]

Γ `bt e : nat[liftw : d]

Figure 7: Binding-time constraints (part 2)

b·c : Terms[Λbtml]→Terms[Λml] is an erasing function that removes an-
notations and lift constructs. b·c : Assumptions[Λbtml]→Assumptions[Λml]
simply drops specialization types appearing in assumptions. bσc represents
the component-wise application of b·c : Terms[Λbtml]→Terms[Λml].

Given an assumption Γ ∈ Assumptions[Λbtml], a closed Λbtml substitution
σ is compatible with Γ if

for all x ∈ dom Γ, · `ml bxσc : Γ(x).type[xσ : Γ(x).spec-type].

For expressions e ∈ Terms[Λml], Γbt is a binding-time assumption for Γ `ml
e : τ , if bΓbtc = Γ. Γbt = Γs ∪ Γd represents the splitting of a binding-time
assumption Γbt into its (necessarily disjoint) static and dynamic variable
assumptions.

Definition 4 (binding-time analysis)
A binding-time analysis is a function

bta : Assumptions[Λbtml]→Terms[Λml]→Terms[Λbtml]

17

such that when Γbt is a binding-time assumption for Γ `ml e : ñat,

Γbt `bt e : ñat[(bta Γbt e) : d].

The binding-time analysis rules specify a one-to-many relation between
Λml terms and Λbtml terms. Thus, there are many valid binding-time analysis
functions — each varying in practical effectiveness. One usually desires an
analysis that gives as many eliminable terms as possible. However, it may be
useful to deliberately annotate some eliminable terms as residual to ensure
that specialization terminates [42]. Our specification abstracts away from
these orthogonal implementation issues.

Conversely, an induction over the derivation of Γ `ml e : τ [w : ϕ] shows
that e ≡ bwc. Thus, every well-annotated Λbtml term has exactly one Λml
term related to it — the Λml term is the erasure of the Λbtml term.

3.2 Specialization

To specialize a binding-time analyzed program term w such that

Γbt = Γs ∪ Γd `bt e : ñat[w : d]

one supplies known data into the static variables via a substitution σs com-
patible with Γs. The resulting term wσs is then specialized using the rules
of Figure 8 (which define the single-step specialization function 7−→s).

• The interpretation rules allow interpreter steps to reduce eliminable
(i.e., non-underlined) terms. This corresponds to the idea that partial
evaluators are often described as having an interpreter component.

• The axiom lift coerces a static numeral to a dynamic numeral. This
allows static values of type nat to occur in dynamic contexts.

• The compilation rules direct the activities of the specializer in dynamic
contexts Es. This corresponds to the fact that the non-interpretive
component of the specializer simply constructs terms that appear in
the residual program. In contexts Es, r ranges over completely resid-
ual terms (i.e., terms containing only underlined constructs and free
dynamic variables).

The following lemma gives specialization properties for the Λbtml terms
satisfying judgements of the form Γd `bt e : τ [w : ϕτ]. The intuition is that

18

Interpretation rules:

succ pnq 7−→i unit pn+ 1q
(λx .w0) @w1 7−→i w0[x := w1]

fixx.w 7−→i w[x := fixx.w]

let x⇐ unit w1 in w2 7−→i w2[x := w1]

pred pn+ 1q 7−→i unit pnq
pred p0q 7−→i unit p0q

if0 p0q w2 w3 7−→i w2

if0 pn+ 1q w2 w3 7−→i w3

w 7−→i w
′

Ei[w] 7−→i Ei[w
′]

Ei ::= let x⇐ [·] in w2

w 7−→i w
′

w 7−→s w
′

Compilation rules:

lift pnq 7−→s pnq
w 7−→s w

′

Es[w] 7−→s Es[w
′]

Es ::= pred [·] | succ [·] | if0 [·] w2 w3 | if0 r1 [·] w3 | if0 r1 r2 [·] |
λx . [·] | [·] @w1 | r0 @ [·] | fixx. [·] |
unit [·] | let x⇐ [·] in w2 |
let x⇐ r1 in [·] ...where ri ∈ Residual-terms[Λbtml]

Figure 8: Specialization rules for Λbtml

each well-annotated term w (a) is a canonical annotated term of the appro-
priate type, or (b) is completely residual, or (c) can undergo a specializa-
tion step which preserves annotations. Moreover, each specialization step
w 7−→s w

′ maintains Λml convertibility on the corresponding erasures (i.e.,
bwc =ml bw′c).

Lemma 2 (specialization properties)

1. If Γd `bt e : nat[w : s] then w ≡ pnq ≡ e for some number n.

2. If Γd `bt e : τ1→τ2[w : ϕ1→ϕ2] then w ≡ λx .w′, e ≡ λx . bw′c and

19

Γd, x :τ1[ϕ1] `bt bw′c : τ2[w′ : ϕ2] for some w′ ∈ Terms[Λbtml].

3. If Γd `bt e : τ̃ [w : ϕ̃] then exactly one of the following statements holds:

(a) w ≡ unit w′, e ≡ unit bw′c and Γd `bt bw′c : τ [w′ : ϕ] for some
w′ ∈ Terms[Λbtml], or

(b) w 7−→i w
′ and Γd `bt bw′c : τ̃ [w′ : ϕ̃] and e ≡ bwc −→−→ml bw′c.

4. If Γd `bt e : nat[w : d] then exactly one of the following statements
holds:

(a) w ∈ Residual-terms[Λbtml], or

(b) w 7−→s w
′, Γd `bt bw′c : τ [w′ : d], and e ≡ bwc ≡ bw′c ≡ pnq

for some number n.

5. If Γd `bt e : τ1→τ2[w : d] then exactly one of the following statements
holds:

(a) w ∈ Residual-terms[Λbtml], or

(b) w 7−→s w
′ and Γd `bt bw′c : τ [w′ : d] and e ≡ bwc −→−→ml bw′c.

6. If Γd `bt e : τ̃ [w : d] then exactly one of the following statements holds:

(a) w ∈ Residual-terms[Λbtml], or

(b) w 7−→s w
′ and Γd `bt bw′c : τ̃ [w′ : d] and e ≡ bwc −→−→ml bw′c.

Proof: by induction over the height of the derivation of Γd `bt e : τ [w : ϕ]
relying on the property that if we have both Γ, x :τ1[ϕ1] `bt e0 : τ0[w0 : ϕ0]
and Γ `bt e1 : τ1[w1 : ϕ1], then Γ `bt e0[x := e1] : τ0[w0[x := w1] : ϕ0]. See
Appendix B for details.

It is easy to check that if w 7−→s w′ and w 7−→s w′′ then w′ ≡ w′′.
Furthermore, by Lemma 2, well-annotated terms r ∈ Residual-terms[Λbtml]
cannot undergo further specialization steps. This justifies the definition of
the following (partial) function in terms of the reflexive, transitive closure
of 7−→s.

Definition 5 (specializer)
For Γd `bt e : ñat[w : d],

spec w = r iff w 7−→∗s r

where r ∈ Residual-terms[Λbtml].

20

3.3 Correctness of binding-time analysis and specialization

A binding-time analysis is correct if it always produces sound directives.
Directives are unsound if they direct the specializer to attempt the reduction
of a non-redex. The last component of Lemma 2 implies that any binding-
time analysis satisfying our constraints is correct: when an annotated term
(with only dynamic free variables) is specialized, the specializer always finds
a redex to contract, or terminates because only residual components are left.
In other words, the specializer never “sticks” on a non-redex.

Theorem 2 (correctness of binding-time analysis)
For all Γd `bt e : ñat[w : d], exactly one of the following statements holds:

1. spec w = r where r ∈ Residual-terms[Λbtml], or

2. spec w↑ and w heads an infinite sequence of specialization steps.

Proof: follows from the definition of spec (Definition 5) and Lemma 2. See
Appendix B for details.

This statement of binding-time correctness is analogous to statements of
binding-time correctness for the λ-calculus [42, 54, 68].

A specializer is sound if its steps reflect a meaning-preserving transfor-
mation of the source program.

Theorem 3 (soundness of specialization)
For all Γd `bt e : ñat[w : d],

spec w↓ implies e ≈ bspec wc

Proof: Given the definition of spec (Definition 5) and Lemma 2, one has
e =ml bspec wc by induction over the number of specialization steps. The
soundness of the Λml calculus (Theorem 1) then gives the desired result.

3.4 Partial evaluation

An offline partial evaluator for Λml is obtained by composing binding-time
analysis with specialization. When supplied with a source expression e,
a binding-time assumption Γbt, and a collection of “known” data σs, the
partial evaluator specializes the program to the known data as directed by
the binding-time analysis.

21

Definition 6 (partial evaluator)
Let bta be a correct binding-time analysis, Γbt = Γs ∪ Γd be a binding-time
assumption for Γ `ml e : ñat, and σs be a closed substitution compatible with
Γs, then

pe e Γbt σs
def
= bspec (bta Γbt e)σsc

The correctness theorem for the partial evaluator is analogous to Kleene’s
Smn -theorem: partial evaluation computes a program specialized to known
input data (σs) such that running the specialized program on the remaining
input data (σd) yields a result observationally equivalent to the result of
running the source program on the complete input data.

Theorem 4 (correctness of partial evaluation)
Let Γbt = Γs ∪ Γd be a binding-time assumption for Γ `ml e : ñat, let σs be
a closed substitution compatible with Γs, and let σd be a closed substitution
compatible with bΓdc. If (pe e Γbt σs)↓, then

ebσscσd ≈ (pe e Γbt σs)σd

Proof: follows from Theorem 3 and the definition of specialization (Defi-
nition 5) and partial evaluation (Definition 6). See Appendix B for details.

4 Call unfolding

At the core of a partial evaluator lies call unfolding. This basic transforma-
tion enables static information to be propagated across procedure bound-
aries. Call unfolding is implemented using the copy rule. Thus it is only
sound in a call-by-name setting such as Launchbury’s [44]. In a call-by-value
setting, call unfolding is unsound (i.e., it does not preserve observational
equivalence).

For example, consider the following Λ-term (under call-by-value), occur-
ring in a static context where e1 is dynamic.

pred ((λx . p43q) @ e1)

Unfolding the inner call is unsound in general because e1 may diverge. Yet
a partial evaluator such as Lambda-Mix would unfold it [29, 30].

22

Through a systematic insertion of let-expressions, partial evaluators such
as Similix or Schism ensure sound call unfolding [7, 9]. They would unfold
the term above into the following term

pred (let x = e1 in 43)

and would residualize the let expression to preserve the termination prop-
erties of the source term. Now a partial evaluator only needs to move the
context pred [·] inside the let expression to enable a static reduction that
yields the expected answer. This may require a binding-time improvement,
as investigated in Section 5. The 7−→x steps below represent how the above
expression would be treated e.g., in Similix.

pred (let y = e1 in (λx . 43) @ y)
7−→x pred (let y = e1 in 43) ...unfold call
7−→x let y = e1 in pred 43 ...binding-time improvement
7−→x let y = e1 in 42 ...static computation

In Λml, evaluation steps only occur in let contexts and thus their result
is named. Encodings of Λ into Λml (such as those in Appendix A.2) insert
let constructs at all evaluation contexts (rather than in an ad hoc man-
ner as above). Because of the more natural placement of let expressions,
the binding-time improvement step in the evaluation above is avoided —
specialization steps are simply reductions in the Λml calculus.

For example, the call-by-value encoding of Appendix A.2 yields the fol-
lowing term (after performing some initial let.β reductions).

e ≡ let y1 ⇐ Ev〈[e1]〉
in let y2 ⇐ (λx . unit p43q) @ y1

in pred y2

Assuming that e occurs in a static context and that Ev〈[e1]〉 is dynamic,
binding-time analysis would associate e with the following annotated term
(where w1 is the annotation of Ev〈[e1]〉).

w ≡ let y1 ⇐ w1

in let y2 ⇐ (λx . unit p43q) @ y1

in pred y2

23

Specialization reduces the inner let expression and yield the expected answer.

w

7−→s let y1 ⇐ Ev〈[e]〉 in let y2 ⇐ unit p43q in pred y2

7−→s let y1 ⇐ Ev〈[e]〉 in pred 43
7−→s let y1 ⇐ Ev〈[e]〉 in unit 42

Finally, another advantage of phrasing partial evaluation in terms of
Λml is that concepts of proper let-insertion and binding-time improvements
(as discussed in the following section) can be presented independently of
evaluation order. For example, our formalization of these concepts still
remains valid if one considers e.g., a mixed evaluation strategy [16].

5 Control-based binding-time improvements

The partial evaluator defined in Section 3 is sensitive to the structure of
source programs. Consider the two following Λml-convertible expressions.

e1 ≡ let v1 ⇐ (let v2 ⇐ x2 in succ x1) in e ...where v2 6∈ FV(e)
e2 ≡ let v2 ⇐ x2 in let v1 ⇐ succ x1 in e

Assume Γ, x1 :nat, x2 : ñat `ml e1, e2 : τ̃ , and let Γbt = Γ′bt, x1 :nat[s], x2 : ñat[d]
be binding-time assumptions for e1 and e2 (i.e., x1 is a static variable, x2 is
a dynamic variable).

Given the binding-time rules of Figures 6 and 7, e1 must map to the
following expression w1 for some w (i.e., Γ `bt e1 : τ̃ [w1 : d] is derivable).

w1 ≡ let v1 ⇐ (let v2 ⇐ x2 in succ lift x1) in w

On the other hand, e2 may map to the following expression w2 for some w′

(i.e., Γ `bt e2 : τ̃ [w2 : d] is derivable).

w2 ≡ let v2 ⇐ x2 in let v1 ⇐ succ x1 in w′

In w1, the let associated with v1 is forced to be residual. In w2, it can be
eliminable — which may enable further static computations, particularly
within a loop.

This example captures in a nutshell the need for binding-time improve-
ments: meaning-preserving transformations over source programs that en-
able more source expressions to be classified as static (and thus to be com-
puted away statically, which yields more efficient specialized programs). In
this example, e1 can be “binding-time improved” by transforming it to e2

using the let.assoc reduction of Λml calculus (see Figure 3).

24

5.1 Flattening before binding-time analysis

The example above illustrates that the let.assoc reduction gives a useful
binding-time improvement. This (along with the fact that let.assoc is conflu-
ent and strongly normalizing [34]) suggests a general strategy for improving
binding times: before analyzing the binding times of a program, map this
program to its let.assoc normal form.

The following example, however, illustrates that this strategy does not
discover all binding-time improvements associated with the let.assoc reduc-
tion. During specialization, unfolding a call may expose flattening opportu-
nities that are not apparent in the source program.

For example, assume that the following variant of e1 above is in let.assoc
normal form.

e3 ≡ let v1 ⇐ ((λz . let v2 ⇐ x2 in succ x1) @ p0q) in e
...where v2 6∈ FV(e)

Using the same binding-time assumptions Γbt as above, e3 maps to w3 below
for some w′′ (i.e., the let associated with v2 is forced to be residual).

w3 ≡ let v1 ⇐ ((λz . let v2 ⇐ x2 in succ lift x1) @ p0q) in w′′

Specialization (after supply static data p42q for x1 includes the following
step.

let v1 ⇐ ((λz . let v2 ⇐ x2 in succ lift p42q) @ p0q) in w′′

7−→s let v1 ⇐ (let v2 ⇐ x2 in succ lift p42q) in w′′

Note that this last term has the same problematic form as w1 above.

5.2 Flattening during specialization

The solution is to incorporate the flattening rule let.assoc of Figure 3 as a
specialization step. One might be tempted to simply redefine specialization
so that the specialization of w3 above proceeds as follows (i.e., a flattening
step is taken whenever possible).

let v1 ⇐ ((λz . let v2 ⇐ x2 in succ lift p42q) @ p0q) in w′′

7−→s let v1 ⇐ (let v2 ⇐ x2 in succ lift p42q) in w′′

7−→f let v2 ⇐ x2 in let v1 ⇐ succ lift p42q in w′′

At this point, however, we are no better off than we were before since the
specialization directives indicate that the let associated with v1 must be
residualized.

25

Γ `+
bt e1 : τ̃1[w1 : d] Γ, x :τ1[d] `+

bt e2 : τ̃2[w2 : ϕ]

Γ `+
bt let x⇐ e1 in e2 : τ̃2[let x⇐ w1 in w2 : ϕ]

(∗∗)

Figure 9: Modified binding-time constraints for Λbtml

Since it is the task of binding-time analysis to direct the specializer, the
binding-time analysis also must reflect the possible use of the let.assoc rule.
In the (∗) rule of Figure 7, the body of the let is forced to have a spe-
cialization type (i.e., binding-time) of d since it cannot be consumed during
specialization. However, after adding the flatten rule as a specialization step,
a static expression in the body of a let can be consumed. Allowing the body
of the let to have a static binding-time leads to the following annotation of
e3 above.

w4 ≡ let v1 ⇐ ((λz . let v2 ⇐ x2 in succ x1) @ p0q) inw′′′

A specializer which incorporates the flattening rule now gives the desired
behaviour.

let v1 ⇐ ((λz . let v2 ⇐ x2 in succ x1) @ p0q) in w′′′

7−→s let v1 ⇐ (let v2 ⇐ x2 in succ p42q) in w′′′

7−→f let v2 ⇐ x2 in let v1 ⇐ succ p42q in w′′′

7−→s let v2 ⇐ x2 in let v1 ⇐ unit p43q in w′′′

7−→s let v2 ⇐ x2 in w′′′[v1 := p43q]

We formalize the modified binding-time analysis and specializer in the fol-
lowing sections.

5.2.1 Binding-time analysis

Replacing the (∗) rule of Figure 7 with the (∗∗) rule in Figure 9 gives im-
proved constraints Γ `+

bt e : τ [w : ϕ]. The following property verifies that the
improved constraints are at least as “good” as the previous ones. The ex-
ample above shows that in many cases the improved constraints are better,
i.e., they give more opportunities for static computation.

Property 1 Γ `bt e : τ [w : ϕ] implies Γ `+
bt e : τ [w : ϕ]

26

Proof: by induction over the derivation of Γ `bt e : τ [w : ϕ].

Binding-time analysis is defined as before (Definition 4). bta+ denotes
the analysis functions based on the improved constraints.

5.2.2 Specialization

Figure 10 gives specialization steps which incorporate the flattening rules.
The first flattening rule gives the previously discussed binding-time improve-
ments. The second rule is added for stylistic reasons. It simplifies the pre-
sentation so that flattening does not occur in an interpreter context Ei but
only in specialization contexts Es. Essentially, the specializer will attempt
to apply flattening rules first. Otherwise, specialization proceeds as before.
Note that in applying the let.assoc reduction, a renaming may be necessary
to avoid variable capture (in Figure 3, the condition is that x1 6∈ FV(e3)).
We assume that necessary renamings take place when using the flattening
rules of Figure 10 and we omit the corresponding formalization.

The following lemma gives specialization properties for the Λbtml terms
satisfying judgements of the form Γd `+

bt e : τ [w : ϕτ]. It only differs from the
previous specialization properties (Lemma 2) in that the third component
(dealing with judgements of the form Γd `bt e : τ̃ [w : ϕ̃]) now reflects the
improved treatment of let constructs.10

Lemma 3 (specialization properties)

1. If Γd `+
bt e : nat[w : s] then w ≡ pnq ≡ e for some number n.

2. If Γd `+
bt e : τ1→τ2[w : ϕ1→ϕ2] then w ≡ λx .w′, e ≡ λx . bw′c and

Γd, x :τ1[ϕ1] `+
bt bw′c : τ2[w′ : ϕ2] for some w′ ∈ Terms[Λbtml].

3. If Γd `+
bt e : τ̃ [w : ϕ̃] then exactly one of the following statements holds:

(a) w ≡ unit w′, e ≡ unit bw′c and Γ `+
bt bw′c : τ [w′ : ϕ] for some

w′ ∈ Terms[Λbtml], or

(b) w 7−→i w′ and w 67−→f w′′ and Γd `+
bt bw′c : τ̃ [w′ : ϕ̃] and

e ≡ bwc −→−→ml bw′c, or

10The current statement of Lemma 3 makes a few format changes and one minor tech-
nical correction to the Lemma in the shorter MSCS version of this paper: subcases 3(b)
and 3(c) have been switched, and the condition w 67−→f w′′ has been added to subcase
3(b) to ensure that only one of the subcases of component 3 hold.

27

Flattening rules (where x1 6∈ FV(w3)):

let x2 ⇐ (let x1 ⇐ w1 inw2) inw3 7−→f let x1 ⇐ w1 in let x2 ⇐ w2 in w3

let x2 ⇐ (let x1 ⇐ w1 inw2) inw3 7−→f let x1 ⇐ w1 in let x2 ⇐ w2 in w3

w 7−→f w′

w 7−→s+ w′

Interpretation rules:

succ pnq 7−→i unit pn+ 1q
(λx .w0) @w1 7−→i w0[x := w1]

fixx.w 7−→i w[x := fixx.w]

let x⇐ unit w1 in w2 7−→i w2[x := w1]

pred pn+ 1q 7−→i unit pnq
pred p0q 7−→i unit p0q

if0 p0q w2 w3 7−→i w2

if0 pn+ 1q w2 w3 7−→i w3

w 7−→i w
′

Ei[w] 7−→i Ei[w
′]

Ei ::= let x⇐ [·] in w2

w 7−→i w
′

w 7−→s+ w′
where w 67−→f w′′

Compilation rules:

lift pnq 7−→s+ pnq
w 7−→s+ w′

Es[w] 7−→s+ Es[w
′]

Es ::= pred [·] | succ [·] | if0 [·] w2 w3 | if0 r1 [·] w3 | if0 r1 r2 [·] |
λx . [·] | [·] @w1 | r0 @ [·] | fixx. [·] |
unit [·] | let x⇐ [·] in w2 |
let x⇐ r1 in [·] ...where ri ∈ Residual-terms[Λbtml]

Figure 10: Modified specialization rules for Λbtml

28

(c) w ≡ let x⇐ w1 in w2, e ≡ let x⇐ bw1c in bw2c, and
Γd `+

bt bw1c : τ̃1[w1 : d], Γd, x :τ1[d] `+
bt bw2c : τ̃2[w2 : ϕ̃],

for some w1, w2 ∈ Terms[Λbtml], or

(d) w 7−→f w′ and Γd `+
bt bw′c : τ̃ [w′ : ϕ̃] and e ≡ bwc −→−→ml bw′c.

4. If Γd `+
bt e : nat[w : d] then exactly one of the following statements

holds:

(a) w ∈ Residual-terms[Λbtml], or

(b) w 7−→s+ w′, Γd `+
bt bw′c : τ [w′ : d], and e ≡ bwc ≡ bw′c ≡

pnq for some number n.

5. If Γd `+
bt e : τ1→τ2[w : d] then exactly one of the following statements

holds:

(a) w ∈ Residual-terms[Λbtml], or

(b) w 7−→s+ w′ and Γd `+
bt bw′c : τ [w′ : d] and e ≡ bwc −→−→ml bw′c.

6. If Γd `+
bt e : τ̃ [w : d] then exactly one of the following statements holds:

(a) w ∈ Residual-terms[Λbtml], or

(b) w 7−→s+ w′ and Γd `+
bt bw′c : τ̃ [w′ : d] and e ≡ bwc −→−→ml bw′c.

Proof: by induction over the height of the derivation of Γd `+
bt e : τ [w : ϕ]

relying on the property that if both Γ, x :τ1[ϕ1] `+
bt e0 : τ0[w0 : ϕ0] and

Γ `+
bt e1 : τ1[w1 : ϕ1] then Γ `+

bt e0[x := e1] : τ0[w0[x := w1] : ϕ0]. See Ap-
pendix B for details.

As before, if w 7−→s+ w′ and w 7−→s+ w′′ then w′ ≡ w′′. The defini-
tions of specialization and partial evaluation as well as the proofs of correct-
ness of binding-time analysis, specialization, and partial evaluation proceed
exactly as before.

6 Equivalence with continuation-based specialization

Not only does the incorporation of the let.assoc lead to improved binding
times, but the resulting improved specializer captures the essence of control-
based binding-time improvements as found in, e.g., the partial evaluator
Similix [7]. To substantiate this claim, we recast Bondorf’s continuation-
based specializer [6] in terms of Λml, and prove that this specializer is equiv-
alent to the spec+ of Section 5.2.2.

29

Interpretation rules:

〈 unit w , nil 〉 ⇓ unit w
〈 unit pn + 1q , ~Ei 〉 ⇓ a
〈 succ pnq , ~Ei 〉 ⇓ a

〈 unit pnq , ~Ei 〉 ⇓ a
〈 pred pn+ 1q , ~Ei 〉 ⇓ a

〈 unit p0q , ~Ei 〉 ⇓ a
〈 pred p0q , ~Ei 〉 ⇓ a

〈w2 , ~Ei 〉 ⇓ a
〈 if0 p0q w2 w3 , ~Ei 〉 ⇓ a

〈w3 , ~Ei 〉 ⇓ a
〈 if0 pn + 1qw2 w3 , ~Ei 〉 ⇓ a

〈w0[x := w1] , ~Ei 〉 ⇓ a
〈 (λx .w0) @w1 , ~Ei 〉 ⇓ a

〈w[x := fixx.w] , ~Ei 〉 ⇓ a
〈fix x.w , ~Ei 〉 ⇓ a

〈w1 , let x⇐ ·
in w2

:: ~Ei 〉 ⇓ a

〈 let x⇐ w1

in w2

, ~Ei 〉 ⇓ a
(Push) x 6∈ FV(~Ei)

〈w2[x := w1] , ~Ei 〉 ⇓ a
〈 unit w1 , let x⇐ ·

in w2

:: ~Ei 〉 ⇓ a (Pop)

Figure 11: Continuation-based specializer for Λbtml (part 1)

30

Compilation rules:

〈 pnq , nil 〉 ⇓ pnq 〈x , nil 〉 ⇓ x 〈 lift pnq , nil 〉 ⇓ pnq

〈w , nil 〉 ⇓ r
〈 unit w , nil 〉 ⇓ unit r

〈w , nil 〉 ⇓ r
〈 succ w , nil 〉 ⇓ succ r

〈w , nil 〉 ⇓ r
〈 pred w , nil 〉 ⇓ pred r

〈w , nil 〉 ⇓ r
〈λx .w , nil 〉 ⇓ λx . r

〈w , nil 〉 ⇓ r
〈fixx.w , nil 〉 ⇓ fixx. r

〈w1 , nil 〉 ⇓ r1 〈w2 , nil 〉 ⇓ r2

〈w1 @w2 , nil 〉 ⇓ r1 @ r2

〈w1 , nil 〉 ⇓ r1 〈w2 , nil 〉 ⇓ r2 〈w3 , nil 〉 ⇓ r3

〈 if0w1 w2 w3 , nil 〉 ⇓ if0 r1 r2 r3

〈w1 , nil 〉 ⇓ r1 〈w2 , ~Ei 〉 ⇓ r2

〈 let x⇐ w1 in w2 , ~Ei 〉 ⇓ let x⇐ r1 in r2
(Assoc) x 6∈ FV(~Ei)

Figure 12: Continuation-based specializer for Λbtml (part 2)

31

Figures 11 and 12 present the continuation-based specializer as a big-step
operational semantics. Bondorf’s specializer is expressed denotationally, but
there are standard techniques for going from a denotational specification to
an operational one [53].11 The specializer manipulates configurations of the
form 〈w , ~Ei 〉 where w ∈ Terms[Λbtml] and ~Ei is a stack of interpretation con-

texts (i.e., ~Ei is a continuation). The intuition is that ~Ei accumulates static
contexts (via the (Push) rule) and if possible moves them across dynamic let
expressions to consume static values in the let body (via the (Assoc) rule).
The (Pop) rule consumes a static value by reducing the top-most let in ~Ei.
In dynamic contexts (e.g., in the compilation rules), there is no need to ac-
cumulate contexts (i.e., the stack is delimited to be nil — which corresponds
to the identity continuation).

The free variable restrictions in the (Push) and (Assoc) rules are anal-
ogous to the free variable restrictions on the flattening rules of Figure 10.
The following is the fairly obvious extension of the notion of free variables
to stacks of interpretation contexts.12

FV(nil) = ∅
FV(let x⇐ ·

in w2

:: ~Ei) = (FV(w2)− {x}) ∪ FV(~Ei)

Derivations in the continuation-based specializer give rise to context
stacks that are well-formed in the following sense.

Definition 7 (well-formed context stack)

• nil is well-formed; and

• let x⇐ ·
inw2

:: ~Ei is well-formed if ~Ei is well-formed and x /∈ FV(~Ei).

11For stylistic reasons we have deviated slightly from Bondorf’s presentation, where all
the rules for dynamic constructs are expressed in continuation-passing style, and dynamic
contexts are thus accumulated as well. This accumulation, however, is not necessary since
continuations are only used to move static contexts across dynamic let expressions. Based
on this observation (made during our initial work, in the Fall of 1994), we have written
our rules so that components of dynamic constructs (e.g., if0) are specialized with respect
to the identity continuation (i.e., nil).

12The material from the current paragraph down to the statement of Theorem 5 were
omitted from the shorter version of this paper due to space constraints. Also, the free
variable constraints on the (Push) (Figure 11) and (Assoc) (Figure 12) rules were not
made explicit in the shorter version.

32

Intuitively, context stacks

~Ei ≡ let x1 ⇐ ·
in w1

:: · · · :: let xn ⇐ ·
in wn

:: nil

in the continuation-based specializer arise from contexts of the form

let xn ⇐ (· · · let x1 ⇐ · in w1 · · ·) inwn.

in the term being specialized. As discussed in Section 5, for all i and for all
j > i, α-conversion can give xi /∈ FV(wj).

The following property states that continuation-based specialization does
indeed give rise to well-formed contexts. We write D . 〈w , ~Ei 〉 ⇓ a when
D is a derivation of 〈w , ~Ei 〉 ⇓ a).

Property 2 (well-formed context stacks are preserved)
If D . 〈w , ~Ei 〉 ⇓ a and ~Ei is a well-formed context stack, then for all sub-

derivations D′ . 〈w′ , ~Ei
′ 〉 ⇓ a′ of D, ~Ei

′
is a well-formed context stack.

Proof: by complete induction over the height of D. The only interesting
case is the (Push) rule, and the side condition ensures that the property
holds for the immediate subderivation.

The following theorem establishes the correspondence between the contin-
uation-based specializer and spec+ of Section 5.2.2.

Theorem 5 For Γd `+
bt e : ñat[w : d],

〈w , nil 〉 ⇓ r iff w 7−→∗s+ r

Proof: The proof is straightforward and follows the standard pattern for
relating a big-step and small-step operational semantics [32, p. 111]. How-
ever, one must strengthen the statement to prove so as to handle arbitrary
stacks of interpretation contexts in the inductive hypothesis. The full proof
is in Appendix B.3.

Bondorf’s presentation [6] did not include a specification of binding-time
analysis. However, our connection of continuation-based specialization and
spec+ shows that the constraints given by Γ `+

bt e : τ [w : ϕ] judgements are
the proper ones (appealing to the correctness of binding-time analysis for
spec+).

33

7 Related work

7.1 Computational meta-languages

Moggi introduced his computational metalanguage as a convenient format
to specify denotational semantics modularly [48]. This metalanguage has
been used for a variety of purposes including treating computational effects
in functional languages [24, 31, 47, 63, 66], staging denotational-semantics
definitions [12] and compiler translations [3, 36, 60], and explaining rela-
tionships between various constructive logics [4]. In an earlier work [34, 36],
we have used this metalanguage to formalize the structure of continuation-
passing styles.

Inspired by the present work, Nielsen has recently developed an eval-
uation-order independent presentation of partial evaluation and deforesta-
tion using Moggi’s metalanguage [49]. The distinction between values and
computations given by the metalanguage type system (upon which we have
relied heavily) lies at the foundation of his work as well. This continues
a trend of unifying various program-specialization techniques [62]. Clearly
Λml stands as a promising testbed for this unification.

As noted above, the metalanguage and monads are commonly used to
structure functional programs with computational effects. Both Nielsen [49]
and Dussart and Thiemann [22] use monads to structure I/O and state in
the partial evaluator itself.

Particular aspects of Moggi’s metalanguage highlighted in the present
work also appear in other metalanguages. For example, Talcott uses let-
expressions to specify computational steps [64]. Sabry and Felleisen demon-
strate how a let-based intermediate language (called A-normal forms) can
give benefits similar to CPS in dataflow analysis [58, 59].

Moggi also gave a computational λ-calculus λc. λc is essentially a call-by-
value λ-calculus extended with equations that capture program equivalences
holding under arbitrary monadic effects. It is straightforward to adapt our
evaluation-order independent presentation based on Λml to a call-by-value
presentation based on λc. This alternative presentation expresses control-
based binding-time improvements via the monadic laws as formulated in λc.
The reassociation of let expressions is again a prominent feature. In fact,
the λc presentation has strong connections with the work of Flanagan et al.
[25] on the essence of compiling with continuations.

34

7.2 Partial evaluation

7.2.1 Styles of specification

The earliest work on partial evaluation as a two-phase process specified
binding-time analysis as an abstract interpretation [43]. Since the work of
Jones and Gomard [29, 30], binding-time analysis is more often specified
using type systems (we have followed this approach in the present work).
Palsberg [54] and Wand [68] further clarify the rôle of such specifications in
their work on the correctness of binding-time analysis.

Specializers have mostly been specified as symbolic interpreters in func-
tional style [42]. We note, however, a recent trend (including the present
work) to use operational semantics for specifying specializers [1, 18, 33, 61,
62]. In fact, the first author has shown that by emphasizing the logical char-
acter of type-based and operational semantics specifications, the correctness
of a partial evaluator can be mechanically verified [35].

Davies and Pfenning have developed a language for expressing staged
computation based on the intuistionistic modal logic S4 [20, 19]. The type
system of this language is strikingly similar to that of Moggi’s computa-
tional metalanguage. A modality analogous to the ·̃ construction of Moggi
is used to type code objects (in our terminology, objects whose specializa-
tion type is dynamic). Their language also includes a let construct which
can act as an “eval function”. However, even though types and terms of
both languages are quite similar, the similarity is superficial in the context
of our application of the metalanguage. In our setting, staging information
is not represented using the modality (as with Davies and Pfenning). In-
stead it is represented using specialization types which are external to the
types of the meta-language itself. In our case, the modality is used to distin-
guish values from computations — a distinction not captured in Davies and
Pfenning’s work. Benton, Bierman, and de Paiva [4] flesh out connections
between Moggi’s computational metalanguage and the modal logic S4 in a
more general context.

7.2.2 Call unfolding and let insertion

Most specializers ensuring sound call-unfolding under call-by-value adopt
the technique of let insertion, as discussed in Section 4. One may, however,
also enforce soundness by simply not unfolding calls where the argument
expression is dynamic, at the price of reducing specialization. This must
be expressed in the binding-time analysis by forbidding binding-times such

35

as d→ s (i.e., a static function mapping a dynamic argument into a static
result). This restriction in fact also occurs in Nielson and Nielson’s two-
level λ-calculus [52]: the co-domain of a static function should be at least
as dynamic as the domain of this function.

In contrast, consider a partial evaluator (e.g., Similix) that (1) ensures
sound call-unfolding by let insertion, and (2) performs binding-time improve-
ments by relocating static evaluation contexts inside dynamic let expressions.
This partial evaluator does not constrain the domain and the codomain of
static (call-by-value) functions. For example, in the term

((λx . 2) @ d) + 1

where d denotes a dynamic integer, the λ-abstraction is classified as a static
function mapping a dynamic integer into a static integer (i.e., its binding
time is d→s). As a corollary, the addition is classified as static. The residual
program reads

let x⇐ d in 3.

In both techniques above, the possible binding times (i.e., specializa-
tion types) are tied to the strategy used to enforce sound call unfolding.
A pleasant feature of phrasing partial evaluation in terms of Λml is that
the characterization of sound call unfolding and possible binding times are
orthogonal. The distinction between values and computations in the type
system means that static functions with specialization types such as d→ s
can always be dealt with in a sound manner. It is the encoding into Λml
where one adopts a technique for a particular evaluation order.

7.2.3 Binding-time improvements

Consel and Danvy observed that a source transformation into continuation-
passing style prevented a class of loss of static information across procedures,
and they provided a syntactic characterization of this class [10]. Holst and
Gomard observed that part of the same effect (intra-procedural and insen-
sitive to call unfolding) could be obtained by “flattening” each source pro-
cedure [39]. Bondorf, Danvy, and Lawall observed that a further part of the
same effect (accounting for call unfolding, but not crossing specialization
points) could be obtained by specific control operations in the specializer
itself [6, 45], rather than by CPS-transforming the program before partial
evaluation. Our framework achieves this effect by extending the opera-
tional semantics of specialization with the let.assoc rule. This development

36

matches contemporary work on determining the effect of the CPS transfor-
mation on flow analysis [51, 59]: enriching a direct-style calculus can yield
analyses with an added precision that matches the extra precision obtained
by the relocation of contexts performed by the CPS transformation.

Section 6 shows how the theory of monads captures the essence of control-
based binding-time improvements. This has practical benefits as well — it
allows one to avoid using a functional representation of continuations in
the specializer (one need only use the let.assoc rule). The disadvantage of
representing continuations as functions shows up in a self-applicable partial
evaluator, as self-application generates programs with many higher-order
functions. Such programs are more difficult to reason about, e.g., when
searching for binding-time improvements. This difficulty motivated Lawall
and Danvy to stick to direct style [45], and Glück and Jørgensen to devise
a multi-level cogen [27]. Thiemann has united both lines of work [65]. In
the present case, and since continuation-passing style can be obtained from
monadic style by simply selecting (a term representation of) the continuation
monad, our method provides sound guidelines for treating continuations in
an offline partial evaluator.

We also expect our technique to be particularly useful in online self-
applicable program specializers (e.g., supercompilers). In fact, preliminary
work by the first author and Glück on online self-application uses a language
called Sgraph [28] where let-bindings (in the style of Λml) are a central feature
[37].

Let us briefly attempt a taxonomy of continuation-based partial evalua-
tors. The earliest one is reported in the literature by Bondorf [6]. Its goal
is precisely to relocate static contexts across dynamic let expressions, as in
the CPS transformation. The particular brand of continuation-passing style
used for this relocation is expressible in direct style, using control operators
(again as in the CPS transformation). In fact, this direct-style specializer
turns out to be more efficient in practice [45]. A parallel development is
taking place in the “cogen” approach to partial evaluation [8, 46, 65]. All
these continuation-based specializers are specified as symbolic interpreters
in functional style. An increasing number of specializers, however, are spec-
ified operationally. We have presented here such a specializer, which is
continuation-based and delimits control to static contexts. This novel fea-
ture can be observed to be rippling back into the world of functional special-
izers, both with explicit continuations and with implicit continuations and
the associated control operators [21].

As for data-flow binding-time improvements, they arise from insufficient

37

binding-time coercions [17, 18]. In particular, the binding-time improvement
arising from the presence of booleans and disjoint sums is known as “The
Trick” [18, 42]. Because of the nature of disjoint sums, this coercion takes
the form of a control-based binding-time improvement: The Trick amounts
to duplicating static contexts across dynamic case expressions. Again, con-
tinuations can be used to move static contexts across dynamic conditional
expressions, duplicating them in the conditional branches. This transforma-
tion, however, can also be naturally accomplished using the computational
meta-language [36]. It gives rise to an analogue of Figure 9 for if0, and to a
context duplication in Figure 12. It is interesting to note (this observation
is due to Malmkjær) that if we consider a let expression as a “unary” case
expression (i.e., a case expression with one conditional branch), then our
let-rearranging rules coincide with the case-rearranging rules (also known as
commuting conversions) that can be found both in partial evaluation [18],
program extraction [55], and natural-deduction proof theory [26, 57].

7.2.4 Evaluation-order independence

We have formulated control-based binding-time improvements via monads
using the computational meta-language because it allows an evaluation-
order independent view of binding-time analysis and specialization. This
appears particularly useful in settings where adopting mixed evaluation
strategies (e.g., call-by-name and call-by-value) can be employed to enhance
efficiency [16]. In addition, Nielsen and Sørensen have identified situations
where transforming sections of call-by-value programs using the call-by-
name CPS transformation can increase specialization [50]. The evaluation-
order independent partial-evaluation strategy that we have given here seems
well-suited for this endeavour since Λml allows one to encode mixed evalua-
tion strategies while remaining in direct style [34].

8 Conclusion

Partial evaluation offers a practical way of staging the execution of programs
in order to adapt them to the context of their execution. We have identified
Moggi’s computational metalanguage as a useful intermediate language for
formalizing it. As a first step, we have formalized binding-time analysis
and program specialization. Then we have shown how the intermediate
language captures the essence of control-based binding-time improvements.
Other work gives evidence that the metalanguage can provide an avenue for

38

e ∈ Terms[Λ]

e ::= x | f | pnq | succ e | pred e |
if0 e1 e2 e3 | λx :τ . e | e0 @ e1 | fix f :τ. e

x ∈ Identifiers[Λ]

f ∈ RecIdentifiers[Λ]

τ ∈ Types[Λ]

τ ::= nat | τ1→τ2

Γ ∈ Assumptions[Λ]

Γ ::= · | Γ, x :τ | Γ, f :τ

Figure 13: The language Λ

(a) incorporating other computational effects into partial evaluation such as
I/O and state, and (b) unifying various program-specialization techniques.

Acknowledgements

Thanks are due to Karoline Malmkjær for comments on an earlier version
of this paper, and to the anonymous referees for their perceptive reviews.

Most of this work was carried out while the first author was visiting the
University of Copenhagen (DIKU), and we thank the DIKU TOPPS group
for their interaction, encouragement, and financial support, e.g., to attend
LDPL’95 in Darmstadt, Germany.

A The Language Λ

A.1 Syntax

Figure 13 presents the syntax of a PCF-like language Λ. We omit the usual
typing rules as well as the call-by-name and call-by-value operational se-
mantics for Λ.

39

The syntax of Λ includes two categories of identifiers: Identifiers are
used in λ-bindings; RecIdentifiers are used in fix-bindings. This distinction
is necessary under call-by-value evaluation of Λ, where Identifiers will only
bind to canonical terms (i.e., values) whereas RecIdentifiers may bind to
non-canonical terms (i.e., computations). This is reflected in the formal
definition of values below.

Definition 8 (Values)

v ∈ Valuesn[Λ]

v ::= pnq | λx . e
v ∈ Valuesv[Λ]

v ::= x | pnq | λx . e

A.2 Encoding Λ evaluation in Λml

Figures 14 and 15 give the call-by-name and call-by-value encodings of Λ in
Λml. In the call-by-name encoding, function arguments are passed uneval-
uated. This is reflected in the transformation on types, i.e., functions map
computations to computations. In the call-by-value encoding, evaluation of
function arguments is forced using the let construct. This is reflected in the
transformation on types, i.e., functions map values to computations.13

B Proofs

B.1 Properties of partial evaluation

The section gives the proofs for various partial evaluation properties and
theorems occuring in Sections 3 and 4. We begin by considering various
properties needed for the proof of Lemma 2 of Section 3.

Property 3 (substitution and binding-time constraints)
If Γ, x :τ1[ϕ1] `bt e0 : τ0[w0 : ϕ0] and Γ `bt e1 : τ1[w1 : ϕ1] then

Γ `bt e0[x := e1] : τ0[w0[x := w1] : ϕ0].

Proof: The proof is a simple induction over the derivation of Γ, x :τ1[ϕ1] `bt
e0 : τ0[w0 : ϕ0] and is omitted.

13One can also give a call-by-value encoding where functions map computations to
computations. Instead of forcing evaluation of function arguments in the application
structure (as in Ev), evaluation is forced immediately after an argument is received by a
function [36].

40

En〈[·]〉 : Λ→Λml

En〈[v]〉 = unit En〈v〉
En〈[x]〉 = x

En〈[f]〉 = f

En〈[succ e]〉 = let y ⇐ En〈[e]〉 in succ y

En〈[pred e]〉 = let y ⇐ En〈[e]〉 in pred y

En〈[if0 e0 e1 e2]〉 = let y0 ⇐ En〈[e0]〉 in if0 y0 En〈[e1]〉 En〈[e2]〉
En〈[e0 @ e1]〉 = let y0 ⇐ En〈[e0]〉 in y0 @ En〈[e1]〉
En〈[fix f. e]〉 = fix f. En〈[e]〉

En〈·〉 : Valuesn[Λ]→Λml

En〈pnq〉 = pnq
En〈λx . e〉 = λx . En〈[e]〉

En〈nat〉 = nat

En〈τ1→τ2〉 = En〈[τ1]〉→En〈[τ2]〉

En〈[τ]〉 = Ẽn〈τ〉

En〈[Γ, x :τ]〉 = En〈[Γ]〉, x :En〈[τ]〉
En〈[Γ, f :τ]〉 = En〈[Γ]〉, f :En〈[τ]〉

Figure 14: Call-by-name encoding En into Λml

41

Ev〈[·]〉 : Λ→Λml

Ev〈[v]〉 = unit Ev〈v〉
Ev〈[f]〉 = f

Ev〈[succ e]〉 = let y ⇐ Ev〈[e]〉 in succ y

Ev〈[pred e]〉 = let y ⇐ Ev〈[e]〉 in pred y

Ev〈[if0 e0 e1 e2]〉 = let y0 ⇐ Ev〈[e0]〉 in if0 y0 Ev〈[e1]〉 Ev〈[e2]〉
Ev〈[e0 @ e1]〉 = let y0 ⇐ Ev〈[e0]〉 in let y1 ⇐ Ev〈[e1]〉 in y0 @ y1

Ev〈[fix f. e]〉 = fix f. Ev〈[e]〉

Ev〈·〉 : Valuesv[Λ]→Λml

Ev〈pnq〉 = pnq
Ev〈x〉 = x

Ev〈λx . e〉 = λx . Ev〈[e]〉

Ev〈nat〉 = nat

Ev〈τ1→τ2〉 = Ev〈τ1〉→Ev〈[τ2]〉
Ev〈[τ]〉 = Ẽv〈τ〉

Ev〈[Γ, x :τ]〉 = Ev〈[Γ]〉, x :Ev〈τ〉
Ev〈[Γ, f :τ]〉 = Ev〈[Γ]〉, f :Ev〈[τ]〉

Figure 15: Call-by-value encoding Ev into Λml

42

Property 4 (substitution and erasing)
For all w0, w1 ∈ Terms[Λbtml],

bw0[x := w1]c ≡ bw0c[x := bw1c]

Proof: The proof is a simple induction over the structure of w0 and is
omitted.

Proof of Lemma 2: The proof is by induction over the derivation of Γd `bt
e : τ [w : ϕ]. We give illustrative cases. Note that for residual constructs, the
desired properties follow directly from the IH. The case for succ w below
illustrates this.

Recall that given Γ `bt e : τ [w : ϕ], e ≡ bwc (see Section 3). We use this
property often without giving explicit reference in the proof below.

case Γd `bt x : Γ(x).type[x : Γ(x).spec-type]:

We must have Γ(x).spec-type ≡ d since Γd contains only dynamic vari-
ables. It is possible that cases 4, 5, and 6 of Lemma 2 apply. But in
each case, the conditions are satisfied since x ∈ Residual-terms[Λbtml] (be-
cause x is dynamic) by definition of Residual-terms[Λbtml], and x cannot
undergo a specialization step.

case Γd `bt pnq : nat[pnq : s]:

Immediate.

case Γd `bt pnq : nat[pnq : d]:

Case 4 applies and since pnq ∈ Residual-terms[Λbtml] and pnq cannot
undergo a specialization step, the conditions are satisfied.

case Γd `bt succ e : ñat [succ w : s̃]
because Γd `bt e : nat[w : s]:

Case 3 applies. Since subcase 3(a) cannot hold, we show that sub-
case 3(b) holds. By IH, w ≡ pnq and thus succ pwq 7−→i unit pn+ 1q.
Since we have Γd `bt bunit pn+ 1qc : ñat [unit pn+ 1q : s̃] and we also
have succ pnq ≡ bsucc pnqc −→−→ml bunit pn+ 1qc, the conditions of sub-
case 3(b) are satisfied.

case Γd `bt succ e : ñat [succ w : d]
because Γd `bt e : nat[w : d]:

43

Case 6 applies, and by IH either subcase 4(a) or subcase 4(b) holds for
w.

case 4(a):

Then w ∈ Residual-terms[Λbtml] and w cannot undergo a special-
ization step. The conditions of 6(a) are satisfied since succ w ∈
Residual-terms[Λbtml] and note succw cannot undergo a specialization
step.

case 4(b):

Then w 7−→s w
′, Γd `bt bw′c : τ [w′ : d], and e ≡ bw′c ≡ bwc ≡

pnq for some number n. Since we have succw 7−→s succw′, Γd `bt
bsucc w′c : ñat [succ w′ : d], and succ e ≡ bsucc wc −→−→ml bsucc w′c,
the conditions of 6(b) are satisfied.

case Γd `bt λx . e′ : τ1→ τ̃2[λx .w′ : ϕ1→ϕ2]
because Γd, x :τ1[ϕ1] `bt e′ : τ̃2[w′ : ϕ2]:

Case 2 applies and the conditions are satisfied since w ≡ λx .w′, e ≡
bλx .w′c ≡ λx . bw′c ≡ λx . e′ (by properties of b·c— see Section 3.1.3),
and Γd, x :τ1[ϕ1] `bt bw′c : τ2[w′ : ϕ2] — where w and e are as defined in
Lemma 2 case 2.

case Γd `bt e0 @ e1 : τ̃2[w0 @w1 : ϕ2]
because Γd `bt e0 : τ1→ τ̃2[w0 : ϕ1→ϕ2] and Γ `bt e1 : τ1[w1 : ϕ1]:

It follows from the relationship between types and specialization types
(see Figure 5) that either ϕ2 ≡ ϕ̃′2 (i.e., case 3 applies), or ϕ2 ≡ d (i.e.,
case 6 applies).

Case 3:

Note subcase 3(a) cannot hold, so we show subcase 3(b) holds. By
IH, w0 ≡ λx .w′0, e0 ≡ bλx .w′0c ≡ λx . bw′0c, and Γd, x :τ1[ϕ1] `bt
bw′0c : τ2[w′0 : ϕ2]. Now (λx .w′0) @w1 7−→i w

′
0[x := w1] and Γd `bt

bw′0c[x := e1] : τ2[w′0[x := w1] : ϕ2] by Property 3.
Finally,

e0 @ e1≡ b(λx .w′0) @w1c
≡ (λx . bw′0c) @ bw1c
−→ml

bw′0c[x := bw1c] ≡ bw′0[x := w1]c
where the last identity follows by Property 4. Thus, the conditions
of subcase 3(b) are satisfied.

44

Case 6:

Note subcase 6(a) cannot hold since w0 @w1 is not residual. To show
subcase 6(b) holds, one follows exactly the steps used to show subcase
3(b) above.

case Γd `bt fixx. e : τ̃ [fixx.w : ϕ̃]
because Γd, x : τ̃ [ϕ̃] `bt e : τ̃ [w : ϕ̃]:

Case 3 applies, and since subcase 3(a) cannot hold, we only need to
show that subcase 3(b) holds. We have fixx.w 7−→i w[x := fixx.w]
and Γd `bt e[x := fixx. e] : τ̃ [w[x := fixw.w] : ϕ̃] by Property 3.
Finally, fixx. e ≡ bfix x.wc ≡ fixx. bwc and
fixx. bwc −→ml bwc[x := fixx. bwc] ≡ bw[x := fixx.w]c where the last
identity follows by Property 4. Thus, the conditions of subcase 3(b) are
satisfied.

case Γd `bt let x⇐ e1 in e2 : τ̃2[let x⇐ w1 in w2 : ϕ2]
because Γd `bt e1 : τ̃1[w1 : ϕ̃1] and Γd, x :τ1[ϕ1] `bt e2 : τ̃2[w2 : ϕ2]:

It follows from the relationship between types and specialization types
(see Figure 5) that either ϕ2 ≡ ϕ̃′2 (i.e., case 3 applies), or ϕ2 ≡ d (i.e.,
case 6 applies).

Case 3:

Note subcase 3(a) cannot hold, so we show subcase 3(b) holds. By
IH, case 3 applies for w1.

Case 3(a) for w1:

Then w1 ≡ unitw′1, e1 ≡ unit bw′1c and Γd `bt bw′1c : τ1[w′1 : ϕ1].
Now let x⇐ unit w′1 in w2 7−→i w2[x := w′1] and
Γd `bt bw2c[x := bw′1c] : τ̃2[w′0[x := w1] : ϕ2] by Property 3.
Finally,

let x⇐ e1 in e2≡ blet x⇐ unit w′1 in w2c
≡ let x⇐ unit bw′1c in bw2c
−→−→ml

bw2c[x := bw′1c] ≡ bw2[x := w′1]c

where the last identity follows by Property 4. Thus, the condi-
tions of subcase 3(b) are satisfied.

Case 3(b) for w1:

45

Then w1 7−→i w
′
1 and Γd `bt bw′1c : τ̃1[w′1 : ϕ̃1] and

e1 ≡ bw1c −→ml bw′1c.
Therefore, let x⇐ w1 in w2 7−→i let x⇐ w′1 in w2 and
Γd `bt let x⇐ bw′1c in e2 : τ̃2[let x⇐ w′1 in w2 : ϕ2] and

let x⇐ e1 in e2≡ blet x⇐ w1 in w2c
≡ let x⇐ bw1c in bw2c
−→−→ml

let x⇐ bw′1c in bw2c ≡ blet x⇐ w′1 inw2c.

Thus, the conditions of subcase 3(b) are satisfied.

Case 6:

Note subcase 6(a) cannot hold since let x⇐ w1 inw2 is not residual.
To show subcase 6(b) holds, one follows exactly the steps used to
show subcase 3(b) above.

case Γd `bt e : nat[lift w : d]
because Γd `bt e : nat[w : s]:

Case 4 applies, and note that subcase 4(a) cannot hold since liftw is not
residual. So we show that subcase 4(b) holds. By IH, case 1 applies to w,
and therefore w ≡ pnq ≡ e for some number n. Now lift pnq 7−→s pnq
and Γd `bt pnq : nat[pnq : d] and e ≡ blift pnqc ≡ bpnqc ≡ pnq.

We now give the proof of Theorem 2 which establishes the correctness
of the binding-time analysis constraints.

Proof of Theorem 2: Clearly, either spec w↓ or spec w↑.

Case spec w↓:

By the definition of spec, there exists an r ∈ Residual-terms[Λbtml] such
that spec w = r.

Case spec w↑: In this case we have two possibilities.

1. For all w′ such that w 7−→∗s w′, there exists a w′′ such that w′ 7−→s

w′′ (i.e., w heads an infinite series of specialization steps).

46

2. There exists an a 6∈ Residual-terms[Λbtml] such that w 7−→∗s a and
there does not exist an a′ such that a 7−→s a

′. However, this cannot
be the case since by induction over the number of steps in w 7−→∗s a,
Lemma 2 tells up that either a ∈ Residual-terms[Λbtml] or a 7−→s a

′

for some a′.

Given Lemma 2, the correctness of binding-time analysis (Theorem 2),
and the soundness of specialization (Theorem 3), we can now establish the
correctness of partial evaluation (Theorem 4).

Proof of Theorem 4:

Assume (pe e Γbt σs)↓. The definition of partial evaluation (Definition 6)
implies that spec (bta Γbt e)σs↓.
By definition of binding-time analysis (Definition 4), we have

Γbt = Γs ∪ Γd `bt e : ñat[(bta Γbt e) : d]

and by repeated application of Property 3 (substitution and binding-time
constraints),

Γd `bt ebσsc : ñat[(bta Γbt e)σs : d].

Now since spec (bta Γbt e)σs↓, by induction on the number of specialization
steps (applying Lemma 2), we have

ebσsc =ml bspec (bta Γbt e)σsc.

We can now reason as follows.

ebσsc =ml bspec (bta Γbt e)σsc
⇒ ebσscσd =ml bspec (bta Γbt e)σscσd

...by substitutivity of ml
⇒ ebσscσd =ml pe e Γbt σsσd

...by definition of pe (Definition 6)
⇒ ebσscσd ≈ pe e Γbt σsσd

...by soundness of ml (Theorem 1)

47

B.2 Control-based binding-time improvements

The section gives the proofs for various partial evaluation properties and
theorems occuring in Sections 5. As before, we need a simple property
showing how substitution interacts with the extended binding-time rules.

Property 5 (substitution and binding-time constraints)
If Γ, x :τ1[ϕ1] `+

bt e0 : τ0[w0 : ϕ0] and Γ `+
bt e1 : τ1[w1 : ϕ1] then

Γ `+
bt e0[x := e1] : τ0[w0[x := w1] : ϕ0].

Proof: The proof is a simple induction over the derivation of Γ, x :τ1[ϕ1] `+
bt

e0 : τ0[w0 : ϕ0] and is omitted.

Proof of Lemma 3: The proof is by induction over the derivation of
Γd `+

bt e : τ [w : ϕ]. Note that only component 3 of Lemma 3 differs from the
previously proven Lemma 2. Therefore we need only rework the cases to
which component 3 applies and the cases that rely on component 3 in the
inductive hypothesis.

Component 3 applies to cases where the resulting annotated terms in-
clude succ w, pred w, w0 @w1 (subcase 3(b) applies), and unit w (subcase
3(a) applies). In these cases, the proof is exactly the same as for Lemma 2.
Component 3 also applies to let x ⇐ w1 in w2. This case must be reworked
since it may now satisfy subcase 3(b) or subcase 3(d). In addition, the case
let x ⇐ w1 in w2 can now fall under component 3 whereas in Lemma 2 it
could not.

case Γd `+
bt let x⇐ e1 in e2 : τ̃2[let x⇐ w1 in w2 : ϕ2]

because Γd `+
bt e1 : τ̃1[w1 : ϕ̃1] and Γd, x :τ1[ϕ1] `+

bt e2 : τ̃2[w2 : ϕ2]:

It follows from the relationship between types and specialization types
(see Figure 5) that either ϕ2 ≡ ϕ̃′2 (i.e., case 3 applies), or ϕ2 ≡ d (i.e.,
case 6 applies).

Case 3:

Note neither subcase 3(a) nor 3(c) can hold, so we show subcase 3(b)
holds or 3(d) holds. By IH, case 3 applies for w1.

Case 3(a) for w1: (proceeding identically to the proof of Lemma
2).

48

Then w1 ≡ unitw′1, e1 ≡ unit bw′1c and Γd `+
bt bw′1c : τ1[w′1 : ϕ1].

Now let x⇐ unit w′1 in w2 7−→i w2[x := w′1] and
Γd `+

bt bw2c[x := bw′1c] : τ̃2[w′0[x := w1] : ϕ2] by Property 5.
Finally,

let x⇐ e1 in e2≡ blet x⇐ unit w′1 in w2c
≡ let x⇐ unit bw′1c in bw2c
−→−→ml

bw2c[x := bw′1c] ≡ bw2[x := w′1]c

where the last identity follows by Property 4. Thus, the condi-
tions of subcase 3(b) are satisfied.

Case 3(b) for w1:

If w1 6≡ let y ⇐ w3 inw4 then the proof proceeds as in Lemma 2.
That is, w1 7−→i w

′
1, Γd `+

bt bw′1c : τ̃1[w′1 : ϕ̃1] and
e1 ≡ bw1c −→ml bw′1c.
Therefore, let x⇐ w1 in w2 7−→i let x⇐ w′1 in w2 and
Γd `+

bt let x⇐ bw′1c in e2 : τ̃2[let x⇐ w′1 in w2 : ϕ2] and

let x⇐ e1 in e2≡ blet x⇐ w1 in w2c
≡ let x⇐ bw1c in bw2c
−→−→ml

let x⇐ bw′1c in bw2c ≡ blet x⇐ w′1 inw2c.

Thus, the conditions of subcase 3(b) are satisfied.
If w1 ≡ let y ⇐ w3 in w4, then we show that the conditions of
subcase 3(d) are satisfied. First of all, note that only subcase
3(d) can be satisfied since the resulting term must undergo a
flattening step. We have

let x⇐ (let y ⇐ w3 in w4)
in w2

7−→f let y ⇐ w3

in let x⇐ w4

in w2

Now Γd, x :τ1[ϕ1] `+
bt e2 : τ̃2[w2 : ϕ2] and it follows that

Γd, y :τ3[ϕ3], x :τ1[ϕ1] `+
bt e2 : τ̃2[w2 : ϕ2] since y 6∈ FV(w2).

Now we also have Γd, y :τ3[ϕ3] `+
bt bw4c : τ̃1[w4 : ϕ̃1].

From this we have

Γd, y :τ3[ϕ3] `+
bt let x⇐ bw4c in bw2c : τ̃2[let x⇐ w4 in w2 : ϕ2].

49

Furthermore,

Γd `+
bt let y ⇐ bw3c

in let x⇐ bw4c
in bw2c

: τ̃2[let y ⇐ w3 in let x⇐ w4 in w2 : ϕ2].

Now

let x⇐ (let y ⇐ e3 in e4) in e2

≡ blet x⇐ (let y ⇐ w3 in w4) in w2c
≡ let x⇐ (let y ⇐ bw3c in bw4c) in bw2c

−→−→ml let y ⇐ bw3c in let x⇐ bw4c in bw2c
≡ blet y ⇐ w3 in let x⇐ w4 inw2c

Thus, the conditions of subcase 3(d) are satisfied.

Case 3(c) for w1 (i.e., w1 ≡ let y ⇐ w3 in w4)
and case 3(d) for w1 (i.e., w1 ≡ let y ⇐ w3 inw4):

In either of these cases, let x ⇐ w1 in w2 must undergo a flat-
tening step and the proof proceeds as in the case above (i.e., the
conditions of subcase 3(d) are satisfied).

Case 6:

Note subcase 6(a) cannot hold since let x⇐ w1 inw2 is not residual.
To show subcase 6(b) holds, one follows exactly the steps used to
show subcase 3(b) or 3(d) for let x⇐ w1 in w2 above.

case Γd `+
bt let x⇐ e1 in e2 : τ̃2[let x⇐ w1 in w2 : ϕ2]

because Γd `+
bt e1 : τ̃1[w1 : d] and Γd, x :τ1[d] `+

bt e2 : τ̃2[w2 : ϕ2]:

It follows from the relationship between types and specialization types
(see Figure 5) that either ϕ2 ≡ ϕ̃′2 (i.e., case 3 applies), or ϕ2 ≡ d
(i.e., case 6 applies). If case 6 applies, the we are essentially treating
the “unextended” form of the binding time rule for residual let’s — the
proof proceeds as in Lemma 2. If case 3 applies, then it is immediately
obvious that the conditions for subcase 3(c) (and only this subcase) are
satisfied.

50

B.3 Equivalence with continuation-based specialization

This section proves Theorem 5, which establishes the equivalence of the spe-
cializer with flattening rules of Section 5 and the continuation-based special-
izer of Section 6. This requires showing that

1. specialization using the flattening specializer entails a corresponding
continuation-based specialization, i.e.,

w 7−→∗s+ r implies 〈w , nil 〉 ⇓ r

2. specialization using the continuation-based specializer entails a corre-
sponding flattening specialization, i.e.,

〈w , nil 〉 ⇓ r implies w 7−→∗s+ r.

In what follows, we refer to the above statements as part (1) and part (2) of
Theorem 4. We treat part (1), and begin by establishing several preliminary
properties.

The property below states that the specialization of an already flat in-
terpretation context is equivalent the specialization of the corresponding
non-flat interpretation context (which gets flattened by the specializer).

Property 6 (context stack splitting)
For all x1, x2, w,w2, w3 ∈ Terms[Λbtml] and context stacks ~Ei1, ~Ei2 such that
~Ei1 ++ (let x1 ⇐ ·

in let x2 ⇐ w2

in w3

:: ~Ei2) is a well-formed context stack, and x1 /∈

FV(w3), x2 /∈ FV(~Ei2), then

(a) 〈w , ~Ei1 ++ (let x1 ⇐ ·
in let x2 ⇐ w2

in w3

:: ~Ei2) 〉 ⇓ a

iff

〈w , ~Ei1 ++ (let x1 ⇐ ·
in w2

:: let x2 ⇐ ·
in w3

:: ~Ei2) 〉 ⇓ a

(b) ~Ei1 ++ (let x1 ⇐ ·
in w2

:: let x2 ⇐ ·
in w3

:: ~Ei2) is a well-formed context stack.

51

Proof: Part (b) follows immediately from the preconditions and the defini-
tion of well-formed context stack. For part (a), we show only the “only if”
direction which goes by induction over the structure of the derivation. The
“if” direction is similar. We only consider the details of the cases for (Push)
and (Pop) since these are the only rules that modify the context stack. The
other cases are trivial or following immediately from the inductive hypoth-
esis.

case (Push):
〈 let x′1 ⇐ w′1

in w′2

, ~Ei1 ++ (let x1 ⇐ ·
in let x2 ⇐ w2

in w3

:: ~Ei2) 〉 ⇓ a

because
〈w′1 , let x′1 ⇐ ·

in w′2

:: ~Ei1 ++ (let x1 ⇐ ·
in let x2 ⇐ w2

in w3

:: ~Ei2) 〉 ⇓ a:

By the restriction on the (Push) rule,
x′1 /∈ FV(~Ei1 ++ (let x1 ⇐ ·

in let x2 ⇐ w2

in w3

:: ~Ei2)),

so this context stack is well-formed.
By IH,
〈w′1 , let x′1 ⇐ ·

in w′2

:: ~Ei1 ++ (let x1 ⇐ ·
inw2

:: let x2 ⇐ ·
in w3

:: ~Ei2) 〉 ⇓ a

and thus
〈 let x′1 ⇐ w′1

in w′2

, ~Ei1 ++ (let x1 ⇐ ·
in w2

:: let x2 ⇐ ·
in w3

:: ~Ei2) 〉 ⇓ a

case (Pop): if ~Ei1 6= nil then the result follows from the IH.
If ~Ei1 = nil then we have

〈 unit w1 , let x1 ⇐ ·
in let x2 ⇐ w2

in w3

:: ~Ei2 〉 ⇓ a

because 〈 let x2 ⇐ w2[x1 := w1] in w3[x1 := w1] , ~Ei2 〉 ⇓ a
...by (Pop)

because 〈w2[x1 := w1] , let x2 ⇐ ·
in w3[x1 := w1]

:: ~Ei2 〉 ⇓ a

...by (Push)

52

Now since x1 /∈ FV(w3), let x2 ⇐ · in w3[x1 := w1] ≡ let x2 ⇐ · in w3 and
we have

〈w2[x1 := w1] , let x2 ⇐ ·
in w3

:: ~Ei2 〉 ⇓ a

...from above

implies 〈 unit w1 , let x1 ⇐ ·
in w2

:: let x2 ⇐ ·
in w3

:: ~Ei2 〉 ⇓ a

...by (Pop)

The following property states that residual terms are among the canonical
terms of specialization.

Property 7 (residual terms are canonical)
For all r ∈ Residual-terms[Λbtml],

〈 r , nil 〉 ⇓ r.

Proof:
It is easy to see that the set Residual-terms[Λbtml] ⊂ Terms[Λbtml] is exactly
generated by the following grammar

r ::= x | pnq | succ r | pred r | if0 r1 r2 r3 | λx . r | r0 @ r1 |
fixx. r | unit r | let x⇐ r1 in r2

The proof follows by a simple induction over the structure of terms in this
grammar.

The following property shows that each step in the flattening specializer
is appropriately reflected in the continuation-based specializer.

Property 8 If w 7−→s+ w′ and 〈w′ , nil 〉 ⇓ a, then 〈w , nil 〉 ⇓ a.

Proof: by induction over the structure of w, proceeding by cases according
to the last rule used in w 7−→s+ w′. We show only illustrative cases.

case succ pnq 7−→s+ unit pn+ 1q:

by assumption we have 〈 unit pn+ 1q , nil 〉 ⇓ a and thus we can conclude
〈 succ pnq , nil 〉 ⇓ a.

53

case let x1 ⇐ succ pnq in w2 7−→s+ let x1 ⇐ unit pn+ 1q in w2:

by assumption

〈 let x1 ⇐ unit pn+ 1q in w2 , nil 〉 ⇓ a
thus 〈 unit pn + 1q , let x1 ⇐ ·

in w2

:: nil 〉 ⇓ a ...by (Push)

Now we need to show

〈 let x1 ⇐ succ pnq in w2 , nil 〉 ⇓ a
which requires 〈 succ pnq , let x1 ⇐ ·

in w2

:: nil 〉 ⇓ a

...by (Push)
which requires 〈 unit pn + 1q , let x1 ⇐ ·

in w2

:: nil 〉 ⇓ a

and we have this from above.

case let x2 ⇐ (let x1 ⇐ w1 in w2) in w3 7−→s+ let x1 ⇐ w1

in let x2 ⇐ w2

in w3

where x1 /∈ FV(w3):

by assumption

〈 let x1 ⇐ w1 in let x2 ⇐ w2 in w3 , nil 〉 ⇓ a
thus 〈w1 , let x1 ⇐ ·

in let x2 ⇐ w2

in w3

:: nil 〉 ⇓ a

...by (Push)
and 〈w1 , let x1 ⇐ ·

in w2

:: let x2 ⇐ ·
in w3

:: nil 〉 ⇓ a

...by Property 6

Now we need to show

〈 let x2 ⇐ (let x1 ⇐ w1 in w2) in w3 , nil 〉 ⇓ a
which requires 〈 let x1 ⇐ w1 in w2 , let x2 ⇐ ·

inw3

:: nil 〉 ⇓ a

...by (Push)
which requires 〈w1 , let x1 ⇐ ·

in w2

:: let x2 ⇐ ·
in w3

:: nil 〉 ⇓ a

...by (Push)

and we have this from above.

54

case let x2 ⇐ (let x1 ⇐ w1 in w2) in w3 7−→s+ let x1 ⇐ w1

in let x2 ⇐ w2

in w3

where x1 /∈ FV(w3):

by assumption

〈 let x1 ⇐ w1 in let x2 ⇐ w2 in w3 , nil 〉 ⇓ a
thus 〈w1 , nil 〉 ⇓ r1

and 〈 let x2 ⇐ w2 in w3 , nil 〉 ⇓ r2 ...by (Assoc)
and thus 〈w2 , let x2 ⇐ ·

in w3

:: nil 〉 ⇓ r2 ...by (Push)

and note a ≡ let x1 ⇐ r1 in r2

Now we need to show

〈 let x2 ⇐ (let x1 ⇐ w1 in w2) in w3 , nil 〉 ⇓ a
which requires 〈 let x1 ⇐ w1

in w2

, let x2 ⇐ ·
inw3

:: nil 〉 ⇓ a

...by (Push)
which requires 〈w1 , nil 〉 ⇓ r1

and 〈w2 , let x2 ⇐ ·
in w3

:: nil 〉 ⇓ r2

...by (Assoc)

and we have both of these from above.

case if0w1 w2 w3 7−→s+ if0w′1 w2 w3 because w1 7−→s+ w′1:

by assumption

〈 if0 w′1 w2 w3 , nil 〉 ⇓ a
thus 〈w′1 , nil 〉 ⇓ r1

and 〈w2 , nil 〉 ⇓ r2

and 〈w3 , nil 〉 ⇓ r3

and note a ≡ if0 r1 r2 r3

Now we need to show

〈 if0 w1 w2 w3 , nil 〉 ⇓ a
which requires 〈w1 , nil 〉 ⇓ r1 (1)

and 〈w2 , nil 〉 ⇓ r2 (2)
and 〈w3 , nil 〉 ⇓ r3 (3).

Now (1) follows from IH, and (2) and (3) follow from above.

case lift pnq 7−→s+ pnq:

55

by assumption we have 〈 pnq , nil 〉 ⇓ a where a ≡ pnq and we have
〈 lift pnq , nil 〉 ⇓ pnq directly.

We can now prove part (1) (as enumerated above) of Theorem 5.

Lemma 4 w 7−→∗s+ r implies 〈w , nil 〉 ⇓ r.

Proof: by induction over the number of steps n in w 7−→∗s+ r.

case n = 0:

we need to show 〈 r , nil 〉 ⇓ r and this follows since residual terms are
canonical (Property 7).

case n = i+ 1: that is, w 7−→s+ w′ 7−→∗s+ r.

by IH, 〈w′ , nil 〉 ⇓ r and so by Property 8, 〈w , nil 〉 ⇓ r.

Now we turn to part (2) in the proof of Theorem 5. We need to show that,
given 〈w , nil 〉 ⇓ r, we have a corresponding sequence of specialization steps
in the flattening specializer. As expected, the proof proceeds by induction
over the derivation of 〈w , nil 〉 ⇓ r. However, the inductive hypothesis
must be strengthened to deal with configurations of the form 〈w , ~Ei 〉 ⇓ a.
In this stronger case, we need to show that a term corresponding to w in
the interpretation context associated with ~Ei specializes to a.

The following definition shows how context stacks can be unstacked to
yield a flattened interpretation context.

Definition 9 (unstacking)

unstack (nil) = [·]
unstack (let x1 ⇐ ·

in w2

:: ~Ei) = let x1 ⇐ ·
in unstack (~Ei)[w2]

For example, unstacking the context stack

let x1 ⇐ ·
inw2

:: let x2 ⇐ ·
inw3

:: nil

56

yields the interpretation context

let x1 ⇐ ·
in let x2 ⇐ w2

in w3.

Note that nested let’s appearing in w2 are not necessarily flattened.

Observation 1 (contexts yielded by unstacking)
For all ~Ei, exactly one of the following holds:

1. unstack (~Ei) = [·], or

2. unstack (~Ei) = E ′i for some interpretation context E ′i .

The following lemma shows the flattening specialization steps induced
by continuation-based specializer derivations.

Lemma 5 Let ~Ei be a well-formed context stack.

〈w , ~Ei 〉 ⇓ a implies unstack (~Ei)[w] 7−→∗s+ a

Proof: by induction over the derivation of 〈w , ~Ei 〉 ⇓ a. Some represen-
tative cases are given below. We will implicitly rely on Property 2 which
states that all context stacks appearing as subderivations of 〈w , ~Ei 〉 ⇓ a

are well-formed.

case 〈 unit w , nil 〉 ⇓ unit w:

unstack (nil)[unit w] = unit w and unit w 7−→∗s+ unit w by reflexivity of
7−→∗s+.

case 〈 succ pnq , ~Ei 〉 ⇓ a because 〈 unit pn+ 1q , ~Ei 〉 ⇓ a:

unstack (~Ei)[succ pnq]
7−→s+ unstack (~Ei)[unit pn+ 1q] ...relying on Observation 1
7−→∗s+ a ...by IH

case 〈 let x1 ⇐ w1 in w2 , ~Ei 〉 ⇓ a because 〈w1 , let x1 ⇐ ·
in w2

:: ~Ei 〉 ⇓ a:

Note x1 /∈ FV(~Ei) by the side-condition and proceed by cases of ~Ei.
case ~Ei ≡ nil:

57

unstack (~Ei)[let x1 ⇐ w1 inw2]
= let x1 ⇐ w1 in w2 ...by def. of unstack

= unstack (let x1 ⇐ ·
in w2

:: ~Ei)[w1] ...by def. of unstack

7−→∗s+ a ...by IH

case ~Ei ≡ let x2 ⇐ ·
in w3

:: ~Ei
′
:

Intuitively, we unfold the definition of unstack, apply the flattening
rule, and then fold unstack.

unstack (~Ei)[let x1 ⇐ w1 inw2]

= let x2 ⇐ (let x1 ⇐ w1 inw2) in unstack (~Ei
′
)[w3]

...by definition of unstack

7−→s+ let x1 ⇐ w1 in let x2 ⇐ w2 in unstack (~Ei
′
)[w3]

...note x1 /∈ FV(~Ei
′
) ∪ FV(w3)

= let x1 ⇐ w1 in unstack (let x2 ⇐ ·
in w3

:: ~Ei
′
)[w2]

...by definition of unstack

= unstack (let x1 ⇐ ·
in w2

:: let x2 ⇐ ·
in w3

:: ~Ei
′
)[w1]

...by definition of unstack

≡ unstack (let x1 ⇐ ·
in w2

:: ~Ei)[w1]

7−→∗s+ a

...by IH

case 〈 unit w1 , let x⇐ ·
in w2

:: ~Ei 〉 ⇓ a

because 〈w2[x := w1] , ~Ei 〉 ⇓ a:

58

unstack (let x⇐ ·
in w2

:: ~Ei)[unit w1]

= let x1 ⇐ unit w1 in unstack (~Ei)[w2]
...definition of unstack

7−→s+ unstack (~Ei)[w2][x1 := w1]

≡ unstack (~Ei)[w2[x1 := w1]]

...since let x⇐ ·
in w2

:: ~Ei

..is a well-formed stack and thus x1 /∈ FV(~Ei)
7−→s+ a

...by IH

case 〈w1 @w2 , nil 〉 ⇓ r1 @ r2

because 〈w1 , nil 〉 ⇓ r1 and 〈w2 , nil 〉 ⇓ r2:

unstack (nil)[w1 @w2]
= w1 @w2 ...definition of unstack
7−→∗s+ r1 @w2 ...by IH
7−→∗s+ r1 @ r2 ...by IH

case 〈 let x⇐ w1 in w2 , ~Ei 〉 ⇓ let x⇐ r1 in r2 because 〈w1 , nil 〉 ⇓ r1 and
〈w2 , ~Ei 〉 ⇓ r2

Note x1 /∈ FV(~Ei) and proceed by cases of ~Ei.
case ~Ei ≡ nil:

unstack (~Ei)[let x1 ⇐ w1 inw2]
= let x1 ⇐ w1 in w2 ...by definition of unstack
7−→∗s+ let x1 ⇐ r1 in w2 ...by IH
7−→∗s+ let x1 ⇐ r1 in r2 ...by IH

case ~Ei ≡ let x2 ⇐ ·
in w3

:: ~Ei
′
:

Intuitively, we unfold the definition of unstack, apply the flattening
rule, and then fold unstack.

59

unstack (~Ei)[let x1 ⇐ w1 inw2]

= let x2 ⇐ (let x1 ⇐ w1 inw2) in unstack (~Ei
′
)[w3]

...by definition of unstack

7−→s+ let x1 ⇐ w1 in let x2 ⇐ w2 in unstack (~Ei
′
)[w3]

...note x1 /∈ FV(~Ei
′
) ∪ FV(w3)

7−→∗s+ let x1 ⇐ r1 in let x2 ⇐ w2 in unstack (~Ei
′
)[w3]

...by IH

= let x1 ⇐ r1 in unstack (let x2 ⇐ ·
in w3

:: ~Ei
′
)[w2]

...by definition of unstack
7−→∗s+ let x1 ⇐ r1 in r2

...by IH

As a corollary, we obtain the proof of part (2) of Theorem 5.

Corollary 1 〈w , nil 〉 ⇓ r implies w 7−→∗s+ r.

Proof: Since nil is a well-formed context stack, by Lemma 5 we have
unstack (nil)[w] 7−→∗s+ r. Now since unstack (nil) = [·], we have w 7−→∗s+ r.

References

[1] Lars Ole Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, Computer Science Depart-
ment, University of Copenhagen, Copenhagen, Denmark, May 1994.
DIKU Rapport 94/19.

[2] Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics.
North-Holland, 1984.

[3] P. N. Benton. Strictness Analysis of Lazy Functional Programs. PhD
thesis, Computer Laboratory, University of Cambridge, Cambridge,
England, May 1995.

[4] P. N. Benton, G. M. Bierman, and V. C. V de Paiva. Computational
types from a logical perspective I. Technical report 365, Computer
Laboratory, University of Cambridge, Cambridge, England, May 1995.

60

[5] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Programming Languages, Portland, Ore-
gon, January 1994. ACM Press.

[6] Anders Bondorf. Improving binding times without explicit cps-
conversion. In William Clinger, editor, Proceedings of the 1992
ACM Conference on Lisp and Functional Programming, LISP Point-
ers, Vol. V, No. 1, pages 1–10, San Francisco, California, June 1992.
ACM Press.

[7] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science
of Computer Programming, 16:151–195, 1991.

[8] Anders Bondorf and Dirk Dussart. Improving CPS-based partial evalu-
ation: Writing cogen by hand. In Peter Sestoft and Harald Søndergaard,
editors, Proceedings of the ACM SIGPLAN Workshop on Partial Eval-
uation and Semantics-Based Program Manipulation, Technical Report
94/9, University of Melbourne, Australia, pages 1–10, Orlando, Florida,
June 1994.

[9] Charles Consel. A tour of Schism: A partial evaluation system for
higher-order applicative languages. In David A. Schmidt, editor, Pro-
ceedings of the Second ACM SIGPLAN Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, pages 145–154,
Copenhagen, Denmark, June 1993. ACM Press.

[10] Charles Consel and Olivier Danvy. For a better support of static data
flow. In Hughes [40], pages 496–519.

[11] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[12] Roy L. Crole and Andrew D. Gordon. Factoring an adequacy proof
(preliminary report). In John T. O’Donnell and Kevin Hammond, ed-
itors, Functional Programming, Glasgow 1993, Workshops in Comput-
ing, pages 9–25, Ayr, Scotland, 1993. Springer-Verlag.

61

[13] Roy L. Crole and Andrew M. Pitts. New foundations for fixpoint com-
putations: FIX-hyperdoctrines and the FIX-logic. Information and
Computation, 98:171–210, 1992.

[14] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr.,
editor, Proceedings of the Twenty-Third Annual ACM Symposium on
Principles of Programming Languages, pages 242–257, St. Petersburg
Beach, Florida, January 1996. ACM Press.

[15] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[16] Olivier Danvy and John Hatcliff. CPS transformation after strict-
ness analysis. ACM Letters on Programming Languages and Systems,
1(3):195–212, 1993.

[17] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. The essence
of eta-expansion in partial evaluation. LISP and Symbolic Computa-
tion, 8(3):209–227, 1995. An earlier version appeared in the proceed-
ings of the 1994 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation.

[18] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion
does The Trick. ACM Transactions on Programming Languages and
Systems, 1996. To appear.

[19] Rowan Davies. A temporal-logic approach to binding-time analysis.
In Proceedings of the Eleventh Annual IEEE Symposium on Logic in
Computer Science, pages 184–195, New Brunswick, New Jersey, July
1996. IEEE Computer Society Press.

[20] Rowan Davies and Frank Pfenning. A modal analysis of staged com-
putation. In Guy L. Steele Jr., editor, Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Programming Languages,
pages 258–283, St. Petersburg Beach, Florida, January 1996. ACM
Press.

[21] Dirk Dussart. PhD thesis, Katholieke Universiteit Leuven, Leuven,
Belgium, 1997. Forthcoming.

62

[22] Dirk Dussart and Peter Thiemann. Imperative functional specializa-
tion. Berichte des Wilhelm-Schickard-Instituts WSI-96-28, Universität
Tübingen, July 1996.

[23] R. Kent Dybvig, editor. Proceedings of the 1996 ACM SIGPLAN Inter-
national Conference on Functional Programming, Philadelphia, Penn-
sylvania, May 1996. ACM Press.

[24] Andrzej Filinski. Representing monads. In Boehm [5], pages 446–457.

[25] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In David W. Wall, edi-
tor, Proceedings of the ACM SIGPLAN’93 Conference on Programming
Languages Design and Implementation, SIGPLAN Notices, Vol. 28,
No 6, pages 237–247, Albuquerque, New Mexico, June 1993. ACM
Press.

[26] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,
volume 7 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1989.

[27] Robert Glück and Jesper Jørgensen. Efficient multi-level generating
extensions for program specialization. In Hermenegildo and Swierstra
[38], pages 259–278.

[28] Robert Glück and Andrei Klimov. Occam’s razor in metacomputa-
tion: the notion of a perfect process tree. In Patrick Cousot, Moreno
Falaschi, Gilberto Filè, and Antoine Rauzy, editors, Proceedings of the
Third International Workshop on Static Analysis WSA’93, number 724
in Lecture Notes in Computer Science, pages 112–123, Padova, Italy,
September 1993.

[29] Carsten K. Gomard. A self-applicable partial evaluator for the lambda-
calculus: Correctness and pragmatics. ACM Transactions on Program-
ming Languages and Systems, 14(2):147–172, 1992.

[30] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the
untyped lambda-calculus. Journal of Functional Programming, 1(1):21–
69, 1991.

[31] Andrew D. Gordon. Functional Programming and Input/Output. PhD
thesis, Computer Laboratory, University of Cambridge, Cambridge,
England, February 1993. Technical Report No. 285.

63

[32] Carl A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, 1992.

[33] John Hannan and Dale Miller. Deriving mixed evaluation from stan-
dard evaluation for a simple functional language. In J. L. A. van de
Snepscheut, editor, Proceedings of a Conference on Mathematics of Pro-
gram Construction, number 375 in Lecture Notes in Computer Science,
pages 239–255, Groningen, The Netherlands, 1989.

[34] John Hatcliff. The Structure of Continuation-Passing Styles. PhD the-
sis, Department of Computing and Information Sciences, Kansas State
University, Manhattan, Kansas, June 1994.

[35] John Hatcliff. Mechanically verifying the correctness of an offline partial
evaluator. In Hermenegildo and Swierstra [38], pages 279–298.

[36] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In Boehm [5], pages 458–471.

[37] John Hatcliff and Robert Glück. An operational theory of self-
applicable on-line program specialization. In Olivier Danvy, Robert
Glück, and Peter Thiemann, editors, Partial Evaluation, number 1110
in Lecture Notes in Computer Science, pages 161–182, Dagstuhl, Ger-
many, February 1996.

[38] Manuel Hermenegildo and S. Doaitse Swierstra, editors. Seventh In-
ternational Symposium on Programming Language Implementation and
Logic Programming, number 982 in Lecture Notes in Computer Science,
Utrecht, The Netherlands, September 1995.

[39] Carsten K. Holst and Carsten K. Gomard. Partial evaluation is fuller
laziness. In Paul Hudak and Neil D. Jones, editors, Proceedings of
the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, SIGPLAN Notices, Vol. 26, No 9, pages
223–233, New Haven, Connecticut, June 1991. ACM Press.

[40] John Hughes, editor. Proceedings of the Fifth ACM Conference on
Functional Programming and Computer Architecture, number 523 in
Lecture Notes in Computer Science, Cambridge, Massachusetts, August
1991. Springer-Verlag.

64

[41] Neil D. Jones, editor. Special issue on Partial Evaluation, Journal of
Functional Programming, Vol. 3, Part 3. Cambridge University Press,
July 1993.

[42] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1993.

[43] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation.
LISP and Symbolic Computation, 2(1):9–50, 1989.

[44] John Launchbury. A strongly-typed self-applicable partial evaluator.
In Hughes [40], pages 145–164.

[45] Julia L. Lawall and Olivier Danvy. Continuation-based partial evalua-
tion. In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Con-
ference on Lisp and Functional Programming, LISP Pointers, Vol. VII,
No. 3, Orlando, Florida, June 1994. ACM Press.

[46] Julia L. Lawall and Olivier Danvy. Continuation-based partial eval-
uation. Technical Report CS-95-178, Computer Science Department,
Brandeis University, Waltham, Massachusetts, January 1995. An ear-
lier version appeared in the proceedings of the 1994 ACM Conference
on Lisp and Functional Programming.

[47] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In Peter Lee, editor, Proceedings of the Twenty-
Second Annual ACM Symposium on Principles of Programming Lan-
guages, pages 333–343, San Francisco, California, January 1995. ACM
Press.

[48] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[49] Kristian Nielsen. Master’s thesis, DIKU, Computer Science Depart-
ment, University of Copenhagen, Copenhagen, Denmark, 1997. Forth-
coming.

[50] Kristian Nielsen and Morten Heine Sørensen. Call-by-name CPS-
translation as a binding-time improvement. In Alan Mycroft, editor,
Static Analysis, number 983 in Lecture Notes in Computer Science,
pages 296–313, Glasgow, Scotland, September 1995. Springer-Verlag.

65

[51] Flemming Nielson. A denotational framework for data flow analysis.
Acta Informatica, 18:265–287, 1982.

[52] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1992.

[53] Hanne Riis Nielson and Flemming Nielson. Semantics with Applica-
tions, a formal introduction. Wiley Professional Computing. John Wi-
ley and Sons, 1992.

[54] Jens Palsberg. Correctness of binding-time analysis. In Jones [41],
pages 347–363.

[55] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML pro-
grams in the system Coq. Journal of Symbolic Computation, 15:607–
640, 1993.

[56] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[57] Dag Prawitz. Natural Deduction. Almquist and Wiksell, Uppsala, 1965.

[58] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. LISP and Symbolic Computation, 6(3/4):
289–360, December 1993.

[59] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for
data flow analysis? In Vivek Sarkar, editor, Proceedings of the ACM
SIGPLAN’94 Conference on Programming Languages Design and Im-
plementation, SIGPLAN Notices, Vol. 29, No 6, pages 1–12, Orlando,
Florida, June 1994. ACM Press.

[60] Amr Sabry and Philip Wadler. Compiling with reflections. In Dybvig
[23], pages 13–24.

[61] David Sands. Proving the correctness of recursion-based automatic pro-
gram transformations. In Peter Mosses, Mogens Nielsen, and Michael
Schwartzbach, editors, Proceedings of TAPSOFT ’95, number 915 in
Lecture Notes in Computer Science, pages 681–695, Aarhus, Denmark,
May 1995.

66

[62] Morten Heine Sørensen, Robert Glück, and Neil Jones. Towards uni-
fying partial evaluation, deforestation, supercompilation, and GPC. In
Donald Sannella, editor, Proceedings of the Fifth European Symposium
on Programming, number 788 in Lecture Notes in Computer Science,
pages 485–500, Edinburgh, Scotland, April 1994.

[63] Guy L. Steele Jr. Building interpreters by composing monads. In Boehm
[5], pages 472–492.

[64] Carolyn Talcott. A theory for program and data type specification.
Theoretical Computer Science, 104(1):129–159, 1992.

[65] Peter Thiemann. Cogen in six lines. In Dybvig [23], pages 180–189.

[66] Philip Wadler. The essence of functional programming (tutorial). In
Andrew W. Appel, editor, Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Programming Languages, pages 1–14, Al-
buquerque, New Mexico, January 1992. ACM Press.

[67] Philip Wadler. Comprehending monads. Mathematical Structures in
Computer Science, 2(4):461–493, December 1992.

[68] Mitchell Wand. Specifying the correctness of binding-time analysis. In
Jones [41], pages 365–387.

67

Recent Publications in the BRICS Report Series

RS-96-34 John Hatcliff and Olivier Danvy. A Computational For-
malization for Partial Evaluation (Extended Version). Oc-
tober 1996. 67 pp. To appear inMathematical Structures
in Computer Science.

RS-96-33 Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and
Jeffrey Outlaw Shallit. The Computational Complexity
of Some Problems of Linear Algebra. September 1996.
39 pp. Revised version to appear inSTACS ’97: 14th
Annual Symposium on Theoretical Aspects of Computer
Science Proceedings, LNCS, 1997.

RS-96-32 P. S. Thiagarajan. Regular Trace Event Structures.
September 1996. 34 pp.

RS-96-31 Ian Stark. Names, Equations, Relations: Practical Ways
to Reason about ‘new’. September 1996. ii+22 pp. To
appear in Typed Lambda Calculi and Applications: 3rd
International Conference, TLCA ’97 Proceedings, LNCS,
1997.

RS-96-30 Arne Andersson, Peter Bro Miltersen, and Mikkel Tho-
rup. Fusion Trees can be Implemented withAC0 Instruc-
tions only. September 1996. 8 pp.

RS-96-29 Lars Arge. The I/O-Complexity of Ordered Binary-
Decision Diagram Manipulation. August 1996. 35 pp.
An extended abstract version appears in Staples, Eades,
Kato, and Moffat, editors, Algorithms and Computation:
6th International Symposium, ISAAC ’95 Proceedings,
LNCS 1004, 1995, pages 82–91.

RS-96-28 Lars Arge.The Buffer Tree: A New Technique for Optimal
I/O Algorithms. August 1996. 34 pp. This report is a
revised and extended version of the BRICS Report RS-
94-16. An extended abstract appears in Akl, Dehne, Sack,
and Santoro, editors, Algorithms and Data Structures:
4th Workshop, WADS ’95 Proceedings, LNCS 955, 1995,
pages 334–345.

RS-96-27 Devdatt P. Dubhashi, Volker Priebe, and Desh Ranjan.
Negative Dependence Through the FKG Inequality. July
1996. 15 pp.

