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Abstract

In this paper we develop a technique for transforming an internal-
memory tree data structure into an external-memory structure. We
show how the technique can be used to develop a search tree like struc-
ture, a priority queue, a (one-dimensional) range tree and a segment
tree, and give examples of how these structures can be used to de-
velop efficient I/O algorithms. All our algorithms are either extremely
simple or straightforward generalizations of known internal-memory
algorithms—given the developed external data structures. We believe
that algorithms relying on the developed structure will be of practical
interest due to relatively small constants in the asymptotic bounds.
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1 Introduction

In the last few years, more and more attention has been given to Input/Output
(I/O) complexity of existing algorithms and to the development of new I/O-
efficient algorithms. This is due to the fact that communication between
fast internal memory and slower external memory is the bottleneck in many
large-scale computations. The significance of this bottleneck is increasing as
internal computation gets faster, and especially as parallel computing gains
popularity [21]. Currently, technological advances are increasing CPU speed
at an annual rate of 40-60% while disk transfer rates are only increasing by
7-10% annually [24].

A lot of work has already been done on designing external memory ver-
sions of known internal-memory data structures (e.g. [6, 14, 16, 17, 18, 23,
25, 26, 29]), but practically all of these data structures are designed to be
used in on-line settings, where queries should be answered immediately and
within a good worst case number of I/Os. This effectively means that using
these structures to solve off-line problems yields non-optimal algorithms be-
cause they are not able to take full advantage of the large internal memory.
Therefore a number of researchers have developed techniques and algorithms
for solving large-scale off-line problems without using external memory data
structures [1, 11, 14].

In this paper we develop external data structures that take advantage
of the large main memory. This is done by only requiring good amortized
performance of the operations on the structures, and by allowing search op-
erations to be batched. The data structures developed can then be used in
simple and I/O-efficient algorithms for computational geometry and graph
problems. As pointed out in [11] and [14] problems from these two areas
arise in many large-scale computations in e.g. object-oriented, deductive
and spatial databases, VLSI design and simulation programs, geographic in-
formations systems, constraint logic programming, statistics, virtual reality
systems, and computer graphics.

1.1 I/O Model and Previous Results

We will be working in an I/O model introduced by Aggarwal and Vitter [1].
The model has the following parameters:

2



N = # of elements in the problem instance;
M = # of elements that can fit into main memory;
B = # of elements per block,

where M < N and 1 ≤ B ≤M/2. The model captures the essential param-
eters of many of the I/O-systems in use today, and depending on the size of
the data elements, typical values for workstations and file servers are on the
order of M = 106 or 107 and B = 103. Large-scale problem instances can be
in the range N = 1010 to N = 1012.

An I/O operation in the model is a swap of B elements from internal
memory with B consecutive elements from external memory. The measure
of performance we consider is the number of such I/Os needed to solve a
given problem. Internal computation is for free. As we shall see shortly the
quotients N/B (the number of blocks in the problem) and M/B (the number
of blocks that fit into internal memory) play an important role in the study
of I/O-complexity. Therefore, we will use n as shorthand for N/B and m for
M/B. Furthermore, we say that an algorithm uses a linear number of I/O
operations if it uses at most O(n) I/Os to solve a problem of size N . In [31]
the I/O model is extended with a parameter D. Here the external memory
is partitioned into D distinct disk drives, and if no two blocks come from
the same disk, D blocks can be transferred per I/O. The number D of disks
range up to 102 in current disk arrays.

Early work on I/O algorithms concentrated on algorithms for sorting
and permutation-related problems in the single disk model [1], as well as
in the extended version of the I/O-model [19, 20, 30, 31]. External sorting
requires Θ(n logm n) I/Os,1 which is the external memory equivalent of the
well-known Θ(N logN) time bound for sorting in internal memory. Note that
this means that O( logm n

B
) is the I/O bound corresponding to the O(log2N)

bound on the operations on many internal-memory data structures. More re-
cently external-memory researchers have designed algorithms for a number of
problems in different areas. Most notably I/O-efficient algorithms have been
developed for a large number of computational geometry [5, 14] and graph
problems [11]. In [4] a general connection between the comparison-complexity
and the I/O-complexity of a given problem is shown in the “comparison I/O

1We define for convenience logm n = max{1, (logn)/(logm)}.
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model” where comparison of elements is the only allowed operation in inter-
nal memory.

1.2 Our Results

In this paper we develop a technique for transforming an internal-memory
tree data structure into an external memory data structure. We use our
technique to develop a number of external memory data structures, which in
turn can be used to develop optimal algorithms for problems from the dif-
ferent areas previously considered with respect to I/O-complexity. All these
algorithms are either extremely simple or straightforward generalizations of
known internal-memory algorithms—given the developed external data struc-
tures. This is in contrast to the I/O-algorithms developed so far, as they are
all very I/O-specific. Using our technique we on the other hand manage to
isolate all the I/O-specific parts of the algorithms in the data structures,
which is nice from a software engineering point of view. Ultimately, one
would like to give the task of transforming an ordinary internal-memory al-
gorithm into a good external memory one to the compiler. We believe that
our technique and the developed structures will be useful in the development
of algorithms for other problems in the mentioned areas as well as in other
areas. Examples of this can be found in [2, 3, 5, 9]. More specifically, the
results in this paper are the following:

Sorting: We develop a simple dynamic tree structure (The Buffer Tree)
with operations insert, delete and write. We prove amortized I/O bounds
of O( logm n

B
) on the first two operations and O(n) on the last. Using the

structure we can sort N elements with the standard tree-sort algorithm in
the optimal number of I/Os. This algorithm is then an alternative to the
sorting algorithms developed so far. The algorithm is the first I/O-algorithm
that does not need all the elements to be present by the start of the algorithm.

Graph Problems: We extend the buffer tree with a deletemin operation
in order to obtain an external-memory priority queue. We prove an O( logm n

B
)

amortized bound on the number of I/Os used by this operation. Using the
structure it is straightforward to develop an extremely simple algorithm for
“circuit-like” computations as defined in [11]. This algorithm is then an al-
ternative to the “time-forward processing technique” developed in the same
paper. The time-forward processing technique only works for large values of
m, while our algorithm works for all m. In [11] the time-forward processing
technique is used to develop an efficient I/O algorithm for external-memory
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list-ranking, which in turn is used to develop efficient algorithms for a large
number of graph-problems.2 All these algorithms thus inherit the constraint
on m and our new algorithm removes it from all of them. Finally, the struc-
ture can of course also be used to sort optimally.

Computational Geometry Problems: We also extend the buffer tree
with a batched rangesearch operation in order to obtain an external (one-
dimensional) range tree structure. We prove an O( logm n

B
+r) amortized bound

on the number of I/Os used by the operation. Here r is the number of
blocks reported. Furthermore, we use our technique to develop an external
version of the segment tree with operations insert/delete and batched search
with the same I/O bounds as the corresponding operations on the range
tree structure. The two structures enable us to solve the orthogonal line
segment intersection, the batched range searching, and the pairwise rectangle
intersection problems in the optimal number of I/O operations. We can
solve these problems with exactly the same plane-sweep algorithms as are
used in internal memory. As mentioned, large-scale computational geometry
problems arise in many areas. The three intersection reporting problems
mentioned especially arise in VLSI design and are certainly large-scale in
such applications. The pairwise rectangle intersection problem is of special
interest, as it is used in VLSI design rule checking [8]. Optimal algorithms
for the three problems are also developed in [14], but as noted earlier these
algorithms are very I/O-specific, while we manage to “hide” all the I/O-
specific parts in the data structures and use the known internal-memory
algorithms. A note should also be made on the fact that the search operations
are batched. Batched here means that we will not immediately get the result
of a search operation. Furthermore, parts of the result will be reported
at different times when other operations are performed. This suffices in the
plan-sweep algorithms we are considering, as the sequence of operations done
on the data structure in these algorithms does not depend on the results of
the queries in the sequence. In general, problems where the whole sequence
of operations on a data structure is known in advance, and where there is
no requirement on the order in which the queries should be answered, are
known as batched dynamic problems [13].

As mentioned some work has already been done on designing external
2Expression tree evaluation, centroid decomposition, least common ancestor, minimum

spanning tree verification, connected components, minimum spanning forest, biconnected
components, ear decomposition, and a number of problems on planar st-graphs.
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versions of known internal dynamic data structures, but practically all of it
has been done in the I/O model where the size of the internal memory equals
the block size. The motivation for working in this model has partly been that
the goal was to develop structures for an on-line setting, where answers to
queries should be reported immediately and within a good worst-case number
of I/Os. This means that if we used these structures to solve the problems
we consider in this paper, we would not be able to take full advantage of the
large main memory. Consider for example the well-known B-tree [7, 12, 18].
On such a tree one can do an insert or delete operation in O(logB n) I/Os
and a rangesearch operation in O(logB n + r) I/Os. This means that using
a B-tree as sweep-structure in the standard plane-sweep algorithm for the
orthogonal line segment intersection problem results in an algorithm using
O(N logB n+r) I/Os. But an optimal solution for this problem only requires
O(n logm n + r) I/Os [4, 14]. For typical systems B is less than m so logB n
is larger than logm n, but more important, the B-tree solution will be slower
than the optimal solution by a factor of B. As B typically is on the order
of thousands this factor is crucial in practice. The main problem with the
B-tree in this context is precisely that it is designed to have a good worst-case
on-line search performance. In order to take advantage of the large internal
memory, we on the other hand use the fact that we only are interested in
the overall I/O use of the algorithm for an off-line problem—that is, in a
good amortized performance of the involved operations—and sometime even
satisfied with batched search operations.

As mentioned we believe that one of the main contributions of this paper
is the development of external-memory data structures that allow us to use
the normal internal-memory algorithms and “hide” the I/O-specific parts in
the data structures. Furthermore, we believe that our structures will be of
practical interest due to relatively small constants in the asymptotic bounds.
We hope in the future to be able to implement some of the structures in the
transparent parallel I/O environment (TPIE) developed by Vengroff [27].
Results of experiments on the practical performance of several algorithms
developed for the I/O model are reported in [9, 10, 28].

The main organization of the rest of this paper is the following: In the
next section we sketch our general technique. In section 3 we then develop the
basic buffer tree structure which can be use to sort optimally, and in section 4
and 5 we extend this structure with a deletemin and batched rangesearch
operation, respectively. The external version of the segment tree is developed
in section 6. Using techniques from [20] all the developed structures can be
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modified to work in theD-disk model—that is, the I/O bounds can be divided
by D. We discuss such an extension in Section 7. Finally, conclusions are
given in Section 8.

2 A Sketch of the Technique

In this section we sketch the main ideas in our transformation technique.
When we want to transform an internal-memory tree data structure into an
external version of the structure, we start by grouping the (binary) nodes in
the structure into super-nodes with fan-out Θ(m)—that is, fan-out equal to
the number of blocks that fits into internal memory. We furthermore group
the leaves together into blocks obtaining an O(logm n) “super-node height”.
To each of the super-nodes we then assign a “buffer” of size Θ(m) blocks.
No buffers are assigned to the leaves. As the number of super-nodes on the
level just above the leaves is O(n/m), this means that the total number of
buffers in the structure is O(n/m).

Operations on the structure—updates as well as queries—are then done
in a “lazy” manner. If we for example are working on a search tree structure
and want to insert an element among the leaves, we do not right away search
all the way down the tree to find the place among the leaves to insert the
element. Instead, we wait until we have collected a block of insertions (or
other operations), and then we insert this block in the buffer of the root.
When a buffer “runs full” the elements in the buffer are “pushed” one level
down to buffers on the next level. We call this a buffer-emptying process.
Deletions or other and perhaps more complicated updates, as well as queries,
are basically done in the same way as insertions. This means that we can
have several insertions and deletions of the same element in the tree, and we
therefore time stamp the elements when we insert them in the top buffer.
It also means that the queries get batched in the sense that the result of
a query may be generated (and reported) lazily by several buffer-emptying
processes.

The main requirement needed to show the I/O bounds mentioned in
the introduction is that we should be able to empty a buffer in O(m + r′)
I/O operations. Here r′ is the number of blocks reported by query oper-
ations in the emptied buffer. If this is the case, we can do an amorti-
zation argument by associating a number of credits to each block of ele-
ments in the tree. More precisely, each block in the buffer of node x must
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hold O(the height of the tree rooted at x) credits. As we only do a buffer-
emptying process when the buffer runs full, that is, when it contains Θ(m)
blocks, and as we can charge the r′-term to the queries that cause the re-
ports, the blocks in the buffer can pay for the emptying-process as they all get
pushed one level down. On insertion in the root buffer we then have to give
each update element O( logm n

B
) credits and each query element O( logm n

B
+ r)

credits, and this gives us the desired bounds. Of course we also need to con-
sider e.g. rebalancing of the transformed structure. We will return to this,
as well as the details in other operations, in later sections. Another way of
looking at the above amortization argument is that we touch each block a
constant number of times on each level of the structure. Thus the argument
still holds if we can empty a buffer in a linear number of I/Os in the number
of elements in the buffer. In later sections we will use this fact several times
when we show how to empty a buffer containing x blocks, where x is bigger
than m, in O(m+x) = O(x) I/Os. Note also that the amortization argument
works as long as the fan-out of the super-nodes is Θ(mc) for 0 < c ≤ 1, as
the super-node height remains O(logm n) even with this smaller fan-out. We
will use this fact in the development of the external segment tree.

3 The Buffer Tree

In this section we will develop the basic structure—which we call the buffer
tree—and only consider the operations needed in order to use the structure
in a simple sorting algorithm. In later sections we then extend this basic
structure in order to obtain an external priority queue and an external (one-
dimensional) range tree.

The buffer tree is an (a, b)-tree [15] with a = m/4 and b = m, extended
with a buffer in each node. In such a tree all nodes except for the root have
fan-out between m/4 and m, and thus the height of the tree is O(logm n).
The buffer tree is pictured in Figure 1. As discussed in section 2 we do the
following when we want to do an update on the buffer tree: We construct
a new element consisting of the element to be inserted or deleted, a time
stamp, and an indication of whether the element is to be inserted or deleted.
When we have collected B such elements in internal memory, we insert the
block in the buffer of the root. If the buffer of the root still contains less than
m/2 blocks we stop. Otherwise, we empty the buffer. The buffer-emptying
process is described in Figure 2 and 5. We define internal nodes to be all
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Figure 1: The buffer tree.

nodes which do not have leaves as children, and the basic part of the process
which is used on these nodes (corresponding to the discussion in the last
section) is given in Figure 2. Note that the buffer-emptying process is only
done recursively on internal nodes. Only after finishing all buffer-emptying
processes on internal nodes, we empty the buffers of the leaf nodes as we call
the nodes which are not internal. That the buffer-emptying process on an
internal node can be done in a linear number of I/Os as required is easily
realized: The elements are loaded and written ones, and at most O(m) I/Os
are used on writing non-filled blocks every time we load m/2 blocks. Note
that the cost of emptying a buffer containing o(m) blocks remains O(m), as
we distribute the elements to Θ(m) children.

The emptying of a leaf buffer is a bit more complicated as we also need

• Load the partitioning (or routing) elements of the node into internal memory.
• Repeatedly load (at most) m/2 blocks of the buffer into internal memory and do the

following:

1. Sort the elements from the buffer in internal memory. If two equal elements—
an insertion and a deletion—“meet” during this process, and if the time stamps
“fit”, then the two elements annihilates.

2. Partition the elements according to the partitioning elements and output them
to the appropriate buffers one level down (maintaining the invariant that at
most one block in a buffer is non-full).

• If the buffer of any of the children now contains more than 1
2m blocks, and if the

children are internal nodes, then recursively apply the emptying-process on these
nodes.

Figure 2: The buffer-emptying process on internal nodes.
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Rebalancing after inserting an element below v:

DO v has b+ 1 children ->
IF v is the root ->

let x be a new node and make
v its only child

ELSE
let x be the parent of v

FI
Let v′ be a new node
Let v′ be a new child of x
immediately after v

Split v:
Take the rightmost d(b + 1)/2e
children away from v and make
them children of v′.

Let v=x
OD
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�����

x

v v′v

x

Figure 3: Insert in (a, b) tree.

to consider rebalancing of the structure when we empty such a buffer. The
algorithm is given in Figure 5. Basically the rebalancing is done precisely
as on normal (a, b)-trees [15]. After finding the position of a new element
among the elements in the leaves of an (a, b)-tree, the rebalancing is done by a
series of “splits” of node in the structure. We give the algorithm in Figure 3.
Similarly, after deleting an element in a leaf the rebalancing is accomplished
by a series of node “fusions” possibly ending with a node “sharing”. The
algorithm is given in Figure 4. In the buffer tree case we need to modify the
delete rebalancing algorithm slightly because of the buffers. The modification
consists of doing a buffer-emptying process before every rebalance operation.
More precisely, we do a buffer-emptying process on v′ in Figure 4 when it
is involved in a fuse or share rebalancing operation. This way we can do
the actual rebalancing operation as normally, without having to worry about
elements in the buffers. This is due to the fact that our buffer-emptying
process on internal nodes maintains the invariant that if the buffer of a leaf
node runs full then all nodes on the path to the root have empty buffers.
Thus when we start rebalancing the structure (insert and delete the relevant
blocks) after emptying all the leaf buffers (Figure 5), all nodes playing the
role of v in split, fuse or share rebalance operations already have empty

10



Rebalancing after deleting an element below v:

DO v has a− 1 children AND
v′ has less than a+ t+ 1 children ->

Fuse v and v′:
Make all children of v′ children of v

Let v=x
Let v′ be a brother of x
IF x does not have a brother (x is the

root) AND x only has one child ->
Delete x
STOP

FI
Let x be the parent of v.

OD
(* either v has more than a children

and we are finished, or we can
finish by sharing *)

IF v has a− 1 children ->
Share:

Take s children away from v′ and
make them children of v.

FI

���
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�����
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�����

v

xx

v v′

x

v v′

x

v v′

Figure 4: Delete in (a, b)-tree (s = d((b/2−a)+1)/2e and t = (b/2−a)+s−1).

buffers. Also if the emptying of the buffer of v′ results in a leaf buffer running
full, the invariant will be fulfilled because all nodes on the path from v′s
parent x to the root have empty buffers. Note that the reason for not doing
buffer-emptying processes on leaf nodes recursively, is to prevent different
rebalancing operations from interfering with each other. This is also the
reason for the special way of handling deletes with dummy blocks; while
deletion of a block may result in several buffer-emptying processes, this is
not the case for insertions as no buffer-emptying process are necessary in this
rebalancing algorithm.

We can now prove our main theorem.

Theorem 1 The total cost of an arbitrary sequence of N intermixed insert
and delete operation on an initially empty buffer tree is O(n logm n) I/O
operations, that is, the amortized cost of an operation is O( logm n

B
) I/Os.
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• As long as there is a leaf node v with a full buffer (size greater than m/2 blocks) do
the following (x is the number of leaves of v):

1. Sort the elements in the buffer of v with an optimal I/O sorting algorithm and
remove “matching” insert/delete elements.

2. Merge the sorted list with the sorted list of elements in the leaves of v while
removing “matching” insert/delete elements.

3. If the number of blocks of elements in the resulting list is smaller than x do
the following:

(a) Place the elements in sorted order in the leaves of v.
(b) Add “dummy-blocks” until v has x leaves and update the partition ele-

ments in v.

4. If the number of blocks of elements in the resulting list is bigger than x do
the following:

(a) Place the x smallest blocks in the leaves of v and update the partition
elements of v accordingly.

(b) Repeatedly insert one block of the rest of the elements and rebalance.

• Repeatedly delete one dummy block and rebalance—while performing a buffer-
emptying process on the relevant nodes involved in a rebalance operation (v′ of
Figure 4) before the operation is done (if v′ is a leaf node its buffer is emptied as
described above).
If the delete (or rather the buffer-emptying processes done as a result of it) results
in any leaf buffer becoming full, these buffers are emptied as described above before
the next dummy block is deleted.

Figure 5: Emptying the buffers of the leaf nodes.

Proof : As discussed in Section 2 the total cost of all the buffer-emptying
processes on internal nodes with full buffers is bounded by O(n logm n) I/Os.
This follows from the fact that one such process uses a linear number of I/Os
in the number of blocks pushed one level down.

During the rebalancing operations we empty a number of non-full buffers
using O(m) I/Os, namely one for each rebalancing operation following a
deletion of a block. Furthermore, it is easy to realize that the administrative
work in a rebalancing operation—updating partitioning elements and so on—
can be performed in O(m) I/Os. In [15] it is shown that the number of
rebalancing operations in a sequence of K updates on an initially empty
(a, b)-tree is bounded by O(K/(b/2 − a)) if b > 2a. As we are inserting
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blocks in the (m/4,m)-tree underlying the buffer tree this means that the
total number of rebalance operations in a sequence of N updates on the buffer
tree is bounded by O(n/m). Thus the total cost of the rebalancing is O(n).

The only I/Os we have not counted so far are the ones used on emptying
leaf buffers. The number of I/Os used on a buffer-emptying process on a leaf
node is dominated by the sorting of the elements (Figure 5, step 1). As any
given element will only once be involved in such a sorting the total number
of I/Os used to empty leaf buffers is bounded by O(n logm n). This proves
the lemma. 2

In order to use the transformed structure in a simple sorting algorithm,
we need a empty/write operation that empties all the buffers and then re-
ports the elements in the leaves in sorted order. The emptying of all buffers
can easily be done just by performing a buffer-emptying process on all nodes
in the tree—from the top. As emptying one buffer costs O(m) I/Os amor-
tized, and as the total number of buffers in the tree is O(n/m), we have the
following:

Theorem 2 The amortized I/O cost of emptying all buffers of a buffer tree
after performing N updates on it, and reporting all the remaining elements
in sorted order, is O(n).

Corollary 1 N elements can be sorted in O(n logm n) I/O operations using
the buffer tree.

As mentioned the above result is optimal and our sorting algorithm is the
first that does not require all the elements to be present by the start of the
algorithm. In Section 7 we discuss how to avoid the sorting algorithm used
in the buffer-emptying algorithm.

Before continuing to design more operations on the buffer tree a note
should be made on the balancing strategy used. We could have used a sim-
pler balancing strategy than the one presented in this section. Instead of
balancing the tree bottom-up we can balance it in a top-down style. We can
make such a strategy work, if we “tune” our constants (fan-out and buffer-
size) in such a way that the maximal number of elements in the buffers of a
subtree is guaranteed to be less that half the number of elements in the leaves
of the subtree. If this is the case we can do the rebalancing of a node when
we empty its buffer. More precisely, we can do a split, a fuse or a sharing in
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connection with the buffer-emptying process on a node, in order to guarantee
that there is room in the node to allow all its children to fuse or split. In this
way we can make sure that rebalancing will never propagate. Unfortunately,
we have not been able to make this simpler strategy work when rangesearch
operations (as discussed in Section 5) are allowed.

4 An External Priority Queue

Normally, we can use a search tree structure to implement a priority queue
because we know that the smallest element in a search tree is in the leftmost
leaf. The same strategy can be used to implement an external priority queue
based on the buffer tree. There are a couple of problems though, because
using the buffer tree we cannot be sure that the smallest element is in the
leftmost leaf, as there can be smaller elements in the buffers of the nodes
on the leftmost path. However, there is a simple strategy for performing a
deletemin operation in the desired amortized I/O bound. When we want to
perform a deletemin operation we simply do a buffer-emptying process on
all nodes on the path from the root to the leftmost leaf. To do so we use
O(m · logm n) I/Os amortized. After doing so we can be sure not only that
the leftmost leaf consists of the B smallest elements, but also that (at least)
the 1

4m · B smallest elements in the tree are in the children (leaves) of the
leftmost leaf. If we delete these elements and keep them in internal memory,
we can answer the next 1

4m ·B deletemin operations without doing any I/Os.
Of course we then also have to check insertions and deletions against the
minimal elements in internal memory. This can be done in a straightforward
way without doing extra I/Os, and a simple amortization argument gives us
the following:

Theorem 3 The total cost of an arbitrary sequence of N insert, delete and
deletemin operations on an initially empty buffer tree is O(n logm n) I/O
operations, that is, the amortized cost of an operation is O( logm n

B
) I/Os.

Note that in the above result we use m/4 blocks of internal memory to
hold the minimal elements. In some applications (e.g. in [5]) we would like to
use less internal memory for the external priority queue structure. Actually,
we can make our priority queue work with as little as 1

4m
1/c (0 < c ≤ 1)

blocks of internal memory, by decreasing the fan-out and the size of the
buffers to Θ(m1/c) as discussed in Section 2.
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4.1 Application: Time-Forward Processing

As mentioned in the introduction a technique for evaluating circuits (or
“circuit-like” computations) in external memory is developed in [11]. This
technique is called time-forward processing. The problem is the following:
We are given a bounded fan-in boolean circuit, whose description is stored
in external memory, and want to evaluate the function computed by the net-
work. It is assumed that the representation of the circuit is topologically
sorted, that is, the labels of the nodes come from a total order <, and for
every edge (v, w) we have v < w. Nothing is assumed about the functions in
the nodes, except that they take at most M/2 inputs. Thinking of vertex v
as being evaluated at “time” v motivates calling an evaluation of a circuit a
time-forward processing. The main issue in such an evaluation is to ensure
that when one evaluates a particular vertex one has the values of its inputs
in internal memory.

In [11] an external-memory algorithm using O(n logm n) I/Os is developed
(here N is the number of nodes plus the number of edges). The algorithm
uses a number of known as well as new I/O-algorithm design techniques and
is not particularly simple. Furthermore, the algorithm only works for large
values of m, more precisely it works if

√
m/2 log(M/2) ≥ 2 log(2N/M). For

typical machines this constraint will be fulfilled. Using our external priority
queue however, it is obvious how to develop a simple alternative algorithm—
without the constraint on the value of m. When we evaluate a node v we
simply send the result forward in time to the appropriate nodes, by inserting
a copy of the result in the priority queue with priority w for all edges (v, w).
We can then obtain the inputs to the next node in the topological order
just by performing a number of deletemin operations on the queue. The
O(n logm n) I/O-bound follows immediately from Theorem 3.

In [11] a randomized and two deterministic algorithms for external-memory
list ranking are developed. One of these algorithms uses time-forward pro-
cessing and therefore inherits the constraint that m should not be too small.
The other has a constraint on B not being to large (which in turn also re-
sults in a constraint on m not being to small). As mentioned, the list ranking
algorithm is in turn used to develop efficient external algorithms for a num-
ber of problems. This means that by developing an alternative time-forward
processing algorithm without the constraint on m, we have also removed the
constraint from the algorithm for list ranking, as well as from a large number
of other external-memory graph algorithms.
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5 An External (one-dimensional) Range Tree
Structure

In this section we extend the basic buffer tree with a rangesearch operation
in order to obtain an external (one-dimensional) range tree structure.

Normally, one performs a rangesearch with x1 and x2 on a search tree by
searching down the tree for the positions of x1 and x2 among the elements in
the leaves, and then one reports all the elements between x1 and x2. However,
the result can also be generated while searching down the tree, by reporting
the elements in the relevant subtrees on the way down. This is the strategy
we use on the buffer tree. The general idea in our rangesearch operation is
the following: We start almost as when we do an insertion or a deletion. We
make a new element containing the interval [x1, x2] and a time stamp, and
insert it in the tree. We then have to modify our buffer-emptying process in
order to deal with the new rangesearch elements. The basic idea is that when
we meet a rangesearch element in a buffer-empty process, we first determine
whether x1 and x2 are contained in the same subtree among the subtrees
rooted at the children of the node in question. If this is the case we just
insert the element in the corresponding buffer. Otherwise we “split” the
element in two—one for x1 and one for x2—and report the elements in the
subtrees for which all elements in them are contained in the interval [x1, x2].
The splitting only occurs once and after that the rangesearch elements are
pushed downwards in the buffer-emptying processes like insert and delete
elements, while elements in the subtrees for which all the elements are in the
interval are reported. As discussed in the introduction and Section 2 this
means that the rangesearch operation gets batched.

In order to make the above strategy work efficiently we need to overcome
several complications. One major complication is the algorithm for reporting
all elements in a subtree. For several reasons we cannot just use the simple
algorithm presented in Section 3, and empty the buffers of the subtree by
doing a buffer-emptying process on all nodes and then report the elements in
the leaves. The major reason is that the buffers of the tree may contain other
rangesearch elements, and that we should also report the elements contained
in the intervals of these queries. Also in order to obtain the desired I/O bound
on the rangesearch operation, we should be able to report the elements in a
tree in O(na) I/Os, where na is the actual number of blocks in the tree, that
is, the number of blocks used by elements which are not deleted by delete

16



elements in the buffers of the tree. This number could be a low as zero.
However, if nd is the number of blocks deleted by delete elements in the tree,
we have that n = na +nd. This means that if we can empty all the buffers in
the tree—and remove all the delete elements—in O(n) I/Os, we can charge
the nd part to the delete elements, adding O( 1

B
) to the amortized number of

I/Os used by a delete operation (or put another way; we in total use O(n)
I/Os extra to remove all the delete elements).

In Subsection 5.1 we design an algorithm for emptying all the buffers of
a (sub-) buffer tree in a linear number of I/Os. Our algorithm reports all
relevant “hits” between rangesearch and normal elements in the tree. In Sub-
section 5.2 we then show precisely how to modify the buffer-emptying process
on the buffer tree in order to obtain the efficient rangesearch operation.

5.1 Emptying all Buffers of an External Range Tree

In order to design the algorithm for emptying all buffers we need to restrict
the operations on the structure. In the following we assume that we only try
to delete elements from a buffer tree which were previously inserted in the
tree. The assumption is natural (at least) in a batched dynamic environment.
Having made this assumption we obtain the following useful properties: If d, i
and s are matching delete, insert and rangesearch elements (that is, “i = d”
and “i is contained in s”), and if we know that their time order is d, s, i (and
that no other elements—especially not rangesearch elements—are between s
and i in the time order), then we can report that i is in s and remove i and d.
If we know that the time order is s, i (knowing that no element—especially
not d—is between s and i in the time order), we can report that i is in s
and interchange their time order. Similarly, if we know that the time order
is d, s, we can again report that d is in s (because we know that there is an
i matching d “on the other side of s”) and interchange their time order.

We define a set of (insert, delete and rangesearch) elements to be in time
order representation if the time order is such that all the delete elements are
“older” than (were inserted before) all the rangesearch elements, which in
turn are older than all the insert elements, and if the three groups of elements
are internally sorted (according to x and not time order—according to x1 as
far as the rangesearch elements are concerned). Using the above properties
about interchanging the time order, we can now prove two important lemmas.
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Lemma 1 A set of less than M elements in a buffer can be made into time
order representation, while the relevant r ·B matching rangesearch elements
and elements are reported, in O(m + r) I/Os.

Proof : The algorithm simply loads the elements into internal memory and
use the special assumption on the delete elements to interchange the time
order and report the relevant elements as discussed above. Then it sorts the
three groups of elements individually and writes them back to the buffer in
time order representation. 2

Lemma 2 Let two sets S1 and S2 in time order representation be a subset
of a set S such that all elements in S2 are older than all elements in S1, and
such that each of the other elements in S is either younger or older than all
elements in S1 and S2. S1 and S2 can be “merged” into one set in time order
representation, while the relevant r · B matching rangesearch elements and
elements are reported, in O((|S1|+ |S2|)/B + r) I/Os.

Proof : The algorithm for merging the two sets is given in Figure 6. In
step one we push the delete elements d1 in S1 down in the time order by
“merging” them with the insert elements i2 in S2, and in step two we push
them further down by “merging” them with the rangesearch elements s2 in
S2. That we in both cases can do so without missing any rangesearch-element
“hits” follows from the time order on the elements and the assumption on
the delete elements as discussed above. Then in step three the time order of
s1 and i2 is interchanged, such that the relevant lists can be merged in step
four. That step one and four are done in a linear number of I/Os is obvious,
while a simple amortization argument shows that step two and three are also
done in a linear number of I/Os, plus the number of I/Os used to report
“hits”. 2

After proving the two lemmas we are now almost ready to present the
algorithm for emptying the buffers of all nodes in a subtree. The algorithm
will use that all elements in the buffers of nodes on a given level of the
structure are always in correct time order compared to all relevant elements
on higher levels. By relevant we mean that an element in the buffer of node
v was inserted in the tree before all elements in buffers of the nodes on the
path from v to the root of the tree. This means that we can assume that all
elements on one level were inserted before all elements on higher levels.
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When we in the following write that we report “hits”, we actually accumulate ele-
ments to be reported in internal memory and report/write them as soon as we have
accumulated a block.

1. Interchange the time order of d1 and i2 by “merging” them while removing
delete/insert matches.

2. Interchange the time order of d1 and s2 by “merging” them while reporting
“hits” in the following way:
During the merge a third list of “active” rangesearch elements from s2 is kept—
except for the B most recently added elements—on disk.
When a rangesearch element from s2 has the smallest x (that is, x1) value, it
is insert in the list.
When a delete element from d1 has the smallest x-value, the list is scanned
and it is reported that the element is in the interval of all rangesearch elements
that have not yet “expired”—that is, elements whose x2 value is less than the
value of the element from d2. At the same time all rangesearch elements that
have expired are removed from the list.

3. Interchange the time order of s1 and i2 by “merging” them and reporting “hits”
like in the previous step.

4. Merge i1 with i2, s1 with s2 and d1 with d2.
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Figure 6: Merging sets in time order representation.

Lemma 3 All buffers of a (sub-) range tree with n leaves, where all buffers
contain less than M elements, can be emptied and all the elements collected
into time order representation in O(n+ r) I/Os. Here r ·B is the number of
matching element and rangesearch elements reported.

Proof : The empty algorithm is given in Figure 7. The correctness of the
algorithm follows from Lemma 1 and Lemma 2 and the above discussion. It
follows from Lemma 1 that step one creates the time order representation of
the elements on each of the levels in a number of I/Os equal to O(m) times
the number of nodes in the tree, plus the number of I/Os used to report hits.
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1. Make three lists for each level of the tree, consisting of the elements on the level in
question in time order representation:
For a given level all buffers are made into time order representation using Lemma 1,
and then the resulting lists are appended after each other to obtain the total time
order representation.

2. Repeatedly and from the top level, merge the time order representation of one level
with the time order representation of the next level using Lemma 2.

After step one After step two

Figure 7: Emptying all buffers and collecting the elements in time order
representation.

That the total number of I/Os used is O(n + r) then follows from the fact
that the number of nodes in a tree with n leaves is O(n/m). That one merge
in step two takes a linear number of I/Os in the number of elements in the
lists, plus the I/Os used to report hits, follows form Lemma 2. That the total
number of I/Os used is O(n+r) then follows from the fact that every level of
the tree contains more nodes than all levels above it put together. Thus the
number of I/Os used to merge the time order representation of level j with
the time order representation of all the elements above level j is bounded by
O(m) times the number of nodes on level j. The bound then again follows
from the fact that the total number of nodes in the tree is O(n/m). 2

5.2 Buffer-emptying Process on External Range Tree

Having introduced the time order representation and discussed how to empty
the buffers of a subtree, we are now ready to describe the buffer-emptying
process used on the external range tree. The process is given in Figure 8 and it
relies on an important property, namely that when we start emptying a buffer
the elements in it can be divided into two categories—what we call “old” and
“new” elements. The new elements are those which were inserted in the buffer
by the buffer-emptying process that just took place on the parent node, and
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which triggered the need for a buffer-emptying process on the current node.
The old elements are the rest of the elements. We know that the number
of old elements is less than M and that they were all inserted before the
new elements. As we will maintain the invariant that we distribute elements
from one buffer to the buffers one level down in time order representation,
this means that we can construct the time order representation of all the
elements in a buffer as described in the first two steps of the algorithm in
Figure 8.

Now if we are working on a leaf node we can report the relevant “hits”
between rangesearch element and normal element, just by merging the time
order representation of the elements in the buffer with the time order rep-
resentation consisting of the elements in the leaves below the node. Then
we can remove the rangesearch elements and we are ready to empty the leaf
buffer (and rebalance) with the algorithm used on the basic buffer tree.

If we are working on an internal node v things are a bit more compli-
cated. After computing which subtrees we need to empty, we basically do
the following for each such tree: We empty the buffers of the subtree using
Lemma 3 (step 3, b). We can use Lemma 3 as we know that all buffers of the
subtree are non-full, because the buffer-emptying process is done recursively
top-down. As discussed the emptying also reports the relevant “hits” be-
tween elements and rangesearch elements in the buffers of the subtree. Then
we remove the elements which are deleted by delete elements in the buffer
of v (step 3, c). Together with the relevant insert elements from the buffer
of v, the resulting set of elements should be inserted in or deleted from the
tree. This is done by inserting them in the relevant leaf buffers (step 3, d and
step 5), which are then emptied at the very end of the algorithm. Finally, we
merge the time order representation of the elements from the buffers of the
subtree with the elements in the leaves of the structure (step 3, e). Thus we
at the same time report the relevant “hits” between elements in the leaves
and rangesearch elements from the buffers, and obtain a total list of (un-
deleted) elements in the subtree. These elements can then be reported as
being “hit” by the relevant rangesearch elements from the buffer of v (step
3, g).

After having written/reported the relevant subtrees we can distribute the
remaining elements in the buffer of v to buffers one level down—remembering
to maintain the invariant that the elements are distributed in time order
representation—and then recursively empty the buffers of the relevant chil-
dren. When the process terminates we empty the buffers of all leaf nodes

21



• Load the less than M old elements in the buffer and make them into time order
representation using Lemma 1.

• Merge the the old elements in time order representation with the new elements in
time order representation using Lemma 2.

• If we are working on a leaf node:

1. Merge (a copy of) the time order representation with the time order represen-
tation consisting of the elements in the children (leaves) using Lemma 2.

2. Remove the rangesearch elements from the buffer.

• If we are working on an internal node:

1. Scan the delete elements and distribute them to the buffers of the relevant
children.

2. Scan the rangesearch elements and compute which of the subtrees below the
current node should have their elements reported.

3. For every of the relevant subtrees do the following:

(a) Remove and store the delete elements distributed to the buffer of the root
of the subtree in step one above.

(b) Empty the buffers of the subtree using Lemma 3.
(c) Merge the resulting time order representation with the time order repre-

sentation consisting of the delete elements stored in (a) using Lemma 2.
(d) Scan the insert and delete elements of the resulting time order represen-

tation and distribute a copy of the elements to the relevant leaf buffers.
(e) Merge the time order representation with the time order representation

consisting of the elements in the leaves of the subtree using Lemma 2.
(f) Remove the rangesearch elements.
(g) Report the resulting elements as being “hit” by the relevant search ele-

ments in the buffer.

4. Scan the rangesearch elements again and distribute them to the buffers of the
relevant children.

5. Scan the insert elements and distribute them to the buffers of the relevant
children. Elements for the subtrees which were emptied are distributed to the
leaf buffer of these trees.

6. If the buffer of any of the children now contains more than m/2 elements then
recursively apply the buffer-emptying process on these nodes.

• When all buffers of the relevant internal nodes are emptied (and the buffers of all
relevant leaf nodes have had their rangesearch elements removed) then empty all leaf
buffers involved in the above process (and rebalance the tree) using the algorithm
given in Figure 5 (Section 3).

Figure 8: Range tree buffer-emptying process.
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involved in the process. As these leaf nodes now do not contain any range-
search elements, this can be done with the algorithm used on the basic buffer
tree in Section 3.

Theorem 4 The total cost of an arbitrary sequence of N intermixed insert,
delete and rangesearch operations performed on an initially empty range tree
is O(n logm n + r) I/O operations. Here r · B is the number of reported
elements.

Proof : The correctness of the algorithm follows from the above discussion.
It is relatively easy to realize (using Lemma 1, 2 and 3) that one buffer-
emptying process uses a linear number of I/Os in the number of elements in
the emptied buffer and the number of elements in the leaves of the emptied
subtrees, plus the number of I/Os used to report “hits” between elements
and rangesearch elements. The only I/Os we can not account for using the
standard argument presented in Section 2 are the ones used on emptying
the subtrees. However, as discussed in the beginning of the section, this cost
can be divided between the elements reported and the elements deleted, such
that the deleted elements pay for their own deletion. The key point is that
once the elements in the buffers of the internal nodes of a subtree is removed
and inserted in the leaf buffers by the described process, they will only be
touched again when they are inserted in or deleted from the tree by the
rebalancing algorithm. This is due to the fact mentioned in Section 3 that
when a buffer is emptied all buffers on the path to the root are empty, and the
fact that we empty all relevant leaf buffers at the end of our buffer-emptying
algorithm. 2

5.3 Application: Orthogonal Line Segment
Intersection Reporting

The problem of orthogonal line segment intersection reporting is defined as
follows: We are given N line segments parallel to the axes and should report
all intersections of orthogonal segments. The optimal plane-sweep algorithm
(see e.g. [22]) makes a vertical sweep with a horizontal line, inserting the x
coordinate of a vertical segments in a search tree when its top endpoint is
reached, and deleting it again when its bottom endpoint is reached. When
the sweep-line reaches a horizontal segment, a rangesearch operation with
the two endpoints of the segment is performed on the tree in order to report
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intersections. In internal memory this algorithm will run in the optimal
O(N log2N +R) time.

Using precisely the same algorithm and our range tree data structure,
and remembering to empty the tree when we are done with the sweep, we
immediately obtain the following (using Theorem 4 and Lemma 3):

Corollary 2 Using our external range tree the orthogonal line segment in-
tersection reporting problem can be solved in O(n logm n+ r) I/Os.

As mentioned an algorithm for the problem is also developed in [14], but
this algorithm is very I/O specific whereas our algorithm ‘’hides” the I/O in
the range tree. That the algorithm is optimal in the comparison I/O model
follows from the Ω(N log2N + R) comparison model lower bound, and the
general connection between comparison and I/O lower bounds proved in [4].

6 An External Segment Tree

In this section we use our technique to develop an external memory version of
the segment tree. As mentioned this will enable us to solve the batched range
searching and the pairwise rectangle intersection problems in the optimal
number of I/Os.

The segment tree [8, 22] is a well-known data structure used to maintain
a dynamically changing set of segments whose endpoints belongs to a fixed
set, such that given a query point all segments that contain the point can
be found efficiently. Such queries are normally called stabbing queries. The
internal-memory segment tree consists of a static binary tree (the base tree)
over the sorted set of endpoints, and a given segment is stored in up to two
nodes on each level of the tree. More precisely an interval is associated with
each node, consisting of all endpoints below the node, and a segment is stored
in all nodes where it contains this interval but not the interval associated with
the parent node. The segments stored in a node is just stored in an unordered
list. To answer a stabbing query with a point x, one just has to search down
the structure for the position of x among the leaves and report all segments
stored in nodes encountered in this search.

Because a segment can be stored in O(log2 N) nodes the technique sketch-
ed in section 2, where we just group the nodes in an internal version of the
structure into super-nodes, does not apply directly. The main reason for this
is that we would then be forced to use many I/Os to store a segment in these
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many lists. Instead, we need to change the definition of the segment tree.
Our external segment tree is sketched in Figure 9. The base structure is a
perfectly balanced tree with branching factor

√
m over the set of endpoints.

We assume without loss of generality that the endpoints of the segments
are all distinct and that

√
m divides n. A buffer and m/2 −

√
m/2 lists

of segments are associated with each node. A list (block) of segments is
also associated with each leaf. A set of segments is stored in this structure as
follows: The first level of the tree (the root) partitions the data into

√
m slabs

σi, separated by dotted lines in Figure 9. The multislabs for the root are then
defined as contiguous ranges of slabs, such as for example [σ1, σ4]. There are
m/2−

√
m/2 multislabs and the lists associated with a node are precisely a

list for each of the multislabs. Segments such as CD that completely span one
or more slabs are then called long segments, and a copy of each long segment
is stored in a list associated with the largest multislab it spans. Thus, CD
is stored in the list associated with the multislab [σ1, σ3]. All segments that
are not long are called short segments and are not stored in any multislab
list. Instead, they are passed down to lower levels of the tree where they
may span recursively defined slabs and be stored. AB and EF are examples
of short segments. Additionally, the portions of long segments that do not
completely span slabs are treated as small segments. There are at most two
such synthetically generated short segments for each long segment. Segments
passed down to a leaf are just stored in one list. Note that we at most store
one block of segments in each leaf. A segment is thus stored in at most two
list on each level of the base tree.

Given an external segment tree (with empty buffers) a stabbing query can
in analogy with the internal case be answered by searching down the tree for

n leaves

σ3 σ4σ2σ1σ0

m nodes

EA B
C D

F

√
m nodes

Figure 9: An external segment tree based on a set of N segments, three of
which, AB, EF and EF , are shown.
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the query value, and at every node encountered report all the long segments
associated with each of the multislabs that span the query value. However,
answering queries on an individual basis is of course not I/O-efficient. Instead
we use the buffer approach as discussed in the next subsection.

6.1 Operations on the External Segment Tree

Usually, when we use a segment tree to solve e.g. the batched range search-
ing problem, we use the operations insert, delete and query. However, a
delete operation is not really necessary, as we in the plane-sweep algorithm
always know at which “time” a segment should be deleted when it is inserted
in the tree. So in our implementation of the external segment tree we will
not support the delete operation. Instead, we require that a delete time is
given when a segment is inserted in the tree. Note that we already assume
(like one normally does in internal memory) that we know the set of x co-
ordinates of the endpoints of segments to be inserted in the tree. In general
these assumptions mean that our structure can only be used to solve batched
dynamic problems as discussed in the introduction.

It is easy to realize how the base tree structure can be build in O(n)
I/O operations given the endpoints in sorted order. First we construct the
leaves by scanning through the sorted list, and then we repeatedly construct
one more level of the tree by scanning through the previous level of nodes
(leaves). In constructing one level we use a number of I/Os proportional to
the number of nodes on the previous level, which means that we in total use
O(n) I/Os as this is the total number of nodes and leaves in the tree.

When we want to perform an insert or a query operation on the buffered
segment tree we do as sketched in Section 2. We make a new element with
the segment or query point in question, a time-stamp, and—if the element
is an insert element—a delete time. When we have collected a block of such
elements, we insert them in the buffer of the root. If the buffer of the root
now contains more than m/2 elements we perform a buffer-emptying process
on it. The buffer-emptying process is presented in Figure 10, and we can
now prove the following:

Theorem 5 Given a sequence of insertions of segments (with delete time)
intermixed with stabbing queries, such that the total number of operations
is N , we can build an external-memory segment tree on the segments and
perform all the operation on it in O(n logm n+ r) I/O operations.
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On internal nodes:

• Repeatedly load m/2 blocks of elements into internal memory and do the following:

1. Store segments:
Collect all segments that should be stored in the node (long segments). Then
for every multislab list in turn insert the relevant long segment in the list
(maintaining the invariant that at most one block of a list is non full). At
the same time replace every long segment with the small (synthetic) segments
which should be stored recursively.

2. Report stabbings:
For every multislab list in turn decide if the segments in the list are stabbed
by any query point. If so then scan through the list and report the relevant
elements while removing segments which have expired (segments for which all
the relevant queries are inserted after their delete time).

3. Distribute the segments and the queries to the buffers of the nodes on the next
level.

• If the buffer of any of the children now contains more than 1
2m blocks, the buffer-

emptying process is recursively applied on these nodes.

On leaf nodes:

• Do exactly the same as with the internal nodes, except that when distributing seg-
ments to a child/leaf they are just inserted in a the segment block associated with
the leaf.
As far as the queries are concerned, report stabbings with segments from the multi-
slab lists as on internal nodes (and the lists associated with the leaves) and remove
the query elements.

Figure 10: The buffer-emptying process.

Proof : In order to build the base tree we first use O(n logm n) I/Os to sort the
endpoints of the segments and then O(n) I/Os to build the tree as discussed
above. Next, we perform all the operations. In order to prove that this can
be done in O(n logm n + r) I/Os we should argue that we can do a buffer-
emptying process in a linear number of I/Os. The bound then follows as
previously.

First consider the buffer-emptying process on an internal node. Loading
and distributing the segments to buffers one level down can obviously be
done in a linear number of I/Os. The key to realizing that step one also
uses O(m) I/Os on each memory load is that the number of multislab lists is
O(m). In analogy with the distribution of elements to buffers one level down,
this means that the number of I/Os we use on inserting non-full blocks in
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the multislab lists is bounded by O(m). The number used on full blocks is
also O(m), as this is the number of segments and as every segment is at most
stored in one list. The number of I/Os charged to the buffer-emptying process
in step two is also O(m), as this is the number of I/Os used to load non-full
multislab list blocks. The rest of the I/Os used to scan a multislab list can
either be charged to a stabbing reporting or to the deletion of an element.
We can do so by assuming that every segment holds O(1/B) credits to pay
for its own deletion. This credit can then be accounted for (deposited) when
we insert a segment in a multislab list. Thus a buffer-emptying process on
an internal node can be performed in a linear number of I/Os as required.

As far as leaf nodes are concerned almost precisely the same argument
applies, and we have thus proved that we can build the base tree and per-
form all the operations on the structure in O(n logm n + r) I/Os, where r
is the number of stabbings reported so far. However, in order to report the
remaining stabbings we need to empty all the buffers of the structure. We
do so as in Section 3 simply by performing buffer-emptying processes on all
nodes level by level starting at the root. As there are O(n/

√
m) nodes in

the tree one might think that this process would cost us O(n
√
m) I/Os, plus

the number of I/Os used to report stabbings. The problem seems to be that
there is n/

√
m leaf nodes, each having O(m) multislab lists, and that we

when we empty the buffers of these nodes can be forced to use an I/O for
each of the multislab lists which are not paid for by reportings. However, the
number of multislab lists actually containing any segments must be bounded
by O(n logm n), as that is the number of I/Os performed so far. Thus it is
easy to realize that O(n logm n+ r) must be a bound on the number of I/Os
we have to pay in order to empty the buffers of all the leaf nodes. Further-
more, as the number of internal nodes is O(n/m), the buffers of these nodes
can all be emptied in O(n) I/Os. This completes the proof of the lemma.

2

6.2 Applications of the External Segment Tree

Having developed an external segment tree we can obtain efficient external-
memory algorithms by using it in standard plane-sweep algorithms.

The batched range searching problem—given N points and N rectangles,
report for each rectangle all the points that lie inside it—can be solved with a
plane-sweep algorithm in almost the same way as the orthogonal line segment
intersection problem. The optimal plane sweep algorithm makes a vertical
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sweep with a horizontal line, inserting a segment (rectangle) in the segment
tree when the top segment of a rectangle is reached, and deleting it when
the bottom segment is reached. When a point is reached a stabbing query is
performed with it. Using our external segment tree in this algorithm yields
the following:

Corollary 3 Using the external range tree the batched range searching prob-
lem can be solved in O(n logm n+ r) I/O operations.

The problem of pairwise rectangle intersection is defined similar to the
orthogonal line segment intersection problem. Given N rectangles in the
plane (with sides parallel to the axes) we should report all intersecting pairs.
In [8] it is shown that if we—besides the orthogonal line segment inter-
section problem—can solve the batched range searching problem in time
O(N log2N + R), we will in total obtain a solution to the rectangle inter-
section problem with the same (optimal) time bound. Thus we in external-
memory obtain the following:

Corollary 4 Using our external data structures the pairwise rectangle inter-
section problem can be solved in O(n logm n+ r) I/O operations.

That both algorithms are optimal in the comparison I/O model follows
by the internal memory comparison lower bound and the result in [4]. Like
in the orthogonal line segment intersection case, optimal algorithms for the
two problems are also developed in [14].

7 Extending the Results to the D-disk Model

As mentioned in the introduction an approach to increase the throughput of
I/O systems is to use a number of disks in parallel. One method of using D
disks in parallel is disk striping, in which the heads of the disks are moving
synchronously, so that in a single I/O operation each disk read or writes a
block in the same location as each of the others. In terms of performance, disk
striping has the effect of using a single large disk with block size B′ = DB.
Even though disk striping does not in theory achieve asymptotic optimality
when D is very large, it is often the method of choice in practice for using
parallel disks [28].
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The non optimality of disk striping can be demonstrated via the sorting
bound. While sorting N elements using disk striping and one of the the one-
disk sorting algorithms requires O(n/D logm/D n) I/Os the optimal bound
is O(n/D logm n) I/Os [1]. Note that the optimal bound results in a linear
speedup in the number of disk. Nodine and Vitter [19] managed to develop a
theoretical optimal D-disk sorting algorithm based on merge sort, and later
they also developed an optimal algorithm based on distribution sort [20].
In the latter algorithm it is assumed that 4DB ≤ M − M1/2+β for some
0 < β < 1/2, an assumption which clearly is non-restrictive in practice. The
algorithm works as normal distribution sort by repeatedly distributing a set
of N elements into

√
m sets of roughly equal size, such that all elements in

the first set is smaller than all elements in the second set, and so on. The
distribution is done in O(n/D) I/Os, and the main issue in the algorithm
is to make sure that the elements in one of the smaller sets can be read
efficiently in parallel in the next phase of the algorithm, that is, that they
are distributed relatively evenly among the disks.

To obtain the results in this paper we basically only used three “para-
digms”; distribution, merging and sorting. We used distribution to distribute
the elements in the buffer of a node to the buffers of nodes on the next level,
and to multislab lists in the segment tree case. We used merging of two lists
when emptying all buffers in a (sub-) buffer tree, and we sorted a set of ele-
ments when emptying the leaf buffers of the buffer tree.3 While we of course
can use an optimal D-disk sorting algorithm instead of a one-disk algorithm,
and while it is easy to merge two lists in the optimal number of I/Os on par-
allel disks, we need to modify our use of distribution to make it work with
D disks. As mentioned Nodine and Vitter [20] developed an optimal way of
doing distribution, but only when the distribution is done O(

√
m)-wise. As

already mentioned we can make our buffer tree work with fan-out and buffer
size Θ(

√
m) instead of Θ(m), and thus we can use the algorithm from [20]

to make our structure work in the D-disk model. The external segment tree
already has fan-out

√
m, but we still distribute elements (segments) to Θ(m)

multislab list. Thus to make our external segment tree work on D disks
we decrease the fan-out to m1/4, which does not change the asymptotic I/O
bounds of the operations, but decreases the number of multislab lists to

√
m.

3Note that we could actually do without the sorting by distributing elements in sorted
order when emptying a buffer in the buffer tree, precisely as we in the range tree structure
distribute them in time order representation.
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Thus we can use the algorithm from [20] to do the distribution. To summer-
ize our structures work in the general D-disk model under the non-restrictive
assumption that 4DB ≤M −M1/2+β for some 0 < β < 1/2.

8 Conclusion

In this paper we have developed a technique for transforming an internal-
memory tree data structure into an efficient external memory structure. Us-
ing this technique we have developed an efficient external priority queue and
batched dynamic versions of the (one-dimensional) range tree and the seg-
ment tree. We have shown how these structures allow us to design efficient
external-memory algorithms from known internal algorithms in a straightfor-
ward way, such that all the I/O specific parts of the algorithms are “hidden”
in the data structures. This is in great contrast to previously developed al-
gorithms for the considered problems. We have also used our priority queue
to develop an extremely simple algorithm for “circuit evaluation”, improving
on the previously know algorithm.

Recently, several authors have used the structures developed in this paper
or modified versions of them to solve important external-memory problems.
In [2] the priority queue is used to develop new I/O efficient algorithms for
ordered binary-decision diagram manipulation, and in [9] it is used in the
development of several efficient external graph algorithm. In [5] an extension
of the segment tree is used to develop efficient new external algorithms for a
number of important problems involving line segments in the plane, and in [6]
the main idea behind the external segment tree (the notion of multislabs) is
used to develop an optimal “on-line” versions of the interval tree.

We believe that several of our structures will be efficient in practice due
to small constants in the asymptotic bounds. We hope in the future to be
able to implement some of the structures in the transparent parallel I/O
environment (TPIE) developed by Vengroff [27].
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