
B
R

IC
S

R
S

-96-20
D

anvy
&

Law
all:

B
ack

to
D

irectS
tyle

II:F
irst-C

lass
C

ontinuations

BRICS
Basic Research in Computer Science

Back to Direct Style II:
First-Class Continuations

Olivier Danvy
Julia L. Lawall

BRICS Report Series RS-96-20

ISSN 0909-0878 June 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Back to Direct Style II: First-Class Continuations ∗

Olivier Danvy
BRICS †

Computer Science Department
Aarhus University ‡

(danvy@brics.dk)

Julia L. Lawall
IRISA

University of Rennes §

(Julia.Lawall@irisa.fr)

June 1996

Abstract

The direct-style transformation aims at mapping continuation-
passing programs back to direct style, be they originally written in
continuation-passing style or the result of the continuation-passing-
style transformation. In this paper, we continue to investigate the
direct-style transformation by extending it to programs with first-class
continuations.

First-class continuations break the stack-like discipline of continua-
tions in that they are sent results out of turn. We detect them syntac-
tically through an analysis of continuation-passing terms. We conser-
vatively extend the direct-style transformation towards call-by-value
functional terms (the pure λ-calculus) by translating the declaration
of a first-class continuation using the control operator call/cc, and by
translating an occurrence of a first-class continuation using the control
operator throw. We prove that our extension and the corresponding
extended continuation-passing-style transformation are inverses.

∗A preliminary version of this paper appeared in the proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, William Clinger (editor), LISP Pointers,
Vol. V, No. 1, pages 299–310, San Francisco, California, June 1992. ACM Press.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
§Campus Universitaire de Beaulieu, F-35042 Rennes Cedex, France. This work was

partially supported by ONR under grant N00014-93-1-1015 and by a NSF International
Post-Doctoral Research Fellowship.

1

Both the direct-style (DS) and continuation-passing-style (CPS)
transformations can be generalized to a richer language. These trans-
formations have a place in the programmer’s toolbox, and enlarge the
class of programs that can be manipulated on a semantic basis. We
illustrate both with three applications: the conversion between CPS
and DS of an interpreter hand-written in CPS; the specialization of
a coroutine program, where coroutines are implemented using call/cc;
and the normalization of programs extracted from classical proofs. The
second example achieves a first: a static coroutine is executed statically
and its computational content is inlined in the residual program.

Keywords: continuation-passing style transformation, direct-style transformation,
control operators, λ-calculus, partial evaluation, Schism, Scheme.

2

List of Figures

1 Syntax of pure DS terms . 7
2 Call-by-value CPS transformation on pure DS terms 8
3 Syntax of CPS terms . 8
4 Occurrence conditions over continuations in pure CPS terms . 9
5 Call-by-value DS transformation on pure CPS terms 9
6 Occurrence conditions over (possibly first-class) continuations 11
7 Detection of non-first-class continuations 11
8 Free continuation identifiers in a CPS term 11
9 Syntax of DS terms, including call/cc and throw 12
10 Call-by-value DS transformation, including call/cc and throw 12
11 Call-by-value CPS transformation, including call/cc and throw 13
12 Syntax of pure intermediate-style terms 15
13 From direct style to intermediate style 15
14 From intermediate style to continuation-passing style (con-

tinuation introduction) . 16
15 From continuation-passing style to intermediate style (con-

tinuation elimination) . 16
16 From intermediate style to direct style (let unfolding) 17
17 Syntax of intermediate-style terms, including call/cc and throw 19
18 From direct style to intermediate style, including call/cc and

throw . 19
19 From intermediate style to continuation-passing style, includ-

ing call/cc and throw . 20
20 From continuation-passing style to intermediate style, includ-

ing call/cc and throw . 20
21 From intermediate style to direct style, including call/cc and

throw . 21
22 Control structures for the Samefringe program 26
23 Data structures for the Samefringe program 27
24 Specialized version of the Samefringe program 27
25 Haynes, Friedman, and Wand’s CPS interpreter for Scheme

84 (part I) . 31
26 Haynes, Friedman, and Wand’s CPS interpreter for Scheme

84 (part II) . 32
27 Direct-style counterpart of Haynes, Friedman, and Wand’s

interpreter for Scheme 84 . 33

3

1 Introduction

Functional-programming folklore has it that control operators such as call-
with-current-continuation (abbreviated call/cc) are unnecessary because
their effect can be simulated by continuation-passing style (CPS). On the
other hand, CPS forces one to write programs in an extraordinarily contrived
way. Fortunately, the CPS transformation automatically maps programs
(with or without control operators) into purely functional programs.

In “Back to Direct Style” [7], Danvy has shown how to reverse this
process, mapping CPS terms back to pure direct-style (DS) terms. The
transformation relies on the restricted language of CPS terms that arises
from the call-by-value, left-to-right CPS transformation of pure λ-terms.
In this paper, we examine the effect of relaxing some of these restrictions.
We find that a natural extension of CPS terms to first-class continuations
corresponds to DS terms that use the control operator call/cc.

First, we describe CPS, first-class continuations, and call/cc. We then
outline the rest of the paper.

1.1 Continuation-passing style

In an expression language such as the λ-calculus, every computation occurs
in a context. Creating new contexts is a natural computational step in such
languages. For example, in the term f x y, where f denotes a (curried)
function and application associates to the left, f is first applied to x, and
the result is applied to y. The application of f to x occurs in a new context,
often written [·] y.

Some terms, however, create no new contexts. For example, in the λ-
abstraction λx.f x y, the call to the result of f x occurs in the same context
as the call to the λ-abstraction, and thus it does not create any new context.
The call to f , however, does.

Contexts can be encoded as λ-abstractions. So for example, the context
[·] y is represented as the λ-abstraction λv.v y. Composing these contexts
forms a continuation. In the class of continuation-passing terms, a function
is passed a continuation along with the function’s argument. These terms
create no new contexts.

Terms that create new contexts are usually said to be in direct style
(DS), to contrast them with continuation-passing terms, and by analogy with
denotational semantics [41]. Any DS term can be automatically transformed
into a CPS term, using the CPS transformation [8, 15, 27, 33, 40].

4

The result of applying the CPS transformation to the λ-term above is
λx.λk.fc x λv.v y k, where fc is the CPS counterpart of f . This CPS trans-
formation is reversible: the DS transformation [7] maps this CPS term back
to direct style.

To summarize, in CPS, every function is passed a continuation as an
additional argument. Each function produces an intermediate result and
sends it to its continuation. This continuation describes how to use this
intermediate result in the rest of the computation. Consequently, no function
call creates a new context.

1.2 First-class continuations

The CPS language generated by the CPS transformation is quite restricted.
For example, corresponding to the fact that every DS expression occurs
in one context (there is only one current context), every CPS expression
accesses only one continuation (there is only one current continuation). In
the following, we relax this restriction on CPS terms.

We relax CPS terms by allowing all expressions to use any continuation
that is lexically visible — instead of only the current one, which happens to
be the one that is lexically closest.

For example, let us consider lambda terms of the following form:

λk.fc (λi.λk1. i) λv.gc v k

Here the CPS function fc is applied to a CPS function argument and a
continuation sending the intermediate result to gc. The argument to fc is a
function that sends its argument i to an as-yet uninstantiated continuation.

If we replace by k1, we obtain

λk.fc (λi.λk1.k1 i) λv.gc v k

in which the argument of fc simply sends its argument to its current con-
tinuation. The DS transformation maps this term into

g (f λi.i)

where f and g are the DS counterparts of fc and gc, respectively.
On the other hand, if we replace by k, we obtain

λk.fc (λi.λk1.k i) λv.gc v k

5

in which the argument of fc sends its intermediate result not to its continua-
tion, but to the continuation of the entire term. We refer to the continuation
k, which is used out of turn, as a “first-class continuation”.

In CPS terms with first-class continuations, every function takes a con-
tinuation as an argument, and sends its result to some continuation. When
this continuation is not the current one, this evaluation step does not corre-
spond to a standard evaluation step in direct style. Such CPS terms cannot
be mapped back to a pure DS functional term.

1.3 Call/cc

CPS makes the continuation of each function call explicit as a parameter
of the function. The DS control operator call/cc provides access to the
current continuation at any point while allowing the continuation to remain
generally implicit [3]. Variants of call/cc are provided by a variety of widely
used programming languages that include Lisp, C, Scheme, and Standard
ML of New Jersey. In this paper we follow the strategy of Lisp, C, and
Standard ML, and include a throw operator to apply a continuation that
was accessed with call/cc.

Call/cc and throw can describe the behavior of the CPS expression in
the previous section:

λk.fc (λi.λk1.k i) λv.gc v k

We can use call/cc to access the continuation k of the entire expression, and
then explicitly apply this continuation to i with throw. This continuation
application sends the value of i to the context of the whole expression. The
corresponding DS expression thus reads:

call/cc λk.g (f λi.throw k i)

This is the result obtained by our extended DS transformation.
The rest of this paper formalizes this transformation.

1.4 Overview

Section 2 reviews our starting point: the DS transformation for pure CPS
terms. The extended DS transformation is presented in Section 3. Section
4 proves the correctness of the DS transformations. In Section 5, we de-
scribe three applications. After a comparison with related work in Section
6, Section 7 concludes. Throughout, the figures are generated from runnable
specifications.

6

r ∈ DRoot — domain of DS λ-terms
e ∈ DExp — domain of DS serious expressions
t ∈ DTriv — domain of DS trivial expressions
i ∈ Ide — domain of identifiers

r ::= e
e ::= e0 e1 | t
t ::= i | λi.r

Figure 1: Syntax of pure DS terms

2 Back to Direct Style I

Our starting point is the BNF of DS terms, shown in Figure 1. We refer
to this language as the language of pure DS terms because it corresponds
to the pure λ-calculus, without added control operators. Much as Reynolds
[35], we distinguish between “serious” and “trivial” expressions. Evaluating
a serious expression may create new contexts, whereas evaluating a trivial
expression never does.

Figure 2 displays Danvy and Filinski’s CPS transformation [8]. The
transformation is higher-order and is expressed using Nielson and Nielson’s
two-level λ-calculus [32]. Underlined λ and @ respectively denote syntac-
tic constructors for λ-abstractions and for (infix) applications. The CPS
counterpart of a DS term r is obtained by CDRoot [[r]].

The language produced by this CPS transformation is described by the
grammar displayed in Figure 3. We refer to this language as the language
of pure CPS terms because it is derived from the CPS transformation of the
language of pure DS terms. The language retains the structure of serious
and trivial expressions. Here, a serious expression is evaluated in the scope
of a continuation and a trivial expression denotes a value that is passed to
a continuation.

Reflecting the fact that any DS expression occurs in only one context
(the current context), a CPS expression accesses only one continuation (the
current continuation). This property is captured in Figure 4, which specifies
occurrence conditions over continuation identifiers in CPS terms.

Theorem 1 For any DS term r, the CPS term CDRoot[[r]] satisfies the judge-
ment `CRoot

ContIde CDRoot [[r]].

7

CDRoot : DRoot → CRoot
CDRoot [[e]] = λ k . CDExp [[e]] λ t . k@ t

— where k is fresh.

CDExp : DExp → [CTriv → CExp] → CExp
CDExp [[e0 e1]] κ = CDExp [[e0]] λ t0 . CDExp [[e1]] λ t1 . t0 @ t1 @ λ v . κ v

— where v is fresh.
CDExp [[t]] κ = κ CDTriv [[t]]

CDTriv : DTriv → CTriv
CDTriv [[i]] = i

CDTriv [[λi.r]] = λ i . CDRoot [[r]]

Figure 2: Call-by-value CPS transformation on pure DS terms

r ∈ CRoot — domain of CPS λ-terms
e ∈ CExp — domain of CPS serious expressions
t ∈ CTriv — domain of CPS trivial expressions
i ∈ Ide — domain of identifiers
k ∈ ContIde — domain of continuation identifiers,

disjoint from Ide
v ∈ ContPar — domain of continuation parameters,

disjoint from Ide and ContIde

r ::= λk.e
e ::= t0 t1 λv.e | k t
t ::= i | λi.r | v

Figure 3: Syntax of CPS terms

8

k `CExp
ContIde e

`CRoot
ContIde λk.e

`CTriv
ContIde t0 `CTriv

ContIde t1 k `CExp
ContIde e

k `CExp
ContIde t0 t1 λv.e

k = k′ `CTriv
ContIde t

k `CExp
ContIde k

′ t

`CTriv
ContIde i

`CRoot
ContIde r

`CTriv
ContIde λi.r

`CTriv
ContIde v

Figure 4: Occurrence conditions over continuations in pure CPS terms

DCRoot : CRoot → DRoot
DCRoot [[λk.e]] = DCExp [[e]]⊥

DCExp : CExp → [ContPar → DExp] → DExp
DCExp [[t0 t1 λv.e]] ρ = DCExp [[e]] ρ[v 7→DCTriv [[t0]] ρ@DCTriv [[t1]] ρ]

DCExp [[k t]] ρ = DCTriv [[t]] ρ

DCTriv : CTriv → [ContPar → DExp] → DExp
DCTriv [[i]] ρ = i

DCTriv [[λi.r]] ρ = λ i .DCRoot [[r]]
DCTriv [[v]] ρ = ρ v

Figure 5: Call-by-value DS transformation on pure CPS terms

9

Proof. Straightforward [7, 9, 27]. 2

This property of CPS terms can also be captured by α-renaming all occur-
rences of continuation identifiers to be the same identifier k and by defining
ContIde to be the singleton {k} in Figure 3.1

Figure 5 displays Danvy’s DS transformation [7]. The transformation is
also expressed in the two-level λ-calculus. In particular, it uses a translation-
time environment mapping parameters of continuations to DS applications.
The empty environment is denoted ⊥. Throughout this paper, we assume
a call-by-value, left-to-right evaluation order. The correctness of this trans-
formation is proved in Section 4.1.

3 Back to Direct Style II

As outlined in Section 1, we relax the conditions of Figure 4 to allow any
continuation in scope to be applied, instead of only the current one. The
relaxed conditions, which simply amount to checking that every continuation
identifier is declared, are displayed in Figure 6. Now any CPS term r must
satisfy the judgment ∅ `CRoot

ContIde r, reflecting the fact that there can be no
free continuation identifiers.

We want to extend the DS transformation conservatively. To this end,
we want to treat ordinary continuation identifiers as usual. Figure 7 detects
whether a continuation identifier k occurs only where permitted in the origi-
nal CPS language, as characterized by Figure 4. We focus on the occurrence
of a single continuation identifier, rather than on the structure of an entire
term. Figure 7 thus omits the requirement that k = k′ in the continuation-
application case, and replaces the test on a trivial term t by a check that k
does not occur free in t. The declaration of a first-class continuation is thus
any root expression that fails to satisfy the judgment `CRoot

NFC r.
We map the declaration of a first-class continuation into an occurrence of

call/cc, and the first-class use of a continuation into an occurrence of throw.
The resulting DS transformation is displayed in Figure 10. The BNF of the
generated DS language is shown in Figure 9. Because a continuation can
only be declared at the root of a CPS terms, and CPS roots are mapped
into DS roots, call/cc can only occur at the root of a DS term. Because
a continuation application does not itself take a continuation argument, a

1This syntactic device is not uncommon. For example, Sabry and Felleisen use it in
their work on reasoning about CPS programs [38].

10

γ ∪ {k} `CExp
ContIde e

γ `CRoot
ContIde λk.e

γ `CTriv
ContIde t0 γ `CTriv

ContIde t1 γ `CExp
ContIde e

γ `CExp
ContIde t0 t1 λv.e

k ∈ γ γ `CTriv
ContIde t

γ `CExp
ContIde k t

γ `CTriv
ContIde i

γ `CRoot
ContIde r

γ `CTriv
ContIde λi.r

γ `CTriv
ContIde v

Figure 6: Occurrence conditions over (possibly first-class) continuations

k `CExp
NFC e

`CRoot
NFC λk.e

k 6∈ FCICTriv [[t0]] k 6∈ FCICTriv [[t1]] k `CExp
NFC e

k `CExp
NFC t0 t1 λv.e

k 6∈ FCICTriv [[t]]

k `CExp
NFC k′ t

Figure 7: Detection of non-first-class continuations

FCICRoot [[λk.e]] = FCICExp [[e]] \ {k}

FCICExp [[t0 t1 λv.e]] = FCICTriv [[t0]] ∪ FCICTriv [[t1]] ∪ FCICExp [[e]]
FCICExp [[k t]] = FCICTriv [[t]] ∪ {k}

FCICTriv [[i]] = ∅
FCICTriv [[λi.r]] = FCICRoot [[r]]

FCICTriv [[v]] = ∅

Figure 8: Free continuation identifiers in a CPS term

11

r ∈ DRoot — domain of DS λ-terms
r′ ∈ DRoot′ — domain of DS subroots
e ∈ DExp — domain of DS serious expressions
t ∈ DTriv — domain of DS trivial expressions
i ∈ Ide — domain of identifiers
k ∈ ContIde — domain of continuation identifiers, disjoint from Ide

r ::= r′ | call/cc λk.r′

r′ ::= e | throw k e
e ::= e0 e1 | t
t ::= i | λi.r

Figure 9: Syntax of DS terms, including call/cc and throw

DCRoot : CRoot → DRoot

DCRoot [[λk.e]] =

{
DCExp [[e]]⊥ k if k `CExp

NFC e
call/cc λk .DCExp [[e]]⊥ k otherwise

DCExp : CExp → [ContPar → DExp] → ContIde → DExp
DCExp [[t0 t1 λv.e]] ρ k = DCExp [[e]] ρ[v 7→DCTriv [[t0]] ρ@DCTriv [[t1]] ρ] k

DCExp [[k′ t]] ρ k =

{
DCTriv [[t]] ρ if k = k′

throw k′ (DCTriv [[t]] ρ) otherwise

DCTriv : CTriv → [ContPar → DExp] → DExp
DCTriv [[i]] ρ = i

DCTriv [[λi.r]] ρ = λ i .DCRoot [[r]]
DCTriv [[v]] ρ = ρ v

Figure 10: Call-by-value DS transformation, including call/cc and throw

12

CDRoot : DRoot → CRoot
CDRoot [[r′]] = λk . CDRoot′ [[r′]]k — where k is fresh.

CDRoot [[call/cc λk.r′]] = λk . CDRoot′ [[r′]]k

CDRoot′ : DRoot′ → ContIde → CExp
CDRoot′ [[e]]k = CDExp [[e]] λ t . k@ t

CDRoot′ [[throw k′ e]]k = CDExp [[e]] λ t . k′@ t

CDExp : DExp → [CTriv → CExp] → CExp
CDExp [[e0 e1]] κ = CDExp [[e0]] λ t0 . CDExp [[e1]] λ t1 . t0 @ t1 @ λ v . κ v

— where v is fresh.
CDExp [[t]] κ = κ (CDTriv [[t]])

CDTriv : DTriv → CTriv
CDTriv [[i]] = i

CDTriv [[λi.r]] = λ i . CDRoot [[r]]

Figure 11: Call-by-value CPS transformation, including call/cc and throw

throw expression in DS does not create a new context. We explicitly identify
such positions as the new class of DS subroots.

Figure 11 displays the traditional CPS transformation including call/cc
and throw [3, 8, 15, 25, 40], restricted to the generated DS language. In
Section 4.2, we prove that this CPS transformation and the extended DS
transformation are inverses.

Both the CPS and the DS transformations scale up to more practical pro-
gramming languages. The extension to a Scheme-like programming language
that includes constants, primitive n-ary operators, uncurried functions, con-
ditional expressions, and block structure is straightforward. The CPS trans-
formation of such a language has been extensively studied [8, 15, 24, 26, 40].
The corresponding DS transformation is considered in detail in Lawall’s PhD
thesis [27]. The applications described in Section 5 make use of such a DS
transformation.

13

4 Inverseness of the CPS and DS transformations

We now show that the CPS and DS transformations are inverses of each
other. The argument is syntax-based. Because the CPS transformation is
semantics-preserving [8, 13, 14, 33, 36, 39], this approach is sufficient to
justify the correctness of the DS transformation.

We begin by reviewing the proof that the pure CPS and DS transfor-
mations are inverses of each other. We then extend the approach to the
extended transformations.

4.1 Back to Direct Style I

To prove that the CPS and DS transformations are inverses of each other,
we stage both transformations via an intermediate language. CPS names
intermediate results and sequentializes computations. Furthermore, it re-
places the creation of a new context in DS by a continuation argument. The
intermediate language names intermediate results and sequentializes com-
putations while otherwise remaining in DS. Essentially, new contexts are
identified, but continuations are not introduced.

The intermediate language is specified in Figure 12. It is essentially the
λ-calculus with two special forms, let and return. Each let expression names
an intermediate result, and since the intermediate language only allows flat
let expressions, sequentiality is ensured. A return expression coerces a trivial
expression into a serious one. This intermediate language is deliberately
reminiscent of Moggi’s monadic normal forms [7, 18, 30].

The following diagram summarizes the situation.

DRoot

IRoot

CRoot

CDRoot
1

C
C
C
C
C
C
C
C
C
C
C !!

"/
CDRoot

��

CIRoot
2

C
C
C
C
C
C
C
C
C
C
C !!

DIRoot
2

aaC
C
C
C
C
C
C
C
C
C
C

DCRoot
1

aaC
C
C
C
C
C
C
C
C
C
C

 oDCRoot

OO

14

r ∈ IRoot — domain of IS λ-terms
e ∈ IExp — domain of IS serious expressions
t ∈ ITriv — domain of IS trivial expressions
i ∈ Ide — domain of identifiers
v ∈ LetPar — domain of let parameters, disjoint from Ide

r ::= e
e ::= let v = t0 t1 in e | return t
t ::= i | λi.r | v

Figure 12: Syntax of pure intermediate-style terms

CDRoot
1 : DRoot→ IRoot

CDRoot
1 [[e]] = CDExp

1 [[e]] λ t . return t

CDExp
1 : DExp→ [ITriv→ IExp]→ IExp

CDExp
1 [[e0 e1]] κ = CDExp

1 [[e0]] λ t0 . CDExp
1 [[e1]] λ t1 . let v = t0 @ t1 in κ v

— where v is fresh.
CDExp

1 [[t]] κ = κ CDTriv
1 [[t]]

CDTriv
1 : DTriv→ ITriv

CDTriv
1 [[i]] = i

CDTriv
1 [[λi.r]] = λ i . CDRoot

1 [[r]]

Figure 13: From direct style to intermediate style

15

CIRoot
2 : IRoot→ CRoot

CIRoot
2 [[e]] = λ k . CIExp

2 [[e]] k — where k is fresh.

CIExp
2 : IExp → ContIde→ CExp

CIExp
2 [[let v = t0 t1 in e]] k = CITriv

2 [[t0]] @ CITriv
2 [[t1]] @ λ v . CIExp

2 [[e]] k

CIExp
2 [[return t]] k = k @ CITriv

2 [[t]]

CITriv
2 : ITriv→ CTriv

CITriv
2 [[i]] = i

CITriv
2 [[λi.r]] = λ i . CIRoot

2 [[r]]
CITriv

2 [[v]] = v

Figure 14: From intermediate style to continuation-passing style (continua-
tion introduction)

DCRoot
1 : CRoot→ IRoot

DCRoot
1 [[λk.e]] = DCExp

1 [[e]]

DCExp
1 : CExp→ IExp

DCExp
1 [[t0 t1 λv.e]] = let v = DCTriv

1 [[t0]] @DCTriv
1 [[t1]] inDCExp

1 [[e]]

DCExp
1 [[k t]] = returnDCTriv

1 [[t]]

DCTriv
1 : CTriv→ ITriv

DCTriv
1 [[i]] = i

DCTriv
1 [[λi.r]] = λ i .DCRoot

1 [[r]]
DCTriv

1 [[v]] = v

Figure 15: From continuation-passing style to intermediate style (continua-
tion elimination)

16

DIRoot
2 : IRoot→ DRoot

DIRoot
2 [[e]] = DIExp

2 [[e]]⊥

DIExp
2 : IExp→ [LetPar→ DExp]→ DExp

DIExp
2 [[let v = t0 t1 in e]] ρ = DIExp

2 [[e]] ρ[v 7→ DITriv
2 [[t0]]ρ@DITriv

2 [[t1]]ρ]

DIExp
2 [[return t]] ρ = DITriv

2 [[t]]ρ

DITriv
2 : ITriv→ [LetPar→ DExp]→ DExp

DITriv
2 [[i]]ρ = i

DITriv
2 [[λi.r]]ρ = λ i .DIRoot

2 [[r]]
DITriv

2 [[v]]ρ = ρ v

Figure 16: From intermediate style to direct style (let unfolding)

Lemma 1 The CPS and DS transformation can be staged through the in-
termediate language of Figure 12.

Proof. Figure 13 displays the encoding C1 of the DS language into the
intermediate language. Figure 14 displays the transformation C2 from the
intermediate language forth to CPS. Figure 15 displays the encoding D1 of
the CPS language into the intermediate language. Figure 16 displays the
transformation D2 from the intermediate language back to direct style.

Composing CDRoot
1 and CIRoot

2 yields CDRoot; composing DCRoot
1 and

DIRoot
2 yields DCRoot [7, 27]. 2

Lemma 2 CDRoot
1 and DIRoot

2 are inverses of each other, modulo renaming
of bound variables.

Proof. CDRoot
1 introduces let expressions and flattens them. DIRoot

2 un-
folds these let expressions. DIRoot

2 is thus a left inverse of CDRoot
1 [27].

CDRoot
1 gives rise to occurrence conditions that are characteristic of left-

to-right, call-by-value evaluation. These syntactic conditions are necessary
to prove that DIRoot

2 is a right inverse of CDRoot
1 [7, 9, 27]. 2

Lemma 3 DCRoot
1 and CIRoot

2 are inverses of each other, modulo renaming
of bound variables.

17

Proof. Straightforward [28]. 2

Theorem 2 The CPS and DS transformations are inverses of each other,
modulo renaming of bound variables.

Proof. A consequence of Lemmas 1, 2, and 3. 2

4.2 Back to Direct Style II

To prove that the extended CPS and DS transformations are inverses of each
other, we extend the proof of Theorem 2. To this end, we extend the inter-
mediate language of Figure 12 with call/cc and throw, as shown in Figure
17. We again stage the CPS and DS transformations through this interme-
diate language. Control operations are translated when continuations are
introduced and eliminated, i.e., in the transformations between IS and CPS.
Our investigation of inverseness thus focuses on these transformations.

Figure 18 displays the encoding C1 of the DS language into the inter-
mediate language. Figure 19 displays the transformation C2 from the in-
termediate language forth to CPS. Figure 20 displays the encoding D1 of
the CPS language into the intermediate language. Figure 21 displays the
transformation D2 from the intermediate language back to direct style.

The transformation from CPS to IS and back to CPS, CIRoot
2 ◦ DCRoot

1 ,
is straightforwardly the identity transformation. Whenever DCRoot

1 decides
whether to introduce a control operator, CIRoot

2 translates both possibilities
into an identical CPS term. The other cases follow the proof of Lemma 3.

The analysis of the transformation from IS to CPS and back to IS,
DCRoot

1 ◦ CIRoot
2 , is more complicated, because control operations are not

explicit in CPS. The composition of these transformations applied to IRoot
expressions and to return and throw expressions is shown below. The other
cases are straightforward.

DCRoot
1 [[CIRoot

2 [[e]]]]
= DCRoot

1 [[λk . CIExp
2 [[e]] k]] — where k is fresh.

=

{
DCExp

1 [[CIExp
2 [[e]] k]]k if k `CExp

NFC CIExp
2 [[e]] k

call/cc λk.DCExp
1 [[CIExp

2 [[e]] k]]k otherwise

18

r ∈ IRoot — domain of IS λ-terms
e ∈ IExp — domain of IS serious expressions
t ∈ ITriv — domain of IS trivial expressions
i ∈ Ide — domain of identifiers
v ∈ LetPar — domain of let parameters, disjoint from Ide

r ::= e | call/cc λk.e
e ::= let v = t0 t1 in e | return t | throw k t
t ::= i | λi.r | v

Figure 17: Syntax of intermediate-style terms, including call/cc and throw

CDRoot
1 : DRoot→ IRoot

CDRoot
1 [[r′]] = CDRoot′

1 [[r′]]
CDRoot

1 [[call/cc λk.r′]] = call/cc λk . CDRoot′
1 [[r′]]

CDRoot′
1 : DRoot′ → IExp

CDRoot′
1 [[e]] = CDExp

1 [[e]] λ t . return t

CDRoot′
1 [[throw k e]] = CDExp

1 [[e]] λ t . throwk t

CDExp
1 : DExp→ [ITriv→ IExp]→ IExp

CDExp
1 [[e0 e1]] κ = CDExp

1 [[e0]] λ t0 . CDExp
1 [[e1]] λ t1 . let v = t0 @ t1 in κ v

— where v is fresh.
CDExp

1 [[t]] κ = κ CDTriv
1 [[t]]

CDTriv
1 : DTriv→ ITriv

CDTriv
1 [[i]] = i

CDTriv
1 [[λi.r]] = λ i . CDRoot

1 [[r]]

Figure 18: From direct style to intermediate style, including call/cc and
throw

19

CIRoot
2 : IRoot→ CRoot

CIRoot
2 [[e]] = λ k . CIExp

2 [[e]] k — where k is fresh.

CIRoot
2 [[call/cc λk.e]] = λ k . CIExp

2 [[e]] k

CIExp
2 : IExp → ContIde→ CExp

CIExp
2 [[let v = t0 t1 in e]] k = CITriv

2 [[t0]] @ CITriv
2 [[t1]] @ λ v . CIExp

2 [[e]] k

CIExp
2 [[return t]] k = k @ CITriv

2 [[t]]

CIExp
2 [[throw k′ t]] k = k′ @ CITriv

2 [[t]]

CITriv
2 : ITriv→ CTriv

CITriv
2 [[i]] = i

CITriv
2 [[λi.r]] = λ i . CIRoot

2 [[r]]
CITriv

2 [[v]] = v

Figure 19: From intermediate style to continuation-passing style, including
call/cc and throw

DCRoot
1 : CRoot→ IRoot

DCRoot
1 [[λk.e]] =

{
DCExp

1 [[e]] k if k `CExp
NFC e

call/cc λk .DCExp
1 [[e]] k otherwise

DCExp
1 : CExp→ ContIde→ IExp

DCExp
1 [[t0 t1 λv.e]] k = let v = DCTriv

1 [[t0]] @DCTriv
1 [[t1]] inDCExp

1 [[e]] k

DCExp
1 [[k′ t]] k =

{
return DCTriv

1 [[t]] if k = k′

throw k′ DCTriv
1 [[t]] otherwise

DCTriv
1 : CTriv→ ITriv

DCTriv
1 [[i]] = i

DCTriv
1 [[λi.r]] = λ i .DCRoot

1 [[r]]
DCTriv

1 [[v]] = v

Figure 20: From continuation-passing style to intermediate style, including
call/cc and throw

20

DIRoot
2 : IRoot→ DRoot

DIRoot
2 [[e]] = DIExp

2 [[e]]⊥
DIRoot

2 [[call/cc λk.e]] = call/cc λk .DIExp
2 [[e]]⊥

DIExp
2 : IExp→ [LetPar→ DExp]→ DRoot′

DIExp
2 [[let v = t0 t1 in e]] ρ = DIExp

2 [[e]] ρ[v 7→ DITriv
2 [[t0]]ρ@DITriv

2 [[t1]]ρ]

DIExp
2 [[return t]] ρ = DITriv

2 [[t]]ρ

DIExp
2 [[throw k′ t]] ρ = throw k′ DITriv

2 [[t]]ρ

DITriv
2 : ITriv→ [LetPar→ DExp]→ DExp

DITriv
2 [[i]]ρ = i

DITriv
2 [[λi.r]]ρ = λ i .DIRoot

2 [[r]]
DITriv

2 [[v]]ρ = ρ v

Figure 21: From intermediate style to direct style, including call/cc and
throw

DCRoot
1 [[CIRoot

2 [[call/cc λk.e]]]]
= DCRoot

1 [[λk . CIExp
2 [[e]] k]]

=

{
DCExp

1 [[CIExp
2 [[e]] k]]k if k `CExp

NFC CIExp
2 [[e]] k

call/cc λk.DCExp
1 [[CIExp

2 [[e]] k]]k otherwise

DCExp
1 [[CIExp

2 [[return t]] k]]k

= DCExp
1 [[k @ CITriv

2 [[t]]]]k
= returnDCTriv

1 [[CITriv
2 [[t]]]]

DCExp
1 [[CIExp

2 [[throw k′ t]] k]]k

= DCExp
1 [[k′ @ CITriv

2 [[t]]]]k

=

{
returnDCTriv

1 [[CITriv
2 [[t]]]] if k = k′

throw k′ (DCTriv
1 [[CITriv

2 [[t]]]]) otherwise

21

Inverseness thus depends on the following properties:

• When the root has the form e, we require

k `CExp
NFC CIExp

2 [[e]] k

for a fresh k.

• When the root has the form call/cc λk.e, we require

k 6`CExp
NFC CIExp

2 [[e]] k

for the same k.

• throwk′ t should occur only when the continuation identifier argument
to DCExp

1 is k, for k 6= k′.

The first case is ensured by the following lemma:

Lemma 4 For fresh k, k `CExp
NFC CIExp

2 [[e]] k.

Proof. Straightforward. 2

k `CExp
NFC e is violated only when k occurs in a trivial subexpression of

the CPS term e. Via CIRoot
2 , k `CExp

NFC CIExp
2 [[e]] k is violated when k occurs

in a trivial subexpression of the IS term e, but not when it occurs in the
body of arbitrarily many nested let expressions. Thus CIRoot

2 recreates the
call/cc expression only in the former case.

The continuation identifier argument used by DCExp
1 to translate a CPS

expression, is always the same as the continuation identifier argument used
by CIExp

2 to create the CPS expression. Thus, if the continuation identifier
argument to the translation of throwk′t is different from k′, the resulting con-
tinuation application is translated by DCExp

1 back into a throw expression.
CIExp

2 simply propagates a continuation identifier from the point of declara-
tion into the translation of the bodies of nested let expressions. Thus the
condition that all continuation identifiers occur in trivial IS subexpressions
ensures that all throw expressions are reconstructed as well.

These observations are summarized by the following equations:

call/cc λk.let . . . in throw k e ≡ call/cc λk.let . . . in e (1)
call/cc λk.e ≡ e — whenever k 6∈ FV([e]). (2)

22

where the free-variable function FV is extended to the equivalence classes
[e] determined by these equations as follows:

k ∈ FV([e]) ⇔ ∀e′, [e′] = [e]⇒ k ∈ FV(e′)

Through D2, these equations are expressed more naturally in the DS lan-
guage:

call/cc λk.throw k e ≡ call/cc λk.e (3)
call/cc λk.e ≡ e — whenever k 6∈ FV([e]). (4)

These equations express the idea that all the captured continuations are
eventually used, albeit not immediately.

We are now ready to prove inverseness, following the strategy for the
pure language.

Lemma 5 The CPS and DS transformation can be staged through the in-
termediate language of Figure 17.

Proof. Straightforward extension of Lemma 1 to the transformations in
Figures 18, 19, 20, and 21. 2

Lemma 6 CDRoot
1 and DIRoot

2 are inverses of each other, modulo renaming
of bound variables.

Proof. Straightforward extension of Lemma 2. 2

Lemma 7 DCRoot
1 and CIRoot

2 are inverses of each other, modulo renaming
of bound variables and Equations 1 and 2.

Proof. Straightforward extension of Lemma 3, and as discussed above.
2

Theorem 3 The CPS and DS transformations are inverses of each other,
modulo renaming of bound variables and Equations 3 and 4.

Proof. A consequence of Lemmas 5, 6, and 7. 2

5 Applications

We apply the direct-style transformation to three examples: a definitional
interpreter for Scheme, partial evaluation of programs with coroutines, and
normalization of simply typed programs extracted from classical proofs.

23

5.1 An interpreter for Scheme 84 (revisited)

Handwritten CPS programs are notoriously difficult to read. It is not easily
apparent in a CPS program when continuations implement control effects,
rather than normal procedure calls and returns. Converting handwritten
CPS programs back to direct style can clarify the structure of such programs.

As an example of this approach, we consider the CPS interpreter for
Scheme 84 presented by Haynes, Friedman, and Wand in the proceedings of
LFP’84 [19, Fig. 1, p. 295]. Our DS transformer maps this interpreter to
the natural direct-style specification of Scheme. The result (see Figures 25,
26, and 27 in appendix) uses call/cc to implement call/cc. Otherwise it
looks like any other meta-circular Scheme interpreter. CPS-transforming it
yields the original CPS interpreter. Therefore, the only reason to write the
original interpreter in CPS was to specify call/cc.

5.2 Partial Evaluation

We can use the DS transformation in conjunction with the CPS transforma-
tion to carry out the automatic specialization of programs containing control
operators. As an example, we specialize the classical samefringe program for
binary trees with respect to one binary tree. We express this program using
call/cc but without side-effects, based on the detach model of coroutines
[6, 19]. The program is first transformed into continuation-passing style; it
is then specialized. The result is then transformed back into direct style.

5.2.1 Partial evaluation

Partial evaluation is a semantics-based program transformation technique
aimed at specializing a “source” program psrc with respect to a “static” part
s of its input data [5, 22]. Partial evaluation produces a “residual” program
pres. The programs psrc and pres are related as follows. Running pres on
the “dynamic” part d of the input data produces the same result as running
psrc on both s and d (but usually running pres is more efficient). This is
captured in the following equations that paraphrase Kleene’s Smn -theorem.{

run pe 〈psrc, 〈s, 〉〉 = pres
run pres〈 , d〉 = run psrc〈s, d〉

In the first equation, pe denotes a partial evaluator. Of course, these equa-
tions only hold for terminating programs psrc and pres, and if partial evalu-
ation terminates.

24

Short of a source-level partial evaluator able to handle control opera-
tors directly [29], if we want to specialize a program involving call/cc, it is
natural first to transform it into CPS (with C), then to specialize it using
a higher-order partial evaluator, and finally to transform the residual pro-
gram into direct style (with D). This approach is captured in the following
diagram.

〈psrc, 〈s, 〉〉 〈p′src, 〈s, 〉〉

pres p′res

〈C, Id〉 //

pe

��

D
oo

We are using Consel’s partial evaluator Schism [4].

5.2.2 The experiment

Figures 23 and 22 display the source program and its data structures.2 We
automatically transform this program into CPS. Schism automatically spe-
cializes it. We automatically transform the result into DS. Figure 24 displays
a slightly pretty-printed version of the result (local variables have been re-
named).

5.2.3 Assessment

As a whole, the static coroutine has been executed statically. Its compu-
tational content has been entirely inlined in the main procedure, yielding
an iterative-looking residual program — though in fact, the dynamic binary
tree is still traversed recursively. The resulting program uses one separate
coroutine to traverse the dynamic binary tree.

One could argue that the resulting program should not use any coroutine
at all, but this would require a more radical program manipulation. Such
a transformation would involve a global Eureka step, as in Burstall and
Darlington’s framework [2]. Regardless, if we want to specialize an n-ary
samefringe program with respect to part of its input, the residual program
would naturally be expressed in coroutine style.

2We use Schism syntactic facilities for declaring and using data types (more precisely:
constructor names and their arities). These facilities are not standard in Scheme, but they
can be easily defined as macros.

25

(define main
(lambda (bt1 bt2) ;;; Binary-Tree * Binary-Tree -> Bool
(skim (initialize bt1) (initialize bt2))))

(define skim
(lambda (d1 d2) ;;; Data * Data -> Bool
(caseType d1

[(Next v1 k1)
(caseType d2
[(Next v2 k2)
(and (equal? v1 v2)

(skim (resume k1) (resume k2)))]
[(Over) #f])]

[(Over)
(caseType d2
[(Next v2 k2) #f]
[(Over) #t])])))

(define initialize
(lambda (bt) ;;; Binary-Tree -> Data
(call/cc (lambda (k)

((defoliate bt (lambda (v) (throw k v))) (Over))))))

(define resume
(lambda (c) ;;; Cont -> Ans
(call/cc (lambda (k)

(c (lambda (v) (throw k v)))))))

(define defoliate
(lambda (bt k) ;;; Binary-Tree * Cont -> Ans
(caseType bt

[(Pair left right)
(defoliate right (defoliate left k))]

[(Leaf value)
(call/cc (lambda (kp)

(k (Next value (lambda (v) (throw kp v))))))])))

Figure 22: Control structures for the Samefringe program

26

(defineType Binary-Tree (defineType Data

(Pair left right) (Next value continuation)

(Leaf value)) (Over))

Figure 23: Data structures for the Samefringe program

;;; for all bt2,
;;; (main0 bt2) == (main (Pair (Pair (Leaf 0) (Leaf 1))
;;; (Pair (Leaf 2) (Leaf 3)))
;;; bt2)

(define main0
(lambda (bt2) ;;; Binary-Tree -> Bool

(caseType (initialize bt2)
[(Next l1 k1)
(and (equal? 0 l1)

(caseType (resume k1)
[(Next l2 k2)
(and (equal? 1 l2)

(caseType (resume k2)
[(Next l3 k3)
(and (equal? 2 l3)

(caseType (resume k3)
[(Next l4 k4)
(and (equal? 3 l4)

(caseType (resume k4)
[(Next l5 k5) #f]
[(Over) #t]))]

[(Over) #f]))]
[(Over) #f]))]

[(Over) #f]))]
[(Over) #f])))

Figure 24: Specialized version of the Samefringe program

27

In any case, this experiment illustrates a first: the successful specializa-
tion of programs involving operations over control.

5.3 Program extraction from classical proofs

Programs extracted from classical proofs typically have many occurrences of
call/cc [31]. To normalize such programs, we must extend a normalizer for
the simply typed λ-calculus to handle call/cc. This, however, is unnecessary,
given the direct-style transformation. As suggested in Section 5.2, one can
instead CPS-transform the extracted program, normalize the resulting CPS
program, and map the normalized program back to direct style.

pd pc

p′d p′c

C //

normalization
��

D
oo

6 Related Work

Naturally, this paper relies on Fischer’s, Plotkin’s, and Steele’s fundamen-
tal work on CPS [14, 33, 37, 40]. The CPS transformation described by
Danvy and Filinski [8] is the point of reference for Sections 2 and 3. In an
earlier work [7], Danvy developed the CPS-to-DS transformation described
in Section 2. In her PhD thesis [27], Lawall proved the syntactic relation-
ship between the CPS and DS transformations for a Scheme-like language,
following the strategy described here.

In their work on reasoning about CPS programs [38, 39], Sabry and
Felleisen have developed an “unCPS” transformation that is reminiscent of
the DS transformation. They consider normalized Fischer-style CPS pro-
grams (i.e., curried CPS programs with continuations occurring first), and
formalize the DS counterpart of CPS simplifications. They transform each
declaration of a continuation into a call/cc expression, and simplify the re-
sulting term by eliminating all useless occurrences of call/cc. In contrast,
the goal of our work is to consider DS and CPS programs that one could
realistically write by hand, and our introduction of call/cc expressions is
more sparse.

28

The detection of first-class continuations in Section 3 is purely syntac-
tic and thus contrasts with Jouvelot and Gifford’s or with Deutsch’s more
ambitious semantic analyses of programs with control effects [10, 23].

7 Conclusion

We have extended the DS transformation to handle first-class continuations.
This extension is conservative and relies on a continuation-occurrence anal-
ysis that detects first-class occurrences of continuations in a CPS term. The
DS and the CPS transformations widen the class of programs that can be
manipulated on a semantic basis.

Just like the CPS transformation, the DS transformation can be ex-
tended with sequencing and with other computational effects such as assign-
ments, destructive updates, and i/o [25, 40]. Sequencing is CPS-transformed
with a continuation that does not use its parameter; conversely, a contin-
uation whose parameter is not used can be mapped back to a sequence
expression. The CPS transformation of side-effecting primitive operations
is naturally achieved with continuation-passing versions of the primitive op-
erators. These make it straightforward to go back to direct style (see the
primitive operators store-c! and store! in Figures 25 and 27).

Based on the Curry-Howard isomorphism, the CPS transformation has
been related to transformations on representations of proofs [17, 31]. The
CPS transformation on types corresponds to the double-negation translation
(defining the final domain of answers as falsity), and call/cc corresponds to
Peirce’s law. By the same token, the DS transformation of CPS terms into
DS terms with call/cc should have an interpretation in proof theory. We
leave this aspect for a future work.

Over the last few years, many new control operators have emerged [8, 11,
12, 20, 34, 42]. If CPS is to be used as a unifying framework to specify and
relate them, it must be possible to shift back and forth between programs
using these operators and purely functional programs. Therefore it is useful
to establish a sound understanding of the DS transformation and its relation
to the CPS transformation.

Acknowledgments

Daniel Friedman and Harry Mairson provided doctoral and post-doctoral
support to the second author. Andrzej Filinski, Karoline Malmkjær, and
the LFP92 reviewers commented on earlier versions of this paper.

29

The diagrams of Sections 4 and 5 were drawn with Kristoffer Rose’s
XY-pic package.

A Two Interpreters for Scheme 84

The language defined in Figures 25 and 26 offers constant expressions, iden-
tifiers, lexically scoped first-class functions, conditional expressions, lexi-
cal assignments, sequencing, call/cc, and applications. The specification is
properly tail-recursive. (NB: the side-effecting primitive operator store-c!

is in CPS.)
The language defined in Figure 27 is the same as in Figures 25 and 26.

The specification is properly tail-recursive as well. Because each branch of
a case expression is in tail-position with respect to the entire case expres-
sion, the call/cc expression in the call/cc branch could also be located
around the case expression. Since the captured continuation is only used in
one of the conditional branches, however, call/cc is more naturally located
there. Notice how the unused continuation parameter is accounted for with
a begin expression, in the definition of evaluate-all. (NB: the side-effecting
primitive operator store! is in DS.)

References

[1] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Programming Languages, Portland, Ore-
gon, January 1994. ACM Press.

[2] Rod M. Burstall and John Darlington. A transformational system for
developing recursive programs. Journal of ACM, 24(1):44–67, 1977.

[3] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme
for a higher-level semantic algebra. In Algebraic Methods in Semantics,
pages 237–250. Cambridge University Press, 1985.

[4] Charles Consel. A tour of Schism: A partial evaluation system for
higher-order applicative languages. In David A. Schmidt, editor, Pro-
ceedings of the Second ACM SIGPLAN Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, pages 145–154,
Copenhagen, Denmark, June 1993. ACM Press.

30

(lambda (k)
(letrec ([meaning ;;; Exp * Env * [Val -> Ans] -> Ans

(lambda (e r k)
(case (type-of-expression e)

[(constant) (k e)]
[(identifier) (k (R-lookup e r))]
[(function)
(k (lambda (actuals k)

(meaning (body-pt e)
(extend-env r (formals-pt e) actuals)
k)))]

[(conditional)
(meaning (test-pt e)

r
(lambda (v)
(if v

(meaning (then-pt e) r k)
(meaning (else-pt e) r k))))]

[(assign)
(meaning (val-pt e)

r
(lambda (v)
(store-c! (L-lookup (id-pt e) r) v k)))]

[(sequence) (evaluate-all (exps-pt e) r k)]
[(call/cc)
(meaning (fn-pt e)

r
(lambda (f)
(f (list (lambda (actuals kp)

(k (car actuals))))
k)))]

[(application)
(meaning-of-all (comb-pt e)

r
(lambda (vals)

((car vals) (cdr vals) k)))]))]
[meaning-of-all ...]
[evaluate-all ...])

(k meaning)))

Figure 25: Haynes, Friedman, and Wand’s CPS interpreter for Scheme 84
(part I)

31

(lambda (k)
(letrec ([meaning

;;; Exp * Env * [Val -> Ans] -> Ans
(lambda (e r k)
...)]

[meaning-of-all
;;; List(Exp) * Env * [List(Val) -> Ans] -> Ans
(lambda (exp-list r k)
(meaning (car exp-list)

r
(lambda (val)
(if (null? (cdr exp-list))

(k (cons val ’()))
(meaning-of-all (cdr exp-list)

r
(lambda (vals)

(k (cons val
vals)))))))]

[evaluate-all
;;; List(Exp) * Env * [Val -> Ans] -> Ans
(lambda (exp-list r k)
(if (null? (cdr exp-list))

(meaning (car exp-list) r k)
(meaning (car exp-list)

r
(lambda (v)
(evaluate-all (cdr exp-list) r k)))))])

(k meaning)))

Figure 26: Haynes, Friedman, and Wand’s CPS interpreter for Scheme 84
(part II)

[5] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Graham [16], pages 493–501.

[6] Ole-Johan Dahl and C.A.R. Hoare. Hierarchical program structures. In
Ole-Johan Dahl, Edger Dijkstra, and C.A.R. Hoare, editors, Structured
Programming, pages 157–220. Academic Press, 1972.

[7] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994. Special issue on ESOP’92, the Fourth European
Symposium on Programming, Rennes, France, February 1992.

32

(letrec ([meaning ;;; Exp * Env -> Val
(lambda (e r)

(case (type-of-expression e)
[(constant) e]
[(identifier) (R-lookup e r)]
[(function)
(lambda (actuals)

(meaning (body-pt e)
(extend-env r (formals-pt e) actuals)))]

[(conditional) (if (meaning (test-pt e) r)
(meaning (then-pt e) r)
(meaning (else-pt e) r))]

[(assign)
(store! (L-lookup (id-pt e) r)

(meaning (val-pt e) r))]
[(sequence) (evaluate-all (exps-pt e) r)]
[(call/cc)
(call/cc (lambda (k)

((meaning (fn-pt e) r)
(list (lambda (actuals)

(throw k (car actuals)))))))]
[(application)
(let ([vals (meaning-of-all (comb-pt e) r)])

((car vals) (cdr vals)))]))]
[meaning-of-all ;;; List(Exp) * Env -> List(Val)
(lambda (exp-list r)

(let ([val (meaning (car exp-list) r)])
(if (null? (cdr exp-list))

(cons val ’())
(cons val (meaning-of-all (cdr exp-list) r)))))]

[evaluate-all ;;; List(Exp) * Env -> Val
(lambda (exp-list r)

(if (null? (cdr exp-list))
(meaning (car exp-list) r)
(begin

(meaning (car exp-list) r)
(evaluate-all (cdr exp-list) r))))])

meaning)

Figure 27: Direct-style counterpart of Haynes, Friedman, and Wand’s inter-
preter for Scheme 84

33

[8] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[9] Olivier Danvy and Frank Pfenning. The occurrence of continuation pa-
rameters in CPS terms. Technical report CMU-CS-95-121, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, February 1995.

[10] Alain Deutsch. On determining lifetime and aliasing of dynamically
allocated data in higher-order functional specifications. In Hudak [21],
pages 157–168.

[11] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce
Duba. A syntactic theory of sequential control. Theoretical Computer
Science, 52(3):205–237, 1987.

[12] Andrzej Filinski. Representing monads. In Boehm [1], pages 446–457.

[13] Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May
1996.

[14] Michael J. Fischer. Lambda-calculus schemata. In Talcott [43], pages
259–288. An earlier version appeared in an ACM Conference on Proving
Assertions about Programs, SIGPLAN Notices, Vol. 7, No. 1, January
1972.

[15] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Es-
sentials of Programming Languages. The MIT Press and McGraw-Hill,
1991.

[16] Susan L. Graham, editor. Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, Charleston,
South Carolina, January 1993. ACM Press.

[17] Timothy G. Griffin. A formulae-as-types notion of control. In Hudak
[21], pages 47–58.

[18] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In Boehm [1], pages 458–471.

34

[19] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Con-
tinuations and coroutines. In Guy L. Steele Jr., editor, Conference
Record of the 1984 ACM Symposium on Lisp and Functional Program-
ming, pages 293–298, Austin, Texas, August 1984.

[20] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In
Proceedings of the Second ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, pages 128–136, Seattle, Washington,
March 1990. SIGPLAN Notices, Vol. 25, No. 3.

[21] Paul Hudak, editor. Proceedings of the Seventeenth Annual ACM Sym-
posium on Principles of Programming Languages, San Francisco, Cali-
fornia, January 1990. ACM Press.

[22] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1993.

[23] Pierre Jouvelot and David K. Gifford. Reasoning about continuations
with control effects. In Charles N. Fischer, editor, Proceedings of the
ACM SIGPLAN’89 Conference on Programming Languages Design and
Implementation, SIGPLAN Notices, Vol. 24, No 7, pages 218–226, Port-
land, Oregon, June 1989. ACM Press.

[24] Richard A. Kelsey. Compilation by Program Transformation. PhD
thesis, Computer Science Department, Yale University, New Haven,
Connecticut, May 1989.

[25] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan
Philbin, and Norman Adams. Orbit: An optimizing compiler for
Scheme. In Proceedings of the ACM SIGPLAN’86 Symposium on Com-
piler Construction, pages 219–233, Palo Alto, California, June 1986.

[26] David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. Re-
search report, Computer Science Department, Yale University, New
Haven, Connecticut, February 1988.

[27] Julia L. Lawall. Continuation Introduction and Elimination in Higher-
Order Programming Languages. PhD thesis, Computer Science Depart-
ment, Indiana University, Bloomington, Indiana, July 1994.

[28] Julia L. Lawall and Olivier Danvy. Separating stages in the cont-
inuation-passing style transformation. In Graham [16], pages 124–136.

35

[29] Karoline Malmkjær, Nevin Heintze, and Olivier Danvy. ML partial
evaluation using set-based analysis. In John Reppy, editor, Record of the
1994 ACM SIGPLAN Workshop on ML and its Applications, Rapport
de recherche No 2265, INRIA, pages 112–119, Orlando, Florida, June
1994. Also appears as Technical report CMU-CS-94-129.

[30] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[31] Chetan R. Murthy. Extracting Constructive Content from Classical
Proofs. PhD thesis, Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, 1990.

[32] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1992.

[33] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[34] Christian Queinnec and Bernard Serpette. A dynamic extent control
operator for partial continuations. In Robert (Corky) Cartwright, ed-
itor, Proceedings of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 174–184, Orlando, Florida,
January 1991. ACM Press.

[35] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of 25th ACM National Conference,
pages 717–740, Boston, Massachusetts, 1972.

[36] John C. Reynolds. On the relation between direct and continuation
semantics. In Jacques Loeckx, editor, 2nd Colloquium on Automata,
Languages and Programming, number 14 in Lecture Notes in Computer
Science, pages 141–156, Saarbrücken, West Germany, July 1974.

[37] John C. Reynolds. The discoveries of continuations. LISP and Symbolic
Computation, 6(3/4):233–247, December 1993.

[38] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In William Clinger, editor, Proceedings of
the 1992 ACM Conference on Lisp and Functional Programming, LISP
Pointers, Vol. V, No. 1, pages 288–298, San Francisco, California, June
1992. ACM Press.

36

[39] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In Talcott [43], pages 289–360.

[40] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report
AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, May 1978.

[41] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

[42] Carolyn L. Talcott. The Essence of Rum: A Theory of the Intensional
and Extensional Aspects of Lisp-type Computation. PhD thesis, Depart-
ment of Computer Science, Stanford University, Stanford, California,
August 1985.

[43] Carolyn L. Talcott, editor. Special issue on continuations (Part I),
LISP and Symbolic Computation, Vol. 6, Nos. 3/4. Kluwer Academic
Publishers, December 1993.

37

Recent Publications in the BRICS Report Series

RS-96-20 Olivier Danvy and Julia L. Lawall. Back to Direct Style
II: First-Class Continuations. June 1996. 36 pp. A prelim-
inary version of this paper appeared in the proceedings
of the 1992 ACM Conference on Lisp and Functional
Programming, William Clinger, editor, LISP Pointers,
Vol. V, No. 1, pages 299–310, San Francisco, California,
June 1992. ACM Press.

RS-96-19 John Hatcliff and Olivier Danvy. Thunks and theλ-
Calculus. June 1996. 22 pp. To appear inJournal of
Functional Programming.

RS-96-18 Thomas Troels Hildebrandt and Vladimiro Sassone.
Comparing Transition Systems with Independence and
Asynchronous Transition Systems. June 1996. 14 pp. To
appear in Montanari and Sassone, editors,Concurrency
Theory: 7th International Conference, CONCUR '96 Pro-
ceedings, LNCS 1119, 1996.

RS-96-17 Olivier Danvy, Karoline Malmkjær, and Jens Palsberg.
Eta-Expansion Does The Trick (Revised Version). May
1996. 29 pp. To appear inACM Transactions on Pro-
gramming Languages and Systems (TOPLAS).

RS-96-16 Lisbeth Fajstrup and Martin Raußen. Detecting Dead-
locks in Concurrent Systems. May 1996. 10 pp.

RS-96-15 Olivier Danvy.Pragmatic Aspects of Type-DirectedPartial
Evaluation. May 1996. 27 pp.

RS-96-14 Olivier Danvy and Karoline Malmkjær. On the Idempo-
tence of the CPS Transformation. May 1996. 15 pp.

RS-96-13 Olivier Danvy and Reńe Vestergaard. Semantics-Based
Compiling: A Case Study in Type-Directed Partial Eval-
uation. May 1996. 28 pp. To appear in8th Interna-
tional Symposium on Programming Languages, Imple-
mentations, Logics, and Programs, PLILP '96 Proceed-
ings, LNCS, 1996.

