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Abstract

We give short proofs of some occupancy tail bounds using the
method of bounded differences in expected form and the notion of
negative association.

1 Introduction

The purpose of this note is to give short, simple and natural proofs of some
tail bounds on occupancy problems in [5]. The proofs also serve as adver-
tisements for some very useful, but apparently not very well–known concepts
and techniques:

• The method of bounded differences in the expected form [6, Cor. 6.10].

• A concept of negative dependence called negative association from the
theory of multivariate probability inequalities, [3, 4, 9, 10].

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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The first of these yields the Occupancy Bound 1 of [5, Theorem 2] by a direct
plug–in substitution. The second gives a short and enlightening calculation–
free proof of the (Chernoff) Occupancy Bound 2 in [5, Theorem 3].

The setting is the classical probabilistic experiment of throwing m balls
independently and uniformly 1 into n bins (for positive integers m,n). The
random variables of interest are defined as follows: for i ∈ [n] 2, let Zi be
the indicator variable which is 1 if bin i is empty and 0 otherwise. Set
Z :=

∑
iZi to be the number of empty bins. We are interested in tail bounds

on the distribution of Z.

2 Bounded Differences

The “method of bounded differences” is usually stated and used in the fol-
lowing form [6, Lemma 1.2]

Proposition 1 (McDiarmid) Let X1, . . . , Xn be independent random vari-
ables, variable Xi taking values in a finite set Ai for each i ∈ [n], and suppose
the function f :

∏
iAi → R satisfies the following “bounded difference” con-

dition: For each i ∈ [n], there is a constant ci such that

|f(x)− f(x′)| ≤ ci,

whenever the vectors x,x′ differ only in the kth co–ordinate. Then

Pr[|f(X)− E[f(X)]| > t] < 2 exp(−2t2/
∑
i

c2
i ).

This lemma has an attractive packaged form, but can be too weak for
some applications. In this case, we may resort to the “method of bounded
differences” in the expected form [6, Cor. 6.10]:

Proposition 2 (McDiarmid) Let X1, . . . , Xn be independent random vari-
ables, variable Xi taking values in a finite set Ai for each i ∈ [n], and suppose
the function f satisfies the following “bounded difference” conditions: For

1The techniques apply equally well even if the uniformity assumption is dropped, but
we retain it for simplicity.

2We denote [n] := {1, . . . , n}
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each i ∈ [n], there is a constant ci such that for any xk ∈ Ak, k ∈ [i− 1] and
for any xi, x′i ∈ Ai

|E[f(X) | X1 = x1, . . . , Xi−1 = xi−1, Xi = xi]−
E[f(X) | X1 = x1, . . . , Xi−1 = xi−1, Xi = x′i]| ≤ ci . (1)

Then
Pr[|f(X)− E[f(X)]| > t] < 2 exp(−2t2/

∑
i

c2
i ).

We shall illustrate the “method of bounded differences” in the above
form by applying it to study the occupancy statistics in the classical balls
and bins experiment. First, we have by simple calculations, E[Zi] = (1− 1

n
)m

and E[Z] =
∑
i E[Zi] = m(1− 1

n
)m.

To get a tail probability estimate, regard Z = Z(B1, . . . , Bm) where the
random variables Bk take values in the set [n] indicating which bin ball k
occupies, for each k ∈ [m]. If one were to employ the “method of bounded
differences” in the form of Proposition 1, it is easy to see that one must take
ci := 1 for each i ∈ [m]. Then one gets the tail probability bound:

Pr[|Z − E[Z]| > t] < 2 exp(−2t2/
∑
i

c2
i ) = 2 exp(−2t2/m).

This can be quite weak for large m and small t; compare the bound below.
An improved bound can be obtained by applying the expected version of

Proposition 2. Fix some i ∈ [m] and let us compute

|E[Z | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi]−
E[Z | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i]| ,

for fixed b1, . . . , bi−1, bi, b′i ∈ [n]. Set b := bi 6= b′i =: b′. Let I := {b1, . . . , bi−1} ⊆
[n]. Of course for j ∈ I ,

E[Zj | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi] = 0 =
E[Zj | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i] . (2)

Also,

E[Zb | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi] = 0
E[Zb′ | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i] = 0. (3)
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For j ∈ [m] \ (I ∪ {b, b′}), we have

E[Zj | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi] = (1− 1
n

)m−i =

E[Zj | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i] . (4)

Now suppose b ∈ I but b′ 6∈ I . Then with we have

E[Zb | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i] = 0, (5)

whereas

E[Zb′ | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi] = (1− 1
n

)m−i. (6)

Finally (apart from the symmetric case of the previous one) if b, b′ 6∈ I then,

E[Zb′ | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi] = (1− 1
n

)m−i.

E[Zb | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i] = (1− 1
n

)m−i. (7)

Comparing (2) through (7), for i ∈ [m],

|E[Z | B1 = b1, . . . , Bi−1 = bi−1, Bi = bi]−
E[Z | B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i]| ≤ ci,

where
ci = (1− 1/n)m−i,

Thus we have from Theorem 2,

Pr[|Z − E[Z]| > t] < 2 exp(−2t2/
∑
i

c2
i ).

Since ∑
i

c2
i =

n2 − µ2

2n− 1
,

we get the occupancy bound Theorem 2 in [5]:

Pr[|Z − µ| ≥ θµ] ≤ 2 exp (− θ2µ2(n− 1/2)
n2 − µ2 ).

4



3 Negative Association

A very useful and robust notion of negative dependence between random vari-
ables called negative association was introduced by Joag–Dev and Proschan
[4]:

Definition 3 (Negative Association) Let X := (X1, . . . , Xn) be a vector
of random variables.

(−A) The random variables, X are negatively associated if for every two
disjoint index sets, I, J ⊆ [n],

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj, j ∈ J)],

for functions f : R|I| → R and g : R|J| → R that are both non–decreasing
(or both non–increasing) with respect to the usual co–ordinatewise or-
dering of Euclidean spaces.

The next lemma list some properties that facilitate proofs of negative
association. The properties themselves are immediate from the definition.

Lemma 4 1. If X and Y satisfy (−A) and are mutually independent,
then the augmented vector (X,Y) = (X1, · · · , Xn, Y1, · · · , Ym) satisfies
(−A).

2. Let X := (X1, · · · , Xn) satisfy (−A). Let I1, · · · , Ik ⊆ [n] be dis-
joint index sets, for some positive integer k. For j ∈ [k], let hj :
R|Ik| → R be non–decreasing (or non–increasing) functions, and define
Yj := hj(Xi, i ∈ Ij). Then the vector Y := (Y1, · · · , Yk) also satis-
fies (−A). That is, non–decreasing (or non–increasing) functions of
disjoint subsets of negatively associated variables are also negatively
associated.

Proposition 5 The random variables Z1, . . . , Zn are negatively associated.

Sketch of Proof. Introduce the indicator variables for i ∈ [n], k ∈ [m],

Bi,k :=
{

1, if ball k goes into bin i;
0, otherwise.
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For each k ∈ [m], it is easy to show that the variables (Bi,k | i ∈ [n]) are
negatively associated (observe that their joint distribution is simply a permu-
tation distribution on 0, 0, . . . , 0, 1). Since each ball is thrown independently
of the others, we conclude from Lemma 4(1) that the full set of variables
(Bi,k | i ∈ [n], k ∈ [m]) are negatively associated. Finally observe that (using
the Iverson symbol [P ] which is 1 if the boolean property P is true and 0
otherwise) Zi = [

∑
k Bi,k = 0] is a non–increasing function of Bi,k, k ∈ [m].

Hence the result follows from Lemma 4(2).

Remark 6 In [2], a much fuller discussion of negative dependence in the
balls and bins experiment can be found.

Proposition 7 ([2]) The Chernoff–Hoeffding bound applies to sums of neg-
atively associated variables.

Sketch of Proof. From the definition of negative association, it follows by
induction that if X1, . . . , Xn are negatively associated, then

E[
∏
i∈[n]

fi(Xi)] ≤
∏
i∈[n]

E[fi(Xi)],

for any non–decreasing functions fi : R → R. Now we apply the usual
proof of the Chernoff–Hoeffding bound (see for instance [1, 7]) using the
above inequality to replace the equality E[

∏
i∈[n] e

Xi] =
∏
i∈[n]E[eXi] (which

holds when the variables are independent) by the above inequality with each
fi(x) := ex.

This yields directly, in a calculation–free manner, the (Chernoff) Occu-
pancy Bound 2 in [5, Theorem 3].

Remark 8 It should be mentioned that [5] fail to mention [8] where this
result is also obtained by arguments similar to theirs.
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