
B
R

IC
S

R
S

-95-42
M

.G
oldberg:

A
n

A
dequate

Left-A
ssociated

B
inary

N
um

eralS
ystem

BRICS
Basic Research in Computer Science

An Adequate Left-Associated Binary
Numeral System in theλ-Calculus

Mayer Goldberg

BRICS Report Series RS-95-42

ISSN 0909-0878 August 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

An Adequate
Left-Associated Binary Numeral System

in the λ-Calculus ∗

Mayer Goldberg
Computer Science Department

Indiana University †

(mayer@cs.indiana.edu)

August 15, 1995

Abstract

This paper introduces a sequence of λ-expressions, modelling the bi-
nary expansion of integers. We derive expressions computing the test
for zero, the successor function, and the predecessor function, thereby
showing the sequence to be an adequate numeral system. These func-
tions can be computed efficiently. Their complexity is independent of
the order of evaluation.

Keywords: Programming calculi, λ-calculus, functional program-
ming.

∗This work was carried out while visiting BRICS (Basic Research in Computer Science,
Centre of the Danish National Research Foundation).
†Bloomington, IN 47405, USA.

1

1 Introduction

1.1 Numeral Systems in the λ-Calculus

Numbers are traditionally represented on computers with a size proportional
to their logarithm. Traditional numeral systems in the λ-calculus, such as
Church numerals [1, 3] and Barendregt numerals [1], however, typically in-
volve linear representations of numbers. In such systems, the size of the
representation of a number n is proportional to n.

In this paper, we present an adequate binary numeral system for the λ-
calculus, where the successor function, the predecessor function, and the test
for zero are implemented efficiently. This implementation does not depend
on the order of evaluation.

Both the particular representation used in this paper and the problem
of showing that it is an adequate numeral system are due to H.P. Baren-
dregt. They were given to the author as a challenge during a visit to Indiana
University in 1990 [2].

1.2 Prerequisites and Notation

We assume some familiarity with the λ-calculus [1, 3]. The identity combi-
nator is given by I = λx.x. The boolean values true and false are denoted by
T = λxy.x and F = λxy.y respectively. Conjunction is denoted by and =
(λxy.(x (y T F) F)). Selectors are given by Un

k = λx0 · · ·xn.xk where k ≤ n.
The ordered n-tuple 〈x1, . . . , xn〉 is denoted by [x1, · · · , xn] = λs.(s x1 · · ·xn).
The k-th projection of an ordered n-tuple is denoted by πnk = λx.(x Un−1

k−1).
The length of a λ-term M is the number of symbols it occupies, and is noted
as ||M ||. Finally, the reflexive, transitive closure of the one-step reduction
−→ is given by −→→.

2 Binary Numerals

2.1 Representation

Since various data structures can be implemented in the λ-calculus, we could
select any one of several different binary representations for our numerals.
We choose to use, however, a representation that is unique to the λ-calculus:

2

2.1.1 Definition: (Barendregt) The Sequence bin = {binn}n∈ω. We
define binn as follows: Let the variable z (pronounced “zero”) represent a
0-bit, and let the variable w (pronounced: “wan”) represent a 1-bit. Let
b1b2 · · · bk, bj ∈ {z, w}, be a sequence of bits corresponding to the binary
expansion of n, such that b1 and bk are the low and the high bits respectively.
Then

binn = λzw.(b1 · · · bk)
The sequence of bits is thus represented by a left-associated application of
z’s and w’s.
2.1.2 Example:

bin0 = λzw.z
bin1 = λzw.w
bin2 = λzw.(z w)
bin3 = λzw.(w w)

bin4 = λzw.(z z w)
bin5 = λzw.(w z w)
bin6 = λzw.(z w w)
bin7 = λzw.(w w w)

Our goal in this paper is to show that the sequence bin is an adequate
numeral system, and that the successor function, the predecessor function,
and the test for zero can all be computed on the bits directly, without ex-
panding their argument into some linear representation. In our Ph.D. thesis
[6], we show similarly that addition, subtraction, multiplication, quotient, re-
mainder, and the test for equality can also be computed on the bits directly.
These extensions lay beyond the scope of this paper.

2.2 Uniqueness of Representation

One problem affects all n-ary numeral systems: A representation is not
unique, that is, different representations exist for the same number. For
example, in our system, λzw.w, λzw.(w z z), and λzw.(w z z z z z) all
represent the number 1. In the λ-calculus, however, it is extremely inelegant
for two numbers to have different normal forms, and yet to be numerically
equal.

We thus propose the following two-fold compromise:

• We define the test for zero (and ultimately, the test for equality) to
ignore trailing zero bits.

• We define the predecessor function (and ultimately, addition, subtrac-

3

tion, multiplication, quotient, remainder, etc.) not to leave trailing
zero bits.

So the functions we provide do not introduce trailing zeros in their results,
and ignore them in their arguments. Another solution, which is simpler to
derive and to verify, would be to define a “normalisation” combinator, taking
a binary numeral and removing its trailing zero bits. This solution, however,
is less efficient.

2.3 Size of Our Representation

The size of binn, our representation of n, is proportional to the number of
bits in the binary expansion of n, i.e., to logn. It is also clear that bin
numerals are as concise (in the sense of having the least number of symbols)
as possible for a binary numeral system in the λ-calculus. What is not as
obvious, but just as important if bin is to be practical for implementation
on a digital computer, is whether the various arithmetic operations that we
might want to carry out on this representation can be computed directly
on the bits, without expanding our binary representation to a less compact
one. We do not have the benefit, for example, of switching to and from
one of the well-known, linear numeral systems in order to define arithmetic
functions in one system in terms of the other system, as Barendregt does it
in Lemma 6.4.5 and Corollary 6.4.6 of his reference book on the λ-calculus
[1, Page 140]. This notion of expansion need not be explicit, but could be
implicit in a particular reduction sequence. The following definitions let us
express formally just how much can a given expression “expand”:
2.3.1 Definition:

i. Finitely Wide Terms. A λ-term M is finitely wide if there exists a
number N > 0, such that if for all λ-terms x, if M �

R
x then ||x|| ≤ N .

ii. The Width of a Term, wd.1 The width of a finitely wide term M ,
denoted by wd(M) is given by

wd = sup{||x|| : M−→→x}

1 wd is wd in Gothic letters.

4

The following two points should be noted:

• Some λ-terms which do not have a finite width, but have a normal
form. For example, let M be defined as follows:

M = ((λf.((λx.(f (x x))) (λx.(f (x x))))) (λxy.y) I)

It is simple to verify that M−→→I. The underlined sub-expression,
however, does not have a normal form, and expands arbitrarily. We
can thus have reduction sequences that result in expressions of arbitrary
width. Therefore M does not have a finite width.

• Some λ-terms do not have a normal form, but have a finite width. For
example, let M be defined as follows:

M = ((λx.(x x)) (λx.(x x)))

It is simple to verify that M −→M , and so M has a finite width, but
no normal form.

The width of a λ-term is used in the proof that a test for zero, the
successor function, and the predecessor function can all be computed without
expanding the representation of their arguments beyond log n.

3 Arithmetic Functions

3.1 Testing for Zero

3.1.1 Proposition: There exists a combinator Zero?bin such that for
all n ∈ N we have

i. (Zero?
bin

bin0) −→→ T
(Zero?

bin
binn+1) −→→ F

ii. wd(Zero?
bin

binn) = O(log n).

Proof:

i. To compute the zero predicate, we apply a given numeral to two λ-
expressions, substituting those λ-expressions respectively for z and w,

5

in the body of the numeral. The problem of testing for zero thus
reduces to the problem of identifying whether w occurs in the body of
the numeral.

We make use of the following property of the application of two ordered-
pairs (compare with Barendregt’s hint in his Problem 6.8.15 (ii) [1,
Page 149]):

([a1, b1] [a2, b2]) −→ ((λx.(x a1 b1)) (λx.(x a2 b2)))
−→ ((λx.(x a2 b2)) a1 b1)
−→ (a1 a2 b2 b1)

In particular, we have:

([M, b1] [M, b2]) = (M M b2 b1)

We define M as follows:

M = λmb2b1.[m, (and b1 b2)]

By pairing M with F and T we obtain DF and DT respectively:

DF = [M,F]
DT = [M,T]

For any n > 0, the binary expansion of n contains the 1-bit, and so w
occurs free in the body of binn, thus when we substitute DF for w in
the body of binn, the result will be DF . To obtain the test for zero, we
only need to take the second projection. We thus define the test for
zero as follows:

Zero?
bin

= λn.(π2
2 (n DT DF))

Note that as a byproduct of our construction, Zero?
bin

ignores trailing
zeros, so for example:

(Zero?
bin

(λzw.(z w z z z))) −→→ F

(Zero?
bin

(λzw.(z z z z z))) −→→ T

6

ii. Let

C = wd(Zero?
bin

) + max{wd(π2
2([M, b])) : b ∈ {F,T}}

r = max{wd([M, b1] [M, b2]) : b1, b2 ∈ {F,T}}

For any n ∈ N, binn = λzw.b1 · · · bk, we have:

wd(Zero?
bin

binn) ≤ C + wd(binn) + k · r
= O(k)
= O(log n)

�

3.2 The Successor Function

3.2.1 Proposition:

i. There exists a combinator Succ?
bin

, such that for all n ∈ N we have

(Succ?
bin

binn) −→→ binn+1.

ii. wd(Succ?
bin

binn) = O(log n).

Proof:

i. To compute the successor function on binn, we need to implement a
state machine consisting of three states: The first state, S0, propagates
the carry; The second state, S1, goes through the remaining bits after
the carry operation has been performed; The third state, S2, is the final
state.

The state machine is depicted in the following diagram:

S0 S1 S2
start //

32
01

"
!1 OO

0
//

32
01

"
!1 OO
!
"0#

��

ε
//

32
01
+*
()

7

In computing a successor of binn, we apply binn to three expressions:
The first two substitute for the bits in the body of binn, and the third
expression is used to mark the end of the stream of bits. Each expres-
sion needs to have access to

(i) An encoding of the current state (i.e. of either S0 or S1), denoted
by σ.

(ii) An encoding of whether the given expression is substituted for a
0-bit or a 1-bit, or is a mark for the end of the stream of bits
(noted by ε in the diagram). This is denoted by b.

(iii) A partial reconstruction of the body of the successive numeral,
denoted by r.

The values of (i) and (ii) determine what should the given expression
evaluate to. Any finite set of λ-expressions, for which we have a test of
equality could therefore be used for encoding (i) and (ii). Furthermore,
since the encodings in (i) and (ii) serve only as tags upon which to
dispatch, we can eliminate the test altogether by using selectors, i.e.
expressions of the form

Un
k = λx0 · · ·xn.xk

to encode the various choices. We store this information, and a proce-
dure m in an ordered 4-tuple. Again, observe that:

([m, b1, r1, σ1][m, b2, r2, σ2])
−→ ((λx.(x m b1 r1 σ1)) (λx.(x m b2 r2 σ2)))
−→ ((λx.(x m b2 r2 σ2)) m b1 r1 σ1)
−→ (m m b2 r2 σ2 b1 r1 σ1)

As one can see, m is passed a copy of itself, as well as all the information
stored in both ordered 4-tuples (both 4-tuples have m is common). On
the basis of the information it is passed, m can return the body of the
successive numeral or it can construct a new ordered 4-tuple, in which
case the computation continues.

Since the particular behaviour of m depends upon many variables, we
use Decision-Logic Tables to describe this behaviour in a concise man-

8

ner.

Decision logic tables (DLT) [7, 8] are a tabular description of how an
n-variable function can be used to control selection logic. The format
of a DLT is as follows:

list of variable names list of all possible combina-
tions of values of variables

list of actions to be taken selections of combinations of
actions as a function of com-
binations of variables

DLT’s can be formally manipulated and simplified, as well as automat-
ically compiled into computer programs. Since they are not in common
use today, we shall avoid the traditional DLT abbreviations, in order
to preserve clarity.

The main DLT in our proof distinguishes between the different states.
A separate DLT is provided for each state, with the exception of the
final state (which does nothing). The three DLT’s are given below:

Main DLT: Determining State
Value of σ1 U1

0 U1
1

Dispatch to the DTL of S0
√

Dispatch to the DTL of S1
√

The DLT at S0

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r1 w),U1
1]
√ √

(r1 w)
√

[m, b2, (r1 z),U1
0]

√ √

(r1 z w)
√

irrelevant
√ √ √

9

The DLT at S1

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r1 z),U1
1]

√ √

(r1 z)
√

[m, b2, (r1 w),U1
1]

√ √

(r1 w)
√

irrelevant
√ √ √

As can be seen from the DLT’s for S0 and S1, when b1 = U2
2 , the

return value is irrelevant. We could return any value whatsoever, so
we arbitrarily pick the I combinator. All three DLT’s are combined in
M :

M = λmb2r2σ2b1r1σ1.(σ1 (b1 (b2 [m, b2, (r1 w),U1
1]

[m, b2, (r1 w),U1
1]

(r1 w))
(b2 [m, b2, (r1 z),U1

0]
[m, b2, (r1 z),U1

0]
(r1 z w))

I)
(b1 (b2 [m, b2, (r1 z),U1

1]
[m, b2, (r1 z),U1

1]
(r1 z))

(b2 [m, b2, (r1 w),U1
1]

[m, b2, (r1 w),U1
1]

(r1 w))
I))

We now define the successor function in terms of M as follows:

Succ?
bin

= λnzw.(n [M,U2
0, I,U

1
0]

[M,U2
1, I,U

1
0]

[M,U2
2, I,U

1
0])

ii. The proof is similar to the proof of Proposition 3.1.1, albeit more te-
dious. It can be found in our Ph.D. thesis [6].

�

10

3.3 The Predecessor Function

3.3.1 Proposition:

i. There exists a combinator Pred?
bin

such that for all n ∈ N we have

(Pred?
bin

binn+1) −→→ binn.

ii. wd(Pred?
bin

binn) = O(log n).

Proof:

i. To compute the predecessor function on binn, we need to implement a
state machine consisting of three states: The first state, S0, propagates
the carry; The second state, S1, goes through the remaining bits after
the carry operation has been performed; The third state, S2, is the final
state.

The state machine is depicted in the following diagram:

S0 S1 S2
start //

32
01

!
"0#

��

1
//

 !
ε

OO

32
01

"
!1 OO
!
"0#

��

ε
//

32
01
+*
()

In computing the predecessor of binn, just as in computing its successor,
we apply binn to three expressions: The first two substitute for the bits
in the body of binn, and the third expression is used to mark the end
of the stream of bits. Each expression needs to have access to

(i) An encoding of the current state (i.e. of either S0 or S1), denoted
by σ.

(ii) An encoding of whether the given expression is substituted for a
0-bit, a 1-bit, or is a mark for the end of the stream of bits. This
is denoted by b.

(iii) A partial reconstruction of the body of the preceding numeral, un-
der the assumption that additional z’s in the number are trailing,
and should be ignored. This reconstruction is denoted by r1.

11

(iv) A partial reconstruction of the body of the preceeding numeral,
under the assumption that additional z’s in the number are not
trailing, and should not be dropped. This reconstruction is de-
noted by r2.

The values of (i) and (ii) are the same as the corresponding ones in the
construction of the successor. Since the predecessor of a bin numeral
may have one less bit, we generate two reconstructions of the numeral,
in parallel, and commit to one of the two when either a 1-bit or the
terminal mark are encountered. Together, (iii) and (iv) correspond to
(iii) in the construction of the successor. We store this information, as
well as a procedure m, in an ordered 5-tuple. As usual by now, observe
that:

([m, b1, r11, r12, σ1] [m, b2, r21, r22, σ2])
−→ ((λx.(x m b1 r11 r12 σ1))

(λx.(x m b2 r21 r22 σ2)))
−→ ((λx.(x m b2 r21 r22 σ2))

m b1 r11 r12 σ1)
−→ (m m b2 r21 r22 σ2 b1 r11 r12σ1)

As one can see, m is passed a copy of itself, and all the information
stored in both ordered 5-tuples (again, both ordered 5-tuples have m
in common). We use three DLT’s to represent the behaviour of m:

Main DLT: Determining State
Value of σ1 U1

0 U1
1

Dispatch to the DTL of σ0
√

Dispatch to the DTL of σ1
√

The DLT at σ0

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r12 w), (r12 w),U1
0]
√ √

(r12 w)
√

[m, b2, r11, (r12 z),U1
1]

√ √

r11
√

irrelevant
√ √ √

12

The DLT at σ1

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, r11, (r12 z),U1
1]

√ √

r11
√

[m, b2, (r12 w), (r12 w),U1
1]

√ √

(r12 w)
√

irrelevant
√ √ √

As can be seen from the DLT’s for S0 and S1, when b1 = U2
2 , the return

value is irrelevant, just like in the derivation of the successor. We could
return any value whatsoever, so we once again pick the I combinator.
All three DLT’s are combined in M :

M = λmb2r21r22σ2b1r11r12σ1.(σ1 (b1 (b2 [m, b2, (r12 w), (r12 w),U1
0]

[m, b2, (r12 w), (r12 w),U1
0]

(r12 w))
(b2 [m, b2, r11, (r12 z),U1

1]
[m, b2, r11, (r12 z),U1

1]
r11)

I)
(b1 (b2 [m, b2, r11, (r11 z),U1

1]
[m, b2, r11, (r11 z),U1

1]
r11)

(b2 [m, b2, (r12 w), (r12 w),U1
1]

[m, b2, (r12 w), (r12 w),U1
1]

(r12 w))
I))

We now define the predecessor function in terms of M as follows:

Pred?
bin

= λnzw.(n [M,U2
0, z, I,U

1
0]

[M,U2
1, z, I,U

1
0]

[M,U2
2, z, I,U

1
0])

Recall that r1 contains the partial reconstruction of the preceeding

13

numeral under the assumption that any additional zero bits are trailing,
and can therefore be ignored. The initial value of r1 must therefore be
z, rather than I.

ii. The proof is similar to the proof of Proposition 3.1.1, albeit more te-
dious. It can be found in our Ph.D. thesis [6].

�

3.4 Adequacy

3.4.1 Proposition: The numeral system bin is adequate.
Proof: Having defined Zero?

bin
, Succ?

bin
, and Pred?

bin
, it follows from

Proposition 6.4.3 in Barendregt’s book [1] that bin is an adequate numeral
system. �

4 Conclusion and Assessment

This paper introduces the sequence bin, and shows that it is an adequate
numeral system. This section analyses several aspects of bin.

4.1 Extensibility

The definition of bin is easily extensible to other basis, though base 10 might
well be the only other useful choice. Similarly, bin can be extended to have
a sign, a decimal point and an exponent, facilitating fixed-size floating point
arithmetic.

There is some interest in possible representations of real numbers on com-
puters, as streams of decimals or integer coefficients of continued fractions. It
is possible that the laziness inherent in the normal order of evaluation could
facilitate a lazy numeral system for real numbers as an extension of bin. Such
a numeral system would require that certain operations, such as the test for
equality and an encoding mechanism (see Section 4.3) be restricted, in or-
der to avoid non-termination. Lazy numbers offer a potential for efficiency,
while maintaining the flexibility of carrying on a computation to arbitrary
precision.

14

4.2 Efficiency

Numerals in bin are represented as concisely as possible. The number-
theoretic functions can be computed on bin with the same complexity as
they are computed on the standard binary representation used on modern
computers. This complexity is independent of the order of evaluation. The
use of selectors rather than arbitrary tokens in the dispatching mechanism
results in considerable gains in efficiency, and the resulting λ-expressions are
both more concise and simpler to verify.

4.3 Implementation

The numeral system bin is extremely suitable for implementation in func-
tional programming languages which model the pure, untyped λ-calculus.
We have implemented both the numeral system bin, and the basic number-
theoretic functions defined on it in the Scheme programming language [4].
Our implementation can be combined with the Gödeliser developed as a part
of our Ph.D. thesis [5, 6], so that such numerals, as well as possible extensions
to the bin numeral system, can be displayed.

4.4 Decision-Logic Tables

Although DLT’s are elaborate and verbose, they are relatively straightfor-
ward to construct, and help insure correctness. DLT’s have traditionally been
compiled into various programming languages, and so it seems reasonable to
expect that λ-expressions for computing more elaborate functions could be
generated automatically from a given set of DLT’s.

Acknowledgements

I am grateful to BRICS2 for hosting me this summer and for providing a
stimulating environment. Thanks are also due to Olivier Danvy, Daniel P.
Friedman, and Larry Moss for their comments and encouragement.

The diagrams were drawn with Kristoffer Rose’s XY-pic package.

2Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

15

References

[1] Hendrik P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1984.

[2] Hendrik P. Barendregt. Personal Communication, Bloomington, Indiana,
1990.

[3] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[4] William Clinger and Jonathan Rees (editors). Revised4 report on the al-
gorithmic language Scheme. LISP Pointers, IV(3):1–55, July-September
1991.

[5] Mayer Goldberg. Gödelisation in the λ-calculus. BRICS Research Series
RS-95-38, DAIMI, Aarhus University, Denmark, July 1995.

[6] Mayer Goldberg. Recursive Application Survival in the λ-Calculus. PhD
thesis, Department of Computer Science, Indiana University, December
1995. Forthcoming.

[7] T.F. Kavanagh. Tabsol – a fundamental concept for system-oriented lan-
guage. In Proceedings of the Eastern Joint Computer Conference, pages
117–127, New York, December 1960.

[8] Herman McDaniel. An Introduction to Decision Logic Tables. John Wiley
& Sons, 1968.

16

Recent Publications in the BRICS Report Series

RS-95-42 Mayer Goldberg. An Adequate Left-Associated Binary
Numeral System in theλ-Calculus. August 1995. 16 pp.

RS-95-41 Olivier Danvy, Karoline Malmkjær, and Jens Palsberg.
Eta-Expansion Does The Trick. August 1995. 23 pp.

RS-95-40 Anna Inǵolfsdóttir and Andrea Schalk. A Fully Abstract
Denotational Model for Observational Congruence. Au-
gust 1995. 29 pp.

RS-95-39 Allan Cheng.Petri Nets, Traces, and Local Model Check-
ing. July 1995. 32 pp. Full version of paper appearing in
Proceedings of AMAST '95, LNCS 936, 1995.

RS-95-38 Mayer Goldberg. Gödelisation in theλ-Calculus. July
1995. 7 pp.

RS-95-37 Sten Agerholm and Mike Gordon.Experiments with ZF
Set Theory in HOL and Isabelle. July 1995. 14 pp. To ap-
pear in Proceedings of the 8th International Workshop on
Higher Order Logic Theorem Proving and its Applications,
LNCS, 1995.

RS-95-36 Sten Agerholm.Non-primitive Recursive Function Defini-
tions. July 1995. 15 pp. To appear inProceedings of the 8th
International Workshop on Higher Order Logic Theorem
Proving and its Applications, LNCS, 1995.

RS-95-35 Mayer Goldberg.Constructing Fixed-Point Combinators
Using Application Survival. June 1995. 14 pp.

RS-95-34 Jens Palsberg.Type Inference with Selftype. June 1995.
22 pp.

RS-95-33 Jens Palsberg, Mitchell Wand, and Patrick O'Keefe.Type
Inference with Non-structural Subtyping. June 1995. 22
pp.

RS-95-32 Jens Palsberg.Efficient Inference of Object Types. June
1995. 32 pp. To appear inInformation and Computa-
tion. Preliminary version appears inNinth Annual IEEE
Symposium on Logic in Computer Science, LICS '94 Pro-
ceedings, pages 186–195.

