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Petri Nets, Traces,
and Local Model Checking?

Allan Cheng??

Computer Science Department
Cornell University

Ithaca, New York 14853, USA
e-mail:acheng@cs.cornell.edu

Abstract. It has been observed that the behavioural view of concurrent
systems that all possible sequences of actions are relevant is too gener-
ous; not all sequences should be considered as likely behaviours. Taking
progress fairness assumptions into account one obtains a more realistic
behavioural view of the systems. In this paper we consider the prob-
lem of performing model checking relative to this behavioural view. We
present a CTL-like logic which is interpreted over the model of concur-
rent systems labelled 1-safe nets. It turns out that Mazurkiewicz trace
theory provides a natural setting in which the progress fairness assump-
tions can be formalized. We provide the first, to our knowledge, set of
sound and complete tableau rules for a CTL-like logic interpreted under
progress fairness assumptions.

keywords: fair progress, labelled 1-safe nets, local model checking, max-
imal traces, partial orders, inevitability

1 Introduction

Recently, attention has focused on behavioural views of concurrent systems in
which concurrency or parallelism is represented explicitly [Rei85, Maz86, Win86,
Sta89, WN94]. This is done by imposing more structure on models for concurrent
systems—in our case, an independence relation on the transitions.

Our main objective is to explore the use of the extra structure of indepen-
dence in the context of specification logics. This paper introduces and studies a
CTL-like branching time temporal logic, P-CTL, interpreted over the reachabil-
ity graph of labelled 1-safe nets.

Labelled 1-safe nets are Petri nets whose transitions are labelled by actions
from a set Act and whose reachable markings have at most one token on any
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place. Labelled 1-safe nets are for example obtained by translating agents from
various process algebras or constructed as the synchronization of finite automata.

As an example, consider the process agent fix (X = a.X)|(τ.b.0). Its tran-
sition graph is given below to the left. The initial state is i and s1 and s2 are
the only other reachable states. The agent can also be represented by the la-
belled 1-safe net to the right, containing three transitions labelled a, τ , and b,
respectively [MN92, WN94].

i

B CE DaG F��
//

τ
s1

B CE DaG F��
//

b
s2

B CE DaG F�� τ b

a

The net gives us a more concrete model of the process agent. It shows that the
transition labelled a is independent of those labelled τ and b. We can therefore
add more structure to the above transition system by providing a relation which
explicitly states this independence. The new transition system is an example of
a labelled asynchronous transition system (lats) [Shi85, Bed88, WN94, Old91].
In general, we can obtain such a labelled asynchronous transition system as the
case graph, extended with implicit information about independence, of a labelled
1-safe net. In this paper, we will concentrate on labelled 1-safe nets.

The logic P-CTL contains one important feature: the model-theoretic incor-
poration of progress. Formulas corresponding to quantified “until” path formulas
in CTL is in our setting interpreted over firing sequences of labelled 1-safe nets
respecting certain progress assumptions. This is formalized using maximal traces
in the framework of Mazurkiewicz trace-theory, where we make explicit use of
the notion of independence between transitions. As an example, the formula
Ev(<b>tt)—to be read as“eventually b is enabled”—is true of the process agent
example under the assumption of progress (our interpretation), but not without
(standard CTL interpretation). Our interpretation is conservative in the sense
that P-CTL interpreted over standard labelled transition systems (lts) coincides
with the standard CTL interpretation. In process algebraic terms, our notion
of fair progress—progress of independent events—intuitively corresponds to a
progress fair “parallel operator”.

Work on expressing fairness assumptions can be found in for example Manna
and Pnueli’s book on temporal logic [MP92]. Often it involves “coding” these
assumptions using linear time temporal logic formulas of the form φfair ⇒ ψ,
which require a more detailed knowledge of the particular system. Also, the
formula φfair depends on the specific system being analyzed. When handling
progress fairness, we are able to avoid this obstacle and treat progress assump-
tions uniformly by using Mazurkiewicz trace-theory.

In the standard setting of CTL-like logics interpreted over lts, model checking
has been described in [CES86] using a state based algorithm and in [Lar88,
SW89] using tableaux rules. Model checking in the framework of partial order
semantics has been described in [Pen93, PP90].

In this paper we present the first, to our knowledge, set of sound and complete
tableau rules in the style of [Lar88, SW89] for a CTL-like logic interpreted in
the trace theoretic framework. The rules are a generalization of those in [Lar88,
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SW89] in the sense that if we restrict model checking to labelled 1-safe nets
without independent transitions, our tableau rules work in the same way. Using
the distinction between “local” and “global” model checking as advocated by
Stirling and Walker in [SW89] our method must be classified as “local” model
checking. Local model checking has the advantage that it isn’t necessary to
have an explicit representation of all the states of the system being investigated.
This is, however, necessary for the global model checking algorithm of [CES86].
Labelled 1-safe P/T nets are examples of models which can be ”locally” model
checked without necessarily generating the entire reachability graph/state space.

In Sect. 2, we provide the necessary definitions. In Sect. 3, we present the
logic and its interpretation. Section 4 contains a motivating example followed
by the tableau rules and the definition of tableaux. In Sect. 5, we present the
main result, soundness and completeness of the proposed tableau rules, and
state the complexity of our model checking problem. Finally, Sect. 6 contains
the conclusion and suggestions for future work. The appendix contains various
results related to P-CTL.

2 Basic Definitions

In this section we recall some basic definitions and state some facts and lem-
mas. We start by defining concurrent alphabets, the fundamental structure in
Mazurkiewicz trace theory [Maz86].

Definition1. Concurrent alphabet and traces

– A concurrent alphabet (A, I) consists of a set A (the alphabet) and a sym-
metric and irreflexive relation I ⊆ A× A—the independence relation.

In the following, assume a fixed concurrent alphabet (A, I).

– Define A∞ = A∗ ∪Aω, i.e., A∞ is the set of all finite and infinite sequences
of elements from A. Define concatenation ◦ of elements in A∞ as:

u ◦ v =
{
u if |u| =∞
uv else

For notational convenience we will write uv instead of u ◦ v.
– Let ≤pref be the usual prefix ordering on sequences and π(a,b) the projection

on {a, b}∞. Define a preorder � on A∞ which requires the relative order of
elements a and b which are in conflict, i.e., (a, b) 6∈ I, to be the same when
ignoring other elements of the sequences. Formally:

u � v if and only if (∀(a, b) 6∈ I. π(a,b)(u) ≤pref π(a,b)(v))

– Define an equivalence relation ≡ on A∞ by u ≡ v if and only if u � v and v �
u. The elements of A∞/≡ are called traces. The equivalence class of u—the
trace containing u—is denoted [u].
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– Fact: ≡ is a congruence with respect to ◦.
– For [u], [v] ∈ A∞/≡ define [u] � [v] if and only if u � v. It can be shown

that � is a partial order. We write [u] ≺ [v] if and only if u � v and u 6≡ v.
– Fact: for u, v ∈ A∗:
• [u] � [v] if and only if (∃u′ ∈ A∗. [uu′] = [v])
• u ≡ v if and only if u ≡M v, where ≡M is the well known equivalence

on finite sequences presented in [Maz86] to define finite traces.

Example 1. Consider the concurrent alphabet (A, I), where A = {a, b, c} and
I = {(a, b)(b, a)}. Then, abc ≡ bac, abc 6≡ acb, (abbac)∞ ≡ (aabbc)∞, and
(abbac)∞ 6≡ (abcba)∞.

Remark. We have chosen to present traces using projections π(a,b) because finite
as well as infinite traces are handled in a uniform way. Similar definitions can
be found in, e.g., [Kwi89].

We continue by defining labelled 1-safe nets, the labelled version of 1-safe
nets.3

Definition2. 1-safe nets

A 1-safe net, or just a net, is a structure N = (P, T, F,M0) such that

– P and T are finite nonempty disjoint sets; their elements are called places
and transitions, respectively.

– F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.
– M0 ⊆ P ; M0 is called the initial marking of N ; in general, a set M ⊆ P is

called a marking or a state of N .

Given a ∈ P ∪ T , the preset of a, denoted •a, is defined as {a′ | a′Fa}; the
postset of a, denoted a•, is defined as {a′ | aFa′}. The union of •a and a• is
denoted •a•. The irreflexive symmetric independence relation I over T is defined
by t1It2 if and only if •t•1 ∩ •t•2 = ∅. Two transitions t1 and t2 are said to be
independent if t1It2 and in conflict otherwise. Notice that (T, I) is a concurrent
alphabet. For D ⊆ T and t ∈ T we define tID = DIt = {t′ ∈ D | t′It }.

Example 2. The net example from the introduction has three places and three
transitions labelled τ , α, and β, respectively.

Definition3. Firing sequences

Let N = (P, T, F,M0) be a net.

– A transition t ∈ T is enabled at a marking M of N if •t ⊆M and t• ∩ (M−
•t) = ∅. Denote the set of transitions enabled at a marking M by next(M).

3 An equivalent definition can be given in terms of Place/Transition nets, see [CEP93].
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– Given a transition t, define a relation t→ between markings as follows: M t→
M ′ if and only if t is enabled at M and M ′ = (M − •t) ∪ t•. The transition
t is said to occur (or fire) at M . If M0

t1→ M1
t2→ · · · tn→ Mn for some mark-

ings M1,M2, . . .Mn, then the sequence σ = t1 . . . tn is called an occurrence
sequence. Mn is the marking reached by σ, and this is denoted M0

σ→ Mn.
A marking M is reachable if it is the marking reached by some occurrence
sequence. M 6→ denotes that there are no enabled transitions at M , i.e.,
next(M) = ∅, in which case it is said to be dead.

– Given a marking M of N , the set of reachable markings of (P, T, F,M)—the
net obtained replacing the initial marking M0 by M—is denoted by [M〉.

– A labelled 1-safe net N = (P, T, F,M0, l) is a 1-safe net extended with a
labelling function l : T → Act mapping each transition to an action in Act.

Example 3. The net example from the introduction has three reachable markings.

The behaviour of a net is captured by its reachability graph.

Definition4. Reachability graph

The reachability graph of a net N is the edge-labelled graph (V, E)N , whose
set of vertices–or states—V is [M0〉. The labelled edges are induced by the firing
relations t→, and hence conveniently and safely denoted M

t→M ′.

Example 4. The reachability graph of the net example in the introduction is
depicted to the left of the net. For convenience, we didn’t label the edges by
transitions, but rather theirs labels.

In the following we assume a fixed labelled 1-safe net N and consider its reach-
ability graph (V, E)N . We use the symbols p, q, . . . to denote states in (V, E)N . If
nothing else is mentioned, it is implicitly assumed that (T, I) is used to generate
the congruence ≡.

Definition5. Paths

– Define a path from p ∈ V as a sequence, finite or infinite, of transitions
t1, t2, . . . , for which there exists states p1, p2, . . ., such that p t1→ p1

t2→ p2 · · ·.
Notice that the firing rules of the net ensure the uniqueness of the pi’s, if
they exist. We therefore also refer to p t1→ p1

t2→ p2 · · · as a path from p and
use the notation p

σ→, where σ = t1t2 · · ·. Define path(p) ⊆ T∞ to be all
paths from p.
dead state.

– Define comp(p) as the maximal elements of path(p)/≡ with respect to �.
For σ ∈ [σ′] ∈ comp(p) we refer to p σ→ as a computation from p.

Example 5. In the process agent example from the introduction, τ is cc-enabled
along i a∞−→, when we use a, b, and τ to refer to the corresponding transitions.
Also, τba∞ is a computation from i while a∞ is not.
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Due to the firing rules of the nets, the congruence ≡ respects the path prop-
erty.

Lemma 6. Given a net N = (P, T, F,M0), and a state p of (V, E)N . Then,

(∀σ ∈ path(p). (∀σ′ ∈ [σ]. p σ′→)) .

Proof sketch. If σ is finite, the result easily follows from the commutativity of
consecutive independent transitions. If σ is infinite, notice that by interchanging
consecutive independent transitions of σ we conclude that any finite prefix of σ′

is an element of path(p). Since path(p) is limit closed, we conclude σ′ ∈ path(p).
ut

Hence, path(p) can be partitioned into elements of T∞/≡. Moreover, if σ is

finite, then p
σ→ q implies (∀σ′ ∈ [σ]. p σ′→ q).

Definition7. Continuously Concurrently Enabled Transitions

Given σ ∈ path(p), |σ| = ∞, σ = t1t2 · · ·. A transition t is said to be con-
tinuously concurrently enabled (cc-enabled) along p σ→= p

t1→ p1
t2→ p2 · · · if and

only if t is enabled at some point along p σ→ and independent of the remaining
transitions of σ from that point. Formally: (∃n ∈ IN. (∀j ≥ n. pj t→ ∧ tItj+1)).
From the irreflexivity of I, this implies that for the given n, t 6= tj , j ≥ n.
Whenever p is clear from the context, t is said to be cc-enabled along σ.

The next two lemmas state properties of traces.

Lemma 8. Given a concurrent alphabet (A, I). For σ, σ′ ∈ A∞ we have that

σ � σ′ ⇔ (∀σ1 ∈ preffin(σ). (∃σ′1 ∈ preffin(σ′).σ1 � σ′1)) .

Proof. The “if” direction is proved by an easy contradiction argument. For the
“only if” direction, first choose a finite prefix σ′1 of σ′ such that its Parikh
vector (for each a ∈ A this vector provides the number of occurrences of a’s
in σ′1) is greater than or equal to that of σ1. Assuming σ1 = a1 · · ·an and
σ′1 = b1 · · · bm find the first occurrence of a1, say bj1 in σ′1. Then for any 1 ≤
j < j1 it must be the case that bjIbj1 , since we have σ � σ′. Hence, b1 · · · bm ≡
bj1b1 · · · bj1−1bj1+1 · · · bm. Continuing this procedure for a2, . . . , an we eventually
get that σ′1 ≡ σ1γ for some γ ∈ A∗. But then clearly σ1 � σ′1. ut

Lemma 9. Given a net N = (P, T, F,M0), a state p of (V, E)N , σ ∈ path(p)
such that |σ| =∞, and t ∈ T that is cc-enabled along σ. Then, for any σ′ ∈ [σ],
t is cc-enabled along σ′), i.e., ≡ respects cc-enabledness.

Proof. Clearly, by definition there exists a finite σ1 ∈ path(p), a p′ ∈ S, and a
σ2 ∈ path(p′) such that p σ→= p

σ1→ p′
σ2→ and t is enabled at p′ and independent

of all transitions in σ2. Choose any σ′ ∈ [σ]. Since σ � σ′, we have from the
previous lemma that there exists a finite prefix of σ′, say σ′1, such that σ1 � σ′1.
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Using the technique from the proof of the previous lemma we see that there
exists a γ ∈ T∞, such that σ1γ ≡ σ′1 and all transitions in γ are independent

of t. We conclude that t must be enabled at p′′, where p
σ′1→ p′′, since p σ1γ−→ p′′.

Choosing σ′2 such that σ′ = σ′1σ
′
2 we also conclude that all transitions in σ′2

are independent of t, since all transitions in σ′2 are transitions of σ2. Hence, t is
cc-enabled along σ′. ut

Hence, based on Lemma 9 we may safely write t ∈ T is cc-enabled along [σ],
meaning t is cc-enabled along σ ∈ path(p).

Next, we identify maximal traces as maximal elements in a partial order.
The following lemma explains why we focus on these traces. They represent
executions—of a concurrent system—which are fair with respect to progress
of independent processes. In [MOP89] the term “concurrency fairness” is used
for such behaviours. Compared to other notions of “fairness” in the context of
concurrent systems “progress fairness” is a weak assumption, see [MP92] for a
comparison.

Lemma 10. Given a labelled 1 safe net N = (P, T, F,M0, l) and a state p of
(V, E)N . For [σ] ∈ comp(p) such that |σ| =∞ we have

(∃ [σ′] ∈ comp(p).[σ] ≺ [σ′]) if and only if

(∃ t ∈ T. t is cc-enabled along σ) .

Proof. The “if” direction is easy, and hence omitted. For the “only if” direction,
first we observe the following: since [σ] ≺ [σ′], there must exist a t ∈ T such
that π(t,t)(σ) < π(t,t)(σ′). Clearly, |π(t,t)(σ)| = n < ∞ for some n ∈ IN . Let
σ = σ1σ2, where #t(σ1) = n,#t(σ2) = 0 and |σ1| < ∞. By Lemma 8 we know
that there exists a finite prefix σ3 of σ′ such that [σ1] � [σ3]. Furthermore, there
must exists a suffix of σ such that all transitions of it are independent of t. To
see this, assume that there were infinitely many indexes ij ∈ IN for 0 ≤ j such
that (tij , t) 6∈ I, where σ = t1t2 · · ·. Since (∀j ∈ IN. π(t,tij)

(σ) < π(t,tij)
(σ′)), all

tij ’s must occur before the (n+1)’th t in π(t,tij)
(σ′). But this clearly means that

there must be infinitely many transitions between the n’th and (n + 1)’th t in
σ′, which is impossible.

Next, we show that there must exist a transition t′ which is cc-enabled
along σ. First, choose the first occurrence of a t′ ∈ T along σ′ such that
#t′(σ) < #t′(σ′). Next, split σ into σ1 (finite) and σ2 such that σ = σ1σ2
and all transitions in σ2 are independent of t′. Then, choose σ′1 as the short-
est prefix of σ′ such that #t′(σ′1) = #t′(σ1) + 1 and the Parikh vector of σ′1 is
greater than that of σ1. By an argument similar to that above, one can rearrange
σ′1 by continuously interchanging adjacent independent transitions and obtain
σ′1 ≡ σ1γ ∈ path(p). Now #t′(γ) > 0. Let γ = t′1 · · · t′r t′ t′′1 · · · t′′s , where r, s ≥ 0
and all t′i’s are different from t′. Now assume that (∃1 ≤ j ≤ r. (t′j, t

′) 6∈ I).
Choose the first such j. Then, π(t′

j
,t′)(σ′1) > π(t′

j
,t′)(σ1) and since the relative

occurrence of t′ and t′j’s in σ′1 and σ1γ are the same, a t′j must occur before the
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(#t′(σ1) + 1)’th t′ in σ′. But #t′i
(σ) = #t′i

(σ′) by choice of t′. Then, there must
exist a t′i in σ2 and this contradicts the assumption that all transitions in σ2
were independent of t′. By using the properties of (V, E)N and I (e.g., permu-

tation of consecutive independent transitions: if M t→M ′
t′→M ′′ and tIt′, then

there exists an M ′′′ such that M t′→M ′′′
t→ M ′′),4 we conclude that t′ must be

enabled at p′ where p σ1→ p′. Hence, t′ is cc-enabled along σ. ut

3 The Logic P-CTL and its Interpretation

In this section, we assume a fixed labelled 1-safe net N = (P, T, F,M0, l). P-
CTL has the following syntax, where α ∈ Act.

A ::= tt | ¬A | A1 ∧A2 | ©α A | A1 U∃ A2 | A1 U∀ A2

tt is an abbreviation for TRUE. In Hennessy-Milner logic [Mil89], <a> A
expresses the fact that one can perform an action a from a state and, in doing
so, reach another state at which A holds. Similarly, the ©αA expresses that a
transition labelled α can be fired reaching a state where A holds. The “until”
operators U∃ and U∀ are introduced as generalizations of their counterparts in
[CES86], here interpreted over maximal traces, following Mazurkiewicz [Maz86].

The logic is interpreted over the reachability graph (V, E)N of N as follows,
where p ∈ V , α ∈ Act, and we have written |= instead of |=N since N was fixed.

– p |= tt
– p |= ¬A if and only if p 6|= A
– p |= A1 ∧ A2 if and only if p |= A1 and p |= A2

– p |=©αA if and only if (∃t ∈ T, q ∈ V. l(t) = α ∧ p
t→ q ∧ q |= A)

– p |= A1 U∃ A2 if and only if (∃ [σ] ∈ comp(p), p σ→= p0
t1→ p1

t2→ p2 · · · .
(∃ 0 ≤ n ≤ |σ|. (pn |= A2) ∧ (∀0 ≤ i < n. pi |= A1)))

– p |= A1 U∀ A2 if and only if (∀[σ′] ∈ comp(p). (∀σ ∈ [σ′], p σ→= p
t1→ p1

t2→
p2 · · · .
(∃ 0 ≤ n ≤ |σ|. (pn |= A2) ∧ (∀0 ≤ i < n. pi |= A1))))

Furthermore, we define ff ≡ ¬tt, < α > A ≡ ©αA, [α]A ≡ ¬ < α > ¬A,
F(A) ≡ tt U∃A, G(A) ≡ ¬F(¬A), Ev(A) ≡ tt U∀A, and Al(A) ≡ ¬Ev(¬A).
The intended meaning of Ev(A) is that eventually/inevitably A will hold along
any computation, while Al(A) means that along some computation A always
holds.

Example 6. In the process agent example from the introduction we have i |=
Ev(<b>tt).

4 To be more precise, we use the axioms of the corresponding l-ATS, which intuitively
is (V,E)N augmented with I [WN94].
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Having given the necessary definitions, we end this section by defining the
model checking problem.

Definition11. Given a labelled 1-safe net N = (P, T, F,M0, l) and a formula
A. The model checking problem of N and A is the problem of deciding whether
or not M0 |= A.

4 A Tableau Method for Model Checking

In this section we present a local model checker based on a tableau system for
model checking formulas from our logic.

Local model checking based on tableau systems has been presented in [SW89].
As opposed to a global model checker—as the on presented in [CES86]—which
checks if all states of the system satisfies a formula, a local model checker only
checks if a specific state satisfies a given formula. For local model checkers based
on tableau systems this is done by only visiting (other) states if the tableau rules
require it. Hence, the local model checker may well be able to show that a state
satisfies a formula without visiting all states of the system. For systems with a
compact representation, such as 1-safe nets (where a state of the system/net is
considered to be a marking), a local model checker only has to generate new
parts of the reachability graph when the tableau rules require it. Since the size
of the reachability graph can be exponentially bigger than the size of the net,
a local model checker sometimes has an advantage over a global model checker,
since it can perform model checking using less memory.

We begin by considering an example to give some intuition about the prob-
lems we are faced with when looking for a tableau system. Since our interpre-
tation of the logical operators in P-CTL coincides with the usual interpretation
when there is no concurrency in the nets, we would also like the tableau sys-
tem to be a conservative extension of those presented in [Lar88, SW89]. The
main difficulty is how to generalize the unfolding of formulas in P-CTL which
correspond to minimal fixed-point assertions.

4.1 Unfolding Minimal Fixed-Point Assertions

Below we consider a very simple reachability graph g1, which is generated by
the 1-safe net N1 to the right.

9



p1 //
t3:α3

��

t5:α5


 


 


 




p0

E DG F t1:α1

�� G F E Dt2:α2

��

��

t6:α6

44
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44
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��
t5:α5


 


 


 




p2oo
t4:α4

��

t6:α6

44
44
44
4

p3 //
t3:α3

p4

E DG F t1:α1
��

��
t7:γ

p5

G F E Dt2:α2
��

��
t8:γ

p6oo
t4:α4

p7 p8

αααα

γ

3 5 6 α2 α4

γtt

tt t t t

1

7 8

1 3 5 6 2 4t

The ti’s are the transitions, the Greek letters the labels, and p0 the ini-
tial marking. The independence relation is the smallest such containing (t1, t5),
(t3, t5), (t2, t6), and (t4, t6). Clearly, p0 |=N1 ¬Ev(<γ>tt) because [(t1t3t2t4)∞] ∈
comp(p0) and no state along the computation (t1t3t2t4)∞ satisfies <γ>tt. How-
ever, if we drop the transitions t2, t4, t6, and t8 and call this reduced net N2,
we do indeed have p0 |=N2 Ev(<γ> tt), since every computation from p0 must
eventually reach p4 — t5 cannot be continuously ignored while repeatedly firing
t1 and t3; they are both independent of t5.

Let us consider what a tableau (proof tree) for p0 |=g2 Ev(<γ>tt) might look
like:

p0 ` Ev(<γ>tt)

p1 ` Ev(<γ>tt)

p0 ` Ev(<γ>tt) p3 ` Ev(<γ>tt)

p4 ` Ev(<γ>tt)

p4 `<γ>tt
p7 ` tt

p4 ` Ev(<γ>tt)

p4 `<γ>tt
p7 ` tt

The above tree is constructed according to some intuitive tableau rules. Al-
though informal, the example provides the first important observation. The left-
most branch begins and ends with the sequent p0 ` Ev(<γ>tt). In the µ-calculus
Ev(<γ>tt) is expressed by the formula µX. <γ>tt∨ ([Act]X ∧ <A>tt). Hence,
based on the tableau methods from [Lar88, SW89] one might expect that the
above tree should be discarded as a tableau since the unfolding of the minimal
fixed-point assertion reaches itself. However, in the current framework we inter-
pret the logic over maximal traces, and the detected loop, (p0

t1→ p1
t3→ p0)∞,

is not a computation from p0 since the transition t5 is cc-enabled. This exam-
ple suggests that in certain cases we might allow the unfolding of a minimal
fixed-point assertion to reach itself. These cases should include the existence of
a transition that is cc-enabled along the loop represented by such a branch. Our
solution to this problem is to annotate the logic used in the tableau rules. The
idea is to keep track of the transitions which are cc-enabled and update this
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information as one unfolds the reachability graph via the tableau rules. So in
our case t5 would be “remembered” along the p0 → p1 → p0 branch.

Let us consider a second example. This time we use g1. Again, we construct
in an intuitive and informal manner a tree rooted in the sequent p0 ` Ev(<γ>tt):

p0 ` Ev(<γ>tt)

Two subtrees as above p5 ` Ev(<γ>tt)

p5 `<γ>tt
p8 ` tt

p2 ` Ev(<γ>tt)

p6 ` Ev(<γ>tt)

p5 ` Ev(<γ>tt)

p5 `<γ>tt
p8 ` tt

p0 ` Ev(<γ>tt)

Again, the interesting parts are the branches that unfold a minimal fixed-
point assertion into itself. There are two such branches, the leftmost and the
rightmost. However, along both of these there are transitions which are cc-
enabled — t5 for the left branch and t6 for the right branch. So according to the
previous remarks, these branches shouldn’t discard the tree from being a tableau.
But we do wish to discard the tree as a tableau since p0 |=g1 ¬Ev(<γ>tt). The
problem is that by composing the two loops (p0

t1→ p1
t3→ p0) and (p0

t2→ p2
t4→ p0)

we can obtain an infinite path (p0
t1→ p1

t3→ p0
t2→ p2

t4→ p0)∞. Along this path
there is no transition which is cc-enabled, that is, it is a computation from p0.
Moreover, no state along the loop satisfies <γ>tt. This fact should discard the
tree from being a tableau.

One solution to the problem of detecting such ”combined” loops is to continue
to unfold the minimal fixed-point assertions p0 ` Ev(<γ > tt). If we unfold
the fixed point assertion once more in the above example, still updating and
propagating the information kept in the annotation, we will obtain a leaf with
the information that we have found a looping path along which no transition is
cc-enabled. This could discard the tree from being a tableau.

It turns out that the remaining problem is to find some general bound on
the number of times we allow the unfolding of a minimal fixed-point assertion.
In the next section we provide the necessary definitions. The bound we use is at
most |T |, the number of transitions in the labelled 1-safe net.

4.2 Tableau Rules

In this section we consider a fixed labelled 1-safe net N and its reachability graph
(V, E)N .

We want to perform “local” model checking by unfolding parts of the reach-
ability graph into a tree structure. The tableau rules are supposed to guide this
unfolding by imposing constraints which restrict the size and shape of the tree
structure. The main difficulty is handling the U∀ operator.

Consider a state q such that q 6|= A1 U∀ A2. Then either there exists (i) a
computation σ such that A1 ∧ ¬A2 holds at all states along q σ→ and either
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a deadlock is reached or a state such that ¬A1 ∧ ¬A2 holds reached, or (ii)
an infinite computation σ such that A1 ∧ ¬A2 holds at all states along q σ→,
referred to as an invalidating computation. Since the formulas are interpreted
at states and the state space is finite, case (ii) reduces (simply by removing
a finite number of loops from σ) to the existence of an infinite computation
σ1σ2 from q, where σ1 is finite and all states along q σ1→ occur only once along
q
σ1→ p

σ2→ while all states along p
σ2→ occur infinitely often. Also, A1 ∧ ¬A2

holds at all states, as will be the case for the following computations. Using
Lemma 10 it is possible to obtain from σ2 an infinite path σ3 from p of the form
(γp,p1γp1loopγp1,p · · ·γp,pkγpk loopγpk ,p)∞, where all γ’s are finite and made up
from subsequences of σ2 and 1 ≤ k ≤ |T |. The indices are intended to illustrate
the structure of the loops as follows.

q //σ1 p //
γp,pi

pi

E DG F γpi,p�� E DB C γpiloop@ AOO
Also, since σ2 was a computation from p, the γ’s can be chosen such that for
any t ∈ next(p) one of the γpiloop ’s will contain a transition in conflict with t.
Hence, σ3 is a computation from p. We refer to the illustrated loops as critical
loops. To conclude, σ1σ3 is an invalidating computation from q along which all
states satisfy A1 ∧ ¬A2.

In the example from Sect. 4.1, if we chose p0 as p, then p0
t1→ t3→ p0 and

p0
t2→ t4→ p0 would constitute critical loops. Actually, we can bound the sizes of

the γ’s since the state space is finite. The important observation is that together
with |T | we have a bound on the length and number of γ’s we have to consider.
This is what we will encode in the the tableau system. For that purpose we
define an annotated logic.

The Annotated Logic. The syntax of the annotated logic which is used in
the tableau rules differs only from the previous in that the U∃ and U∀ operators
are replaced by labelled counterparts. The U∃ operator is replaced by UC∃ , where
C ⊆ V . The intuition is that C keeps track of which states have been visited and
prevents unnecessary unfolding. For the U∀ operator we use a more elaborate
annotation, UC∀ , U (p,n,T ′)

∀ , U (p,n,T ′,V ′,→)
∀ , and U

(p,n,T ′,V ′,←)
∀ , where p ∈ V , T ′ ⊆

T , V ′ ⊆ V , and 0 ≤ n ≤ |T |. V ′ plays a role similar to C, n bounds the number
of critical loops the tableau rules allow to explore, and T ′ keeps track of which
transitions have been concurrently enabled but ignored so far along a path. The
emptyness of T ′ will indicate that an invalidating computation has been found.

Let Ann be the obvious homomorphism which annotates a formula A (gen-
erated by the grammar in Sect. 3) by transforming every U∃ and U∀ into U∅∃
and U∅∀ , respectively. An annotated formula B is said to be clean if there exists
a formula A such that B equals Ann(A).
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The Tableau Rules. The tableau rules will consist of rules for sequents of the
form p ` B. The rules can be read from top to bottom as: “the top sequent holds
(B holds at p) if the bottom sequents and side conditions hold”. B, B1, and B2
are assumed to be clean annotated formulas.

1) p ` B1 ∧ B2

p ` B1 p ` B2

2) p ` ©αB

q ` B
- t ∈ T, q ∈ V, p t→ q,
- l(t) = α.

3) p ` B1 U
C
∃ B2

p ` B2

- p 6∈ C.

4) p ` B1 U
C
∃ B2

p ` B1 q ` B1 U
C∪{p}
∃ B2

- p 6∈ C, t ∈ T, q ∈ V, p t→ q.

5) p ` B1 U
C
∀ B2

p ` B2

- p 6∈ C.

6) p ` B1 U
C
∀ B2

p ` B1 q1 ` B1 U
C∪{p}
∀ B2 · · · qm ` B1 U

C∪{p}
∀ B2

- next(p) = {t1, . . . , tm},
0 < m ∈ IN,p 6∈ C,

- (∀ 1 ≤ i ≤ m. p ti→ qi).

7) p ` B1 U
C
∀ B2

p ` B1 U
(p,|next(p)|,next(p))
∀ B2

- p ∈ C.

8) p ` B1 U
(p,n,T ′)
∀ B2

p ` B1 U
(p,n−1,T ′ ,∅,→)
∀ B2

- 0 < n ∈ IN,T ′ 6= ∅.

9) q ` B1 U
(p,n,T ′ ,V ′,→)
∀ B2

q ` B1 qi ` B1 U
(p,n,tiIT

′,V ′∪{q},→)
∀ B2

- q 6∈ V ′, next(q) = {t1, . . . , tm},
0 < m ∈ IN,

- (∀1 ≤ i ≤m. q ti→ qi),

10) q ` B1 U
(p,n,T ′,V ′,→)
∀ B2

q ` B2

- q 6∈ V ′.

11) q ` B1 U
(p,n,T ′,V ′,→)
∀ B2

q ` B1 U
(p,n,T ′,∅,←)
∀ B2

- q ∈ V ′.

12) q ` B1 U
(p,n,T ′ ,V ′,←)
∀ B2

q ` B1 qi ` B1 U
(p,n,tiIT

′,V ′∪{q},←)
∀ B2

- q 6∈ V ′, next(q) = {t1, . . . , tm},
0 < m ∈ IN, q 6= p,

- (∀1 ≤ i ≤m. q ti→ qi).

13) q ` B1 U
(p,n,T ′,V ′,←)
∀ B2

q ` B2

- q 6∈ V ′.

14) p ` B1 U
(p,n,T ′ ,V ′,←)
∀ B2

p ` B1 U
(p,n,T ′ )
∀ B2

Rule 1 to 4 need no further explanation. Referring to the notation from Sect.
4.2, Rule 5 and 6 should detect σ1, Rule 7 should detect the “switch” to σ3, Rule

13



should 8 to 10 detect γp,piγpiloop, Rule 11 should detect the “switch” to γpi,p,
and Rule 12 to 14 should detect γpi,p.

The next step is to define derivation trees which are build up according to
the tableau rules.

The Derivation Trees and Tableaux. In this section we define the tableaux.
This is done by first defining a larger class of trees, derivation trees, which are
generated according to the tableau rules. The next step is to restrict the class of
derivation trees, using the annotation of the formulas, to a subclass of derivation
trees which will be defined to be the tableaux.

Derivation trees are defined inductively in the usual manner, except perhaps
for negation. That is, if T1, . . . , Tn are derivation trees with roots matching the
sequents under the bar of a rule and the side conditions are fulfilled, then one
obtains a new derivation tree by “pasting the derivation trees together” according
to the rule. The root of the new derivation tree is labelled by the sequent above
the bar. A tree consisting of a single node labelled with one of the following
sequents is a derivation tree.

– p ` tt
– p ` ¬B
– p ` B1 U

(p,n,T ′)
∀ B2, where n = 0 or T ′ = ∅

– q ` B1 U
(p,n,T ′,V ′,←)
∀ B2, where q ∈ V ′

By applying the rules we can obtain new derivation trees, for example:

– If T1 is a derivation tree with root p ` B1, T2 is a derivation tree with root
q ` B1 U

C∪{p}
∃ B2, where p 6∈ C, and there exists a t ∈ T such that p t→ q,

then p ` B1 U
C
∃ B2

T1 T2

is a derivation tree with root p ` B1 U
C
∃ B2.

– If T is a derivation tree with root p ` B2 and p 6∈ C, then p ` B1 U
C
∀ B2

T
is a derivation tree with root p ` B1 U

C
∀ B2.

Nothing else is a derivation tree.
We continue by defining the tableaux. In this step we get rid of derivation

trees as for example p ` ¬tt. Sequents of the form q ` B1 U
(q,n,∅)
∀ B2, where

n ∈ IN and q ∈ V , are called terminal sequents. A tableau is a derivation tree
T with root p ` Ann(A) such that either

– A = tt or
– A = ¬A′ and there exists no tableau with root p ` Ann(A′) or
– A is not of the above form and

1. every proper subtree T ′ of T whose root is labelled with a clean formula
is itself a tableau and

2. T has no leaves labelled with terminal sequents.

A sequent p ` B is proved by exhibiting a tableau with root p ` B.
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5 Soundness and Completeness of the Tableau Method

Having given the necessary definitions we are now ready to state the main result.

Theorem12. Given a finite labelled net N = (P, T, F,M0, l). Then for any
state p of (V, E)N (p ∈ V ) and any formula A we have:

p |= A if and only if there exists a tableau with root p ` Ann(A)

Proof. The proof proceeds by structural induction in A, showing soundness and
completeness simultaneously. The main difficulty is the U∀ operator. For the
soundness part, our observations from Sect. 4.2 provide the basis for a proof
by contradiction. For the completeness part, using the induction hypothesis
one can give a direct construction of a tableau. Intuitively, if p |= A1 U∀ A2,
then a tableau will be constructed (top-down from p) by always proving q `
Ann(A2) if q |= A2 for any reached state q. Else, if q 6|= A2, then one proves
q ` Ann(A1), starts unfolding the graph from q, and continues by trying to
prove Ann(A1 U∀ A2) at the states that are reached.

tt Clearly, we always have p |= tt and the tableau p ` tt.
¬ We have p |= ¬A if and only if p 6|= A if and only if (induction hypothesis)

there exists no tableau with root p ` Ann(A) if and only if p ` ¬Ann(A) is
a tableau.

∧ We have p |= A1 ∧ A2 if and only if p |= A1 and p |= A2 if and only if
(induction hypothesis) there exists tableaux T1 with root p ` Ann(A1) and
T2 with root p ` Ann(A2) if and only if there exists a tableau with root
p ` Ann(A1 ∧A2), because Ann(A1 ∧A2) = Ann(A1) ∧Ann(A2).

©α We have p |=©αA if and only if (∃t ∈ T, q ∈ V. p t→ q ∧ q |= A ∧ l(t) = α)
if and only if (induction hypothesis) there exists a tableau T and (∃t ∈ T, q ∈
V. p

t→ q ∧ l(t) = α ∧ T has root q ` Ann(A)) if and only if there exists a
tableau T with root p ` Ann(©αA), since Ann(©αA) =©αAnn(A).

U∃ We have p |= A1 U∃ A2 if and only if (∃ p1, p2, . . . , pn ∈ V, t1, t2, . . . , tn ∈
T, n ≥ 0.
p = p0

t1→ p1
t2→ p2 · · ·

tn→ pn ∧ pn |= A2 ∧ (∀0 ≤ i < n. pi |= A1) ∧ (∀0 ≤ i <
j ≤ n. pi 6= pj)) if and only if (induction hypothesis) there exists tableaux
T0, . . . , Tn−1 with roots p0 ` Ann(A1) , . . . , pn−1 ` Ann(A1) and Tn with
root pn ` Ann(A2) and transitions t1, . . . , tn such that p = p0

t1→ p1
t2→

p2 · · ·
tn→ pn is loop free if and only if there exists a tableau with root p `

Ann(A1) U∅∃ Ann(A2), because Ann(A1 U∃ A2) = Ann(A1) U∅∃ Ann(A2).
U∀ We show the bi-implication by showing the left and right implications sepa-

rately.

“only if” direction (completeness):

We show how to obtain a derivation tree with root p ` Ann(A1 U∀ A2). This
will be done by providing an algorithm which will be shown to terminate
and produce the desired tree. We then argue that it is a tableau.
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The tree will be constructed from the root and expanded downwards. Only
so-called “active” leaves of the current tree will be expanded. We try to keep
the tree as small as possible by first trying to prove that B2 holds at a state.
Only if this isn’t possible do we expand the tree.

During the presentation of the algorithm several claims will be stated. All of
them will be shown to be valid in the succeeding paragraph. For convenience,
we will write B1 for Ann(A1) and B2 for Ann(A2). So Ann(A1 U∀ A2) ≡
B1 U

∅
∀B2. The algorithm consists of the following steps:

1. Start by creating the root which is labelled by p ` B1 U
∅
∀B2. Mark this

node as active.
2. If possible choose an active node N , labelled by a sequence of one of the

following forms:
i) q ` B1 U

C
∀ B2

ii) q ` B1 U
(q,n,T ′)
∀ B2

iii) q ` B1 U
(p,n,T ′,S′,↔)
∀ B2

where ↔ stands for either ← or →. Else terminate.
3. If q |= A2, then by induction we have the existence of a tableau T ′ with

root q ` B2. Deactivate N and paste T ′ below N using rule 5, 10, or
13. None of the added nodes are active. Note that q |= A2 excludes ii)
because of the way the current tree has been expanded.

4. Else if q |= ¬A2, then necessarily (Claim 1) q |= A1. By induction there
exists a tableau T ′ with root q ` B1.
∗ If N is of the form i), and q 6∈ C, then (Claim 2) next(q) 6= ∅ and

apply rule 6, using T ′. Deactivate N and activate the new leaves
labelled qi ` B1 U

C∪{q}
∀ B2 that were added by application of rule 6.

∗ If N is of the form i) and q ∈ C, then deactivate N and, using rule 7,
add a node below N labelled q ` B1 U

(q,|T |,next(q))
∀ B2. Using rule 8,

because (Claim 3) next(q) 6= ∅, add yet another node below labelled
q ` B1 U

(q,|T |−1,next(q),∅,→)
∀ B2 which is activated.

∗ If N is of the form ii), then (Claim 4) T ′ 6= ∅. If n = 0, then
deactivate N . Else if n > 0, then deactivate N and apply rule 8,
adding a node below N labelled q ` B1 U

(q,n−1,T ′,∅,→)
∀ . Activate this

node.
∗ If N is of the form iii) (→) and q 6∈ S′, then (Claim 5) next(q) 6= ∅

and we deactivate N . By induction we have the existence of the
tableau T ′ with root labelled q ` B1. Using rule 9 add this tree
below N and add nodes labelled qi ` B1 U

(p,n,tiIT ′,S′∪{q},→)
∀ B2.

Only the last nodes are activated.
∗ If N is of the form iii) (→) and q ∈ S′, then deactivate N and

using rule 11 add a node below N labelled q ` B1 U
(p,n,T ′,∅,←)
∀ B2.

Activate this node.
∗ If N is of the form iii) (←), q 6∈ S′, and q 6= p, then deactivate N .

Because (Claim 6) next(q) 6= ∅, we can use rule 12 and the induction
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hypothesis to add a tableau T ′ with root labelled q ` B1. Also, add
nodes labelled qi ` B1 U

(p,n,tiIT ′,S′∪{q},←)
∀ B2. Only these last nodes

will be activated.
∗ If N is of the form iii) (←) and q ∈ S′ and q 6= p, then deactivate
N .
∗ If N is of the form iii) (←) and q = p, then apply rule 14. Deactivate
N and activate the added node labelled q ` B1 U

(q,n,T ′)
∀ B2

5. Goto 2.
We now observe the following:
• The above “algorithm” terminates: One only expands active nodes and

since (V, E)N is finite expansion cannot continue indefinitely because of
the annotation of the formulas.

• All claims stated in the algorithm are valid: since the strategy used to
compute the tree is to first try to prove that A2 holds at a state, and if
not, then expand the tree, we conclude that:

∗ Claim 1 is valid: If q |= ¬A2 and q |= ¬A1, then because of the
way we expand the tree we could exhibit a finite path along which
A1 ∧ ¬A2 holds until ¬A1 ∧ ¬A2 holds. But since any finite path
can be extended to a computation (K is assumed to be finite) we
obtain a contradiction with the assumption p |= A1 U∀ A2.
∗ Claim 2 is valid: If next(q) = ∅, then we would have found a finite

path starting at p and ending in q, a deadlock. This would be a
computation from p to q along which no state satisfied A2. Again,
this would contradict p |= A1 U∀ A2.
∗ Claim 3 is valid: Since q ∈ C we conclude next(q) 6= ∅.
∗ Claim 4 is valid: If T ′ = ∅, then because T ′ keeps track of which

transitions have been concurrently enabled along the loop starting
and ending at q (along the branch from the root of the tree to the
current node), we would have detected one or more loops (see figure)

p //σpq
q //

σqq′
q′
E DG F σq′q�� E DB C σq′−loop@ AOO

along which A2 never holds, and by repeating these loops we could
exhibit an infinite computation along which A2 never holds. This
contradicts p |= A1 U∀ A2.
∗ Claim 5 and Claim 6 are valid: As for Claim 2.

Assume the produced tree is not tableau. Then, using the induction hypoth-
esis, we conclude that the only reason why the tree is not a tableau is that
it has leaves labelled by terminal sequents. But then an argument similar to
that used to show the validity of Claim 4 gives us a contradiction with the
assumption p |= A1 U∀ A2.
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“if” direction (soundness):

We show that if there exists a tableau T with root p ` Ann(A1 U∀ A2), then
p |= A1 U∀ A2. So assume that p |= ¬(A1 U∀ A2), i.e., p |= ¬A2 and there
exists a σ ∈ [σ′] ∈ comp(p) such that one of the following cases hold:
• |σ| <∞, p = p0

t1→ p1
t2→ · · · tm→ pm 6→, σ = t1 · · · tm, and

(∀n ≤ |σ|. (pn |= ¬A2) ∨ (∃0 ≤ i < n. pi |= ¬A1))

There are two cases.
∗ Assume (∃ 0 < i ≤ m. pi |= A2). Let i0 > 0 denote the least such

index. We know that there must exist an index 0 ≤ j < i0 such
that pj |= ¬A1. Let j0 denote the least such index. Clearly, the path
t1 · · · tj0 can be made loop free and traceable in T along nodes q,
such that there exists a tableau with root q ` B1 U∀ B2 (using
the induction hypothesis to obtain contradictions). But this gives a
contradiction since T must then have a subtree which is a tableau
labelled with root qj0 ` Ann(A1), i.e., qj0 |= A1.
∗ No states along σ satisfies A2. If there is a state which satisfies ¬A1

along the path, the argument above can be applied. Else, for any
0 ≤ i ≤ m we have pi |= A1 ∧ ¬A2. But then there must exist a
loop free path from p to pm such that A1 ∧ (¬A2) is satisfied along
it and this path must be traceable in T . But this means there must
exist a leaf labelled pm ` Ann(A1) UC∀ Ann(A2) such that pm 6∈ C,
and since pm 6→, T cannot be a derivation tree.

• |σ| =∞, p = p0
t1→ p1

t2→ · · · , σ = t1t2 · · ·, and

(∀n ∈ IN. (pn |= ¬A2) ∨ (∃0 ≤ i < n. pi |= ¬A1))

As before, we extract two cases:
∗ (∃i ∈ IN. pi |= A2). Let i0 > 0 be the least such index. As before we

have a least index 0 ≤ j0 < i0 such that pj0 |= ¬A1. By repeating
the above argument, we obtain a contradiction.
∗ (∀n ∈ IN. pn |= ¬A2). If there is a state which satisfies ¬A1 along

the path, the above argument can be applied. Else, we can obtain a

path σ′ ∈ [σ′] ∈ comp(p) from σ such that p σ′→= p′0
t′1→ p′1

t′2→ · · ·
t′m−1→

p′m−1
t′m→ p

′′

k0

t
′′′
k0+1→ p

′′

k0+1 · · ·, where p′0, . . . , p
′
m−1 occurs only once

along σ′ while p
′′

k0
, . . . occurs infinitely often along σ′. (We simply

remove a finite number of loops in σ, since (V, E)N is finite). The
common suffix ensures that no transition is cc-enabled along σ′.

Since no transition is cc-enabled along σ′ there must exist finitely
many nonempty loops σloop1 , . . . , σloopr starting and ending at p

′′

k0
,

such that no transition from next(p
′′

k0
) is cc-enabled along (σloop1 · · ·

σloopr )∞, i.e., no enabled transition at pk0 is independent of all tran-
sitions taken in the r loops. Notice that these loops might themselves
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contain loops. Moreover, since |next(p′′k0
)| ≤ |T | we may assume that

1 ≤ r ≤ |T |. Let next(p
′′

k0
) = {t′′′j1 , . . . , t

′′′

jr
}. We may also assume that

σloopl corresponds to a loop along which some transition in conflict
with t

′′′

jl
is taken.

From each loop σloopl we can extract, by deleting inner loops, three
paths σ′loopl , σ

′′

loopl
, and σ

′′′

loopl
such that

· σ′′loopl contains a transition in conflict with t
′′′

jl

· p′′k0

σ′loopl→
σ
′′
loopl→

σ
′′′
loopl→ p

′′

k0

· all states along this new loop satisfies A1 ∧ ¬A2

But then, using the induction hypothesis, a prefix of the following
path must be traceable in the tableau T :

p
t′1→ · · · t

′
m→ p

′′

k0

σ→ p
′′

k0

σ′loop1→
σ
′′
loop1→

σ
′′′
loop1→ · · ·

σ′loopr→
σ
′′
loopr→

σ
′′′
loopr→ p

′′

k0

where σ is a nonempty simple loop obtained from σ′loop1
σ
′′

loop1
σ
′′′

loop1

by deleting inner loops (rule 7 is going to be applied). The path

must also end in a leaf labelled p
′′

k0
` Ann(A1) U

(p
′′
k0
,n,∅)

∀ Ann(A2),
because the rules 9 and 12 keep track (in the annotation) of which
transitions have been concurrently enabled. In our case there are no
such transitions, so T cannot be a tableau and we obtain the desired
contradiction.

ut

As an example, we show that the process agent from the introduction will
eventually be able to fire a transition labelled by a b action (assume the transi-
tions are t1, t2, and t3 and are labelled a, τ , and b, respectively). By the previous
theorem, to show i |= Ev(<b>tt) it is sufficient to construct a tableau with root
i ` tt U∅∀ (<b>tt).

i ` tt U∅∀(<b>tt)

i ` tt i ` tt U{i}∀ (<b>tt)

i ` tt U (i,2,{t1,t2})
∀ (<b>tt)

T1

s1 ` tt U{i}∀ (<b>tt)

s1 `<b>tt
s2 ` tt

where T1 is

i ` tt U (i,1,{t1,t2},∅,→)
∀ (<b>tt)

i ` tt U (i,1,{t2},{i},→)
∀ (<b>tt)

i ` tt U (i,1,{t2},∅,←)
∀ (<b>tt)

i ` tt U (i,1,{t2})
∀ (<b>tt)

T2

s1 ` tt U (i,1,{t1},{i},→)
∀ (<b>tt)

s1 `<b>tt
s2 ` tt

i ` tt
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where T2 is

i ` tt U (i,0,{t2},∅,→)
∀ (<b>tt)

i ` tt i ` tt U (i,0,{t2},{i},→)
∀ (<b>tt)

i ` tt U (i,0,{t2},∅,←)
∀ (<b>tt)

i ` tt U (i,0,{t2})
∀ (<b>tt)

s1 ` tt U (i,0,∅,{i},→)
∀ (<b>tt)

s1 `<b>tt
s2 ` tt

Notice that if we restrict ourselves to labelled 1-safe nets where the indepen-
dence relation is empty and translate A1 U∃ A2 into µX.A2 ∨ (A1 ∧ <Act>X)
and A1 U∀ A2 into µX.A2 ∨ (A1∧ <Act> tt ∧ [Act]X) (actually applying this
translation recursively on the subformulas A1 and A2), our proof rules will work
in essentially the same manner as those presented in [Lar88, SW89].

Choosing an instance of the model checking problem to be a pair (N,A)
consisting of a labelled 1-safe net and a formula A and defining its size to be the
sum of the size of the net and the length of the formula (see e.g., [CEP93, Che95]),
we obtain the following complexity result.

Theorem13. The model checking problem is PSPACE-complete.

Proof sketch. The hardness result follows from easy modifications of the results
in [CEP93], while the PSPACE upper bound follows from a modification of the
results in [Che95] based on the observations in Sect. 4.2 (the bound on the
number and length of the γ’s). ut

6 Conclusion and Future Work

Partial order semantics for concurrent systems have gained interest because in-
terleaving models of concurrency have failed to provide an acceptable interpre-
tation of what it means for events of a concurrent system to be independent.
Much work has been devoted to transfer obtained results and notions from the
interleaving models to the “true concurrency” models [JNW93, JM93, WN94,
LPRT93]. Trying to contribute to the “transferring of results” we have provid-
ed proof rules for a CTL-like logic interpreted over maximal traces. The work
which we have tried to transfer can be found in [Lar88, SW89]. Our work sup-
ports automatic verification of distributed systems whose liveness properties are
only provable under the assumption of progress.

There is a trade off between the rules and the definition of tableaux. One
can obtain simple rules at the cost of a complicated definition of tableaux.5 At
the cost of presenting less simple rules we have kept the definition of tableaux
simple.

5 The set of simple rules we have identified requires a global side condition in the
definition of tableaux.
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Future research might consider how to handle a more expressive logic (per-
haps one containing a recursion operator) in a similar way, i.e., define the in-
terpretation of the formulas over maximal traces and proving soundness and
completeness of some set of proof rules.

The general satisfiability problem for the logic is still an open problem. Con-
sider the following example

q
@ AG Ft:α E D ��

//
t′:β

q′
B CE D t:αG F��

where t is independent of t′. Let a be an atomic proposition that holds at q and
but not at q′ (a can be simulated by having an a labelled enabled transition at all
states where a should hold). Then, the formula (¬Al(a)) ∧ (a ∧ Inv(a⇒<α>a))
is satisfied at q. But under the usual CTL-interpretation the formula (where <α>
is read as the “next” operator) is unsatisfiable. The important observation is that
our interpretation of Al does not quantify over the path q

σ→, where σ = t∞.
We have investigated extensions of the logic with modal operators expressing

concurrent behaviour. It turns out that restricted versions of the satisfiability
problem for these logics is undecidable, see the appendix. Axiomatizations of
these logics remain to be investigated.

Acknowledgments: I thank Mogens Nielsen for inspiring discussions and Nils
Klarlund for comments on an early draft of this paper.
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Appendix

Model Checking P-CTL by Labelling States

In this section we present a state labelling based algorithm that solves the model
checking problem. The algorithm essentially works as the one presented for CTL
in [CES86] except for the U∀ operator.

Theorem14. Given a net N and a formula A. Let (V, E)N denote the reacha-
bility graph of N = (P, T, F,M0, l). The following state labelling based algorithm
solves the model checking problem for N and A in time O(|A|(|V |+ |E||T |)).

Proof. Given a formula A and a net N , the algorithm proceeds in stages as
follows. In the first stage all subformulas of length one are processed. In general,
at stage i all subformulas of length i are processed and at the end of stage i a
state is labelled with a subformula A′ of A (or its negation ¬A′) if and only if
it is satisfied in that state. Hence, after the |A|’th stage all states in V will have
been labelled with either A or ¬A.

The data structures needed to perform the labelling are essentially those
described for the CTL model checker in [CES86]. The only exception is the U∀
operator (U∃ can be handled as the EU operator in CTL, since any finite prefix
of a path can be extended to a computation.). The U∀ operator is handled as
follows:

Assume we want to label the states with the subformula A′ = A1 U∀ A2. All
states must already have been labelled with A1 or ¬A1, and A2 or ¬A2. Then,
states labelled with A2 are labelled with A′, and states labelled with ¬A1 and
¬A2 are labelled with ¬A′. The remaining states must all be labelled with A1 and
¬A2. The next step is to compute the maximal strongly connected components
of (V, E) restricted to these remaining states.

Let us denote the graph whose nodes are these maximal strongly connected
components by G′. G′ is a directed acyclic graph (DAG) whose nodes are sets
of states of V . As long as there is a terminal node n in G′, repeatedly do the
following:

1) If there is a state p ∈ n, a transition t ∈ T , and a state p′ ∈ V such that
p

t→ p′ and p′ is labelled with ¬A′, then label all states in n with ¬A′.
Furthermore, for all nodes m in G′, if n can be reached from m then label
all states in m with ¬A′. Remove all processed nodes from G′ and let G′

denote the new DAG.
2) Else, if there is a state p in n but no transition t and state p′ 6∈ n such

that p t→ p′, then label all states in n (and m’s above n, as described just
above) with ¬A′ (there must exist an invalidating computation in n from p).
Update G′ as above.

3) Else, all states of n have successor states not in n. Moreover, these successor
states are all labelled by A′. Assume T = {t1, . . . , tk}.
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• Initialize a boolean array B of length k such that all its entries are set
to False. Then, for each edge ti−→ between any two states in n, set all
entries B[j] such that ¬(tiItj) to True.

• If there is an entry B[l] which is False and tl is enabled at any state in n,
then label all states in n with A′. Remove n from G′ and let G′ denote
the new DAG.

• Else, label all states in n (and m’s, as described in the first case) with
¬A′ and update G′ as above.

It should be obvious that case 1) labels the states in n correctly. Case 2) is
also correct because we can exhibit a computation in n whose states are labelled
with A1 and ¬A2. Case 3) is correct because of the following observation: there
exists a computation inside n if and only if there is no transition tl that is (i)
independent of all transition labelling edges between states in n, and (ii) enabled
at (necessarily all) a state in n.

An analysis of the algorithm yields the time complexity O(|A|(|V |+ |E||T |)).
Hence, our algorithm is comparable to the one presented in [CES86]. ut

Extensions of P-CTL and Undecidability Results

In this section we present different extensions of P-CTL with modal operators
expressing concurrent or conflicting behaviour. We prove that the satisfiability
problem for some of these logics is undecidable for finite as well as infinite labelled
nets, if we impose an “injectivity” constraint on their reachability graphs.

Remark. Infinite labelled nets are a generalization of finite labelled nets, where
the sets P , T , and F may be at most countably infinite. Hence, for any state p
in the reachability graph of the nets we consider, comp(p) 6= ∅.

The New Modal Operators

Assume a fixed labelled net N = (P, T, F,M0, l) and let (V, E)N denote its
reachability graph and I the independence relation.

First, we give the syntax of the new modal operators by extending the gram-
mar from Sect. 3 with the following rules, where αi ∈ Act and n > 0:

A ::=�� ((α1, A1), . . . , (αn, An)) | ]((α1, A1), . . . , (αn, An)) |
〈α1 · · ·αn〉A | 〉α1 · · ·αn〈A .

The interpretation is:

– p |=�� ((α1, A1), . . . , (αn, An)) if and only if (∃ t1, . . . , tn ∈ T, q1, . . . , qn ∈
V.
(∀ 1 ≤ i ≤ n. p ti→ qi ∧ l(ti) = αi ∧ qi |= Ai) ∧ (∀ 1 ≤ i < j ≤ n. tiItj)) ,
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– p |= ]((α1, A1), . . . , (αn, An)) if and only if (∃ t1, . . . , tn ∈ T, q1, . . . , qn ∈ V.
(∀ 1 ≤ i ≤ n. p ti→ qi ∧ l(ti) = αi ∧ qi |= Ai) ∧ (∀ 1 ≤ i < j ≤ n. (ti, tj) 6∈
I)) ,

– p |= 〈α1 · · ·αn〉A if and only if (∃ t1, . . . , tn ∈ T, q ∈ V. (∀ 1 ≤ i ≤ n. l(ti) =
αi) ∧
(∀ 1 ≤ i < j ≤ n. tiItj) ∧ p

t1···tn−→ q ∧ q |= A) , and

– p |=〉α1 · · ·αn〈A if and only if (∃ t1, . . . , tn ∈ T, q ∈ V, p
t1···tn−→ q.

(∀ 1 ≤ i ≤ n. l(ti) = αi) ∧ (∀ 1 ≤ i < n. (ti, ti+1) 6∈ I) ∧ q |= A) .

The �� and 〈〉 operators specify concurrent behaviour.6 The difference be-
tween them is that 〈〉 requires a property A to hold after the execution of a set
of mutually independent (labelled) transitions, while �� requires properties Ai
to hold after the execution of (labelled) transitions ti from a set of mutually in-
dependent transitions. In a similar way, the ] and 〉〈 operators specify conflicting
behaviour.

The��, 〈〉, ], and 〉〈 operators might be replaced by others. We have chosen
to present them because they can distinguish the following situations. All the
depicted transition systems are reachability graphs of nets. Transitions that are
independent are indicated by an I in their “independence square”. States—
except the initial state—are indicated by � and states labelled by A or ¬A
indicate that one has to extend the reachability graph in a trivial manner such
that a property A, e.g., <γ>tt, either holds or doesn’t, as indicated by A or ¬A:

�

~~
t4:α

~ ~ ~
~ ~ ~

�

  
t2:α
@@@
@@@

� I i

^^

t3:α

> > > > > >

�� t4:α� �
� �
� �

@@
t1:α ������

��
t2:α
>>
>>
>> I �

� �oo
t5:γ

``

t3:α

@ @ @ @ @ @
� //

t6:γ

>>

t1:α

~~~~~~
�

¬ �� ((α,<γ>tt), (α,<γ>tt))

�

~~
t4:α

~ ~ ~
~ ~ ~

� //t5:γ

  
t2:α
@@@
@@
@ �

� I i

^^

t3:α

> > > > > >

�� t4:α� �
� �
� �

@@
t1:α ������

��
t2:α
>>
>>
>> I �

�

``

t3:α

@ @ @ @ @ @
� //

t6:γ

>>

t1:α

~~~~~~
�

�� ((α,<γ>tt), (α,<γ>tt))

The above two reachability graphs cannot be distinguished by the 〈〉, 〉〈, or ]
operator. To see this, notice that all states having α and β labelled transitions
satisfy the same formulas, as is the case for states having exactly one α labelled
transition and states having no transitions. By induction it can then be shown
that the two initial states satisy the same formulas (not containing the ��
operator. The same reasoning applies to the three following examples.

6 The 〈〉 operator resembles the one proposed in [LPRT93].
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A � �

||
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x x x
x x x
x
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FFF
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= = = = = =
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� �
� �

@@
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��
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==
== I � A

A � �oo
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bb

t9:α

F F F F F F F
� //

t8:β

<<

t1:β

xxxxxxx
� ¬A

〈αβ〉A

A � �

||
t4:β

x x x
x x x
x

oo t5:β � //t6:α

""
t10:α
FFF

FFF
F � ¬A

¬A � I i

^^

t3:α

= = = = = =

�� t4:β� �
� �
� �

@@
t1:β ������

��
t2:α
==
==
== � A

A � �oo
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bb

t3:α

F F F F F F F
� //

t8:β

<<

t9:β

xxxxxxx
� ¬A

¬〈αβ〉A
The above two reachability graphs cannot be distinguished by the ��, 〉〈, or ]
operator.
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t3:α
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``
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@ @ @ @ @ @
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The above two reachability graphs cannot be distinguished by the ��, 〈〉, or ]
operator.
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~~~~~~
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A A A A A A
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} }
} }
} }
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�
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@ @ @ @ @ @
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??

t1:β

~~~~~~
�
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The above two reachability graphs cannot be distinguished by the ��, 〈〉, or 〉〈
operator.

The Undecidability Results

We will concentrate on the extensions of P-CTL which contains the operators
��. Actually, for any extension of P-CTL with any of the other three presented
operators the following undecidability results hold.
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Definition15. N is said to be injective if for all p ∈ V and t, t′ ∈ T it is the

case that p t→, p t′→, and l(t) = l(t′) implies t = t′.

Definition16. The (finite) injective satisfiability problem is the problem of de-
ciding, given a formula A, whether there exists a (finite) injective labelled net N
such that M0 |= A. If this is the case, A will be said to be (finitely) injectively
satisfiable.

The following problems are known to be undecidable, see [Ber66, Har85] and
[LPRT93].

Definition17. The colouring problem, CP . An instance of the problem is a
quadruple C = (C,R, U, c0), where C = {c0, . . . , ck} is a finite nonempty set
of colours, and R,U : C → P(C) − {∅} are the “right” and “up” adjacency
functions. A solution to C is a function Col : IN × IN → C such that:

– Col (0, 0) = c0
– (∀(i, j) ∈ IN×IN. Col (i, j+1) ∈ U(Col (i, j)) ∧ Col (i+1, j) ∈ R(Col (i, j)))

Definition18. The finite colouring problem, FCP . An instance of the problem
is a quintuple CF = (C,R, U, c0, cf), where C = {c0, . . . , ck} is a finite nonempty
set of colours, cf ∈ C, and R,U : C → P(C) − {∅} are the “right” and “up”
adjacency functions. A solution to CF is a triple (Col ,M,N), where M,N ∈ IN ,
Col : {0, . . . ,M} × {0, . . . , N} → C is such that:

– Col (0, 0) = c0
– (∀0 ≤ i < M, 0 ≤ j ≤ N. Col (i+ 1, j) ∈ R(Col (i, j)))
– (∀0 ≤ i ≤M, 0 ≤ j < N. Col (i, j + 1) ∈ U(Col (i, j)))
– Col (M,N) = cf

For the logics containing the �� operator we have the following result.

Theorem19. The set of formulas that are injectively satisfiable is non-recursive.

Proof. We reduce the colouring problem to the injective satisfiability problem.
Given C = (C,R, U, c0), we construct a formula AC, a conjunct of five formulas
given below, that is injectively satisfiable if and only if C has a solution.

Assume that the labels α0, . . . , αk, up, and right are distinct symbols. The
five conjuncts are the following:

– A1 =<α0>tt , Col (0, 0) = c0
– A2 = G(�� ((<right>, tt), (<up>, tt))) , coding of grid
– A3 = G(

∧k
i=0(<αi>tt⇔

∧
j 6=i[αj]ff)) , exactly one colour

– A4 = G(
∧k
i=0(<αi>tt⇒ [right](

∨
cj∈R(ci) <αj>tt))) , right adjacency

– A5 = G(
∧k
i=0(<αi>tt⇒ [up](

∨
cj∈U(ci) <αj>tt))) , up adjacency
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We claim that AC =
∧5
i=1 Ai is injectively satisfiable if and only if C has a

solution. The “if” direction is easy and therefore omitted. The “only if” direc-
tion follows the lines in [LPRT93] and makes essential use of injectivity of the
solution to AC and the following “diamond” and “commutativity” properties of
the reachability graph of a labelled net N :

– If p ∈ V , t, t′ ∈ T , p t→ q, p t′→ q′, and tIt′, then there exists q′′ ∈ V such

that q t′→ q′′ and q′ t→ q′′.

– If p ∈ V , t, t′ ∈ T , p t→ q
t′→ q′, adn tIt′, then there exists q′′ ∈ V such that

p
t′→ q′′

t→ q′.
ut

Theorem20. The set of formulas that are finitely injectively satisfiable is non-
recursive.

Proof. We reduce the finite colouring problem to the finite injective satisfiability
problem. Given CF = (C,R, U, c0, cf), we construct a formula ACF , a conjunct
of seven formulas given below, that is finitely injectively satisfiable if and only
if CF has a solution.

Again, assume that the labels α0, . . . , αk,UM,RM, up, and right are distinct
symbols. The seven conjuncts are the following:

– A1 =<α0>tt , Col (0, 0) = c0
– A2 = G((�� ((right, tt), (up, tt)) ∧ [RM ]ff ∧ [UM ]ff) ∨

(<up>tt ∧ <RM>tt ∧ [right]ff ∧ [UM ]ff) ∨
(<right>tt ∧ <UM>tt ∧ [up]ff ∧ [RM ]ff) ∨
(<cf>tt ∧ <RM>tt ∧ <UM>tt ∧ [right]ff ∧ [up]ff)) , grid structure

– A3 = G(
∧k
i=0(<αi>tt⇔

∧
j 6=i[αj]ff)) , exactly one colour

– A4 = G(
∧k
i=0(<αi>tt⇒ [right](

∨
cj∈R(ci) <αj>tt))) , right adjacency

– A5 = G(
∧k
i=0(<αi>tt⇒ [up](

∨
cj∈U(ci) <αj>tt))) , up adjacency

– A6 = EV (<αf>tt ∧ <RM>tt ∧ <UM>tt) , cf in upper right corner
– A7 = G(<RM>tt⇒ [up] <RM>tt) ∧
G(<UM>tt⇒ [right] <UM>tt) , consistent borders

We claim that ACF =
∧7
i=1 Ai is injectively satisfiable if and only if CF

has a solution. The “if” direction is easy and therefore omitted. The “only if”
direction is nontrivial and follows from the next two lemmas. We use another
proof technique than [LPRT93] since they assume a fixed finite alphabet. We
only assume finiteness about the set of transitions T of the solution to ACF . ut

Assume that we have fixed CF and a finite injective net N such that M0 |=
ACF , where ACF is defined in the proof of Theorem 20. We will use the notation
p
α→ p′ to indicate that there is a transition t ∈ T such that p t→ p′ and l(t) = α.

This shouldn’t lead to any confusion since N is assumed injective.
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Lemma 21. Assume N is a net such that M0 |= ACF . If there exist p0, . . . , pn ∈
V and t1, . . . , tn ∈ T such that p0

t1→ . . .
tn→ pn, p0 = M0, for all 1 ≤ j ≤ n either

l(tj) = right or l(tj) = up, and no state pj except pn has an enabled transition
labelled αf , then CF has a solution.

Proof. Let β0, . . . , βn denote the unique labels among {α0, . . . , αk} that by A3
must label some enabled transition at p0, . . . , pn, respectively.

If β0 = αf , then n = 0 and β0 = α0, and obviously we have a solution. So
assume that we have n > 0. By A2 one of the following cases must hold.

– p0
right−→ p1 and p0

UM−→: By A2, A7, and our assumptions we conclude that
p0

right−→ p1
right−→ . . .

right−→ pn and ∀0 ≤ i ≤ n. pi
UM−→. Since pn

αf→ we easily
obtain a solution by A4 and A5.

– p0
up−→ p1 and p0

RM−→: Symmetric to the above case.
– p0

right−→ and p0
up−→: Without loss of generality we can assume that l(t1) =

right, i.e., p0
right−→ p1. By injectivity and A2 there must exist p′, p′′ ∈ V

such that p0
up−→ p′

right−→ p′′ and p0
right−→ p1

up−→ p′′. Continuing this way as
long as l(tj) = right and exploiting injectivity we conclude there must exist
p′, p′′, . . . , p(m+1) such that

p′ //right
p′′ //right · · · //right

p(m+1)

p0

OO
up

//right
p1

OO
up

//right · · · //right
pm

OO
up

If m = n, then we easily obtain a solution, since pn
αf→ . So assume m < n.

Then l(tm+1) = up and by injectivity we conclude that p(m+1) = pm+1.
Again, if βm+1 = αf we are done by A4 and A5, so assume this isn’t the
case. Then m + 1 < n. We continue by showing how to expand the above
1 × (m + 1) grid to a 2 × (m + 1) grid if l(tm+2) = up or to a 1 × (m + 2)
grid if l(tm+2) = right.
• Assume that l(tm+2) = up. By A2, A7, and injectivity we conclude there

must exist a q(m) such that p(m) right−→ p(m+1) up−→ pm+2 and p(m) up−→
q(m) right−→ pm+2. By repeating this we obtain:

q′ //right
q′′ //right · · · //right

q(m) //right
pm+2

p′

OO
up

//right
p′′

OO
up

//right · · · //right
p(m)

OO
up

//right
p(m+1)

OO

up

p0

OO
up

//right
p1

OO
up

//right · · · //right
pm−1

OO
up

//right
pm

OO
up
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• Assume that l(tm+2) = right. By similar arguments we get:

p′ //right
p′′ //right · · · //right

p(m+1) //right
pm+2

p0

OO
up

//right
p1

OO
up

//right · · · //right
pm

OO
up

//right
p(m+2)

OO

up

This procedure can be continued for tm+3, . . . , tn giving us a grid from
which it is easy to obtain a solution to CF , by A1, A3, A4, and A5.

ut

Next, we proof there exist a path of the form mentioned in Lemma 21 if
M0 |= ACF .

Lemma 22. If N is a net such that M0 |= ACF , then there exist p0, . . . , pn ∈ V
and t1, . . . , tn ∈ T such that p0

t1→ . . .
tn→ pn, p0 = M0, for all 1 ≤ j ≤ n either

l(tj) = right or l(tj) = up, and no state pj except pn has an enabled transition
labelled αf .

Proof. Assume by contradiction that there doesn’t exist any path of the above
form. By A2 either M0

right−→ or M0
left−→Without loss of generality we may assume

M0
right−→. We continue be a case analysis.

– Assume M0
UM−→: We know that M0 6

αf→, and choosing p1 to be the unique
state such that M0 = p0

right−→ p1 we also conclude p1 6
αf→. Now by A2, A6, A7,

and our assumptions it must be the case that p1
right−→ and p1

UM→ . Continuing
this way we exhibit an infinite path p0

right−→ p1
right−→ · · · such that pj 6

αf→
and pj

UM−→ for all states pj along the path. Since K is finite there must

exist a least j0 such that pj0 is visited twice along p0
right−→ · · · right−→ pj0 . Let

0 ≤ j1 < j0 be the index such that pj1 = pj0 . This gives us an infinite path
p0

γ1→ pj1
γ2→ pj0

γ2→ pj0
γ2→ · · ·, where γ1 (γ2) is the sequence of right labelled

transitions leading from p0 to pj1 (from pj1 to pj0). But by A6 the above
path cannot be a computation from p0. Hence there must exist a transition t′

that is cc-enabled along pj0
γ2→ pj0

γ2→ · · ·. By the diamond and commutativity
properties of (V, E)N we obtain Diagram 1, where p′j1 = p′j0 is a state in V .
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p0 //γ1 pj1 //γ2

��t
′

pj0

�� t
′

p′j1
//γ2
p′j0

p0 //γ1 pj1

��t
′

//γ2 pj0

�� t
′

p′

��t′′

//γ2
p′

�� t
′′

p′′ //γ2

��t′′′

p′′

�� t
′′′

p′′′ //γ2
p′′′

p0 //γ1 pj1

��t
′

//γ2 pj0

�� t
′

p′ //γ2
p′

p(m) //γ2
p(m)

p(m) //γ2
p(m)

Diagram 1 Diagram 2 Diagram 3

Now by A2, γ2 being labelled by right, and A6, we conclude that there must
exist a transition t′′ which is cc-enabled along the loop obtained by repeating
p′j1

γ2→ p′j0 . By repeating this argument we obtain (p′ = p′j1 = p′j0) Diagram
2.

Since N is finite, the set T is finite. All of the reached states have the prop-
erty that <cf>tt ∧ <RM>tt ∧ <UM>tt doesn’t hold, since <right>tt and
A2 hold. One can now repeat the above argument, observing that finiteness
of V implies that some p(m) must occur twice along the leftmost vertical path
in Diagram 2. From this observation we can construct Diagram 3. Again, we
conclude there must exist a transition that is cc-enabled along the looping
part of Diagram 3. This transition must be independent of all the transi-
tions on the looping parts between p(m) shown in Diagram 3, especially the
transitions labelled right. Also, all states along these loops have an enabled
transition labelled right.

Let (V ′, E′) denote the transition system obtained by restricting (V, E)N to
the states satisfying ¬(<cf>tt ∧ <RM>tt ∧ <UM>tt). It should now be
clear that one can produce an infinite computation from p0 which stays in
(V ′, E′). One modifies the above infinite path by choosing transitions that are
cc-enabled following the above scheme. It is important to notice that because
it is always possible to insert loops containing transitions labelled right (the
γ2 loops) the states reached by “taking a cc-enabled transition” also contain
a self loop of transitions labelled right. Since (V, E)N is finite there are only a
finite number of maximal strongly connected components in (V ′, E′). Hence,
by repeating the above procedure one will only be able to proceed towards
terminal maximal strongly connected components. This eventually produces
a computation along which ¬(<cf> tt ∧ <RM> tt ∧ <UM> tt) holds,
contradicting A6.

– Assume M0
up−→: A similar way of reasoning leads to the desired contradic-

tion. To sketch the argument: Choose consecutive right labelled transitions
as far as possible. If one produces an infinite path labelled right the argument
is as above. Else one must eventually reach a state with enabled transitions
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labelled up and RM (else contradicting our main assumption by A2). From
this state choose the infinite path labelled up (else contradicting our main
assumption by A2 and A7). Apply the above argument in a symmetric way.

ut

For the remaining operators we have the following corollary.

Lemma 23. For the logics containing at least one of the operators ], 〈〉, or 〉〈,
Theorem 19 and 20 remain true.

Proof sketch. Replace�� ((<right>, tt), (<up>, tt)) inA2 in the proof of Theorem
19 and 20 by either

– (<right>tt ∧ <up>tt ∧ ¬]((right, tt), (up, tt))),
– (〈right up〉tt), or
– (<right><up>tt ∧ ¬〉right up〈tt)

depending on which operator is available. ut

This article was processed using the LATEX macro package with LLNCS style
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