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A Semantic Theory for Value–Passing Processes
Late Approach

Part I: A Denotational Model and Its Complete Axiomatization

Anna Ingólfsdóttir

BRICS∗

Department of Mathematics and Computer Science
Aalborg University, Denmark

Abstract

A general class of languages and denotational models for value-passing
calculi based on the late semantic approach is defined. A concrete in-
stantiation of the general syntax is given. This is a modification of the
standard CCS according to the late approach. A denotational model for
the concrete language is given, an instantiation of the general class. An
equationally based proof system is defined and shown to be sound and
complete with respect to the model.

1 Introduction

In the original work of Milner, [Mil80], on CCS and Hoare, [Hoa78], on CSP,
processes are allowed to exchange data in communications. In these original
calculi the value-passing calculus is interpreted in terms of the pure calculus
in which communication is pure synchronization. A process which is ready to
input a value on a channel c (e.g. a prefixing with an input action, c(x).p)
is interpreted as a non-deterministic choice between pure terms of the form
cv.p[v/x], where v ranges over the set of possible values, which in many cases
is infinite. In this approach, two processes that synchronize are both supposed
to know each other’s channel and value, i.e. the data variable is instantiated by
the potential input values already when the process reports the willingness or
ability to communicate on the channel c.

In more recent work on the π-calculus, [MPW92], this semantic approach is
referred to as early semantics due to the early instantiation of the data variables
as described above. Its counterpart, the late semantics, is also introduced in
the same reference. Here the idea is that the processes only synchronize on the
channel name and that the inputting process has to accept whatever value the
output process has to offer. This may be interpreted as if the result of the recep-
tion of the value is delayed until the process has received the value. The input
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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process reports the willingness to communicate on a channel, c, by performing
an action of the form c, and thereby evolves to a function which waits for the
value the output counterpart in the communication provides. Symmetrically
the result of reporting the willingness to output an uninterpreted value on the
channel c is given by the action c. By performing this action the process evolves
to a term which basically consists of a data expression, i.e. the expression whose
value the sender wants to output, and a process expression, i.e. what remains
to be executed of the sender.

In a more recent version of the π-calculus, the Polyadic π-calculus presented
in [Mil91], the outcomes of input and output actions are modelled by extending
the syntax with the new constructions abstractions and concretions.

The semantics for Thomsen’s plain CHOCS in [Tho89] is based on the late
approach although the author does not give it a specific name.

In the literature the late semantic approach has been investigated in dif-
ferent ways, both in connection with the π-calculus and higher order calculi
(see e.g. [MPW91, Hen94, San93]) and also with the main focus on the simpler
case where only first order values are allowed (see e.g. [HL93a, HL93b, Ing94,
Ing93]).

In this series of two companion papers we will try to contribute to the
studies of the late semantics of communicating processes. We will concentrate
on processes which allow transmission of simple values only. Of course studying
value-passing processes is interesting in itself, but we also believe that it may
give some insight into the nature of the late approach which may be useful in
future studies of the semantics of the more complicated calculi of higher order
or mobile processes (such as the π-calculus).

To make our studies more complete we follow the line of [Hen88a] and
[HI93] and introduce a trinity of semantic descriptions for a CCS like process
language and show their equivalence. More precisely we give an operational
or behavioural semantics in terms of an extended version of labelled transition
systems and corresponding bisimulation based relations, axiomatic semantics
by means of an equationally based proof system and denotational semantics
following the Scott-Strachey approach. Like many researchers in the area of
process algebra we believe that the operational or the behavioural semantic
model is the most natural and intuitive one, but that different kinds of semantic
descriptions give important alternative views of the nature of the interpretation
of process languages. For instance the interpretation of an infinite process
modelled by an algebraic cpo is fully specified by the interpretation of its finitely
computable approximations. This is not the case for many behaviourally based
semantics as will be explained in more detail in the sequel to this paper, [Ing95a].

One of the main purposes of this series of papers is to give an operational
characterization of the denotational interpretation of a value-passing process
in an algebraic cpo. Therefore we start by giving a denotational character-
ization of value-passing processes using the late principle. We also give an
equationally based proof system which can be naturally derived from the de-
notational semantics and show its soundness and completeness with respect
to the denotational semantics. This is the content of this paper. Its sequel,
[Ing95a], is devoted to defining operational semantics, analysing operationally
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the denotational semantics and to define a reasonable behavioural relation be-
tween processes which characterizes the relation induced by the denotational
semantics. All three models are based on the idea of bisimulation.

In this paper, Part I in the series, we will develop a semantic theory for
processes with values based on the idea of (strong) bisimulation with emphasis
on the late approach. The semantics will be denotational and we shall follow
the Scott-Strachey approach. Our development will proceed in two steps. First
we describe a general theory for denotational semantics of value-passing pro-
cesses and then we apply this theory to define a concrete model for our specific
language. For the general theory we introduce both a general syntax and a gen-
eral class of mathematical models to model process algebras with values which
support the late semantic approach. For this purpose we introduce the general
notion of applicative signature (Σ, C) and that of (Σ,C)-terms where Σ is a
set of operators and C a set of channel names. We also introduce the general
class of applicative (Σ, C)-domains to model the semantics of the (Σ,C)-terms.
These are a direct generalizations of the standard notion of signature, Σ, Σ–
terms and Σ-domains originally introduced in [GTWW77] and used for instance
in [Hen88a] to model a pure calculus. In the denotational interpretation of a
language in terms of a (Σ,C)-domain the idea of the late semantic approach is
made explicit; the outcome of an input action is modelled as a function which
takes a value as an argument and returns an element of the model, i.e. a pro-
cess, whereas the outcome of an output action is modelled by a pair consisting
of the output value and the resulting process.

After having defined our general class of models we will modify the definition
of evaluation mapping, i.e. the unique mapping from the process algebra into
the domain known from the theory for pure processes. As we want to be able to
reason about a subset of the process algebra, we extend the definition slightly.
For this purpose we introduce the notion of recursively closed subsets of a process
algebra. This extension of the definition allows us to reason about the compact
elements of an algebraic cpo at the syntactic level. This enables us to take
advantage of the notion of algebraicity when comparing the semantics defined
by the model to other kinds of semantics such as behavioural or axiomatic
semantics.

As the next step in the development of the general theory we apply the
following general result for algebraic cpos ([Hen88a]):

Functions which are monotonic on the partial order consisting of the
compact elements of an algebraic cpo can be extended to continuous
functions on the whole cpo in a unique way.

This property enables us to turn an algebraic cpo into a (Σ, C)-model by defin-
ing the operators on the compact elements and making sure that they are
monotonic. We may then use the standard result quoted above and take their
unique continuous extension to be their definition on the whole domain.

By defining the operators this way, i.e. first as monotonic endofunctions on
the partial order of compact elements and then extending them in a continuous
way to the whole domain, we ensure that they preserve compactness. By this
we mean that the result of applying an operator to a compact element is again a
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compact element. From an intuitive point of view this is an important property;
the compact elements represent the finitely computable elements of the domain
so if we expect an operator op to be finitely computable, then applying it to
something finitely computable should result in something finitely computable.
Note that this property is not automatically satisfied in an applicative (Σ,C)-
domain, or even a Σ-domain, as a continuous function does not necessarily map
a compact element into a compact element. The following example illustrates
this.

Assume that 〈D,v〉 is an algebraic cpo with the set of compact
elements Comp(D) 6= D. Let d0 ∈ D \ Comp(D) and define the
constant mapping fd0 : D −→ D by

∀d ∈ D.fd0(d) = d0

It is easy to show that fd0 is continuous but that for any d ∈ D,
fd0(d) 6∈ Comp(D).

We complete the general theory by describing a procedure to construct the
mentioned (Σ, C)-structure on a predefined algebraic cpo.

Next we define a concrete language, Late-CCS (CCSL) by instantiating the
general applicative signature (Σ, C). This language is a slight modification of
the standard CCS where the syntax is basically the same as for the Polyadic
π-calculus although we use a slightly different notation and only allow the
transmission of simple values in communications. Then we define a concrete
denotational model for CCSL, the domain of Applicative Communication Trees
(ACT ), based on the general theory described above. It is an instantiation of
the general class of (Σ, C)-domains, where Σ is instantiated with the operators
of CCSL. The definition of this model is motivated by the following models
that have been studied in the literature.

In 1979 Milne and Milner [MM79], gave a domain theoretical definition
of the concept of communicating processes. This definition reflects the late
semantic approach described above. Each process has a collection of typed
ports through which it may communicate with other processes. There are two
types of communications: input and output. If we abstract from the types then
the input capability of a process p along a channel c is modelled as an element
of the domain V −→ P labelled by the channel name c, where the domain of
processes is denoted by the cpo P and the domain of values by V . An output
capability of p on c, on the other hand, is modelled as an element of V × P
labelled by c. A process is modelled as a set of communication capabilities or
more precisely as an element of the Smyth Power Domain [Smy78] over the
domain of communication capabilities. The empty set is embedded into the
domain in such a way that it becomes the top element of the domain. This
leads to a recursive domain equation over a suitable class of domains. The
process domain is then defined as the initial solution to this equation.

In [Abr91] Abramsky pointed out a disadvantage of this model: the use
of the Smyth Power Domain to model communicating processes rules out the
possibility of any correspondence with bisimulation. Also the embedding of the
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empty set (which corresponds to the inactive and convergent process) as the
top element of the model is intuitively incorrect. In the same reference the
author defined a model to describe the semantics of pure processes. This model
is similar to the model of [MM79] and is also obtained as the initial solution
to a recursive domain equation. The main difference is that Abramsky defined
his model in terms of the Plotkin Power Domain instead of the Smyth Power
Domain. He added the empty set to the model as an isolated element only
comparable with itself and the bottom element of the model in the obvious
way. He then interpreted the calculus SCCS in the model and showed the full
abstractness of this interpretation with respect to a bisimulation based preorder.

The model we define is basically the one presented in [MM79] where the
modifications of Abramsky’s are adopted. Thus we define a model which models
value-passing based on the late approach using the Plotkin Power Domain with
the empty set adjoined as an isolated element. Then we apply the general
theory described above to define the operators over such a domain, i.e. by
defining them as monotonic endofunctions on the po of compact elements and
then extending them to continuous functions on the whole domain.

The definition of the denotational model supports in a natural way a system
of equations and inference rules. We define such a proof system and prove its
soundness and completeness with respect to the model. The ω-algebraicity
of the model together with the fact that the operators preserve compactness
enables us to reduce the proof of completeness and soundness to a proof of the
same property for a sublanguage which denotes exactly the compact elements
of the model.

2 A General Framework for Late Semantics

In [Hen88a] a semantic theory for process algebras describing concurrent lan-
guages with pure synchronization is given by means of Σ-domains. Adding
values to the language calls for more complicated mathematical structures to
describe the semantics. In this section we define a general class of mathematical
structures to model process algebras with values which support the late seman-
tic approach described in the introduction. For this purpose we extend the
general syntax and introduce the general class of applicative signatures, (Σ, C)
and that of (Σ, C)-terms where, as usual, Σ is a set of operators but C a set of
channel names. We then define the general class of (Σ,C)-domains which is a
direct generalization of the standard Σ-domains introduced in [GTWW77]. In
fact the (Σ, C)-domains are only a slight modification of the Natural Interpre-
tations introduced in [HP80] and used in [HI93]. Then we introduce the notion
of recursively closed subsets of a process algebra.

Next, in §2.3, we show how we may turn an algebraic cpo into a (Σ,C)-
domain by defining the operators on the compact elements, making sure that
they are monotonic and then extending them to the whole domain. We also
study the relationship between the evaluation mappings from our generic pro-
cess language into two different (Σ,C)-preorders.
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2.1 (Σ, C)-Terms

In this subsection we will extend the standard notion of a signature, Σ, and
that of Σ-terms used for the pure calculus in order to model processes with
value-passing based on the late approach. We do this by introducing the notion
of applicative signature as a pair, (Σ, C), where Σ is a signature and C is a set
(of channel names) and that of (Σ,C)-terms.

The general syntax is based on predefined expression languages for value
expressions and boolean expressions. Thus we assume some predefined syntactic
category of expression, Exp, ranged over by e including a countable set of values,
V al, ranged over by v, and a set of value variables, V ar, ranged over by x. We
also assume a predefined syntactic category, BExp, of boolean expressions,
ranged over by be. BExp should at least include a test for equality between the
elements of Exp. From such a predicate a test for membership of a finite set
can easily be derived. Value expressions are supposed to be equipped with a
notion of substitution of an expression for a value variable, denoted by e[e′/x],
and an evaluation function [[ ]] : Exp× V Env −→ V al, where V Env is the set
of value environments σ : V ar −→ V al. For closed expression we write [[e]]
instead of [[e]]σ. Further we preassume an infinite set of process names, PN ,
ranged over by P , Q, etc. The set of (Σ, C)-terms is now given as the triple

T(Σ,C) = (Proc(Σ,C), Fun(Σ,C), Pair(Σ,C))

of the sets generated by Σ and C according to the following syntax:

Proc(Σ,C) : p ::= op(p), op ∈ Σ c?.f c!.π τ.p be→ p, p′

Fun(Σ,C) : f ::= [x]p
Pairs(Σ,C) : π ::= (e, p)

where we use the notation p to denote a vector of terms in Proc(Σ,C). If the
process names in PN are added as primitives to the syntax for T(Σ,C), we
write T(Σ,C)(PN ) for the resulting triple of (Σ, C)-terms, and T rec(Σ,C)(PN ) if the
recursive binding rec . is also allowed.

We have three kinds of actions, input actions of the form c?, c ∈ C, output
actions of the form c!, c ∈ C and the silent action τ . We write C? for {c?|c ∈ C}
and C! for {c!|c ∈ C}. The set Act = C! ∪ C? is ranged over by a whereas
Actτ = C! ∪ C? ∪ {τ} is ranged over by µ. The structure of this syntax is
basically the same as suggested by Milner in [Mil91] although the notation is
slightly different. The action of inputting on channel c is given by c? whereas
the action of outputting on that channel is given by c!. The function terms
are of the form [x]p, where x is a data variable and p a process term. These
correspond to the abstractions in the above mentioned reference. The input
prefixing becomes c?.[x]p. The pair terms are of the form (e, p), where e is a data
expression and p a process term. These correspond to the concretions in [Mil91].
The output prefixing becomes c!.(e, p). We also assume that we have a set of
operators, Σ, which is supposed to contain at least the symbol Ω to model the
divergent or completely undecided process. Typically Σ contains the standard
CCS operators such as NIL, +, | , etc. Now the processes are obtained by
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the input and output prefixing just described, prefixing with the silent action τ
and by applying the operators in Σ. We use the notation be −→ p, p′ to denote
the standard conditional choice usually written as If be then p else p′ .

Prefixing by [x] binds the data variable x and the recursion construct is a
binding construct for process names. A value variable, x, is free if it is not in
the scope of a prefix, [x], and a process name P is free if it is not in the scope of
a recursion construct, rec P. . We shall mainly be concerned with expressions
which contain no free occurrences of value variables. We denote the set of all
process terms, functions terms and pair terms with no free occurrences of value
variables by CProc(Σ,C), CFun(Σ,C) and CPairs(Σ,C) respectively. These will
be referred to as processes, functions and pairs ranged over by cp, cf and cπ.
We assume a notion of substitution for both data variables and process names in
terms defined in the usual way. For f = [x]p and v ∈ V al we use the convention
f(v) = ([x]p)(v) = p[v/x].

In the theory to follow we will make an extensive use of the fact that the
value domain V al is countable. As V al is countable it may be written as
V al = {v1, v2, v3, . . . , }. By defining Vn = {v1, . . . , vn} we get that V al =

⋃
n Vn.

In what follows Vn will have this meaning.

2.2 (Σ, C)-Orders and (Σ, C)-Domains

In this subsection we define the notion of applicative orders and applicative
ordered (Σ, C)-algebras. We borrow the notation from [Hen88a] and use the
abbreviations pro for preorder, po for partial order and cpo for complete partial
order. We assume that the reader is familiar with basic domain theory and
algebraic semantics. (See e.g. [Plo81, Hen88a] for details.)

Definition 2.1 Applicative Orders A pair 〈A,vA〉 is an applicative pro/po/
cpo if

A = (Aproc, Afun, Apair)

and
v
A= (vAproc,vAfun ,vApair)

are such that:

1. 〈Aproc,vAproc〉 is a pro/po/cpo

2. Afun ⊆ V al −→ Aproc and Apair ⊆ V al × Aproc are pro/po/cpos with the
standard induced ordering, i.e. vAfun is the pointwise ordering and vApair
is defined by:

(v1, p1) vApair (v2, p2) if v1 = v2 and p1 vAproc p2.

A is said to be fully applicative if Aproc = A, Afun = V al −→ A and Apair =
V al×A for some A. In that case we refer to A as A. An applicative cpo is said
to be algebraic/ω-algebraic if Aproc, Afun and Apair are algebraic/ω-algebraic
cpos.

2
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Example 2.2 Consider the domain 2 = {⊥,>} with the standard ordering
as Aproc, the po of compact elements of the domain [V al −→ 2] as Afun
(i.e. Afun = V al −→fin 2 = {f ∈ V al −→ 2 | {v ∈ V al|f(v) = >} is finite })
and Apair = V al × 2. This is an example of an applicative po which is not
fully applicative. For instance the function f = λv ∈ V al.> is not a compact
element of [V al −→ 2] and thus is not an element of Afun.

We often write a-pro/po/cpo as a shorthand for applicative pro/po/cpo.

Definition 2.3 [(Σ,C)-Orders] A four tuple 〈A,vA,ΣA, CA〉 is an applicative
(Σ, C)− pro/po/cpo if A = (Aproc, Afun, Apair) is such that

1. 〈A, vA〉 is an a-pro/po/cpo.

2. 〈Aproc,vAproc ,ΣA〉 is a Σ− pro/po/cpo in the sense of [Hen88a].

3. CA = C!A ∪ C?A where:

(a) C!A is a set of monotonic/monotonic/continuous functions c!.A :
Apair → Aproc.

(b) C?A is a set of monotonic/monotonic/continuous functions c?A :
Afun −→ Aproc.

We refer to the pair (ΣA, CA) as a (Σ, C)-pro/po/cpo structure. An ω-algebraic
applicative (Σ, C)− cpo is called a (Σ, C)-domain. For an algebraic cpo A, we
use Comp(A) to denote the set of compact elements of A. 2

Definition 2.4 A function f : A1 −→ A2, where 〈A1,v1〉 and 〈A2, v2〉 are
algebraic cpos, is said to be compact if it it maps compact elements of A1 into
compact elements of A2, i.e. if f(Comp(A1)) ⊆ f(Comp(A2)). 2

Next we extend the standard notion of homomorphisms for applicative orders.

Definition 2.5 A a-pro/po/cpo homomorphism h : 〈A, vA〉 −→ 〈B,vB〉 is a
triple of mappings, (hproc, hfun, hpair), where hproc : Aproc −→ Bproc, hfun :
Afun −→ Bfun and hpair : Apair −→ Bpair are monotonic/monotonic/continuous.
A (Σ,C)−pro/po/cpo homomorphism h : 〈A, vA,ΣA, CA〉 −→ 〈B,vB ,ΣB, CB〉,
is a triple, (hproc, hfun, hpair), where hproc : Aproc −→ Bproc is a Σ− pro/po/cpo
homomorphism in the sense of [Hen88a], hfun : Afun −→ Bfun and hpair :
Apair −→ Bpair are pro/po/cpo homomorphisms and satisfy:

hproc(c?A.F ) = c?B.hfun(F ) and hproc(c!A.Π) = c!B.hpair(Π)
hfun(F ) = hproc ◦ F
hpair(v,P ) = (v, hproc(P )).

2

For A = (A1, A2, A3) and B = (B1, B2, B3) we write A ⊆ B if Ai ⊆ Bi for
i = 1, 2, 3. If f = (f1, f2, f3) then we write f : A −→ B for fi : Ai −→ Bi,
i = 1, 2, 3. All the relations we use will be extended pointwise to vectors without
further explanations.
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Sometimes it is useful to be able to apply structural induction on a sublan-
guage of the full language defined by an a-signature, (Σ, C), and a set of process
names, PN . In particular we want to be able to give recursive definitions on
certain sublanguages. This motivates the following definition of a recursively
closed subset of a language.

Definition 2.6 S = (Sproc, Sfun, Spair) ⊆ T(Σ,C)(PN ) is said to be recursively
closed if the following hold:

1. p = op(p1, . . . , pn) ∈ Sproc implies pi ∈ Sproc for i = 1, . . . , n.

2. c?.f ∈ Sproc implies f ∈ Sfun,

3. c!.π ∈ Sproc implies π ∈ Spair,

4. be −→ p1, p2 ∈ Sproc implies p1, p2 ∈ Sproc,

5. [x]p ∈ Sproc implies p[v/x] ∈ Sproc for all v ∈ V al,

6. (e, p) ∈ Sproc implies p ∈ Sproc.

In this case we write S ⊆rec T(Σ,C)(PN ). 2

Note that if Σ′ ⊆ Σ and C ′ ⊆ C then T(Σ′,C′)(PN ) ⊆rec T(Σ,C)(PN ).

Definition 2.7 Let S ⊆rec T(Σ,C)(PN ), 〈X,≺X,ΣX, CX〉 be an applicative
(Σ, C)− pro and PEnvX be the set of process environments ρ : PN −→ Xproc.
A function

X [[ ]] = (Xproc[[ ]],Xfun[[ ]],Xpair[[ ]]) : S −→ (PEnvX −→ 〈X,≺X ,ΣX, CX〉)

is an evaluation function if it satisfies:

Xproc[[op(p)]]ρ = opX(Xproc[[p]]ρ), op ∈ Σ
Xproc[[c?.f ]]ρ = c?X.Xfun[[f ]]ρ
Xproc[[c!.π]]ρ = c!X.Xpair[[π]]ρ

Xproc[[ be→ p1, p2]]ρ =

{
Xproc[[p1]]ρ if [[be]] = T
Xproc[[p2]]ρ if [[be]] = F

Xfun[[[x]p]]ρ = λv.Xproc[[p[v/x]]]ρ
Xpair[[(e, p)]]ρ = ([[e]],Xproc[[p]]ρ)

Xproc[[P ]]ρ = ρ(P )

If X is a cpo then, following the standard practice, we may define

Xproc[[recP.p]]ρ = Y λd.Xproc[[p]]ρ[d/P ]

where Y is the least fixed point operator. 2
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For closed terms the environments do not have any influence on the definition.
For process name free terms a mapping X [[ct]] = X[[ct]]ρ may be derived from
the above definition omitting the last clause of the definition and the occurrence
of ρ in the others.

Now we show that recursively closed subsets of T(Σ,C)(PN ) have at most
one interpretation in an a-(Σ, C)-pro. This is the subject of the next theorem.

Theorem 2.8 Let S = (Sproc, Sfun, Spair) ⊆rec T(Σ,C)(PN) and 〈X,≺X ,ΣX , CX〉
be an applicative (Σ, C)− pro. Then there is at most one evaluation mapping

X [[ ]] = (Xproc[[ ]],Xfun[[ ]],Xpair[[ ]]) : S −→ (PEnvX −→ X)

If 〈X,≺X ,ΣX , CX〉 is fully applicative then such an evaluation mapping exists.

Proof May be proved by structural induction and is left to the reader. 2

Note that if X is not fully applicative then a function term of the form [x].p
may fail to have an interpretation in X. For instance if p is a term denoting
> in the applicative po considered in Example 2.2 then the function term [x]p
fails to have an interpretation in Afun.

The following result turns out to be useful in the next section.

Corollary 2.9 Assume that

S = (Sproc, Sfun, Spair) ⊆rec (Proc(Σ,C), Fun(Σ,C), Pairs(Σ,C)),

that 〈X,≺X ,ΣX , CX〉 and 〈Y ,≺Y ,ΣY , CY 〉 are (Σ, C)-pros and that

ψ : 〈X,≺X ,ΣX, CX〉 −→ 〈Y ,≺Y ,ΣY , CY 〉

is a (Σ, C)-pro homomorphism. If X[[ ]] : S −→ 〈X,≺X ,ΣX, CX〉 and Y [[ ]] :
S −→ 〈Y ,≺Y ,ΣY , CY 〉 are evaluation mappings, then Y [[ ]] = ψ ◦X[[ ]].

Proof It is easy to check that the mapping Y [[[ ]]] defined by Y [[[ ]]] = ψ ◦X [[ ]]
is an evaluation mapping from S to 〈Y ,≺Y ,ΣY , CY 〉. By Theorem 2.8 such an
evaluation mapping is unique and the equality follows. 2

2.3 Properties Derived From the Compact Elements

In this subsection we will describe how we can take advantage of the algebraicity
of an applicative (Σ, C)-domain, 〈A,vA,ΣA, CA〉 to obtain a full description of
certain properties of the domain from the knowledge of the same properties
only on the partial order consisting of the compact elements of the model. In
fact we do more than that: we take an applicative ω-algebraic cpo, 〈B,vB〉,
and show how it may be turned into an applicative (Σ, C)-domain by defining
the interpretation of the operators in Σ and C on an applicative preorder that
represents the partial order of the compact elements of the model B. (By a
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representation of a partial order we mean a preorder whose induced partial
order obtained by factoring out the preorder is isomorphic to the original one.)
If the operators are monotonic they induce in a unique way continuous operators
defined on the whole of B. The following standard theorem (see e.g. [Hen88a])
plays an important role in this connection.

Theorem 2.10 Let A and B be cpos. Assume that A is algebraic and let
f : Comp(A) −→ B be monotonic. Then there exists a unique continuous
extension of f , f̃ : A −→ B.

The main result of this subsection is stated in the following theorem where

inc : 〈Comp(B),vComp(B)〉 −→ 〈B, vB〉

is the inclusion mapping and [ ]∼ : X −→ X/ ∼ is the quotient mapping.

Theorem 2.11 Assume that 〈X,≺X ,ΣX, CX〉 is a (Σ, C) − pro with the in-
duced partial order 〈X/ ∼,�X/∼〉 where ∼=≺X ∩ ≺−1

X
. Further assume that

〈B, vB〉 is an applicative algebraic cpo whose po of compact elements,
〈Comp(B),vComp(B)〉, is isomorphic to 〈X/ ∼,�X/∼〉 under the isomorphism

φ : 〈X/ ∼,�X/∼〉 −→ 〈Comp(B),vComp(B)〉

Then the following holds:

1. There exists a unique (Σ, C)-structure, (ΣB, CB) which extends 〈B,vB〉 to
a (Σ, C)-domain and extends ψ = inc◦φ◦[ ]∼ to a (Σ, C)-homomorphism.
The structure (ΣB, CB) is compact in the sense of Definition 2.4.

2. Let B[[ ]] : T rec(C,Σ)(PN ) −→ B be an evaluation mapping. If S ⊆rec T(C,Σ)

and X[[ ]] : S −→ X is an evaluation mapping then

B[[ ]]|S = ψ ◦X [[ ]]

where B[[ ]]|S means the restriction of the function B[[ ]] to S.

Proof

1. Existence: Let B1 = Comp(B). We note that inc(c) = c for all c ∈ B1.
By assumption φ ◦ [ ]∼ : X −→ B1 is monotonic and surjective. In
particular any element of B1 may be written as φ([x]∼) for some
x ∈ X . Now let op ∈ Σ. We define the operator opB1

by

opB1
(c) = opB1

(φproc([x]∼)) = φproc([opX(x)]∼)

for all c = φ([x]∼) ∈ Comp(B). It is easy to check that opB1
is well

defined and monotonic. Then we take opB to be the unique continu-
ous extension to B given by Theorem 2.10. We define CB in a similar
way. Thus we obtain well defined and continuous operators and pre-
fixings on 〈B,vB〉. The compactness also follows directly from the

11



definition. It remains to prove that the structure (ΣB, CB) extends
ψ to a (Σ, C)-homomorphism. So take x ∈ Xproc. By definition of
opB1

we get

ψproc(opX(x)) = inc(φproc([opX(x)]∼)) = inc(opB1
(φproc([x]∼))) =

opB1
(φproc([x]∼)) = opB(φproc([x]∼)) = opB(ψproc(x)).

Uniqueness: Assume (Σ′
B
, C ′

B
) is a structure that extends ψ as described

in the theorem. We have to show that Σ′
B

= ΣB and C ′
B

= CB. We
will only show the first equality as the proof for the other one is
similar and is left to the reader. So let op′

B
∈ Σ′

B
be the operator

named by op. We will show that op′
B

= opB . By assumption both
opB and op′

B
are continuous, so by Theorem 2.10 it is sufficient to

prove they coincide on the compact elements of the domain. Let
c ∈ Comp(B). It is sufficient to prove that op′

B
(c) = opB(c). So,

as ψ = φ ◦ [ ] : X −→ Comp(B) is onto, we have that there is an
x ∈ Xproc such that c = ψproc(x). Thus, as (Σ′

B
, C ′

B
) extends ψ to a

(Σ,C)-homomorphism, the definition of opB gives

op′
B

(c) = op′
B

(ψproc(x)) = ψproc(opX(x)) =
φproc([opX(x)]∼) = opB(c).

This proves the uniqueness.

2. It is easy to check that B[[ ]]|S is an evaluation mapping on S and the
result follows directly from Corollary 2.9.

2

3 Late CCS and Its Denotational Semantics

In this section we will give a concrete language, Late CCS, (CCSL) by instan-
tiating the applicative signature (Σ, C). Furthermore we will define a concrete
(Σ, C)-domain to give a denotational semantics for this language.

3.1 The Language

The language CCSL is a modification of the original CCS in the spirit of the
late approach. As described in the introduction it is basically a sublanguage
of the more general π-calculus in which only simple values are transmitted
in communications whereas the latter allows port names to be transmitted
as well as simple values. Described in our general framework CCSL(PN ) =
(CCSprocL (PN ), CCSfunL (PN ),CCSpairL (PN )) is obtained by instantiating the
signature Σ by the standard operator of CCS. So we let Σ consist of the nullary
operators NIL and Ω, the families of unary operators \c, c ∈ C and [R] where
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CCSprocL (PN ) := NIL Ω p[R] p \ c p+ p p|p c?.f c!.π τ.p

be→ p, p P recP.p

CCSfunL (PN ) : f ::= [x]p
CCSpairL (PN ) : π ::= (e, p)

Figure 1: The Syntax for CCSL

R is a finite permutation of the channel names (i.e. R : C −→ C is constant
on all but finitely many channels in C) and the binary operators + and |. For
the motivation of these operators we refer to the standard theory of CCS in
[Mil89]. For the sake of clarity the syntax for CCSL(PN ) is given in Figure
1. We let CCSL = (CCSprocL , CCSfunL , CCSpairL ) denote the closed terms in
CCSL(PN ).

3.2 A Domain Equation for Applicative Communication Trees

In this section we will construct a (Σ, C)-domain which will be used to give
the denotational semantics for our language, CCSL. The model we define is
basically the model of [MM79] where the modifications of Abramsky’s, reported
in [Abr91] and described in the introduction, are adopted. Thus we define a
model for value-passing based on the late approach using the Plotkin Power
Domain with the empty set adjoined as an isolated element. Here the main
difference is that we use a different representation for the Plotkin Power Domain
to the one used in [Abr91]. The representation we use is the one due to Smyth,
[Smy78] and will be described below. In the definition of the domain we use
the following operations on cpos:

Cartesian product ×: ([Plo81], §2 and §6) Let 〈A,vA〉 and 〈A′,vA′〉 be two
pos. We define the partial order vA×A′ on A ×A′ by:

(a, a′) vA×A′ (b, b′) if a vA b and a′ vA′ b
′

This construction extends to any number of pos. It preserves completeness
and algebraicity. Countable products preserve ω-algebraicity. If A and A′

are algebraic cpos, the set of compact elements can be obtained from the
compact elements of A and A′ by Comp(A×A′) = Comp(A)×Comp(A′).

Separated Sum
∑
i∈I : ([Abr87], §3, [Plo81], §3 and §6) Let I be a countable

index set and {Ai}i∈I be a family of I–indexed pos. The separated sum
〈∑i∈I Ai,v

∑
i∈I

Ai
〉 is defined as follows:

∑
i∈I Ai = {⊥} ∪ (

⋃{{i} × Ai|i ∈ I})
x v∑

i∈I
Ai
y if x =⊥ or if for some i, x = 〈i, a〉, y = 〈i, a′〉 and a vAi a′

where we write 〈i, a〉 for the elements of the disjoint union and ⊥ for
the bottom element of the separated sum. The construction preserves
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completeness, algebraicity and ω-algebraicity. If each Ai is an algebraic
cpo, the set of compact elements of 〈∑i∈I Ai,v

∑
i∈I

Ai
〉 is given by

Comp(
∑
i∈I

Ai) = {⊥} ∪ (
⋃
{{i} ×Comp(Ai)|i ∈ I}

Function Space from a fixed set, S, FS: ([Plo81], §3) Let S be a fixed countable
set. For a po 〈A,vA〉 we define FS(A) = S −→ A, the set of all functions
from S to A, with the pointwise ordering, vFS(A), as follows:

f vFS(A) g if ∀s ∈ S.f(s) vA g(s).

This construction preserves completeness, algebraicity and ω-algebraicity.
The compact elements of FS(A) can be obtained from those of A by
Comp(FS(A)) = F fin

S (Comp(A)) where F fin
S (B) = {f ∈ S −→ B|{s ∈

S|f(s) 6= ⊥} is finite}. Note that the constructions
∑
i∈I and FS(A) may

just as well be defined for non-countable sets I and S but then they do
not preserve ω-algebraicity in general.

Completion by Ideals: ([Hen88a], §3.3,[Win85]) There is a standard way of
extending a preorder with a least element to an algebraic cpo, often called
completion by ideals. Let 〈A,vA〉 be a preorder. A set X ⊆ A is down-
wards closed if whenever x ∈ X and y vA x then y ∈ X . An ideal in A is a
non-empty, directed and downwards closed subset of A. Let I(A) denote
the set of all ideals inA. If A has a least element then 〈 I(A),⊆〉 is an alge-
braic cpo. The compact elements of I(A) are Comp(I(A)) = {↓ a|a ∈ A}
where ↓ a = {x|x vA a}. I(A) is the unique algebraic cpo (up to iso-
morphism) whose partial order of compact elements is isomorphic to the
kernel of 〈A,vA〉, i.e. 〈A/ =A, vA/=A 〉 where =A is the equivalence induced
by vA. This is referred to as the ideal completion of 〈A,vA〉. Note that if
A/ =A is countable then I(A) is ω-algebraic.

The Plotkin Power Domain: ([Win85]) We give a construction of the Plotkin
Power Domain [Plo76] due to Smyth, [Smy78], and described in [Win85].
Let 〈A,vA〉 be an ω-algebraic cpo and M [A] the family of finite, non-
empty sets of compact elements of A. The Egli-Milner order on M [A] is
defined by:

For X,Y ∈M [A], X vEM Y iff ∀x ∈ X∃y ∈ Y. x vA y and

∀y ∈ Y ∃x ∈ X.x vA y.

The Plotkin Power Domain of 〈A,vA〉, 〈P [A],vP [A]〉 is the ideal com-
pletion of the preorder 〈M [A],vEM〉. From above-mentioned results,
we know that 〈P [A],vP [A]〉 is an ω-algebraic cpo and Comp(P [A]) =
M [A]/ =EM (up to isomorphism).

In the definition to follow we shall use Abramsky’s modification of the Plotkin
Power Domain, i.e we add the empty set to the domain in such a way that it
is only related to itself and the least element of the domain in the obvious way
under the extended Egli-Milner order. This may be described as follows:
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Given an ω-algebraic cpo we write P 0[D] for the Plotkin Power
Domain over D with the empty set adjoined as an isolated element
in the preorder. More precisely the elements of P 0[D] are given by
P [D] ∪ {∅} with the order:

X vP0 [D] Y if X,Y ∈ P [D] and X vP [D] Y
or Y = {∅} and (X = {∅} or X = ⊥)

(1)

All the constructions on pos described above may be turned into covariant con-
tinuous functors in the category CPOE, the category of cpos with embeddings,
in a straightforward way. For the details we refer to [Plo81]. Now the standard
theory in [Plo81] ensures that the following definition is meaningful.

Definition 3.1 [Applicative Communication Trees] Let C (the set of
channels) and V al (the set of values) be countable sets and let Act = {c?|c ∈
C} ∪ {c!|c ∈ C} ∪ {τ} (the set of actions). We define the applicative cpo of
applicative communication trees, 〈ACT,vACT 〉, as follows: 〈ACT,vACT 〉 is the
initial solution in CPOE of the recursive domain equation:

D = P 0[
∑
e∈Act

De]

where

• Dc? = FV al(D) = V al→ D (as defined on page 14),

• Dc! = V al ×D and

• Dτ = D.

Then we define ACTproc = ACT , ACTfun = V al −→ ACT and ACTpair =
V al × ACT with the usual induced order. v

ACT is the applicative partial
order induced by vACTproc=vACT . Defined in this way 〈ACT,vACT 〉 is a fully
applicative ω-algebraic cpo which we refer to as ACT . Also we let v denote
v
ACT . 2

From the general theory in [Plo81] we get a representation of the compact
elements by unfolding the recursive definition of ACT . Thus we define

COMP =
⋃∞
n=0COMPn

where
COMP 0 = {⊥}

and
COMPn+1 = M [

∑
e∈Act(COMPn)e] ∪ {∅}

where (COMPn)c? = FV al(COMPn), (COMPn)c! = V al × COMPn and
(COMPn)τ = COMPn. We recall that for an algebraic cpo A, M [A] is defined
as the family of non-empty sets of compact elements of A. The empty set is
added to the family COMPn as we are using the power domain operator P 0
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rather than P . Defining COMP this way and ordering it by v0
EM , the Egli-

Milner preorder over COMP extended like in (1) above, gives a representation
of the compact elements of the ω-algebraic cpo ACT . This means that the
kernel of the preorder is isomorphic to the partial order of compact elements
of the domain ACT , 〈Comp(ACT ),vComp(ACT )〉. (For the sake of simplicity we
assume that the kernel is equal to Comp(ACT ).) This suggests an inductive
definition to describe the set COMP and the preorder on COMP . Thus we
define the set K and the preorder ≺ on it inductively and prove that 〈K,≺〉 is
equal to 〈COMP,v0

EM〉.

Definition 3.2 We define K as the least set which satisfies:

1. ∅ ∈ K

2. {⊥} ∈ K

3. c ∈ C,V ⊆fin V al and ∀v ∈ V.kv ∈ K implies {〈c?, λv.x ∈ V −→
kv,Ω〉} ∈ K

4. c ∈ C,v ∈ V al, k ∈ K implies {〈c!, (v, k)〉} ∈ K

5. k ∈ K implies {〈τ, k〉} ∈ K

6. k1, k2 ∈ K implies k1 ∪ k2 ∈ K

The preorder ≺ is defined as the least preorder on K which satisfies

1. {⊥} ≺ ∅

2. k1 ≺ k2 if ∀a ∈ k1∃b ∈ k2. a ≤ b and ∀b ∈ k1∃a ∈ k2. a ≤ b
where ≤ is defined on the elements of the sets in K by

(a) ∀a.⊥ ≤ a
(b) 〈τ, k〉 ≤ 〈τ, k′〉 if k ≺ k′

(c) 〈c?, f〉 ≤ 〈c?, g〉 if ∀v ∈ V al.f(v) ≺ g(v)

(d) 〈c!, (v, k)〉 ≤ 〈c!, (v, k′)〉 if k ≺ k′

We let ≈=≺ ∩ ≺−1. 2

Proposition 3.3 〈K,≺〉 = 〈COMP,v0
EM〉.

Proof First we prove that K = COMP . That K ⊆ COMP can be proved by
showing that COMP is closed under 1.−6. in the definition of K and then use
the fact that K is the least set with this property.

To prove the opposite inclusion, it is sufficient to show that, for every n,
COMPn ⊆ K. The details are left to the reader.

Then we prove that the preorder ≺ coincides with the extended Egli-Milner
preorder on K. We have to prove the two following cases:
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≺⊆v0
EM : It is sufficient to prove that v0

EM satisfies the definition of ≺; as ≺
is the least preorder which satisfies this definition the inclusion follows.
The details are straightforward and are left to the reader.

≺⊇v0
EM : To prove this case we first define the depth of the elements of K as

follows:

1. d(∅) = d({⊥}) = 0

2. d({〈µ,k〉}) = 1 + d(k)

3. d({a1, . . . , an}) = max{d({ai})|i ≤ n}
4. d(f) = max{d(f(v))|v ∈ V al} (Recall that {f(v)|v ∈ V al} is a finite

set as f yields ⊥ on all but finitely many values in V al.)

5. d(e, k) = d(k)

Now we proceed as follows: We will prove by induction on d(k) that

k v0
EM k′ ⇒ k ≺ k′

So assume k v0
EM k′.

base d(k) = 0:

k = ∅: Then k′ = ∅ and k ≺ k′.
k = {⊥}: k ≺ k′ is obvious in this case.

step d(k) = n + 1: Now k 6= ∅ so we may assume a ∈ k. Then by definition
of v0

EM , a vP0 [COMP ] b for some b ∈ k′. We will prove that a ≤ b. We
have the four different cases: a = ⊥, a = 〈c?, f〉, a = 〈c!, (v, k1)〉 and
a = 〈τ, k2〉. The first case is obvious. We only prove the statement for
the second case as the proof for the remaining two is similar. So assume
a = 〈c?, f〉. Then b = 〈c?, g〉, where f(v) v0

EM g(v) for all v ∈ V al.
Now the induction applies and we may conclude that f(v) ≺ g(v) for all
v ∈ V al. From this we get that a ≤ b as wanted.

Next assume b ∈ k′, then again by definition of v0
EM there is an a ∈ k

such that a v0
EM b. In the same manner as before we may conclude that

a ≤ b which completes the proof of this inclusion.

2

Definition 3.4 We define 〈K,≺K〉 by letting Kproc = K, Kfun = F fin
V al (K)

(where F finV al(K) is defined as on page 14) and Kpair = V al×K and by defining
≺K as the preorder induced by ≺proc=≺. 2
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3.3 Definition of the Operators in the Model

In this subsection we will define the operators in ΣACT and prove their continu-
ity. In the definitions we take advantage of Theorem 2.11. Thus we only have
to define the operators on the applicative preorder 〈K,≺K〉 and make sure that
they are monotonic.

Definition 3.5 We define ΣK as follows:

Constants:

NILK = ∅
ΩK = {⊥}

Prefixing:

c?K . = λf.{〈c?, f〉}
c!K. = λ(v, k).{〈c!, (v, k)〉}
τK . = λk.{〈τ,k〉}

Nondeterminism:

+K = ∪

Restriction:

\cK = Fc

where Fc : Kproc → Kproc is defined by

Fc{⊥} = {⊥}
Fc∅ = ∅

Fc{〈b?, f〉} =

{
{〈b?, Fc ◦ f〉} if b 6= c
∅ otherwise

Fc{〈b!, (v, k)〉} =

{
{〈b!, (v, Fck)〉} if b 6= c
∅ otherwise

Fc{〈τ, k〉} = {〈τ,Fck〉}
Fc(k1 ∪ k2) = (Fck1) ∪ (Fck2)

Renaming:

[R]K = GR

where GR : Kproc → Kproc is defined by

GR{⊥} = {⊥}
GR∅ = ∅
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GR{〈c?, f〉} = {〈R(c)?,GR ◦ f〉}
GR{〈c!, (v, k)〉} = {〈R(c)!, (v,GRk)〉}

GR{〈τ, k〉} = {〈τ,GRk〉}
GR(k1 ∪ k2) = (GR(k1)) ∪ (GR(k2))

Parallel Composition:

|K = F

where F = int ∪ comm∪ div where int = intin ∪ intout ∪ intτ and

intin(x, y) = {〈cx?, λv.F (fx(v), y)〉|〈cx?, fx〉 ∈ x}
∪ {〈cy?, λv.F (x, fy(v))〉|〈cy?, fy〉 ∈ y}

intout(x, y) = {〈cx!, (v,F (x′, y)〉|〈cx!, (v, x′)〉 ∈ x}
∪ {〈cy!, (v,F (x, y′)〉|〈cy!, (v, y′)〉 ∈ y}

intτ = {〈τ,F (x′, y)〉|〈τ,x′〉 ∈ x}
∪ {〈τ,F (x, y′)〉|〈τ,y′〉 ∈ y}

comm(x, y) = {〈τ,F (f(v), y′)〉 | ∃c, v.〈c?, f〉 ∈ x and 〈c!, (v, y′)〉 ∈ y}
∪ {〈τ,F (x′, g(v))〉 | ∃c, v.〈c?, g〉 ∈ y and 〈c!, (v,x′)〉 ∈ x}

and

div(x, y) =

{
{⊥} if ⊥ ∈ x ∪ y
∅ otherwise

2

The reader may notice the close connection between the definition of the parallel
operator and the interleaving law presented later in the paper. We have the
following result:

Lemma 3.6 〈K,≺K ,ΣK , CK〉 is a (Σ, C)-pro.

Proof We leave it to the reader to check that the operators defined by Definition
3.5 are well-defined. The monotonicity of the operators NILK, ΩK , c?K , c!K,
τK and +K is obvious. To prove the monotonicity of the remaining operators
we use the depth, d( ), of the elements of K defined in the proof of Proposition
3.3. To prove the monotonicity of the restriction and the renaming operators
we prove by induction on d(k) that

k ≺ k′ implies Fc(k) ≺ Fc(k′)

and
k ≺ k′ implies GR(k) ≺ GR(k′)

19



To prove the monotonicity of the parallel operator with respect to the induced
ordering on K ×K, we extend d to K ×K by

d(k1, k2) = d(k1) + d(k2)

Now we may prove that

(k1, k2) ≺ (k′1, k
′
2) implies F (k1, k2) ≺ F (k′1, k

′
2)

by induction on d(k1, k2). We leave the straightforward details of the proof to
the reader. 2

We finish this section by summarizing our results. This is done by the following
theorem.

Theorem 3.7 〈ACT,vACT ,ΣACT , CACT 〉, where (ΣACT , CACT ) is the (unique)
structure induced by 〈K,≺K ,ΣK , CK〉, is a fully applicative (Σ, C)-domain. The
operators in (ΣACT , CACT ) and CACT are compact.

3.4 Syntactically Compact Elements

We will now show that the compact elements of the model ACT may be denoted
in our syntax by a recursively closed subset of the whole language. For this pur-
pose we introduce the so-called syntactically compact Terms, CoTerms(PN ) =
(CoProc(PN ),CoFun(PN ), CoPair(PN )).

As usual syntactically finite terms are those without occurrences of recur-
sion. We define syntactically compact terms as the syntactically finite ones
which only use a finite number of values in a nontrivial way. Note that, as we
are dealing with recursion free terms, the number of channels used by the term
is automatically finite. We start by introducing some notation.

Notation 3.8 Let wn = (w1, . . . , wn) and p
n

= (p1, . . . , pn) be vectors of values
and processes respectively. We write x : wn −→ p

n
for x = w1 −→ p1, (x =

w2 −→ p2, (. . . x = wn −→ pn,Ω) . . .). (Intuitively x : wn −→ pn stands for the
function that maps wi to pi for i = 1, . . . , n and all the other values w ∈ V al
into Ω.) Further we let {wn} = {wi|wn = (w1, . . . , wn)} and similarly for {pn}.

Definition 3.9 [Syntactically Compact Terms] The set of syntactically
compact terms is the triple

CoTerms(PN ) = (CoProc(PN ),CoFun(PN ), CoPairs(PN ))

where the sets CoProc(PN ), CoFun(PN ) and CoPairs(PN ) are the least sets
satisfying:

1. NIL,Ω ∈ CoProc(PN ) and P ∈ CoProc(PN ) for all P ∈ PN

2. p ∈ CoProc(PN ) implies op(p) ∈ CoProc(PN ), op = |, +, \, [R] , τ.

3. π ∈ CoPair(PN ), c ∈ C implies c!π ∈ CoProc(PN )
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4. f ∈ CoFun(PN ) and c ∈ CR implies c?f ∈ CoProc(PN )

5. p ∈ CoProc(PN ) and e ∈ Exp implies (e, p) ∈ CoPairs(PN )

6. {pn} ⊆ CoProc(PN ), {wn} ⊆ V al and x ∈ V ar implies [x]. x : wn −→
pn ∈ CoFun(PN ).

We use the convention CoTerms = CoTerms(∅), CoProc = CoProc(∅), etc.
and let them be ranged over by Cot, Cop, etc. We say that a term is compact
if it belongs to CoTerms(PN ).

2

Note that CoTerms = (CoProc,CoFun, CoPair) ⊆rec (Proc, Fun, Pairs).
We have the following:

Theorem 3.10

1. ACT [[ ]] : CCSL −→ ACT and K[[ ]] : CoTerms −→ K are well-defined.

2. ACT [[ ]] |CoTerms = inc ◦ [ ]≈ ◦K[[ ]] where

• f |A means the restriction of the function f to the set A

• [ ]≈ is the quotient mapping with respect to the preorder ≺ and

• inc : K/ ≈= Comp(ACT ) −→ ACT is the inclusion mapping.

3. For any Cot ∈ CoTerms ACT [[Cot]] ∈ Comp(ACT )

4. For all Cot1, Cot2 ∈ CoTerms ACT [[Cot1]] v ACT [[Cot2]] if and only if
K[[Cot1]] ≺ K[[Cot2]]

5. For any k ∈ Comp(ACT ) there is a Cot ∈ CoTerms such that ACT [[Cot]] =
k.

Proof

1. As ACT is a fully applicative (Σ, C)-cpo then, by Theorem 2.8,

ACT [[ ]] : CCSL −→ ACT

is well-defined. The existence of K[[ ]] follows by a simple structural in-
duction on CoTerms.

2. As CoTerms is a recursively closed subset of CCSL, we may conclude
that
ACT [[ ]]|CoTerms is an evaluation mapping on CoTerms. By construction
of 〈ACT,vACT ,ΣACT , CACT 〉, inc ◦ [ ]≈ : K −→ ACT is a (Σ,C)-po ho-
momorphism. It then follows from Theorem 2.11 that ACT [[ ]] |CoTerms =
inc ◦ [ ]≈ ◦K[[ ]].

3. This part follows immediately from part 2.
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4. Follows from part 2. as well.

5. We start by proving that for any k ∈ K there is a Cot ∈ CoTerms
such that K[[Cot]] = k. First we prove the result for the set K which by
definition equals Kproc. This may be proved by induction on the definition
of K. Then we may easily extend the proof to Kfun and Kpair.

Next assume that c ∈ Co(ACT ). Then c = [k]≈ for some k ∈ K. From
what we proved above we get that K[[Cot]] = k for some Cot ∈ CoTerms.
From 1. we get

ACT [[Cot]] = [K[[Cot]]]≈ = [k]≈.

This completes the proof.

2

4 Algebraic Laws and Proof Systems

In this section we will introduce a proof system supported by the model ACT .
We proceed by introducing first a system, E, for finite processes which we then
extend to a system, Erec, which takes care of recursive processes. We prove the
soundness and completeness of Erec with respect to the model.

The proof system E is equationally based where the equations reflect natu-
rally the properties of the operators in the model. As an example the equations

X + (Y + Z) = (X + Y ) + Z

X + Y = Y +X

X +X = X

reflect the fact that the elements of K are defined as sets and + as set union.
The inference rules describe the structure and the preorder in the model and
their interaction with the operators. Because of the two level structure of our
syntax, we have the equations

(res in) (a?.[x]X) \ c =

{
a?.[x](X \ c) if c 6= a
NIL otherwise

(res out) (a!.(e,X)) \ c =

{
a!.(e,X \ c) if c 6= a
NIL otherwise

(ren in) (a?.[x]X)[R] = R(a)?.[x](X [R])

(ren out) (a!.(e,X))[R] = R(a)!.(e,X [R])
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and the rules

(fun)
p[v/x] v q[v/x] for every v ∈ V

[x]p v [x]q

(pair)
[[e1]] = [[e2]], p v q
(e1, p) v (e2, q)

that allow us to prove inequalities over function terms and pairs. The extended
system Erec is then obtained by adding to E three new rules to take care of
recursion. These rules are all fairly standard and will not be explained here
(see e.g. [Hen88a]). The new rules introduced are

(rec) recP.p = p[recP.p/P ]

and

(ω − rule) p(n) v q for all n
p v q

where p(n), the syntactically compact approximations of a process term p, are
defined in Definition 4.1. Note here that the approximations that occur in the
ω-rule are syntactically compact as the number of values in the approximations
is finite just as the depth of the approximation is finite. This enables us to take
advantage of the algebraicity of the model when proving the completeness of
the proof system. It is possible that the weaker version of the ω-rule with the
more standard syntactically finite approximations, i.e. without restrictions on
the values, would yield a complete system as well but then a more complicated
proof technique would be needed. In the interleaving law the summation no-
tation is justified by equations (+1)-(+4) and an empty sum is understood as
NIL. {+Ω} indicates that Ω is an optional summand of a term and Ω is a
summand of the right hand side if it is a summand of X or Y on the left hand
side. To simplify the notation we assume that i, j etc. in the sums

∑
i,
∑
j, etc.

range over finite index sets I , J, etc. Now we define the syntactically compact
approximations used in the ω-rule of the proof system.

Definition 4.1 [Compact Approximations] The n-th compact approxima-
tion of a term is defined inductively by :

I. i) p(0) = Ω
ii) 1. P (n+1) = P

2. (op(p))(n+1) = op(p(n+1))
3. (µ.u)(n+1) = µ.u(n+1)

5. (recP.p)(n+1) = p(n+1)[(recP.p)(n)/P ]

6. (be −→ p, q)(n+1) =

{
p(n+1) if [[be]] = T
q(n+1) if [[be]] = F

II. ([x]p)(n+1) = [x](x ∈ Vn+1 −→ p(n+1),Ω)

III.((e, p))(n+1) =

{
([[e]], p(n+1)) if [[e]] ∈ Vn+1

([[e]],Ω) otherwise
2
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(+1) X + (Y + Z) = (X + Y ) + Z
(+2) X + Y = Y +X
(+3) X +X = X
(+4) X +NIL = X
(res+) (X + Y ) \ c = X \ c+ Y \ c

(res in) (a?.[x]X) \ c =

{
a?.[x](X \ c) if c 6= a
NIL otherwise

(res out) (a!.(e,X)) \ c =

{
a!.(e,X \ c) if c 6= a
NIL otherwise

(resNIL) NIL \ c = NIL
(res div) Ω \ c = Ω
(ren+) (X + Y )[R] = X [R] + Y [R]
(ren in) (a?.[x]X)[R] = R(a)?.[x](X [R])
(ren out) (a!.(e,X))[R] = R(a)!.(e,X [R])
(renNIL) NIL[R] = NIL
(ren div) Ω[R] = Ω
(NILpar) NIL |X = X |NIL = X
(div) Ω v X

Figure 2: Equations
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Let X =
∑
i τ.Xi +

∑
j a
′
j?.[x]X ′j +

∑
k a
′′
k!.(vk,X

′′
k ){+Ω} and Y =

∑
l τ.Yl +∑

m b
′
m?.[y]Y ′m +

∑
n b
′′
n!.(vn, Y ′′n ){+Ω}. Then

X | Y = INTL(X,Y ) +COMM(X,Y ){+Ω}

where

INTL(X,Y ) = INTLτ(X,Y ) + INTLin(X,Y ) + INTLout(X,Y )

where

INTLτ(X,Y ) =
∑
i τ.(Xi|Y ) +

∑
l τ.(X |Yl)

INTLin(X,Y ) =
∑
j a
′
j?.[x](X ′j|Y ) +

∑
m b
′
m?.[y](X |Y ′m)

INTLout(X,Y ) =
∑
k a
′′
k!.(vk,X

′′
k |Y ) +

∑
n b
′′
n!.(v′n, X |Y ′′n )

and

COMM(X,Y ) =
∑
j,n:a′

j
=b′′n

τ.X ′j[vn/x]|Y ′′n +
∑
k,m:a′′

k
=b′m

τ.X ′′k |Y ′m[vk/y]

Figure 3: Interleaving Law
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(ref) p v p

(trans)
p v q, q v r

p v r

(sub)
pi v qi

op(p) v op(q)
op ∈

∑

(pre)
p v q

µ.p v µ.q

(rec)
recP.p = p[recP.p/P ]

(inst)
pσ v qσ

for every inequation p v q and closed instantiation σ

(ω − rule) p(n) v q for all n
p v q

(cond1)
[[be]] = T

be −→ p, q = p

(cond2)
[[be]] = F

be −→ p, q = q

(pair)
[[e]] = [[e′]], p v q

(e, p) v (e′, q)

(fun)
p[v/x] v q[v/x] for every v ∈ V

[x]p v [x]q

(α− red)
[x]p = [y]p[y/x]

if y not free in p

Figure 4: The Proof System Erec
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We remind the reader that Vn = {v1, . . . , vn} is the set of the n first values.
The compact approximations have the following fundamental property:

Theorem 4.2 For all n and all t ∈ Terms

1. t(n) ∈ CoTerms(PN ), i.e. t(n) is a syntactically compact term.

2. ACT [[t]]ρ =
⊔
nACT [[t(n)]]ρ.

Proof

1. May be proved by an induction on n combined with an inner structural
induction.

2. In what remains of the proof we write [[ ]] instead of ACT [[ ]]. We have
to prove that

⊔
[[t(n)]]ρ v [[t]]ρ and [[t]]ρ v

⊔
[[t(n)]]ρ. To prove the first

inequality it is sufficient to prove that [[t(n)]]ρ v [[t]]ρ for all n. This may be
proved in the same way as a similar property for the pure calculus given in
Lemma 4.2.10 in [Hen88a]. We leave it to the reader to check the details.
The proof for the opposite inequality, [[t]]ρ v

⊔
[[t(n)]]ρ, again follows the

same pattern as the proof for a similar property given in Theorem 4.2.11
in [Hen88a]. The main difference is in connection with the restrictions
on the values in the function and pair terms. As in the above mentioned
reference we proceed by structural induction on t.

t = q ∈ Proc: We proceed by case analysis on the form q takes. Here
the only nontrivial case is q = recP.p. By definition [[recP.p]]ρ = Y F
where F = λa.[[p]]ρ[P 7→ a] and Y is the least fixed-point operator.
Thus, to prove the result, it is sufficient to prove that l =

⊔
n[[q(n)]]ρ

is a fixed point to F . So first let ρn = ρ[P 7→ [[q(n)]]ρ]. Then
F ([[q(n)]]ρ) = [[p]]ρn and [[p(k+1)]]ρk = [[q(k+1)]]ρ for all k. Now, as
F is continuous, we have

F (
⊔
n[[q(n)]]ρ) =

⊔
n F ([[q(n)]]ρ) =

⊔
n[[p]]ρn.

By the structural induction

[[p]]ρn =
⊔
m

[[p(m)]]ρn.

We note that for any n,m and k ≥Max{m,n},

[[p(m)]]ρn v [[p(k+1)]]ρk.

This implies

F (
⊔

[[q(n)]]ρ) =
⊔
n(
⊔
m[[p(m)]]ρn) =

⊔
k[[p

(k+1)]]ρk =
⊔
k[[q

(k+1)]]ρ =
⊔
n[[q(n)]]ρ

which completes this case of the proof.
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t = [x]p ∈ Fun: It is easy to see that

[[[x]p(0)]]ρ v · · · [[[x]p(n)]]ρ v · · · v [[[x]p]]ρ.

i.e. that [[[x]p]]ρ is an upper bound of the chain given above. We have
to show that it is the least upper bound of the chain. So assume

[[[x]p(0)]]ρ v · · · [[[x]p(n)]]ρ v · · · v f.

We have to show that [[[x]p]]ρ v f . So assume v ∈ V al. Then v ∈ VN
for some N . Therefore for all n ≥ N ,

([[([x]p)(n)]]ρ)(v) = ([[[x]x ∈ Vn −→ p(n),Ω]]ρ)(v) =

[[p(n)[v/x]]]ρ v f(v).

By the structural induction [[p[v/x]]]ρ is the least upper bound for
the chain

[[p(0)[v/x]]]ρ v [[p(1)[v/x]]]ρ v · · · v [[p(n)[v/x]]]ρ v · · · .

This implies that ([[[x]p]]ρ)(v) v f(v). As v ∈ V al was arbitrary this
implies that [[[x]p]]ρ v f as wanted.

t = (v, q) ∈ Pairs: May be proved in a similar way as the previous case
and is left to the reader.

2

What remains of the section is devoted to the proof of the soundness and

completeness of the proof system Erec with respect to the model. To prove the
completeness we introduce a notion of Ω-normal forms for compact terms and
a corresponding normalization theorem.

Definition 4.3 [Ω-normal form] A compact term, Cot ∈ CoTerms, is said
to be in a Ω-normal form if the following hold:

1. If Cot = Cop ∈ CoProc then Cop has the form∑
i

ai.ti{+Ω}

where Ω is an optional summand and where ti is in Ω-normal form. The
empty sum is interpreted as NIL.

2. If Cot = (e,Cop) ∈ CoPairs then e = v ∈ V al and Cop is in a Ω-normal
form.

3. If Cot = [x]x : vn −→ pn ∈ Fun then pi is in a Ω-normal form for i ≤ n.

2
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Lemma 4.4 For all Cot ∈ CoTerms there is Ω-normal form n(Cot) such that
n(Cot) =E Cot

Proof First we define the depth, δ(Cot) of a compact term Cot by

1. δ(NIL) = δ(Ω) = 0

2. δ(Cop \ c) = δ(Cop[R]) = δ(Cop)

3. δ(Cop1 +Cop2) = max{δ(Copi)|i ≤ n}

4. δ(Cop1|Cop2) = 1 + δ(Cop1) + δ(Cop2)

5. δ(pre.Cot) = 1 + δ(Cot)

6. δ((e,Cop)) = δ(Cop)

7. δ([x].x : v1, · · · , vn −→ Cop1, · · · , Copn) = max{δ(Copi)|i ≤ n}
To prove the result we prove the following stronger result:

For all Cot ∈ CoTerms there is a Ω-normal form n(Cot) such that
n(Cot) =E Cot and δ(n(Cot)) ≤ δ(Cot).

We prove the statement by induction on δ(Cot). So assume that the statement
holds for all Cot′ with δ(Cot′) < n and that δ(Cot) = n. We will prove that
the statement holds for Cot. We proceed by structural induction on Cot.

Cot = Cop ∈ CoProc: We proceed by a case analysis on the form Cop takes.

Cop = NIL: Trivial.
Cop = Ω: We get the result by defining n(Ω) = NIL+ Ω
Cop = µ.Cot,Cop1 + Cop2: Follows from the structural induction and

a simple use of the proof system.
Cop = Cop1 \ c: By structural induction, Cop1 has a Ω-normal form,

onf , such that

Cop1 =E onf =
∑
i

ai.ti{+Ω} where δ(onf) ≤ n

In particular δ(ti) < n for all i. By a simple use of the proof system
we get

Cop1 \ c =E

∑
i:ai 6=c

ai.(ti \ c){+Ω}

Furthermore δ(ti \ c) = δ(ti) < n. By the outer induction there are
Ω-normal forms, ni =E ti \ c, such that δ(ni) ≤ δ(ti \ c) < n. By
substitutivity

Cop1 \ c =E

∑
i:ai 6=c

ai.ni{+Ω}

Obviously the right hand side of the equation is an Ω-normal form.
Finally

δ(
∑
i:ai 6=c

ai.ni{Ω}) ≤ 1 + max
i
{δ(ni)} ≤ n

This completes the proof in this case.
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Cop = Cop1[R]: Similar.

Cop = Cop1|Cop2: This is the only non-trivial case. By induction Cop1

and Cop2 have Ω-normal forms, n1 and n2, with δ(ni) ≤ δ(Copi), i =
1, 2. If either n1 or n2 is NIL, the result follows from Equation
(NILpar) in Figure 3. Otherwise assume

n1 =
∑
i

ai?.[xi]ri +
∑
j

bj!.(vj, pj) +
∑
k

τ.qk{+Ω}

and

n2 =
∑
i′

a′i′?.[yi′ ]r
′
i′ +

∑
j′

b′j′!.(v
′
j′, p

′
j′) +

∑
k′

τ.q′k′{+Ω}.

By substitutivity and the interleaving law

Cop = Cop1|Cop2 =E n1|n2 =E

INTLout(n1, n2) + INTLin(n1, n2)+

INTLτ(n1, n2) +COMM(n1, n2){+Ω}.

It is sufficient to prove that each of the summands can be reduced to
an Ω-normal form with depth no greater than that of Cop. We only
prove this for the summand INTLin as the proof of the statement
for the remaining two is similar. We recall that

INTLin(n1, n2) = INTLlin(n1, n2) + INTLrin(n1, n2)

where
INTLlin(n1, n2) =

∑
i ai?.[xi](ri|n2){+Ω}

INTLrin(n1, n2) =
∑
i′ a
′
i′?.[yi′ ](n1|r′i′){+Ω}.

We will only prove the statement for INTLlin(n1, n2) as the proof
for the other one is similar. Again it is sufficient to prove that the
terms [xi](ri|n2) may be reduced to a Ω-normal form with depth
strictly less than Cop. To prove this first we recall that ri has the
form ri = xi : vnii −→ pni

i where pij is a Ω-normal form for j ≤ ni.
Therefore we get

[xi](ri|n2) = [xi]((xi : vni
i −→ pni

i)|n2).

By using the rules (fun), (cond1) and (cond2) and substitutivity we
obtain

[xi](ri|n2) =E [xi]((xi : vni
i −→ qni

i)
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where qij = pij|n2 for j ≤ ni. Furthermore

δ(qij) = δ(pij|n2) ≤ maxj≤ni{δ(pij|n2)} <

1 + maxj≤ni{δ(pij|n2)} =

1 + (1 + maxj≤ni{δ(pij)}+ δ(n2)) =

1 + (1 + δ([xi]ri) + δ(n2)) =

1 + δ(ai?.[xi]ri) + δ(n2) ≤ 1 + δ(n1) + δ(n2) ≤
1 + δ(Cop1) + δ(Cop2) = δ(Cop) = n.

Thus the outer induction applies on qij and we may conclude that
qij =E γ

i
j where γij is an Ω-normal form and such that δ(γij) ≤ δ(qij).

By substitutivity

INTLlin(n1, n2) =E

∑
i

ai?.[xi]xi : vni −→ γn
i

where the right hand side of the equality obviously is a Ω-normal
form. Furthermore

δ(
∑
i ai?.[xi]xi : vni −→ γn

i) =

maxi{δ(ai?.[xi]xi : vni −→ γn
i)} =

1 + maxi{maxj{δ(γij)}}) ≤

1 + maxi{maxj{δ(qij)}} ≤

δ(Cop).

In a similar way we may show that INTLrin(n1, n2) has a Ω-normal
form with depth no greater than that of Cop and therefore that
INTLin(n1, n2) has a Ω-normal form with depth no greater than
δ(Cop). We can also prove a similar statement about INTLout(n1, n2),
INTLτ(n1, n2) and COMM(n1, n2) and thereby for Cop.

Cot ∈ CoPairs,CoFun: Left to the reader.
2

We will end this section by stating and proving the soundness and completeness

of the proof system Erec with respect to the denotational semantics.

Theorem 4.5 [Soundness and Completeness] For all closed terms ct, cu
in CTerms we have

ct vErec cu if and only if ACT [[ct]] v ACT [[cu]]

i.e. the proof system Erec is sound and complete with respect to the denotational
semantics.
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Proof

Soundness: The soundness of the ω-rule is the content of Theorem 4.2 whereas
the soundness of the (rec)-rule follows from the definition of the semantics
of rec.p as a least fixed point. What remains to prove is the soundness
of E. We do this by reducing the proof to a proof of the soundness for
syntactically compact terms with respect to K. For this purpose we need
the following property.

ct vE cu⇒ ∃m∀n ≥ m. ct(n) vE cu
(n) (2)

This may be proved by induction on the depth of the proof for ct vE cu.
The only non-trivial case is the base case when the interleaving law is
used. We leave it to the reader to check the details of the proof.

The soundness of E over CoTerms with respect to K follows easily from
the definition of K and the fact that the elements of CoTerms denote
exactly K. Now we may proceed as follows:

Assume ct vE cu. Then, by (2), ct(n) vE cu
(n) for all n ≥ m for some m.

As ct(n), cu(n) ∈ CoTerms, the soundness of E with respect to for these
implies

K[[ct(n)]] ≺K K[[cu(n)]] for all n ≥ m
or equivalently

ACT [[ct(n)]] v ACT [[cu(n)]] for all n ≥ m

Theorem 4.2 implies
ACT [[ct]] v ACT [[cu]]

Completeness: Again we reduce the proof to proving that E is complete for
CoTerms with respect to K. We first note that Theorem 4.2 and the
ω-algebraicity of the model imply

ACT [[ct]] v ACT [[cu]] ⇒

∀n.ACT [[ct(n)]] v ACT [[cu]] ⇒

∀n∃m.ACT [[ct(n)]] v ACT [[cu(m)]] ⇒

∀n∃m.K[[ct(n)]] ≺ K[[cu(m)]].

(3)

If E is complete for CoTerms with respect to K then

K[[ct(n)]] ≺ K[[cu(m)]]⇒ ct(n) vE cu
(m) (4)

Now cu(m) vErec cu may easily be shown so (3), (4) and the ω-rule give

ACT [[ct]] v ACT [[cu]]⇒ ∀n.ct(n) vErec cu⇒ ct vErec cu.

Thus what remains to prove is the completeness of E on CoTerms with
respect to K. By Lemma 4.4 and the soundness of E it is even enough to
prove the completeness for Ω-normal forms with respect to K because:
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Assume K[[Cot1]] ≺ K[[Cot2]]. By Lemma 4.4 Coti =E ni, i =
1, 2 where ni, i = 1, 2 are Ω-normal forms. By the soundness of
E with respect to K, K[[ni]] = K[[Coti]], i = 1, 2 and therefore
K[[n1]] ≺ K[[n2]]. If E is complete for Ω-normal forms with
respect to K we may conclude that n1 vE n2. That Cot1 vE
Cot2 follows from the transitivity of the proof system.

To prove the completeness for the Ω-normal forms we proceed as follows:

Assume n1, n2 are Ω-normal forms. We have to prove that

K[[n1]] ≺ K[[n2]]⇒ n1 vE n2

We proceed by structural induction on n1.

n1 = NIL+ Ω: Obvious.
n1 = NIL: ∅ = K[[NIL]] ≺ K[[n2]] implies K[[n2]] = ∅ and

therefore that n2 = NIL.
n1 =

∑
i≤n µi.ti{+Ω}, n ≥ 1: Then

K[[n1]] = {〈µi,K[[ti]]〉|i ≤ n}[∪{⊥}]

where ⊥ ∈ K[[n1]] if and only if Ω is a summand of n1. As
K[[n1]] ≺ K[[n2]] then n2 6= NIL and n2 6= Ω, i.e. n2 has the
form

n2 =
∑
j≤m

γj.uj{+Ω}

and
K[[n2]] = {〈γj,K[[uj]]〉|j ≤ m}[∪{⊥}]

where m ≥ 1. Assume that 〈µi,K[[ti]]〉 ∈ K[[n1]]. Then
µi = γji and K[[ti]] ≺ K[[uji ]] for some ji ≤ m. By induction
ti vE uji . As this holds for any i we get that∑

i≤n
µi.ti vE

∑
i≤n

γji.uji (5)

First assume that Ω is a summand in n1. As obviously

Ω vE
∑
j

γj.uj{+Ω}

we get, by (5), substitutivity and absorption of the proof
system, that

n1 =
∑
i

µi.ti + Ω vE
∑
i

γji.uji +
∑
j

γj.uj{+Ω} =E n2

which proves the statement in this case. Next assume that
Ω is not a summand in n1. This implies that ⊥ 6∈ K[[n1]]
which in turn implies that ⊥ 6∈ K[[n2]]. We may therefore
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conclude that Ω is not a summand of n2 either. In a similar
way as before we get∑

j≤m
µij .tij vE

∑
j≤m

γj.uj (6)

where {ij|j ≤ m} ⊆ {1, . . . n}. Now from (5), (6), the
absorption and the substitutivity of the proof system we
get

n1 =
∑
i≤n µi.ti =E

∑
i≤n µi.ti +

∑
j≤m µij .tii

vE
∑
i≤n γji.uji +

∑
j≤m γj.uj =

∑
j≤m γj.uj = n2

which completes the proof for this case.

n1 ∈ CoFun, CoPair: Follows easily from the induction.

2

5 Conclusion

In the first part of this paper we have set up a general framework for describ-
ing the syntax and the denotational semantics for value-passing calculi which
support the late approach. For this purpose the standard notion of signature
and Σ-algebras and Σ-orders have been extended to the so-called applicative
signatures and (Σ,C)-algebras and (Σ, C)-orders. Furthermore we show how
we may take advantage of the ω-algebraicity of a model to define the operators
in the model.

In the second part of the paper we define the language Late-CCS which
is a modification of the standard CCS with values due to the late semantic
approach. This language is basically the π-calculus where the values allowed
are restricted to be of the simple type only. The language is obtained as an
instantiation of the general class of languages we defined where the signature
Σ is taken to be the set of the standard operators of CCS.

A denotational model for Late-CCS is defined, an instantiation of the gen-
eral class of models we defined. The carrier set of this model is an ω-algebraic
cpo and is obtained as a solution to an recursive domain equation. It is a direct
extension of the model defined by Abramsky in [Abr91] and a modification of
the model given by Milne and Milner in [MM79]. As all the constructions we
use in the definition of the equation are standard and well known to preserve
cpos and ω-algebraicity the solution we obtain is an ω-algebraic cpo.

The operators are constructed by isolating the compact elements. We then
define the operators on the derived partial order, making sure that they are
monotonic. This allows us to extend them to continuous functions defined on
the whole cpo.
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We have also presented an equationally based proof system and shown its
soundness and completeness with respect to the model. The algebraicity of the
model and the way we define the operators makes it possible for us to reduce
the proof of the soundness and completeness to a proof of the same property
on a sub-language of the actual language, the so-called compact terms. This is
an inductively defined language which denotes exactly the compact elements of
the model.

As already explained the construction of the domain equation and thereby
the definition of the model is strongly inspired by the idea of bisimulation
preorder. In the companion paper [Ing95a] it is shown that the original late
bisimulation is too strong to meet the preorder of the model ACT . The al-
gebraicity of the model implies that the preorder in the model is completely
determined by the compact elements. Behaviourally this can be interpreted as
meaning that the preorder may be obtained by some kind of finite observations.
This is not the case for bisimulation as it is well known even for the pure cal-
culus. In [Ing95a] a finitary version of the preorder is defined by mimicking
the ω-algebraicity of the model on the syntactical level. This preorder is shown
to coincide with the preorder in the model in the sense that the model is fully
abstract with respect to it.
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