
B
R

IC
S

R
S

-95-29
N

.K
larlund:

A
n
n

log
n

A
lgorithm

forO
nline

B
D

D
R

efinem
ent

BRICS
Basic Research in Computer Science

An n logn Algorithm for
Online BDD Refinement

Nils Klarlund

BRICS Report Series RS-95-29

ISSN 0909-0878 May 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

An n log n algorithm for online BDD refinement

Nils Klarlund
BRICS∗

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

Binary Decision Diagrams are in widespread use in verification systems
for the canonical representation of Boolean functions. A BDD represent-
ing a function ϕ : Bν → N can easily be reduced to its canonical form in
linear time.

In this paper, we consider a natural online BDD refinement problem
and show that it can be solved in O(n logn) if n bounds the size of the
BDD and the total size of update operations.

We argue that BDDs in an algebraic framework should be understood
as minimal fixed points superimposed on maximal fixed points. We pro-
pose a technique of controlled growth of equivalence classes to make the
minimal fixed point calculations be carried out efficiently. Our algorithm
is based on a new understanding of the interplay between the splitting
and growing of classes of nodes.

We apply our algorithm to show that automata with exponentially
large, but implicitly represented alphabets, can be minimized in time
O(n · logn), where n is the total number of BDD nodes representing the
automaton.

1 Introduction

Binary Decision Diagrams [1] form the backbone of many symbolic methods for
verification of hardware and software. BDDs are essentially acyclic automata
whose state spaces are shrunk by a technique called path compression. In this
paper, we study a fundamental algorithmic problem that have applications to
the efficient representation of automata on large alphabets.

Given a BDD representing a function ϕ : Bν → N and an initial partition of
its codomain, we formulate an algorithm that maintains the induced canonical
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

partition of all its nodes after each update operation specifying a refinement of
the current partition. A simple algorithm based on the linear time reduction
of BDDs [9] implies that each node is touched potentially as many times as the
number of operations. Thus an O(n2) algorithm arises.

In this paper, we formulate an O(n · logn) algorithm based on an algebraic
analysis of BDDs. We introduce the concept of decision partition to analyze the
result of what is known as a Split operation in partition refinement algorithms
such as [8]. BDDs cannot, however, be analyzed simply as usual partition
refinements. In fact, we show that the split operation must be followed by a
Grow operation. The Grow operation cannot be used with Hopcroft’s “process
the lesser half” strategy [4], since all decision blocks must be grown as opposed
to the situation in partition refinement algorithms, where the largest blocks
created can be ignored.

Fortunately, a variation FGrow of the grow operation allows certain blocks
resulting from the normal Grow operation to be fused. Even though information
is lost, we are able to show that if a partition is a fixed point under Split and
FGrow, then it is also a fixed point under Split and Grow.

In our online algorithm, we show that if a large block is being calculated,
then it can be thrown away by being fused with another block, while the expense
of calculating it can be attributed to a third block known to be small.

It has been known for a long time [4] that deterministic finite-state automata
can be minimized in time O(m ·n logn), where n is the number of states and m
is the size of the input alphabet. BDDs allow automata with n states and 2n

letters—each inducing a different behavior in the automaton—to be represented
by graphs of polynomial size in n; see [3], where also a relatively straightforward
O(n2) minimization algorithm is presented together with its application to a
practical implementation of Monadic Second-order Logic on Strings.

We show that an easy application of our online BDD refinement algorithm
allows minimization to be carried out in only O(n · logn) steps, where n is the
size of the representation. To our knowledge, the only other algorithm for large
alphabets that reach a similar bound is that of [2], where incompletely specified
transition functions are considered. The compression possible with the BDD
representation is exponentially greater.

It should also be noted here that if automata are represented with BDDs
that are not path compressed, then an O(n logn) algorithm follows easily by
considering the automaton as working on words over B [7]. Path compression,
however, seems to be of major practical significance although the asymptotic
gain is only slight [6].

Finally, we mention that online minimization of automata on large, implicit-
ly represented state spaces (not alphabets) have been considered in [5]. Online
minimization here refers to incremental exploration of the state space. This al-
gorithm bears a superficial resemblance to ours in that it also alternates between
minimal and maximal fixed point iterations.

2

Overview

In Section 2, we define the online BDD refinement problem and we develop an
algebraic treatment of BDD properties. A simpe online BDD refinement algo-
rithm when path compression is omitted is discussed in Section 3. In Section 4,
we use the properties of Section 2 to extend the simple algorithm to the case
of BDDs with path compression. Section 5 discusses the application to BDD
represented automaton minimization.

2 Online BDD Refinement

Assume we are given a set x0, x1, . . . , xν−1 of Boolean variables. A truth assign-
ment to these variables is a vector ~u ∈ Bν . An assignment prefix ~u up to i is a
truth assignment to variables x0, . . . xi. A Binary Decision Diagram or BDD ϕ
is a rooted directed graph. The root is named ∧ϕ. Each node v in ϕ is either an
internal node or a leaf. An internal node possesses an index denoted v.i. Also,
it contains edges v · 0, which points to a node called the low successor of v, and
v · 1, which points to the high successor. The index of a successor of v is always
greater than the index of v. A leaf has no successors and no index. Let the set
of leaves be L. The graph ϕ denotes a function, also called ϕ, from Bν → L.
To calculate ϕ(~x), one starts at the root. If the root is a leaf, then the value
ϕ(~x) is the root; otherwise, let i be the index of the root. If xi is 1 then go to
the high successor and if xi is 0 go to the low successor. Continue in this way
until a leaf is reached. This leaf is the value of ϕ(~x). (Since there may be jumps
greater than one in the index of some of the variables, some of the values in the
assignment may be irrelevant.) In general, if v is a node of index i and ~u is a
value assignment to xi, . . . , xj, then v · ~u denotes the node reached by following
~u from v.

The BDD ϕ defines a partition ≡ϕ of assignment prefixes given by ~u ≡ϕ ~u′
if ∧ϕ · ~u ≡ϕ ∧ϕ · ~u′.

We shall consider the case where the leaves are used to differentiate between
finer and finer partitions of Bν . The partition is given by a leaf discriminator
D : L → N, which is implemented by having field v.d denote the value D(v)
for a leaf v. In this way, a function D ◦ ϕ is defined by D ◦ ~ϕ(~x) = v.d,
where v is the value of ϕ(~x). Two assignments ~x and ~y are then equivalent if
D ◦ ϕ(~x) = D ◦ϕ(~y).

BDDs may also be shared. For example, we use ~ϕ = ϕ0, · · · , ϕn−1 to denote
a directed graph with roots ∧ϕi such that the nodes reachable from each root
constitute a BDD. If D is a discriminator for the leaves, then we say that
R : [n] → N is a function discriminator for D ◦ ~ϕ if D ◦ ϕi = D ◦ ϕj iff
R(i) = R(j). Note that if D is a constant discriminator (i.e. if D is a constant
function), then all D ◦ ϕi are equivalent.

The BDD online refinement problem is to maintain a function discriminator

3

R for D ◦ ~ϕ when D is updated piecemeal. Each update operation specifies a
partial mapping E : L → N, which defines the change to D. In order to assure
that the new D specifies a partition refining the one given by the current D, we
require that the range of E is disjoint from the range of the current D. Thus
the desired functionality can be summarized as follows.

Multiple BDD Online Problem
Input: n shared BDDs ~ϕ with leaves L and constant discrimina-
tor D.
Maintained : A functional discriminator R of length n.
Update: A partial mapping E : L → N such that rangeD does
not intersect the current discriminator. The current discriminator
D is updated according to E. After each update operation, the
contents of R discriminates D ◦ ~ϕ. The size of operation E is the
size of domain(E).
Output: A list of numbers i for which R(i) has changed.

In Section 5, we prove:

Theorem 1 Multiple BDD Online Refinement can be solved in timeO(nmin(k,
logn) + k), where n is the number of nodes in the BDDs and k is the total size
of all operations. Thus, if n also bounds k, then the algorithm is O(n logn).

The Canonical BDD

We define the canonical BDD for function ψ : Bν → D, where D is finite, as
follows. A partial assignment ~u from i to j is a truth assignment to variables
xi, . . . , xj. The partial assignment ~u may be narrowed to a partial assignment
from i′ to j′, where i ≤ i′ ≤ j′ ≤ j. It is denoted ~u[i′..j′]. If only a prefix
of ~u up to i′ − 1 is cut off, we write ~u[i′..]. An extension ~v of ~u up to j is a
partial assignment from i + 1 to j. A full extension is one that assigns up to
ν−1. For any assignment prefix ~u up to i, we may consider the residue function
ψ~u : ~v′ 7→ ψ(~u~v′), where ~v′ is a full extension. Define ~u ∼ψ ~u′ if ψ~u = ψ~u′ . The
equivalence class of ~u is denoted [~u]ψ. In particular, if ~u ∼ψ ~u′ then ~u and ~u′

are assignment prefixes up to i, which is called the index of the equivalence class
[~u]ψ = [~u′]ψ.

The equivalence classes of ∼ψ correspond to the states of a canonical au-
tomaton that upon reading a value assignment is in a state designating the value
of ψ.

The path compression of BDDs can now be understood as a least fixed point
calculation that involves coalescing equivalence classes. If [~u0]ψ = [~u1]ψ, then
[~u]ψ and [~u0]ψ = [~u1]ψ are coalesced. Note that if also [~v0]ψ = [~v1ψ] for some
~v, then this identity still holds after [~u]ψ and [~u0]ψ = [~u1]ψ are coalesced. Thus
there is a unique least fixed point reached by repeatedly coalescing ∼ψ classes.
The equivalence classes of the resulting partition ≈ψ is the canonical BDD for ψ.

4

Each such new equivalence class M consists of a number of equivalence classes
of ∼ψ . The index M.i of M is defined as the highest index of an old class. It
can be seen that there is at most one old class in M of highest index. The high
successor M.1, defined if the index is less than ν, is the equivalence class of
~u · 1, where ~u is a prefix of maximal length in M . The low successor is defined
similarly.

Lemma 1 Consider i and ~u. The residue function ψ~u·~v is the same function
for all extensions ~v up to i if and only if u ≈ψ u · v for all such v.

Proof By induction on the length of ~v. 2

Lemma 2 ≡ϕ refines ≈ϕ.

Proof Assume ~u ≡ϕ ~u′. If ~u and ~u′ have the same length, then ~u ∼ϕ ~u′ and
thus ~u ≈ϕ ~u′. Otherwise, if ~u assigns up to i and ~u′ up to j, with i < j, then the
prefix ~u′′ of ~u′ up to i is also equivalent (modulo ≡ϕ) to ~u and all extensions ~v up
to j make ~u~v and ~u′′~v equivalent (modulo ≡ϕ) to ~u. In particular, all residues
are the same, hence by the preceding lemma, ~u ≈ϕ ~u′′~v, where we choose ~v to
be the extension of to j such that ~u′′~v = ~u′.

2

Partitions of BDD Nodes

A partition P of a BDD ϕ is a set of non-empty, disjoint subsets or blocks of
nodes, whose union is the set of all nodes. Alternatively, P may be viewed as
an equivalence relation ≡P defined by v ≡P v′ iff ∃B ∈ P : v, v′ ∈ B. Since
any assignment prefix ~u leads to a unique node ϕ,≡P induces an equivalence
relation on assignment prefixes that is also denoted ≡P .

To simplify matters, we assume in the following that all partitions are over
the same BDD ϕ. Also for simplicity, we shall often write P for ≡P .

A partition Q defines a function ϕQ : Bν → D, where we define a labeling D
of the leaves of ϕ such that for leaves v and v′, D(v) = D(v′) iff v ≡Q v′. The
canonical BDD for this function is denoted ≈Q. Note that it is only dependent
on the partition of the leaves defined by Q. In particular, it is not necessarily
the case that ≈Q refines ≡Q, since Q may have introduced too fine distinctions
above the leaves. We usually regard the canonical BDD ≈Q as a partition of
the nodes of ϕ.

Decision Partitions

An important part of our algorithm is to work with partitions that only become
refinements of canonical partitions after moving nodes around.

A node v is a decision node if it is a leaf or it has at least one successor
outside its own block. Any other node is redundant.

5

A decision partitionM of a partition Q specifies a partition of the decision
nodes of each block B in Q into decision blocks. Any decision block M must
contain nodes of the same index. If for each B, all decision notes of B are
gathered in just one decision block, then M is said to be the stable decision
partition.

The Split Operator

Given Q, we can form a decision partition M =Split(Q) as follows. For every
block B, put all decision nodes v with the same index and the same behavior,
i.e. having the same equivalence classes determined by v ·0 and v ·1, in the same
decision block. All leaves in B are also put into a decision block. Formally,M
is defined as

{M 6= ∅ | ∃B,B0, B1 ∈M : ∃i :
M = {v | v ∈ B and v is a leaf} or
M = {v | v.i = i and v ∈ B, v0 ∈ B0, and v1 ∈ B1}}

PartitionQ is stable if Split(Q) is the stable decision partition. This amounts
to saying that Q is a fixed point under Grow ◦ Split, i.e. Grow ◦ Split(Q) = Q.

Note that if Q is stable, then both successors of any non-leaf decision node
are outside its own block (for if some block B contained a decision node v with
only one successor not in B, then by following successors from v, we would
eventually reach a decision node in B that is in a different decision block from
that of v, but that would contradict that Q is stable).

Note also that ≈Q is stable.

The Grow Operator

For any node v and any extension ~u, there will be a first decision node w in
some decision block M along u. In this case, we say that extension ~u from v
hits M . In particular, if v ∈M , then any extension hits M .

If M is a decision block, then its closure, denoted Cl(Q,M), is the set of
nodes all of whose extensions hit M . Clearly, if M is contained in a block B,
then Cl(Q,M) is also contained in B. Also if M and M ′ are different decision
blocks, then Cl(Q,M) and Cl(Q,M ′) are disjoint. For each block B, let the
remainder, denoted Rem(Q,M, B), be defined as B minus all nodes in Cl(M),
where M is contained in B, i.e. Rem(Q,M, B) = B\

⋃
M∈M,M⊆B Cl(Q,M).

Then, Cl(Q,M),M ∈ M, together with Rem(Q,M, B), B ∈ Q, form a parti-
tion, called Grow(Q,M).

Sometimes it is convenient to assume that the result of Split(Q) includes
the argument Q. In this way, we may apply a Grow operator after a Split as in
Grow ◦ Split(Q), which denotes Grow(Q, Split(Q)).

6

Lemma 3 (a) Grow ◦ Split(Q) refines Q.
(b) If P refines Q, then Grow ◦ Split(P) refines Grow ◦ Split(Q).

Proof (a) Let P ′ = Grow ◦ Split(P). Since P ′ is gotten from P by carving out
closures of decision blocks, it follows that P ′ refines P.

(b) Let M = Split(P), N = Split(Q), P ′ = Grow ◦ Split(P), and Q′ =
Grow ◦ Split(Q). It can be seen that it is sufficient to prove that each closure
with respect to Q of a decision block N in N is a union of closures of decision
blocks M of M. This is established by showing that each decision block of N
is a union of decision blocks of M. The details are omitted. 2

Lemma 4 Let P be a stable partition and let v ≡P v′, where v is of index i
and v′ of index j with i ≤ j. Then for any extension ~u from v, v ·~u ≡P v′ ·~u[j..].

Proof Let v, v′ ∈ B ∈ P. We proceed by an inductive argument. If the decision
nodes of B are leaves, then clearly v · ~u ≡P v and v′ · ~u[j..] ≡P v′ · ~u[j..], whence
v · ~u ≡P v′ · ~u[j..].

Otherwise, all decision nodes of B point to blocks below B, so we assume
by induction that the Lemma holds for all blocks below B. We must now show
that it holds for v, v′ in B. Now there is an h such that v · ~u[..h] and v′ · ~u[j..h]
are the first nodes outside B from v and v′ along ~u and ~u[j..] (unless both v · ~u
and v′ · ~u[j..] are in B, which is a trivial case). But by assumption that P is
stable

v · ~u[..h]≡P v · ~u[j..h].

Thus, by inductive hypothesis

v · ~u = v · ~u[..h] · ~u[h+ 1..] ≡P v′ · ~u[j..h] · ~u[h+ 1..] = v′ · ~u[j..].

2

Let M be a decision partition of Q. We say that M respects a partition P
if whenever v and v′ in are different decision blocks of M, they are in different
blocks of P.

Lemma 5 Let stable P refine Q and let M be a decision partition of Q re-
specting P. Then P refines Grow(Q,M).

Proof Let Q′ = Grow (Q,M). It can be seen that it is sufficient to consider
v, v′ ∈ B ∈ Q with v ≡P v′. We must prove that v ≡Q′ v′. We establish
this by proving that any extension hits the same decision block in M whether
followed from v or v′. Assume that i ≤ j where i = v.i and j = v.i. Consider an
extension ~u from v such that v · ~u is the first decision node met along ~u. There
are now three cases.

Case 1. The node v · ~u is a leaf. Then v′ · ~u[j..] is a leaf. If they are in
different blocks of M, then—since M respects P—they are in different blocks
of P, but that contradicts Lemma 4.

7

Case 2. No decision node is encountered along v′ · ~u[j..] and both v · ~u and
v′ · ~u[j..] are not leaves. Now, since v · ~u is a decision node, either v · ~u · 0 or
v · ~u · 1 is not in B. Thus there is an extension ~u′ such that v · ~u · ~u′ is not in
B while v′ · ~u[j..]~u′ is the first decision node in B encountered from v′. Thus
v · ~u · ~u′ and v′ · (~u · ~u′)[j..] are in different blocks of Q, which is a contradiction
for the same reason as above.

Case 3. A decision node is encountered along v′ · ~u[j..] and v · ~u and v′ · [j..]
are not leaves. Then reasoning similar to that of Case 2 applies. 2

Lemma 6 If stable P refines Q, then P respects Split(Q).

Proof Nodes v and v′ equivalent in Q can become inequivalent in Split(Q) only
if v0 and v′0 or v1 and v′1 are inequivalent in Q. But then v and v′ cannot be
equivalent in P since P is assumed to be stable and assumed to refine Q. 2

Proposition 1 If stable P refines Q, then P refines Grow ◦ Split(Q).

Proof By Lemma 5 and by Lemma 6. 2

Proposition 2 If Q = Grow ◦ Split(Q), then Q refines ≈Q.

Proof For v, v′ ∈ B ∈ Q, we must prove that v ≈Q v′. We proceed by induction
and prove in addition that all decision nodes in B have the same index.

If v and v′ are leaves, then certainly v ≈Q v′ and v and v′ have the same
index.

If v and v′ are decision nodes of B, then by assumption that Q = Grow ◦
Split(Q), they have the same index and behave similarly with respect to hitting
lower classes of Q along their 0 and 1 successor. By inductive assumption,
lower classes are contained in ≈Q classes. Thus, the mappings ~w 7→ [v · ~w]≈Q
and ~w 7→ [v′ · ~w]≈Q are the same and thus v ≈Q v′.

If v is a redundant node of B at level j and all decision nodes of B are of
index i in a block M of ≈Q, then ~w 7→ [v · ~u · ~w]≈Q is the same function for
all extensions from v up to i, since v is contained in the closure of the decision
nodes of B by assumption that Q = Grow ◦Split(Q). Thus v ∈ M by Lemma 1.

2

Proposition 3 If ≈Q refines Q and if Q′ = (Grow ◦ Split)i(Q) is stable, then
Q′ is ≈Q.

Proof By Proposition 2, Q′ refines ≈Q. By repeated applications of Proposi-
tion 1, ≈Q refines Q′. 2

8

The FGrow Operator

The FGrow operator is defined as Grow(Q,M) except that for each block B of
Q, Rem(Q,M, B) may or may not be fused with some designated Cl(Q,M) with
M a decision block in B. Thus the operation is not fully specified, but whether
fusion takes place or not and with which Cl(Q,M) will be inconsequential for the
properties to follow. Even though information since to be dropped by FGrow ,
a fixed point involving FGrow is also a fixed point involving Grow .

Proposition 4 If FGrow ◦ Split(Q) = Q, then Grow ◦ Split(Q) = Q.

Proof Assume FGrow ◦ Split(Q) = Q. Let M = Split(Q). We prove that
for each B ∈ Q, Rem(Q,M, B) is empty. For a contradiction, assume that
v ∈ Rem(Q,M, B). Then there are at least two decision blocks of M in B.
Therefore, there is at least one decision block M such that Cl(Q,M) is not
fused with Rem(Q,M, B). But this contradicts that FGrow ◦ Split(Q) = Q.

Since all remainder sets are empty, the effect of FGrow is the same as that
of Grow on Split(Q). Thus, Grow ◦ Split(Q) = Q. 2

Theorem 2 If ≈Q refines Q and if Q′ = (FGrow ◦Split)i(Q) is stable, then Q′
is ≈Q.

Proof The partition≈Q certainly refines Q′ since (FGrow ◦Split)i(Q) is coarser
than (Grow ◦Split)i(Q) by Lemma 3(b). On the other hand, Q′ is a fixed point
for Grow ◦Split by the preceding proposition. SoQ′ refines ≈Q by Proposition 2.
2

For our purposes, it is convenient to represent the partition of the leaves as
a decision partition M of a partition Q. Such a partition where the only non-
trivial decision blocks are those that contain leaves is called a leaf partition. A
canonical equivalence relation ≈M is defined as before for ≈Q. We will regard
an update operation as specifying a leaf partition and Q will be the current
partition.

Theorem 2 then can be formulated

Theorem 3 If ≈M refines Q and if Q′ = FGrow ◦ (Split ◦ FGrow)i(Q,M) is
stable, then Q′ is the canonical partition ≈M.

3 Online Algorithm without Path Compression

In this section, we formulate the online refinement problem for BDDs without
path compression. We exhibit a simple algorithm that potentially touches each
node with every update operation. Next, we show how to obtain an algorithm
where each internal node is touched at most logn times.

To simplify the problem, we consider a single BDD instead of the multiple
shared ones and formulate algorithms that maintain canonical equivalence class-
es at all levels, not only the root. We can then solve the vectorized problem by

9

1

1

x1

x3

x2

1

1

1

0

0

0
0

10 0

0

0

0

1

1

x0

A0

B0

v3v2v1D0

C0

O0

Figure 1: A BDD without path compression

inserting dummy binary variables. For example, if we consider BDDs ϕ0 and ϕ1
of variables x1, . . . , xn, we may insert the dummy variable x0 and edges from a
new root to the old ones ∧ϕ0 and ∧ϕ1 so that if x0 is 0, then ϕ0 is followed, and
if it is 1, then ϕ1 is followed. Equivalence of the two BDDs under the current
leaf discriminator then amounts to whether the old roots are in the same block.

A Simple Online Algorithm

A BDD without path compression is equivalent to an automaton that classifies
all words in Bν. For example, the BDD in Figure 1 classifies truth assignments
~u to x0, . . . , x3 into three classes according to which leaf is reached. If the
discriminator v.d is the same, say 0, for all leaves v, then the corresponding
canonical partition is as indicated. That is, at each level all nodes are in the
same equivalence class. Now consider an update operation update([v3 7→ 1]),
which places the third leaf into its own class D1. The resulting canonical
partition is indicated in Figure 2.

For each level, the block of node v is determined by its discriminator v.d.
When an update(E) operation is received, we may assume that the current
partition is the canonical one according to the value of D. We then need to
further split blocks in order to reflect the perturbation E. If we assume a
perfect hash function h : N × N → N, then internal nodes v are discriminated
simply according to their behavior with respect to the equivalence classes of

10

1

1

x1

x3

x2

1

10

0

0

10 0

0

0

1

x0

B0

O0

D0

B1

A1

C0 1 0

0 1

A0

C1

B2

D1

Figure 2: After splitting leaves

their successors. Thus, h((v · 0).d, (v · 1).d) classifies nodes at level ` once nodes
at level `− 1 been classified. Thus the algorithm

for ` := ν − 1, . . . , 0 do
for each v at level ` do

v.d := h((v · 0).d, (v · 1).d)

calculates the new canonical partition. However, since this algorithm looks at
every node in the BDD for every update, its complexity is O(n · k).

An O(n ·min(k, logn) + k) Algorithm

We can use Hopcroft’s “process the lesser half” idea to obtain an algorithm
where each internal node is touched at most logn times.

To understand how this is done, we consider the example again and note that
C0 can be calculated at no cost if its discriminating value is preserved: as C1 is
created, it can simply be subtracted from the original C0 and what remains is
the new C0. The new block C0 has the property that all of its successors hits the
largest block of leaves after the update. Hopcroft’s observation here amounts
to the fact that parent nodes whose successors are both in such blocks need not
be explicitly considered when the split is carried out at the parent level.

Note that if we had specified E to be [v1 7→ 1, v2 7→ 1] instead of [v3 7→ 1],
then we would need to swap D1 = {v1, v2} and D0 = {v3} so as to preserve the

11

∆ν := domain(E);
for ` := ν, . . . , 0 do

new := [v.d 7→ ∅ | v ∈ ∆`] ;
∆`−1 := ∅;
for all v in ∆` do

dold := v.d;

dnew :=
{
E(v) if ` = ν
h((v · 0).d, (v · 1).d) if ` < ν

remove v from L`(dold);
add v to L`(dnew);
v.d := dnew ;
new(dold) := new(dold) ∪ {dnew};

for all dold in domain(new) do
let dmax ∈ new(dold) such that |L`(dmax)| is maximal;
if |L`(dmax)| > |L`(dold)| then

switch(L`(dmax), L`(dold));
for all dnew ∈ new(dold)

add parents of all v ∈ L`(dnew) to ∆`−1

where

switch(L(d), L(d′)) =
for all v in L(d)

v.d := d′;
for all v in L(d′)

v.d := d;
swap elements of L(d) and L(d′)

Figure 3: Online minimization of BDDs without path compression.

discriminating value in the largest block.
The data structures that we need to implement these ideas are: for each

node v, a list of all parents; and for each level ` and each discriminating value
d calculated, a doubly-linked list L`(d) of nodes in the block determined by d.
The length |L`(d)| of the list is maintained in memory.

The iterative splitting and renaming procedure is then realized by for each
level ` to register the nodes ∆` that have changed discriminator. Also for each
block dold that is split, the set new(dold) of new discriminators replacing dold
is calculated. This information together with length information can then be
used to decide for each dold when swapping is needed.

The details of this are as in Figure 3.
The running time of this algorithm is the sum of the time spent for the leaves

12

(` = ν) and for the inner nodes (` < ν). Each time the parents of a node v are
added to ∆`−1, v is in a block at level `, which is at most half the size of the
block that contained v when it was last considered. Thus a parent v′ at level
`−1 is thrown into ∆`−1 at most 2·logn′ times, where n′ is the number of nodes
at level `. So the work for inner nodes is O(n logn), but also O(n · k). Thus
the online refinement problem for BDDs without path compression is solvable
in O(n ·min(k, logn) + k).

4 Online Algorithm with Path Compression

In this section, we solve the following variation on the problem considered in
Section 2.

Single BDD Online Problem
Input:A BDDs ~ϕ with leaves L and constant discriminator D.
Maintained : For each node v, a discriminator value v.d is main-
tained.
Update: A partial mapping E : L → N such that rangeD does
not intersect the current discriminator. The current discrimina-
tor D is updated according to E. After each update operation,
the discriminator values of nodes induce an equivalence relation,
which is the same as ≈D.
Output: A list of nodes for which v.d has changed.

Since we here have an online problem with path compression, we must al-
ternately split and grow blocks of nodes. For example, the BDD in Figure 2
becomes partitioned as shown in Figure 4 after equivalence classes have been
coalesced. In general after the current leaf partition D has been perturbed by
E resulting in a new partition D′, we may calculate the new partition according
to Theorem 3 by applying Split ◦ FGrow until a new fixed point is reached.
(Note that the conditions for applying Theorem 3 are satisfied: since Q is ≈D
(by assumption that the algorithm maintains the canonical partition) and D′,
which represents M of Theorem 3, refines D, it is the case that ≈D′ refines Q.)
Since equivalence classes for BDDs with path compression may contain nodes
at several levels, we use lists L(d) that are not indexed by level. After each iter-
ation, the lists L(d) hold a partition refined by the canonical one. We maintain
L(d) such that its decision nodes are placed before its redundant nodes.

The algorithm implementing FGrow uses a mapping new as in the previous
algorithm for expressing the set consisting of each discriminator dold whose block
B is subjected to a non-trivial decision partition. The lists L(d), d ∈ new(dold),
then represent the decision blocks of B. We assume that the nodes of these
decision blocks have been removed from L(dold). We adopt Hopcroft’s idea by
allowing one decision block to be only implicitly represented. This block consists
of the decision nodes of B that remain in L(dold).

13

1

1

x1

x3

x2

1

10

0

0

10 0

0

0

1

x0

1 0

0 1

Figure 4: A BDD with path compression

Initially, we call the FGrow algorithm with new initialized according to E as
calculated in the previous algorithm.

The FGrow algorithm grows the decision blocks by removing nodes from
L(dold). What remains of L(dold) is the remainder of B, possibly fused with
the closure of a decision block. The FGrow algorithm returns a list of all nodes
possessing a successor whose discriminator has changed.

The Split algorithm simply calculates the new discriminator of the nodes in
the list. As in standard BDD reduction, we hash on the discriminators of the
successors and the index. The new mapping is calculated as before.

4.1 Main Idea

The main idea behind the FGrow algorithm is that when the decision blocks of
a block B are to be grown, then all unfinished blocks are grown in parallel until
either (a) a block becomes too big (say half the size of B) or (b) until only one
block is unfinished or (c) until all blocks are finished. In case (a) and (b), the
block in question is fused with the remainder. Despite this loss of information, a
proper fixed point will still be reached by Theorem 3. In case (a), all remaining
blocks are then finished and they will all be small since a big one already was
found. In case (b), all blocks, possibly except the last one, will by the absence
of the condition in case (a) be small.

In both case (a) and (b), the work involved in building the aborted block

14

Split(∆) =
new := [v.d 7→ ∅ | v ∈ ∆] ;
for all v in ∆ do

dold := v.d;

dnew :=
{
E(v) if ` = ν
h(v.i, (v · 0).d, (v · 1).d) if ` < ν

remove v from L(dold);
add v to L(dnew);
v.d := dnew ;
new(dold) := new(dold) ∪ {dnew};

FGrow (new);

Figure 5: Online minimization of BDDs with path compression (Split).

can be charged to a finished block, if such a block exists. The finished block
will then be small. For this argument to be correct, it is crucial that the work
done is the same for all the blocks grown in parallel.

In case (a), a finished block always exists, but in case (b), there may be
no such block. This situation occurs when there is only one decision block to
begin with. In this case, the work involved will be proportional to the size
of the decision block and it will be charged to the time it took to build the
decision block. The algorithm makes sure that the original discriminating value
of the whole block is maintained despite a possible new value assigned to the
decision block. In this way, only blocks that are really split may result in further
splitting.

In case (c), all blocks will be small.

4.2 Detailed Description

The different stages of the algorithm are shown in Figures 5, 6, and 7. The
Split is implemented in Figure 5. The FGrow operation is implemented using
the following concepts. Throughout the operation, parent nodes with a suc-
cessor changing discriminator are accumulated in a list ∆. For each block B
represented by a discriminator dold described by new, decision blocks must be
grown according to the main idea. The blocks that are explicitly described have
discriminators new(dold). In addition, we select a new discriminator value dnew
for the decision nodes of L(dold) (we use an otherwise unused discriminator that
cannot be the value of the hash function). Since we must process all blocks in
parallel, the list L(dnew) is initially empty. We calculate the size oldsize of the
block B by adding up the sizes of L(dold) and all L(d) for d ∈ new(dold). The
unfinished blocks are identified in the variable current , which initially consists
of dold and new(dold). We use a flag halfsize found to indicate whether case

15

FGrow (new) =
∆ := ∅;
for each dold in domain(new)

oldsize := |L(dold)|+ Σd∈new(dold)|L(d)|;
dnew := a new discriminating value;
current:= {dnew} ∪ new (dold);
halfsize found := false;
finished dec nodes := false;
while (|current| ≥ 2 and not halfsize found)

or (|current| ≥ 1 and halfsize found) do
for each d in current do

if d = dnew then
if not finished dec nodes then

if next node v in L(dold) is a decision node then
move v to L(dnew)

else
finished dec nodes := true;

if d 6= dnew or finished dec nodes then
select new parent(d, vd, wd);

if wd is defined then
if wd ·0.d = d and wd ·1.d = d then

move wd to end of L(d);
if L(d) ≥ oldsize/2 then

move L(d) nodes to L(dold);
current:= current\{d};
halfsize found := true;

else
current:= current\{d};

if not halfsize found and |current| = 1
let d be such that {d} = current;
move L(d) nodes to L(dold);

for each d ∈ new(dold) ∪ {dnew} and each vd in L(d) do
for each wd in P (vd)

if wd.d 6= d then
∆ := ∆ + {wd};

if ∆ 6= ∅ then
Split(∆);

Figure 6: Online minimization of BDDs with path compression (FGrow).

16

Select new parent(d, vd, wd)=
if vd is not defined and L(d) is not empty then

vd := first node in L(d);
if wd is not defined then

wd := first node in P (vd);
else

if wd is not last node in P (vd) then
wd := next node in P (vd);

else
if vd is not last node in L(d)

vd := next node in L(d);
wd := first node in P (vd);

else
wd := undefined;

Figure 7: Online minimization of BDDs without path compression (Se-
lect new parent).

(a) above occurred and a flag finished dec nodes to indicate when all decision
nodes of B have been moved to L(dnew).

For each d in current , we maintain the current node vd of L(d) whose parents
are being considered and the current parent wd. The list of parents of a node
v is denoted P (v). We assume that these lists have been pre-calculated. The
parent nodes are explored according to Figure 7.

When nodes are moved from one list to another, their discriminator is
changed accordingly. Also, they are placed so that decision nodes occur be-
fore redundant nodes.

To help understanding the algorithm, let us consider an example where a
block B denoted by dold has been split according to a decision partition that has
placed all decision nodes of B into a list L(d). Thus new(dold) is {d} and there
are no decision nodes in L(dold). Before the first iteration, current has been set
to {dnew, d}. When dnew is selected to be grown, the algorithm discovers that
there are no more decision nodes in L(dold), and the current node vd cannot be
defined and as a result, dnew is removed from current . When d is considered,
the first node in L(d) is selected as vd and a first parent vd is selected as well.
This parent may even be moved to L(d) if both of its successors are in L(d).
However, since current is now a singleton, there will be no more iterations and
the nodes in L(d) are moved to L(dold). Therefore, no parents are thrown into
∆ at the end of FGrow.

To show that the algorithm terminates, it is sufficient to establish that when

17

a block has only one decision block, then the original discriminator is restored
and no parents are placed in D. We have just analyzed one such case above.
The other cases to be analyzed are those where halfsize found is set and where
the decision block is represented implicitly as nodes in L(dold) (in which case
new(dold) is empty).

To solve the BDD online problem, we also need to collect as output the
nodes whose discriminator change.

4.3 Complexity Analysis

Theorem 4 The Single BDD Online Problem can be solved in time O(nmin(k,
logn) + k), where n is the number of nodes in the BDDs and k is the total size
of all operations. Thus, if n also bounds k, then the algorithm is O(n logn).

Proof The total time spent initializing new before FGrow is called is O(k). The
algorithm guarantees that any decision block that is fully grown is at most half
the size of the containing block. Thus every time any current node or current
parent is touched, then computation time is charged to a block, which is at most
half as big as the previous time. Thus the time spent on each node is O(logn).
This figure excludes time that is incurred when a block has only one decision
block. In the case that the decision block is created during a Split phase, the
time can be charged to the creation of the decision block (since we have argued
that no further calculations arise from such a block). In the case that the
decision block is created during initialization, the time (which is proportional
to the length of the description of E pertaining to the block) can be attributed
to the total length of the input.

Thus the total time isO(n logn+k). We do not achieve the nmin(k, logn)+k
bound as in Section 3, unless we modify the algorithm: as long as the total size
k of the update operations is less than logn, we use the straightforward method
of reducing the whole BDD with each update at a total cost of n · k. When k
becomes greater than logn, we use our online algorithm and initialize with the
current leaf partition. 2

As explained in Section 3, this result can be used to establish the time bound
in Theorem 1 for the Multiple BDD Online Problem.

Avoiding Hashing

In the Split step, a linear time bucket sort technique, see [9], can replace the
use of hashing. The idea is to sort all triples h(v.i, (v · 0).d, (v · 1).d) before new
discriminating values are assigned. Thus our time bounds do not depend on
perfect hashing.

18

E := [v 7→ 0 | v ∈ L and v represents a state in F]
∪[v 7→ 1 | v ∈ L and v represents a state not in F];

repeat
changed states := update (~ϕ, E);
E := [];
for each i in changed states

let v be the leaf representing i;
add v 7→ R(i) to E;

until changed states = 〈〉;

Figure 8: Minimization of BDD-represented automaton.

5 Minimizing BDD Represented Automata

We consider languages over the alphabet Bν. Thus a letter ~x is a vector
x0, · · · , xν−1 of ν bits. An automaton A over Bν with state space [N], where
[N] = {0 . . .N − 1}, is specified as (~ϕ,L, T, F), where ~ϕ is consists of n shared
BDDs, L is the set of leaves of ~ϕ, T : L → [N] is the transition mapping and
F ⊆ [N] is the set of final states. State 0 is the initial state. There is a transition
i
~x→ j iff T ◦ ϕi(~x) = j. This representation is discussed in detail in [3].

The minimization algorithm consists of first reducing ~ϕ with respect to initial
partition {F, [N]\F}and then repeatedly applying the update operation in order
to split states. The output of the update operation is conjoined with the previous
partition in order to define the leaf partition of the next update operation. This
process is continued until a fixed point is reached.

If we assume that n bounds both N and the number of nodes in the shared
BDD representation, then the straightforward implementation (described in [3])
carries out each update operation in time O(n) and there are at most n itera-
tions. With the BDD online algorithm, however, we can do better than O(n2).

For simplicity, we assume that the shared BDD ϕ has exactly N leaves, one
for each i ∈ [N]. Thus the minimization algorithm can be written as in Figure 8.

To analyze the running time of this algorithm, we observe that each i is in-
cluded in changed states at most logn times. Thus the total size of all parameters
E is O(nlogn). Thus the total time is O(nlogn) by Theorem 1.

Theorem 5 Minimization is O(n logn) for BDD-represented automata, where
n bounds the number of states and the number of BDD nodes.

19

Acknowledgments
Thanks to Bob Paige and Theis Rauhe for discussions on earlier versions of the
ideas presented here.

References
[1] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-

grams. ACM Computing surveys, 24(3):293–318, September 1992.

[2] A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V |). TCS,
19:85–98, 1982.

[3] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. Techni-
cal Report RS-95-21, BRICS, Department of Computer Science, University of
Aarhus, 1995. Accepted for the TACAS Workshop, 1995; available through
http://www.brics.aau.dk/k̃larlund.

[4] J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton.
In Z. Kohavi and Paz A., editors, Theory of machines and computations, pages
189–196. Academic Press, 1971.

[5] D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc.
STOC, pages 264–274. ACM, 1992.

[6] H-T. Liaw and C-S. Lin. On the OBDD-representation of general Boolean func-
tions. IEEE Trans. on Computers, C-41(6):661–664, 1992.

[7] R. Paige. Personal communication. 1995.

[8] R. Paige and R. Tarjan. Three efficient algorithms based on partition refinement.
SIAM Journal of Computing, 16(6), 1987.

[9] D. Sieling and I. Wegener. Reduction of OBDDs in linear time. IPL, 48:139–144,
1993.

20

Recent Publications in the BRICS Report Series

RS-95-29 Nils Klarlund. An n logn Algorithm for Online BDD
Refinement. May 1995. 20 pp.

RS-95-28 Luca Aceto and Jan Friso Groote.A Complete Equational
Axiomatization for MPA with String Iteration. May 1995.
39 pp.

RS-95-27 David Janin and Igor Walukiewicz.Automata for theµ-
calculus and Related Results. May 1995. 11 pp. To appear
in Mathematical Foundations of Computer Science: 20th
Int. Symposium, MFCS '95 Proceedings, LNCS, 1995.

RS-95-26 Faith Fich and Peter Bro Miltersen. Tables should be
sorted (on random access machines). May 1995. 11 pp. To
appear in Algorithms and Data Structures: 4th Workshop,
WADS '95 Proceedings, LNCS, 1995.

RS-95-25 Søren B. Lassen.Basic Action Theory. May 1995. 47 pp.

RS-95-24 Peter Ørbæk.Can you Trust your Data?April 1995. 15
pp. Appears in Mosses, Nielsen, and Schwartzbach, edi-
tors, Theory and Practice of Software Development.6th In-
ternational Joint Conference CAAP/FASE, TAPSOFT '95
Proceedings, LNCS 915, 1995, pages 575–590.

RS-95-23 Allan Cheng and Mogens Nielsen.Open Maps (at) Work.
April 1995. 33 pp.

RS-95-22 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part II: A Behavioural Seman-
tics and Full Abstractness. April 1995. 33 pp.

RS-95-21 Jesper G. Henriksen, Ole J. L. Jensen, Michael E. Jør-
gensen, Nils Klarlund, Robert Paige, Theis Rauhe, and
Anders B. Sandholm. MONA: Monadic Second-Order
Logic in Practice. May 1995. 17 pp.

RS-95-20 Anders Kock.The Constructive Lift Monad. March 1995.
18 pp.

RS-95-19 François Laroussinie and Kim G. Larsen.Compositional
Model Checking of Real Time Systems. March 1995. 20 pp.

