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Javier Esparza1 Mogens Nielsen
Department of Computer Science BRICS2

Edinburgh University Department of Computer Science
JCMB, The King’s Buildings University of Aarhus

Mayfield Road Ny Munkegade, Bldg. 540
Edinburgh EH9 3JZ DK-8000 Aarhus C

Scotland Denmark

Abstract

This is a survey of some decidability results for Petri nets, covering the
last three decades. The presentation is structured around decidability of
specific properties, various behavioural equivalences and finally the model
checking problem for temporal logics.

1 Introduction

Petri nets are one of the most popular formal models for the representa-
tion and analysis of parallel processes. They are due to C.A. Petri, who
introduced them in his doctoral dissertation in 1962. Some years later,
and independently from Petri’s work, Karp and Miller introduced vector
addition systems [45], a simple mathematical structure which they used
to analyse the properties of ‘parallel program schemata’, a model for par-
allel computation. In their seminal paper on parallel program schemata,
Karp and Miller studied some decidability issues for vector addition sys-
tems, and the topic continued to be investigated by other researchers.
When Petri’s ideas reached the States around 1970, it was observed that
Petri nets and vector addition systems were mathematically equivalent,
even though their underlying philosophical ideas were rather different (a
computational approach to the physical world in Petri’s view, a formal
model for concurrent programming in Karp and Miller’s). This gave more
momentum to the research on decidability questions for Petri nets, which
has since continued at a steady pace.

1 On leave from University of Hildesheim.
2 Basic Research In Computer Science, Centre of the Danish National Research Foundation.
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In the following we have collected some highlights of decidability issues
for Petri nets from the 70’s, 80’s and 90’s. As you will see, they form
a nice mixture of old celebrated breakthroughs, and a recent burst of
exciting new developments.
We have decided to group our selected results in three sections, covering
respectively the decidability of specific properties, various (behavioural)
equivalences, and finally the model checking problem for temporal logics.
It should be noted that we have selected our highlights also aiming at
some coherence in our presentation. In other words, we do not claim to
cover all important contributions on decidability for Petri nets, but still
our selection covers a pretty comprehensive part of existing results, also
compared to other similar surveys, e.g. [42]. We have not included results
on extensions of the Petri net model. In particular, for decidability results
on timed Petri nets we refer the reader to [44, 72, 73].

2 Basic definitions

We give, in a somewhat informal way, the basic definitions on Petri nets
that we need in order to state the results of this overview.
A net N is a triple (S, T, F ), where S and T are two disjoint, finite sets,
and F is a relation on S ∪ T such that F ∩ (S × S) = F ∩ (T × T ) = ∅.
The elements of S and T are called places and transitions, respectively,
and the elements of F are called arcs. A marking of a net N = (S, T, F )
is a mapping M :S → IN . A marking M enables a transition t if it marks
all its input places. If t is enabled at M , then it can occur, and its
occurrence leads to the successor marking M ′, which is defined for every
place s as follows: a token is removed from each input place of t and a
token is added to each output place of t (if a place is both input and
output place of a transition, then its number of tokens does not change).
This is denoted by M t−→M ′.
A Petri net is a pair (N,M0), where N is a net and M0 a marking of N ,
called initial marking. A sequence M0

t1−→M1
t2−→ · · · tn−→Mn is a finite

occurrence sequence leading from M to Mn and we write M0
t1...tn−−−→ Mn.

A sequence M0
t1−→ M1

t2−→ · · · is an infinite occurrence sequence. An
occurrence sequence is maximal if it is infinite, or it leads to a marking
which does not enable any transition. A marking M of N is reachable
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if M0
σ−→ M for some sequence σ. The reachability graph of a Petri net

is a labelled graph whose nodes are the reachable markings; given two
reachable markings M , M ′, the reachability graph contains an edge from
M to M ′ labelled by a transition t if and only if M t−→M ′.
A labelled net is a fourtuple (S, T, F, `), where (S, T, F ) is a net and `
is a labeling function which assigns a letter of some alphabet to each
transition. This function need not be injective. Sometimes we refer to
the ‘normal’ Petri nets as unlabelled Petri nets. The reachability graph of
a labelled net is defined like that of unlabelled nets; the only difference is
that if M t−→M ′ then the corresponding edge from M to M ′ is labelled
by `(t).
Given a Petri net (N,M0) and a marking Mf of N (called final marking),
we define the language of (N,M0) with respect to Mf as

L(N,M0,M
f) = {σ |M0

σ−→Mf}

and the trace set of (N,M0) as

T (N,M0) = {σ |M0
σ−→M for some marking M}

(sometimes the terms ‘language’ and ‘terminal language’ are used instead
of ‘trace set’ and ‘language’).
Given a labelled Petri net (N,M0), where N = (S, T, F, `), and a marking
Mf of N , the language of (N,M0) with respect to Mf as

L(N,M0,M
f) = {`(σ) |M0

σ−→Mf}

and the trace set of (N,M0) is defined as

T (N,M0) = {`(σ) |M0
σ−→M for some marking M}

We now define those classes of nets that are mentioned several times
along the survey. Some others, which appear only once, are defined on
the fly (or a reference is given).
A Petri net (N,M0) is:

• persistent if for any two different transitions t1, t2 of N and any
reachable marking M , if t1 and t2 are enabled at M , then the oc-
currence of one cannot disable the other.
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• conflict-free if, for every place s with more than one output transi-
tion, every output transition of s is also one of its input transitions.
All conflict-free nets are persistent; in fact, (N,M0) is conflict-free
if and only if (N,M) is persistent for every marking M of N . For
most purposes, this class is equivalent to the class of nets in which
each place has at most one output transition.

• sinkless if any cycle of N which is marked at M0 (meaning that
M0(s) > 0 for some place of the cycle) remains marked at every
reachable marking; i.e., cycles cannot be emptied of tokens by the
occurrence of transitions.

• normal if, for any cycle of the net, every input transition of some
place of the cycle is also an output transition of some place of the
cycle. All normal nets are sinkless; in fact, normal is to sinkless
what conflict-free is to persistent: (N,M0) is normal if and only if
(N,M) is sinkless for every marking M of N .

• single-path if it has a unique maximal occurrence sequence.

• a BPP-net if every transition has exactly one input place. BPP
stands for Basic Parallel Process. This is a class of CCS processes
defined by Christensen [10] (see also the Concurrency column of the
EATCS Bulletin 51). BPPs can be given a net semantics in terms
of BPP-nets.

• free-choice if, whenever an arc connects a place s to a transition t,
either t is the unique output transition of s, or s is the unique input
place of t.

• 1-safe if, for every place s and every reachable marking M , M(s) ≤
1; i.e., no reachable marking ever puts more than one token in any
place.

• cyclic if M0 can be reached from any reachable marking; i.e., it is
always possible to return to the initial marking. Cyclic nets are
sometimes called reversible.
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3 Properties

In spite of the rather large expressive power of Petri nets, we shall see in
this section that most of the usual properties of interest for verification
purposes are decidable. On the other hand, we shall also see that they
tend to have very large complexities. In fact, Petri nets are an important
source of natural non-primitive recursive problems!
So far, all decidability proofs in the net literature are carried out by
reduction to the boundedness or the reachability problem: these are the
only two with a direct decidability proof, and we are thus obliged to begin
the section with them.

Boundedness A Petri net is bounded if its set of reachable markings
is finite. Karp and Miller proved in [45] that boundedness is decidable.
This result follows from the following characterization of the unbounded
Petri nets, not difficult to prove. A Petri net is unbounded if and only
if there exists a reachable marking M and a sequence of transitions σ
such that M σ−→ M + L, where L is some non-zero marking, and the
sum of markings is defined place-wise. The sequence σ is a sort of ‘token
generator’ which, starting from a marking M , leads to a bigger one M+L.
Karp and Miller show how to detect ‘token generators’ by constructing
what was later called the coverability tree. Their algorithm turns out
to be surprisingly inefficient: token generators may have non-primitive
recursive length in the size of the Petri net, which implies that the con-
struction of the coverability tree requires non-primitive recursive space!.
Rackoff gave a better algorithm in [62]. He showed that there always
exists one token generator of ‘only’ double exponential length in the size
of the Petri net. This result leads to an algorithm which requires at most
space 2cn logn for some constant c. This complexity is almost optimal,
because Lipton proved [52] that deciding boundedness requires at least
space 2c

√
n.

In [64], Rosier and Yen give a multiparameter analysis of the boundedness
problem. They use three parameters: k, the number of places; l, the
maximum number of inputs or outputs of a transition; and n, the number
of transitions. They refine Rackoff’s result, and give an algorithm that
works in 2ck logk(l + logn) space. Among other results, they also show
that, if k is kept constant, then the problem is PSPACE-complete for
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k ≥ 4.
Boundedness can be decided at a lower cost for several classes of nets. It
is

• PSPACE-complete for single-path Petri nets [30];

• co-NP-complete for sinkless and normal Petri nets [36];

• polynomial (quadratic) for conflict-free Petri nets [34].

Some problems related to boundedness have also been studied. A Petri
net is k-bounded if no reachable marking puts more than k tokens in any
place (since we assume that the set of places of a net is finite, k-bounded
Petri nets are bounded). The k-boundedness problem is PSPACE-complete
[44].
A net N is structurally bounded if (N,M) is bounded for all possible
markings M of N . It can be shown that a net N is structurally bounded
if and only if the system of linear inequations Y ·C ≤ 0, where C is the so
called incidence matrix of N , has a solution [57]. This result implies that
the structural boundedness problem can be solved in polynomial time
using Linear Programming.

Reachability The reachability problem for Petri nets consists of de-
ciding, given a Petri net (N,M0) and a marking M of N , if M can be
reached from M0. It was soon observed by Hack [26] and Keller [46] that
many other problems were recursively equivalent to the reachability prob-
lem, and so it became a central issue of net theory. In spite of important
efforts, the problem remained elusive. Sacerdote and Tenney claimed in
[65] that reachability was decidable, but did not give a complete proof.
This was not done until 1981 by Mayr [53]; later on, Kosaraju simplified
the proof [47], basing on the ideas of both [65] and [53]. The proof is very
complicated. A detailed and self-contained description can be found in
[63], which is a book devoted to it, whereas [48] is a recent reference on
further simplifications.
Hack shows in [26] that several variations and subproblems of the reach-
ability problem are in fact recursively equivalent to it.

• The submarking reachability problem. A submarking is a partially
specified markings (only the number of tokens that some of the
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places have to contain is given). It can also be seen as the set of
markings that coincide on a certain subset of places. The problem
consists of deciding if some marking of this set is reachable.

• The zero reachability problem. To decide if the zero marking – the
one that puts no tokens in any place – is reachable.

• The single-place zero reachability problem. To decide, given a place
s, if for some reachable marking M(s) = 0.

The complexity of the reachability problem has been open for many years.
Lipton proved an exponential space lower bound [52], while the known
algorithms require non-primitive recursive space. The situation is there-
fore similar to that of the boundedness problem before Rackoff’s result.
However, tight complexity bounds of the reachability problem are known
for many net classes. Reachability is

• EXPSPACE-complete for symmetric Petri nets [7]; loosely speak-
ing, a Petri net is symmetric if for every transition t there is a reverse
transition t′ whose occurrence ‘undoes’ the effect of the occurrence
of t1;

• solvable in double exponential time for Petri nets with at most five
places [33];

• PSPACE-complete for nets in which every transition has the same
number of input and output places [44];

• PSPACE-complete for 1-safe Petri nets [9];

• PSPACE-complete for single-path Petri nets [30];

• NP-complete for Petri nets without cycles [68];

• NP-complete for sinkless and normal Petri nets [36];

• NP-complete for conflict-free Petri nets [31];

• NP-complete for BPP-nets [38, 19];

• polynomial for bounded conflict-free Petri nets [31];
1In [7] these nets are called reversible.
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• polynomial for marked graphs [13, 15]; a Petri net is a marked
graph if every place has exactly one input transition and one output
transition (notice that marked graphs are conflict-free);

• polynomial for live, bounded and cyclic free-choice nets [14] (live-
ness is defined in the next paragraph).

Liveness Hack showed in [26] that the liveness problem is recursively
equivalent to the reachability problem (see also [1]), and thus decidable.
Loosely speaking, a Petri net is live if every transition can always oc-
cur again; more precisely, if for every reachable marking M and every
transition t, there exists an occurrence sequence M σ−→ M ′ such that
M ′ enables t. The computational complexity of the liveness problem is
open, but there exist partial solutions for different classes. The liveness
problem is

• PSPACE-complete for 1-safe Petri nets [9];

• co-NP-complete for free-choice nets [44];

• polynomial for bounded free-choice nets [21];

• polynomial for conflict-free Petri nets [32].

Deadlock-freedom A Petri net is deadlock-free if every reachable mark-
ing enables some transition. Deadlock-freedom can be easily reduced in
polynomial time to the reachability problem [9]. The deadlock-freedom
problem is:

• PSPACE-complete for 1-safe Petri nets, even if they are single-path
[9];

• NP-complete for 1-safe free-choice Petri nets [9];

• polynomial for conflict-free Petri nets [34].

Home states and home spaces A marking of a Petri net is a home
state if it is reachable from every reachable state. The home state problem
consists in deciding, given a Petri net (N,M0) and a reachable marking
M , if M is a home state. It was shown to be decidable by Frutos [22].
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The subproblem of deciding if the initial marking of a Petri net is a
home state, which is the problem of deciding if a Petri net is cyclic, was
solved much before by Araki and Kasami [2]. The home state problem is
polynomial for live and bounded free-choice Petri nets [4, 14].
The home state problem is a special case of the home space problem. A
set of markings M of a Petri net is a home space if for every reachable
marking M , some marking of M is reachable from M . The home space
problem for linear sets is decidable [23] (for the definition of linear set,
see the semilinearity problem).

Promptness and strong promptness In a Petri net model of a sys-
tem, the transitions represent the atomic actions that the system can
execute. Some of these actions may be silent, i.e., not observable. A
Petri net whose transitions are partitioned into silent and observable is
prompt if every infinite occurrence sequence contains infinitely many ob-
servable transitions. It is strongly prompt if there exists a number k such
that no occurrence sequence contains more than k consecutive silent tran-
sitions. Promptness is thus strongly related to the notion of divergence
in process algebras. The promptness and strong promptness problems
were shown to be decidable by Valk and Jantzen [74]. It follows easily
from a result of [71] that the promptness problem is polynomial for live
and bounded free-choice Petri nets.

Persistence The persistence problem (to decide if a given Petri net is
persistent) was shown to be decidable by Grabowsky [24], Mayr [53] and
Müller [60]. It is not known if the problem is primitive recursive. It is
PSPACE-complete for 1-safe nets [9].

Regularity and context-freeness The regularity and context-freeness
problems are in fact a collection of problems of the form:

to decide if the X of a Y-Petri net is Z

where X can be ‘trace set’ or ‘language’, Y can be ‘labelled’ or ‘unla-
belled’, and Z can be ‘regular’ or ‘context-free’. Ginzburg and Yoeli [25]
and Valk and Vidal-Naquet [75] proved independently that the regular-
ity problem for trace sets of unlabelled Petri nets is decidable (see also
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[66]). Other results of [75] are that this problem is not primitive recur-
sive, and that the regularity problem for languages of labelled Petri nets
is undecidable (see also [41]).
The decidability of the context-freeness problem for trace sets of unla-
belled Petri nets has been proved by Schwer [67].

Semilinearity Markings can be seen, once an arbitrary ordering of the
set of places is taken, as vectors over INn, where n is the number of places
of the net. A subset of INn is linear if it is of the form

{u+
p∑
i=1
nivi | ni ∈ IN}

where u, v1, . . . , vp belong to INn. A subset of INn is semilinear if it is a
finite union of linear sets. Some interesting problems are decidable for
Petri nets whose set of reachable markings is semilinear, as we shall see
in section 4.
The semilinearity problem is the problem of deciding if the set of reach-
able markings of a given Petri net is semilinear. Its decidability was
proved independently by Hauschildt [27] and Lambert [49].

Non-termination Much effort has been devoted to the decidability of
termination in Petri nets under fairness conditions. This study was ini-
tiated by Carstensen [8], where he proved that the fair non-termination
problem is undecidable. An infinite occurrence sequence is fair if a transi-
tion which is enabled at infinitely many markings of the sequence appears
infinitely often in it. The fair non-termination problem consists in decid-
ing if a given Petri net has an infinite fair occurrence sequence. If such a
sequence exists, then even under the fairness condition the execution of
the net is not always guaranteed to terminate (in a deadlocked marking).
In [35], Howell, Rosier and Yen conducted an exhaustive study of the
decidability and complexity of non-termination problems for 24 different
fairness notions. In particular, they studied the three notions of impar-
tiality, justice and fairness introduced in [51]. An infinite occurrence
sequence is impartial if every transition of the net occurs infinitely of-
ten in it; it is just if every transition that is enabled almost everywhere
along the sequence occurs infinitely often in it; fair infinite occurrence
sequences were defined above. The just non-termination problem was
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left open in [35], and was later solved by Jančar [39]. The final picture is
the following:

• The fair non-termination problem is complete for the first level of
the analytical hierarchy. The restriction of this problem to bounded
Petri nets is decidable, but non-primitive recursive.

• The impartial non-termination problem can be reduced in polyno-
mial time to the boundedness problem, and can therefore be solved
in exponential space.

• The just non-termination problem is decidable, and at least as hard
as the reachability problem.

Another two interesting results of [35] concern the notions of i-fairness
and ∞-fairness introduced by Best [3]. A transition t is i-enabled at a
marking if there is an occurrence sequence no longer than i transitions
which enables t. A transition is ∞-enabled at a marking if there is an
occurrence sequence, no matter how long, which enables t. An infinite
occurrence sequence is i-fair (∞-fair) if every transition which is infinitely
often i-enabled (∞-enabled) along the sequence occurs infinitely often in
it.
Observe that 0-fairness coincides with fairness in the sense of [8] and [35].
Therefore, the 0-fair non-termination problem is undecidable. The i-fair
non-termination problem turns out to be undecidable as well for every i.
However, the ∞-fair non-termination problem is reducible in polynomial
time to the reachability problem, and thus decidable.

4 Equivalences

As opposed to the results from the previous section, the main message
from the study of decidability of behavioural equivalences of Petri nets
is that almost all results are negative. However, many interesting and
nontrivial subclasses of nets have been identified for which equivalences
become decidable, thus shedding some light on the sources of the com-
plexity of net behaviours.
The first undecidability result for equivalences of Petri nets dates back
to the early seventies.
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Marking equivalence Two Petri nets having the same set of places
are said to be marking equivalent iff they have the same set of reachable
markings.
Marking equivalence is undecidable for Petri nets. This result was proved
by Hack [26], using a former result by Rabin (who never published it),
proving that the marking inclusion problem is undecidable. The idea re-
lies on a rather subtle way of computing functions by nets in a weak
sense. It is then proved that diophantine polynomials may be com-
puted, and then Hilbert’s tenth problem is reduced to the marking inclu-
sion/equivalence problem.
The more straightforward approach to prove undecidability, by attempt-
ing to simulate some universal computing device like Counter Machines
by nets (representing counters and their values by places and their num-
ber of tokens) fails because of nets inability to “test for zero”. But there is
an obvious and simple way of semi-simulating Counter Machines by nets,
simulating the counter-manipulations step by step, but allowing some
computational branches conditioned on a counter having the value zero
to be followed in the simulation, even though the corresponding place is
nonempty.
Recently, Jančar [40] came up with a set of ingenious, simple and elegant
proofs of undecidability of equivalence problems following the pattern:

to prove undecidability of X-equivalence, construct two mod-
ifications of the simple nets semi-simulating a given Counter
Machine, CM, satisfying that CM halts iff the two constructed
nets are not X-equivalent.

(actually, the first proof of this kind can be found, to our knowledge, in
[1], but Jančar has generalized the principle to other equivalences). In
[40] you may find a simple and elegant proof of undecidability of marking
equivalence (among others) for nets following exactly this pattern. It
shows that the problem is undecidable even for nets with five unbounded
places (i.e., places s such that for every number k there exists a reachable
marking M such that M(s) > k).
For certain restricted classes of nets the marking equivalence problem
has been shown to be decidable. For instance, it was noticed very early
that for nets with semilinear reachable markings the problem is decid-
able. This is due to a connection between semilinear sets and Pressburger

12



arithmetic, a decidable first order theory. And many nontrivial restricted
classes of Petri nets have been shown to have effectively computable semi-
linear reachable markings. A few examples:

• persistent [50] and weakly persistent nets [77];

• nets with at most five places [29] (there exist nets with six places
having a non-semilinear reachability set);

• regular nets [25, 75]; a Petri net is regular if its trace set is regular;

• cyclic nets [1];

• BPP-nets [19];

For some classes, the complexity of the problem has been determined. It
is:

• solvable in double exponential time for nets with at most five places
[33];

• ΠP
2 -complete for conflict-free Petri nets, where ΠP

2 is the class of lan-
guages whose complements are in the second level of the polynomial-
time hierarchy [31];

• ΠP
2 -complete for sinkless and normal Petri nets [36];

• PSPACE-complete for single-path Petri nets [30].

Also, the marking equivalence problem is obviously decidable for bounded
nets, which only have finitely many reachable markings. It was shown
by Mayr and Meyer [55] that the problem is not primitive recursively
decidable. This result has since been strengthened by McAloon [56] and
Clote [12], who showed that it is complete for DTIME in the Ackerman-
function. McAloon also showed that the restriction of the problem to
Petri nets with at most a fixed number k of places is primitive recursive.
The restriction to 1-safe Petri nets is PSPACE-complete [9].
Most - if not all - of these results also hold for the inclusion problem.
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Trace and language equivalences Another bulk of results are con-
cerned with equivalences of nets in terms of occurrence sequences. Two
(labelled) Petri nets are said to be trace equivalent (language equivalent)
if they have the same trace set (language). Hack proved in [26] that the
problems of deciding if two labelled Petri nets are language equivalent
or trace equivalent are undecidable, by means of a reduction from the
marking equivalence problem. Araki and Kasami gave another proof [1]
by reduction from the halting problem for Counter Machines. Stronger
results are:

• trace equivalence is undecidable for labelled Petri nets with at most
two unbounded places [40];

• language equivalence is undecidable for labelled Petri nets, one of
them having one unbounded place and the other none [75];

• both trace and language equivalence are undecidable for BPP-nets
[28]. This is a remarkable result, since BPP-nets are a class with
rather limited expressive power.

The trace equivalence problem of Petri nets with exactly one unbounded
place is, to the best of our knowledge, open.
If we restrict ourselves to unlabelled nets, both problems become decid-
able. Hack [26] gave a reduction to the reachability problem, and hence
today we conclude decidability.
It is well-known that any trace set of a labelled net is also a language of
some labelled net, but not vice versa. This raises the interesting ques-
tion, whether there exists some class of nets which distinguishes the two
equivalence problems with respect to decidability.
A labelled net is said to be deterministic up to bisimilarity iff for all
reachable markings M , if two transitions t′ and t′′ carrying the same
label are enabled, M t′−→ M ′ and M t′′−→ M ′′, then M ′ and M ′′ are
strongly bisimilar (in the reachability graph of the labelled Petri net, and
bisimilar in the sense of Milner and Park [58]).
Clearly any unlabelled net is deterministic up to bisimilarity, but not
vice versa. Furthermore, it has been shown that the property of being
deterministic up to bisimilarity is decidable (reduced to the reachability
problem in [40]). Christensen has shown [10] that for nets which are
deterministic up to bisimilarity, trace equivalence is indeed decidable,
but language equivalence is not!
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Bisimulation equivalence This brings us to the question of bisimu-
lation equivalence for nets. Two labelled Petri nets are said to be bisim-
ulation equivalent iff their reachability graphs are (strongly) bisimilar in
the sense of Milner and Park [58]. Some results for this problem are:

• undecidable for labelled nets, even with only two unbounded places
[40], proof following the “Jančar-pattern” [40];

• decidable for labelled BPP-nets [11];

• decidable for labelled nets, if just one of them is deterministic up
to bisimulation [40];

• decidable for unlabelled nets (collapses to trace equivalence).

Other equivalences Hüttel has recently shown in [37] that all the
equivalences of the linear/branching time hierarchy [76] below bisimula-
tion equivalence are undecidable for Basic Parallel Processes. This result
implies that they are undecidable for labelled BPP-nets. Together with
the undecidability of bisimulation for labelled Petri nets, we then have
that all the interleaving equivalences described so far in the literature are
undecidable.
On the other hand, all problems from the linear/branching time hier-
archy become decidable if we restrict ourselves to bounded nets. The
complexity of these problems have been studied by several people, and
some of the clever algorithms invented are parts of various constructed
tools for reasoning about concurrent computations. Here we just mention
the following results from [43] for 1-safe nets:

• the language and trace equivalences are both complete for EX-
PSPACE; interestingly, the same complexity result holds for their
“true concurrency” counterparts in terms of (Pratt-)pomset equiv-
alences;

• the bisimulation equivalence is complete for DEXPTIME; interest-
ingly, the same complexity result holds for its “true concurrency”
counterparts, like history preserving bisimulation [61].
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5 Temporal Logics

The very positive balance of section 3 (in spite of the considerable ex-
pressive power of Petri nets, most properties are decidable), has encour-
aged researchers to study decidability issues for specification languages in
which a large set of properties can be expressed. Mostly, these languages
take the shape of a temporal logic. The problem of deciding, given a Petri
net and a formula of a temporal logic, if the net satisfies the formula, is
called the model checking problem.
Temporal logics can be classified into two groups: linear time and branch-
ing time logics. Linear time logics for Petri nets are usually interpreted
on the set of maximal occurrence sequences2. Branching time logics are
interpreted on the reachability graph. It is well known that some prop-
erties can be more naturally expressed in a linear time logic than in a
branching time one, and viceversa.
The results on branching time temporal logics are mostly negative. Es-
parza shows in [18] that the model checking problem for (a Petri net
version of) the logic UB− [16] is undecidable. This is one of the weakest
branching time logics described in the literature. It has basic predicates
of the form ge(s, c), where s is a place of the net and c is a nonnegative
constant. A predicate ge(s, c) is read ‘the number of tokens of s is greater
than or equal to c’; accordingly, it holds at a marking M if M(s) ≥ c. The
operators of the logic are the usual boolean connectives, EX (‘existen-
tial next’) and EF (‘possibly’). A reachable marking satisfies a property
EXφ if it enables some transition t and the marking reached by the oc-
currence of t satisfies φ; a marking satisfies EFφ if it enables an infinite
occurrence sequence σ, and some marking visited along the execution of
σ satisfies φ 3.
UB− is decidable for any net whose set of reachable markings is effectively
semilinear, because the model checking problem can be then reduced to
the satisfiability problem of the first order logic of the natural numbers
with addition, also known as Presburger Arithmetic. This includes, for
instance, BPP-nets or conflict-free nets. For 1-safe conflict-free nets it is
even decidable in polynomial time [17] (for the subclass of 1-safe marked
graphs the same result had been proven in [5]).

2Other equivalent interpretations are also used.
3The logic described in [18] is in fact slightly weaker than UB−. We have chosen it to better

compare results.
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The logic UB is obtained by adding the operator EG to UB−. A marking
satisfies a property EGφ if it enables some infinite occurrence sequence σ
and all the markings visited along the execution of σ satisfy φ. Esparza
has recently showed that UB is undecidable for BPP-nets [20]. The result
can be trasferred to Basic Parallel Processes.
Other branching temporal logics, such as CTL and CTL? [16], or the
mu-calculus [69], are more expressive than UB, and therefore the unde-
cidability results carry over (see also [6]).
The conclusion that can be derived is that no natural branching time
temporal logic for Petri nets seems to be decidable.
There has been more research on linear time temporal logics for Petri
nets. To provide an unifying framework in which to overview the re-
sults we add two more basic predicates to the predicates ge(s, c), and
then build different temporal logics on top of them. The predicates are
now interpreted on the markings of a maximal occurrence sequence. We
say that an occurrence sequence satisfies a formula of a logic if its ini-
tial marking satisfies it. Finally, a Petri net satisfies a formula if all its
maximal occurrence sequences satisfy it. The new predicates are:

• first(t), where t is a transition of the net. It holds at a marking M
if the transition that succeeds M in the occurrence sequence is t.

• en(t), where t is a transition of the net. It holds at a marking M if
M enables t4.

Esparza shows in [18] that the linear time µ-calculus [70] with first(t) as
only basic predicates is decidable. If the predicates ge(s, c) are added,
then the logic becomes undecidable, even for BPP-nets.
Howell and Rosier studied in [32] the logic with all three basic predi-
cates and an eventuality operator F, where a marking of an occurrence
sequence satisfies Fφ if some later marking satisfies φ. They showed that
the model checking problem is undecidable, even for conflict-free Petri
nets (notice that the fair non-termination problem can be reduced to the
model checking problem for this logic: a Petri net satisfies the formula
GFen(t) ⇒ GFfirst(t), where G = ¬F¬, if every occurrence sequence
that enables t infinitely often contains t infinitely often). It follows from
results of [20] that it is also undecidable for BPP-nets.

4The predicate en(t) can be derived as the conjunction of ge(s, 1) for every input place s of
t. We include it as basic predicate for convenience.
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The model checking problem is, however, decidable for two fragments:

• The fragment in which negations are only applied to predicates [35].

This fragment contains the formula Ffirst(t), which expresses that
t eventually occurs, but not GFfirst(t), which expresses that t is
bound to occur infinitely often. The model checking problem for
this fragment can be reduced in polynomial time to the reachability
problem. For the class of conflict-free nets, the model checking
problem is NP-complete.

• The fragment in which the composed operator GF is the only one
allowed, and negations are only applied to predicates [39].

This fragment contains the formula GFfirst(t), but not, for in-
stance, the formula GFfirst(t) ⇒ GFfirst(t′) (after replacing the
implication by its definition, a negation appears in front of an op-
erator). Jančar [39] reduces the model checking problem for this
fragment to an exponential number of instances of the reachability
problem. If the formula is of the form GFφ, where φ is a boolean
combination of basic predicates, then a better result exists: the
model checking problem can be reduced in polynomial time to the
reachability problem [35].

These results show that the presence or absence of place predicates is
decisive for the decidability of a linear time logic. When they are absent,
even rather powerful logics as the linear time µ-calculus are decidable.
When they are present, no natural logic is decidable, only fragments in
which some restrictions are applied to the use of boolean connectives.
All the decidable fragments of these logics are at least as hard as the
reachability problem, which, as mentioned in the first section, is EXP-
SPACE-hard, and could well be non-primitive recursive. Yen has defined
in [78] a class of path formulas which can be decided in exponential space.
The class is of the form

∃M1,M2, . . . ,Mk ∃σ1, σ2, . . . , σk (M0
σ1−→M1

σ2−→M2 . . .
σk−→Mk)

∧ F (M1, . . . ,Mk, σ1, . . . , σk)

where F belongs to a certain set of predicates. This set includes arbitrary
conjunctions and disjunctions of both place predicates, such as

• M(s) ≥ c for a marking M , place s and constant c,
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• M(s) ≥M ′(s) + c, for markings M and M ′, place s and constant c,

and transition predicates, such as

• #σ(t) ≥ c for a transition sequence σ, transition t and constant c,
which is true if the sequence σ contains t at least c times.

Recently, Yen, Wang and Yang have shown that deciding this class of
formulas is NP-complete for sinkless nets and polynomial for conflict-free
nets [79].
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