
B
R

IC
S

R
S

-94-6
N

ielsen
&

C
lausen:

B
isim

ulations,G
am

es
and

Logic

BRICS
Basic Research in Computer Science

Bisimulations, Games and Logic

Mogens Nielsen
Christian Clausen

BRICS Report Series RS-94-6

ISSN 0909-0878 April 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Bisimulations, Games and Logic

Mogens Nielsen Christian Clausen

BRICS∗

Department of Computer Science
University of Aarhus

DK-8000 Aarhus C, Denmark

Abstract

In a recent paper by Joyal, Nielsen, and Winskel, bisimulation is defined
in an abstract and uniform way across a wide range of different models for
concurrency. In this paper, following a recent trend in theoretical com-
puter science, we characterize their abstract definition game-theoretically
and logically in a non-interleaving model. Our characterizations appear as
surprisingly simple extensions of corresponding characterizations of inter-
leaving bisimulation.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

i

Contents

1 Introduction 1

2 An Abstract Equivalence 4

3 Game Characterizations 8
3.1 Basic Definitions . 8
3.2 A Characteristic Game for Interleaving Bisimulation . . . 10
3.3 Allowing Opponent to Backtrack 12

4 A Path Logic 16

5 Conclusion 18

A Every Game Has a Winner 21

B Proofs From Section 3 22
B.1 From δ-bisimilarity to Γ-equivalence 22
B.2 Permutations as Pomsets 23
B.3 From PomL-bisimilarity to δ-bisimilarity 25
B.4 From iso-δ-bisimilarity to PomL-bisimilarity 26
B.5 From Γ-equivalence to iso-δ-bisimilarity 30

C Proofs From Section 4 33

ii

1 INTRODUCTION 1

1 Introduction

An important ingredient of the theory of concurrency is the notion of
behavioral equivalence between processes; what does it mean for two sys-
tems to be equal with respect to their communication structures? There
is no unique answer to this question, but, undoubtedly, one of the most
popular and successful answers was given by Park [Par81]: Two processes
(or states s and s′ of two transition systems) are equivalent, or bisimilar ,
if for all actions a, every a-derivative of s is bisimilar to some a-derivative
of s′, and vice versa.

One of the measures of success for a behaviour equivalence is its ac-
companying theory . And here bisimulation is particularly rich in results.
Let us mention just three examples of elegant and powerful characteriza-
tions.

The first classical characterization is in terms of the existence of a
bisimulation relation over states of the associated transition systems: Two
transition systems are bisimilar iff there is a relation S over states such
that the initial states are related, and

• whenever s S s′ and s a−→s1, there is a transition s′ a−→s′
1 such that

s1 S s′
1, and

• whenever s S s′ and s′ a−→s′
1, there is a transition s a−→s1 such that

s1 S s′
1.

The process of exploring whether two transition systems are bisimilar
or not can be viewed as a game between two persons, Player and Oppo-
nent, taking turns [Sti93]. This provides an operational setting in which
bisimulation may be understood experimentally. Player tries to prove
the systems bisimilar, whereas Opponent intends otherwise. The game
is opened by Opponent who chooses a transition from the initial state
of one of the systems. This transition must be matched by Player with
an equally labelled transition from the initial state of the other system.
The new states form the starting point for the next pair of moves, and
so forth. The play continues like this forever , in which case Player wins,
or until either Player or Opponent is unable to move, in which case the
opposition wins. This game is characteristic for bisimulation in the sense
that two transition systems are bisimilar iff Player has a winning strategy,
i.e. iff Player is able to win every game starting from the initial states.

2

◦

• •

•

a
��~~
~~ b

@@@@��

b

@@@@�� a��~~
~~

Figure 1: A transition system representing both a ‖ b and a.b + b.a.

Another important ingredient of the theory is the associated language
of logical assertions. The logic, known as Hennessy-Milner logic [HM85],
is a modal logic in which the modalities are indexed by actions. As such, it
captures precisely the discrimination power of bisimulation: Two systems
are bisimilar iff they satisfy the same logical assertions. For verification
and analysis, the Hennessy-Milner logic is most interesting in conjunc-
tion with recursion . In such logic, it is possible to express properties like
deadlocks, invariants, inevitability, etc. [Sti93]. Also this very expressive
logic is characteristic for bisimulation.

In the transition system model of CCS and CSP, parallelism is treated
as non-deterministic interleaving of atomic actions. As a result, the CCS-
processes a ‖ b, which can do the atomic actions a and b in parallel, is
bisimilar to the process a.b + b.a, which non-deterministically chooses to
do either “a followed by b” or “b followed by a”. In fact, the associated
transition systems are isomorphic. Abstracting away from the names of
the states, both transition systems are represented by the system of Fig. 1.
Due to this identification, the transition system model is usually called
an interleaving model , and bisimulation is traditionally called interleaving
bisimulation when confusion is possible.

Interpreted at the machine level, non-deterministic interleaving cor-
responds to parallel processes sharing a single CPU. Opposed to this,
Petri nets [WN94] model the physical disjointness of parallel processes.
The processes a ‖ b and a.b + b.a are represented by the labelled nets of
Fig. 1 [Old91].
The leftmost net consists of two independent events labelled a and b,

whereas the rightmost net is a purely (nondeterministic) sequential net.
Many other closely related non-interleaving models have been sug-

gested, e.g. the asynchronous transition systems of [Bed88, Shi85] and
the transitions systems with independence of [WN94].

What is now the appropriate generalization of bisimulation to these

1 INTRODUCTION 3

Figure 2: Labelled Petri nets representing a ‖ b and a.b + b.a.

“independence models”? Many attempts have been made to answer this
question. Unfortunately, with almost just as many different answers.
Moreover, many of the proposed equivalences are incomparable. (See
[GG89] and [GKP92] for definitions and comparisons of some of them.)

Apparently, the problem is that the step from interleaving models
to independence models opens up for variations when trying to define
an equivalence at the concrete level. [JNW93] reports on a promising
attempt to define bisimulation in a uniform way across a wide range of
different models for concurrent computation, including those described
previously. However, the abstract definition is intangible. In order to
obtain a better understanding of the equivalence, it is necessary to find
concrete characterizations, which are indispensable for practical purposes.
As a first measure of success, it is observed in [JNW93] that the abstract
definition specializes to interleaving bisimulation in the case of ordinary
transition systems.

In the context of an independence model, we shall denote the abstract
equivalence by PomL-bisimilarity. The thoughts behind this choice of
name will become clear later. In [JNW93], a concrete characterization of
PomL-bisimilarity is given in the model of event structures, which may be
thought of as unfoldings of nets or transition systems with independence.
Interestingly, their characterization is not equal to any previously pub-
lished equivalence; in fact, it is a strengthening of the history-preserving
bisimulation [GG89, RT88].

In this paper, we give concrete characterizations of PomL-bisimilarity
in the model of transition systems with independence. As a matter of
fact, our choice of model is not essential, in the sense that our results
could equally have been formulated and proved for nets or asynchronous

4

transition systems.
It turns out that surprisingly small twists of the game [Sti93] and re-

lation [Mil89] characterizations of interleaving bisimulation lead to char-
acterizations of PomL-bisimilarity. On the logical side, the Hennessy-
Milner logic is extended with a backwards modality. The logic is charac-
teristic for PomL-bisimilarity, when restricted to systems without auto-
concurrency, i.e. to systems where no two consecutive and independent
transitions are equally labelled. This restriction is necessary and has to
do with the fact that our logic is based on labels. By strengthening the
language of logical assertions, we can eliminate this restriction.

2 An Abstract Equivalence

In [JNW93], a uniform definition of bisimulation across a range of differ-
ent models for parallel computation is presented. The aim of this section
is to rephrase briefly parts of this work.

A model of computation is represented as a category. For a specific
model, M, a choice of observation is any subcategory P of M. Typically,
a choice of observation is a selection of “observation objects” of M, and
P is then the corresponding full subcategory.

Given a model M and a choice of observation P, where P is a sub-
category of M, a morphism f : X → Y is said to be P-open in M iff
whenever a square

P X

Q Y

p //

m
��

f
��

q
//

commutes, i.e. f ◦ p = q ◦ m, there is a morphism p′ : Q → X such that
the “triangles” in

P X

Q Y

p //

m
��

f
��

q
//

p′

~~
~~
~~
??

commute, i.e. p′ ◦ m = p and f ◦ p′ = q.
In the familiar example of M being a category of transition systems

and P being sequences of labels (see [JNW93] for details), it turns out that
open maps correspond to the well-known zig-zag morphisms of [Ben84].

2 AN ABSTRACT EQUIVALENCE 5

Definition 2.1 Assume P is a subcategory of M and define two objects
X and X ′ of M to be P-bisimilar , written X ∼P X ′, iff there is a span
of P-open morphisms f and f ′ with common domain Y :

Y

X X ′

f

~~}}
}}
}} f ′

BBBBBB

2

Using that pullbacks of P-open maps are themselves P-open, it can be
shown that P-bisimilarity is an equivalence relation provided that M has
pullbacks.

The category of transition systems turns out to have pullbacks, and
the notion of P-bisimilarity (P again being sequences of labels) turns out
to coincide precisely with (strong) bisimilarity in the sense of [Mil89].

The interesting question is what you get when you lift this abstract
characterization to non-interleaving models. One choice of model made
in [JNW93] is transition systems with independence. Transition systems
with independence are precisely what their name suggests, namely ordi-
nary transition systems with an additional relation expressing when one
transition is independent of another. The independence relation expresses
which actions can happen in parallel.

Definition 2.2 A transition system with independence is a structure

X = (S, i, L, Tran, I)

where

• S is a set of states with a distinguished initial state i,

• L is a set of labels,

• Tran ⊆ S × L × S is a set of transitions1, and

• I ⊆ Tran2 is an independence relation which is irreflexive and sym-
metric.

Moreover, we require the following axioms to hold:
1As usual, a transition (s, a, s1) ∈ Tran is written as s a−→s1.

6

1. s a−→s1 ∼ s a−→s2 ⇒ s1 = s2

2. s a−→s1 I s1
b−→u ⇒ ∃s2. s

a−→s1 I s b−→s2 I s2
a−→u

3. (a) s a−→s1 ≺ s2
a−→u I w b−→w′ ⇒ s a−→s1 I w b−→w′

(b) w b−→w′ I s a−→s1 ≺ s2
a−→u ⇒ w b−→w′ I s2

a−→u

where the relation ≺ between transitions is defined by

s a−→s1 ≺ s2
a−→u ⇔ ∃b. s1

b−→u I s a−→s1 I s b−→s2 I s2
a−→u,

and ∼ is the least equivalence relation including ≺. 2

The ∼-equivalence classes should be thought of as events. Thus, Ax-
iom 1 asserts that the occurrence of an event at a state yields a unique
state. Similarly, Axiom 3 asserts that independence respects events. Ax-
iom 2 describes the intuitive property of independence that whenever two
independent transitions occur consecutively, they can also occur in the
opposite order. Hence, if s a−→s1

b−→u are independent transitions there is
an “independence square”

s

s1 I s2

u

a
~~}}
}} b

AAAA

b

AAAA a~~}}
}}

Moreover, Axiom 1 implies the uniqueness of s2. So we are justified in
saying that s2 (or s b−→s2

a−→u) is the completion of s a−→s1
b−→u.

Notice that an ordinary labelled transition system can be viewed as
a transition system with independence having empty independence rela-
tion. Furthermore, the standard labelled case graph of a labelled (safe)
net, with two transitions being independent iff they represent firings of
independent (in net terminology) events, is a transition system with in-
dependence [WN94]. As an example the transition system with inde-
pendence above is the representation of the CCS-expression a ‖ b or its
corresponding net from 1 (following [WN94]).

For later use, we introduce some terminology. For a transition t =
(s a−→s1) we shall write src(t), tgt(t), and `(t) for s, s1, and a, respectively.
The set Seqs(X) consists of those transition sequences t̄ = t0t1 · · · tn−1

in X beginning at the initial state (src(t0) = i) which are consecutive

2 AN ABSTRACT EQUIVALENCE 7

(src(ti+1) = tgt(ti)). Transition sequences are always indexed from zero.
We write (t̄)i or simply ti for the i’th transition in t̄. The length of t̄ is
referred to as |t̄|. When nothing else is stated, a transition system with
independence X is assumed to have components S, i, L, Tran, and I.

The category TI has transition systems with independence as objects.
For the remaining part of this paper we fix a set L and restrict ourselves
to those transition systems with independence that have labelling set
L. As morphisms in the category TIL we choose the fiber-morphisms of
[WN94]:

Definition 2.3 Let X = (S, i, L, Tran, I) and X ′ = (S′, i′, L′, Tran′, I ′)
be transition systems with independence. A morphism f from X to X ′

is a function f : S → S′ such that

• f(i) = i′

• for all transitions s a−→s1 in X , f(s) a−→f(s′) in X ′

• s a−→s1 I u b−→u1 in X implies f(s) a−→f(s1) I ′ f(u) b−→f(u1) in X ′ 2

As observations it is naturally to take Pratt’s pomsets [Pra86]. We
identify the category PomL of pomsets with its full and faithful embed-
ding in TIL (for details see [JNW93]). The category TIL has pullbacks,
so PomL-bisimilarity is an equivalence relation in TIL. The following
proposition characterizes PomL-open morphisms in TIL [JNW93].

Proposition 2.4 A morphism f : Y → X in TIL is PomL-open iff it is
zig-zag and reflects consecutive independence, i.e. iff it has the following
properties:

• whenever r is reachable and f(r) a−→s1 there is a state r1 in Y such
that r a−→r1 & f(r1) = s1, and

• whenever r is reachable, r a−→r1 and r1
b−→r2 are transitions in Y , and

f(r) a−→f(r1) I f(r1) b−→f(r2),

we also have r a−→r1 I r1
b−→r2.

On event structures [JNW93] PomL-bisimilarity turns out to be a slight
strengthening of the history-preserving bisimilarity originally defined in
[GG89, RT88]. In fact, the same strengthening has been studied in

8

[Bed91] in which the equivalence is denoted hereditary history-preserving
bisimilarity. The strengthening is illustrated by the following event struc-
tures, here identified with their embeddings in TIL.

Example 2.5 Consider the following “event structures”:

•

• •

• I ◦ I •

• •

•

b ������

c
~~
~~
>>

b
>>>> ��

a
__>>>>

a
??����

b

������ b

>>>>��a

__>>>>

d~~~~
~~

a

??����

•

• •

• I ◦ I •

• •

•

b ������

c
~~
~~
>>

b
>>>>��

a
__>>>>

a
??����

b

������ b

>>>> ��a

__>>>> a

??����

d

@@@@

The circles indicate the initial states. These “event structures” are history-
preserving bisimilar but not hereditary history-preserving bisimilar. 2

One result on PomL-bisimilarity for TIL mentioned in [JNW93] is
the fact that two TIL-objects are PomL-bisimilar iff their unfolded event
structures are PomL-bisimilar. The natural question is now: Does PomL-
bisimilarity for TIL have characterizations in the spirit of e.g. the rela-
tional, game-theoretical, and logical characterizations of bisimulation for
standard transition systems? This question is answered positively in the
next sections.

3 Game Characterizations

Following a new trend in the area of program semantics, we first present
a game-theoretical characterization of PomL-bisimilarity. The game de-
fined can be viewed as a “backtracking” extension of Stirling’s game
[Sti93]. We then show that the equivalence induced by the backtrack-
ing game can be characterized by the existence of a bisimulation relation
over paths, satisfying a certain “backtracking property”.

3.1 Basic Definitions

The following definitions are inspired by [AJ92].
A game is a structure Γ = (C, c0, >, λ, W) where

3 GAME CHARACTERIZATIONS 9

• C is a set of configurations with a distinguished initial configuration
c0,

• > ⊆ C2 is a set of moves. Formally, a play of Γ is a (possibly
infinite) sequence of moves

c0 · c1 · c2 · . . . ,

such that c0 > c1 > c2 > · · ·. The set Pos(Γ) of positions consists
of all finite plays. The meta-variable p ranges over positions.

• λ : Pos(Γ) → {O, P} is a function indicating whose turn it is to
move in a given position (an element of Pos(Γ), defined below) of
a play, and

• W ⊆ Pos(Γ) is a set of winning positions.

We require all plays to be alternating, i.e. we require > and λ together
to satisfy that if λ(p ·c) = Q and c >c′ then λ(p ·c ·c′) = Q, where P = O
and O = P . Furthermore, Opponent should start every play. This is
expressed by demanding λ(c0) = O.

In defining when a game is won we take Player’s point of view: A play
p is won (by P) if one of the following conditions hold:

• p is infinite,

• p is finite and λ(p) = O, or

• p ∈ W .

If p is not won, it is lost .
A strategy is a partial function σ : Pos(Γ) ⇀ C such that

σ(p · c) = c′ implies c > c′.

We reserve the words strategy for Player and counter-strategy for Op-
ponent and use σ and τ to range over strategies and counter-strategies,
respectively. Player is said to follow her strategy σ in a play c0 · c1 · . . . ·
cn · cn+1 · . . . iff λ(c0 · c1 · . . . · cn) = P implies cn+1 = σ(c0 · c1 · . . . · cn).
Similarly, we can define when Opponent follows his strategy.

The intuition behind W is the following. As soon as Player can force
Opponent to a position p ∈ W , she has won p and all extensions of p. We
reflect this intuition by demanding that W is closed under >, i.e. that

10 3.2 A Characteristic Game for Interleaving Bisimulation

p · c ∈ W whenever p ∈ W . To avoid a play p ∈ W to continue forever,
we require all strategies to be undefined on winning positions, i.e. σ(p) is
undefined whenever p ∈ W .

The set Plays(σ, τ) of plays in which both Player and Opponent fol-
low their strategies is easily seen to be prefix-closed. This leads to the
following definition of the play of a strategy σ against a counter-strategy
τ :

〈σ|τ〉 =
⊔

{p | p ∈ Plays(σ, τ)},

where the least upper bound refers to the prefix-ordering. Finally, σ is
said to be a winning strategy iff 〈σ|τ〉 is won for any counter-strategy τ .
Similarly, we define τ to be a winning counter-strategy iff 〈σ|τ〉 is lost for
any σ.

Any game of the above kind possesses the nice property that there
can be no ties, and hence there is either a winning strategy or a winning
counter-strategy.

Proposition 3.1 For any game, there is a winning strategy iff there is
no winning counter-strategy.

Proof See Appendix A. 2

3.2 A Characteristic Game for Interleaving Bisimu-
lation

The first game considered is a “sequence variant” of the game defined by
Stirling [Sti93]. Given two ordinary transition systems X and X ′ we take
as configurations (ordered) pairs of transition sequences with the pair
consisting of empty sequences as initial configuration. Informally, a play
progresses as follows. Opponent starts out by first choosing either X or
X ′ and then a transition from the initial state of the system chosen. If
Player can’t match the move with an equally labelled transition from the
initial state of the other system, she loses. Otherwise, she chooses such a
matching transition, and it’s again Opponent’s turn to move. He chooses
a system, not necessarily the same as before, and a transition of that
system leading out of the state arrived at in the previous pairs of moves.
Again, Player is required to match with an equally labelled transition
in the other system. The play continues like this forever , in which case

3 GAME CHARACTERIZATIONS 11

Player wins, or until either Player or Opponent is stuck (unable to move),
in which case the other participant wins.

The above description is now formalized to fit the basic definitions of
games. We define the interleaving game between transition systems X
and X ′ to be Γ(X, X ′) = (C, c0, >, λ, W) where

• C = Seqs(X) × Seqs(X ′). As a convention, writing configurations
(t̄, t̄′), (t̄t, t̄′), and (t̄, t̄′t′) implicitly means that |t̄| = |t̄′|.

• c0 = (ε, ε).

• λ : Pos(Γ(X, X ′)) → {O, P} is defined by taking

λ(t̄, t̄′) = O and λ(t̄t, t̄′) = λ(t̄, t̄′t′) = P.

• W = ∅.

• > ⊆ C2 is defined by the rules

(t̄, t̄′) > (t̄t, t̄′) if t̄t ∈ Seqs(X)
(t̄, t̄′) > (t̄, t̄′t′) if t̄′t′ ∈ Seqs(X ′)

(t̄t, t̄′) > (t̄t, t̄′t′) if t̄′t′ ∈ Seqs(X ′) & `(t′) = `(t)
(t̄, t̄′t′) > (t̄t, t̄′t′) if t̄t ∈ Seqs(X) & `(t) = `(t′)

Just like Stirling’s game, the game Γ(X, X ′) is characteristic for inter-
leaving bisimulation in the following sense.

Theorem 3.2 Two transition systems X and X ′ are bisimilar iff Player
has a winning strategy in Γ(X, X ′).

Proof Small modifications of the reasoning of Stirling [Sti93]. 2

The game presented above has the property that if X and X ′ exhibit
infinite behaviour, then there exist infinite plays, even if both systems
are finite state. For some purposes this property is undesirable, and can
indeed can be eliminated by choosing the set W of winning positions
appropriately. To be concrete, we might in Γ(X, X ′) have chosen W to
consist of those positions p which are duplicate-free in the sense that no
two configurations (t̄, t̄′), (r̄, r̄′) in p have tgt(t̄) = tgt(r̄) and tgt(t̄′) =
tgt(r̄′). By the pigeonhole principle this modification of Γ(X, X ′) would
bound the length of any play by 2 · |S| · |S′| +1 where |S| and |S′| are the
number of states in X and X ′, respectively. Furthermore, it is quite easy
to see that the characterization result also holds for the modified game.

12 3.3 Allowing Opponent to Backtrack

3.3 Allowing Opponent to Backtrack

Throughout this paper we shall take “backtrack” to mean trace backwards
within the present observation .

With this interpretation, backtracking in an ordinary transition sys-
tem means to trace backwards along the transition sequence observed.
In terms of games, we can express this by allowing Opponent to do back-
wards moves like

(t̄t, t̄′t′) > (B, t̄, t̄′t′),

where the B is a directive to Player to play backwards on the longer of
the sequences. Player must match with the move

(B, t̄, t̄′t′) > (t̄, t̄′).

It is easy to see that these additional rules do not give Opponent more
opportunities to beat Player, nor the other way around.

Proposition 3.3 Two transition systems are bisimilar iff Player has a
winning strategy in their associated game with backtracking.

Backtracking in an independence model is much more interesting.
Consider a simple transition system with independence X

i

s1 I s2

u

a
��~~
~~
~ b

@@@@@ ��

b

AAAA a~~}}
}}

consisting of a single independence square. Since i a−→s1 and s1
b−→u are

independent, the sequence t̄ = i a−→s1
b−→u in X represents the observation

“a and b in parallel”. Another representative of this observation is the
sequence i b−→s2

a−→u, so this gives us two ways to backtrack within t̄: Either
along s1

b−→u, leaving behind the sequence i a−→s1, or along s2
a−→u leaving

behind the sequence i b−→s2.
In terms of the net representation of a ‖ b from Section 1 this amounts

to the following: After firing the a-transition followed by the b-transition
you may naturally backtrack on the a-transition, since the firing of the
b-transition has in no way affected the post-conditions of the a-transition.

In the above example the event represented by i a−→s1 has an occurrence
– namely s2

a−→u – ending in u. We say that i a−→s1 is backwards enabled in

3 GAME CHARACTERIZATIONS 13

the sequence i a−→s1
b−→u. In general, a transition ti of a sequence t̄ is said

to be backwards enabled iff it by repeated use of Axiom 2 of Definition
2.2 can be “pushed to last position in t̄.” By Axiom 3, this is equivalent
to requiring ti to be independent of all transitions tj in t̄ with j > i. This
leads to the following formal definition.

Definition 3.4 For t̄ = t0 · · · tn−1, a sequence in a transition system with
independence X , and i ∈ {0, . . . , n − 1}, we define

ti ∈ BEn(t̄) iff ∀j ∈ {i + 1, . . . , n − 1}. tj I ti,

where I is the independence relation in X . If ti ∈ BEn(t̄) we define δ(i, t̄)
to be the result of deleting the event corresponding to ti, i.e.

δ(i, t̄) = t0 · · · ti−1si+1 · · · sn−1,

where si+1 ≺ ti+1, . . . , sn−1 ≺ tn−1 as in the following figure in which the
squares are the unique completions defined in Section 2.

◦ • • • • • •

• • • •

t0 // . . . ti−1 //

ti
��

si+1_ _ _//
�
�
���

. . . sn−1_ _ _ //
�
�
���

si

�
�
���

ti+1
// . . .

tn−1
//

2

The backtracking game on transition systems with independence is a
simple extension of the previously defined (forward) game. By introduc-
ing rules like

(t̄, t̄′) > (i, δ(i, t̄), t̄′) if ti ∈ BEn(t̄)

we allow Opponent to backtrack on transitions which are backwards en-
abled. The index i is a request to Player to play backwards on the i’th
transition of the longer of the sequences. So the only way Player can
respond to such moves is to use the rule

(i, δ(i, t̄), t̄′) > (δ(i, t̄), δ(i, t̄′)) if t′i ∈ BEn(t̄′),

provided, of course, that t′i is backwards enabled in t̄′. Formally, we define
the backtracking game Γ(X, X ′) on transition systems with independence
X and X ′ to be the structure (C, c0, >, λ, W):

14 3.3 Allowing Opponent to Backtrack

• C = ω×Seqs(X)×Seqs(X ′)∪Seqs(X)×Seqs(X ′). Conventionally,
writing configurations (i, δ(i, t̄), t̄′) and (i, t̄, δ(i, t̄′)) implicitly means
that |t̄| = |t̄′|.

• c0 = (ε, ε).

• λ : Pos(Γ(X, X ′)) → {O, P} is defined by taking λ(t̄, t̄′) = O and
λ(t̄t, t̄′) = λ(t̄, t̄′t′) = λ(i, δ(i, t̄), t̄′) = λ(i, t̄, δ(i, t̄′)) = P.

• W = ∅.

• > ⊆ C2 is defined by the following rules:

(t̄, t̄′) > (t̄t, t̄′) if t̄t ∈ Seqs(X)
(t̄, t̄′) > (t̄, t̄′t′) if t̄′t′ ∈ Seqs(X ′)

(t̄t, t̄′) > (t̄t, t̄′t′) if t̄′t′ ∈ Seqs(X ′) & `(t′) = `(t)
(t̄, t̄′t′) > (t̄t, t̄′t′) if t̄t ∈ Seqs(X) & `(t) = `(t′)

(t̄, t̄′) > (i, δ(i, t̄), t̄′) if ti ∈ BEn(t̄)
(t̄, t̄′) > (i, t̄, δ(i, t̄′)) if t′i ∈ BEn(t̄′)

(i, δ(i, t̄), t̄′) > (δ(i, t̄), δ(i, t̄′)) if t′i ∈ BEn(t̄′)
(i, t̄, δ(i, t̄′)) > (δ(i, t̄), δ(i, t̄′)) if ti ∈ BEn(t̄)

Definition 3.5 Two transition systems with independence X and X ′

are Γ-equivalent , written X ∼Γ X ′, iff Player has a winning strategy in
Γ(X, X ′). 2

With a simple example we will now illustrate how backtracking dis-
tinguishes parallelism from non-deterministic interleaving.

Example 3.6 Consider the transition systems with independence repre-
senting the CCS-processes a ‖ b and a.b + b.a:

i

s1 I s2

u

a
��~~
~~
~ b

@@@@@ ��

b

AAAA a~~}}
}}

i′

s′
1 s′

2

u′

a �����
b>>> ��

b

>>>�� a
�����

These systems are interleaving bisimilar but not Γ-equivalent, as we are
able to define a winning counter-strategy τ as follows (here, p ranges over

3 GAME CHARACTERIZATIONS 15

all appropriate positions):

τ(ε, ε) = (i a−→s1, ε)
τ(p · (i a−→s1, i

′ a−→s′
1)) = (i a−→s1

b−→u, i′ a−→s′
1)

τ(p · (i a−→s1
b−→u, i′ a−→s′

1
b−→u′)) = (0, i b−→s2, i

′ a−→s′
1

b−→u′)

The point is, of course, that Player is unable to backtrack on index 0 in
the sequence i′ a−→s′

1
b−→u′, as these transitions are dependent. 2

Distinguishing the transition systems with independence of Example 3.6
is, in fact, a minimum demand on any reasonable generalization of bisimu-
lation to independence models. And following the reasoning of Example
3.6, the reader should not be surprised that backtracking may be used by
Opponent to detect the partial order structures of configurations. How-
ever, it is more surprising that Γ-equivalence coincides exactly with the
abstractly derived PomL-bisimilarity of Section 2. As a more interesting
example, the reader may check that Opponent has a winning counter-
strategy in the game associated with the systems of Example 2.5.

Theorem 3.7 Γ-equivalence coincides with PomL-bisimilarity.

Proof See Appendix B. 2

We also have a relational characterization of PomL-bisimilarity.

Definition 3.8 A relation T ∈ Seqs(X) × Seqs(X ′) is a δ-bisimulation
between X and X ′ iff it satisfies the following axioms:

Ainit: ε T ε

Abisim:
1. t̄ T t̄′ & t̄t ∈ Seqs(X) ⇒ ∃t′. (`′(t′) = `(t) & t̄t T t̄′t′)

2. t̄ T t̄′ & t̄′t′ ∈ Seqs(X ′) ⇒ ∃t. (`(t) = `′(t′) & t̄t T t̄′t′)

Aδ: t̄ T t̄′ ⇒
 (ti ∈ BEn(t̄) ⇔ t′i ∈ BEn(t̄′)) &

(ti ∈ BEn(t̄) ⇒ δ(i, t̄) T δ(i, t̄′))

Two transition systems with independence X and X ′ are δ-bisimilar ,
written X ∼δ X ′, iff there exists a δ-bisimulation between them. 2

16

The axiom Abisim is the usual “bisimulation axiom”, here formulated
on sequences rather than states. So this formulation is also a simple
extension of a well-known concept.

Theorem 3.9 δ-equivalence coincides with PomL-bisimilarity.

Proof See Appendix B. 2

4 A Path Logic

Just as interleaving bisimulations can be characterized as a relation over
paths, we can interpret the Hennessy-Milner logic over paths rather than
states. Following [HS85], we may add a past tense modality ©a , where a
is a label, and obtain a logic which still characterizes bisimulation for or-
dinary transition systems. However, interpreted over transition systems
with independence, we obtain a logic which is easily shown to be sound
for PomL-bisimilarity. Furthermore, the logic is complete if we restrict
to systems which do not exhibit auto-concurrency, i.e. systems in which
no two consecutive and equally labelled transitions are independent.

Let Assn be the following language of assertions:

A ::= ¬A |
∧

j∈J

Aj | 〈a〉A | ©a A.

By convention, true is the conjunction over the empty set.

Definition 4.1 Let X be a transition system with independence and
suppose t̄, r̄ ∈ Seqs(X). Define

r̄ a−→t̄ iff r̄(s a−→s1) = t̄

r̄
a
; t̄ iff ∃i. (ti ∈ BEn(t̄) & `(ti) = a & r̄ = δ(i, t̄))

2

In ordinary transition systems, ©a A is interpreted as “it was the case at
the last moment – just before a – that A”. It seems natural for transition
systems with independence to interpret ©a A as “a could have been the
last action, and at the moment before a it was the case that A”.

4 A PATH LOGIC 17

Formally, let X be a transition system with independence and define
the satisfaction relation |=X⊆ Seqs(X) × Assn by structural induction
on assertions:

t̄ |=X ¬A iff t̄ 6|=X A
t̄ |=X

∧
j∈J Aj iff ∀j ∈ J. t̄ |=X Aj

t̄ |=X 〈a〉A iff ∃r̄. (t̄ a−→r̄ & r̄ |=X A)
t̄ |=X ©a A iff ∃r̄. (r̄ a

; t̄ & r̄ |=X A)

An assertion is satisfied by X , written |=X A, iff ε |=X A.

Definition 4.2 Two transition systems with independence X and X ′ are
Assn-equivalent iff they satisfy the same assertions, i.e. iff

∀A ∈ Assn. (|=X A ⇔ |=X′ A).

2

For ordinary transition systems (without independence) this logic is char-
acteristic for bisimulation.

Theorem 4.3 Two transition systems are bisimilar iff they are Assn-
equivalent.

Proof See [HS85]. 2

Example 4.4 To see the logic in action on transition systems with inde-
pendence, let us return to Example 2.5. An assertion distinguishing the
two systems is 〈a〉(〈c〉true ∧ 〈b〉©a 〈d〉). This assertion is satisfied by the
right-hand system, but not by the left-hand system. 2

As usual, the soundness proof is straightforward.

Proposition 4.5 If two transition systems with independence are PomL-
bisimilar, then they are also Assn-equivalent.

Proof See Appendix C. 2

Restriction to systems without auto-concurrency is essential for com-
pleteness.

18

Example 4.6 Consider two systems X and X ′

◦

• I •

•

a ������
a

>>>>��

a

>>>>�� a
������

◦

• •

•

a
��~~
~~ a

@@@@��

a

@@@@�� a��~~
~~

which are identical except that the square in X is an independence square,
whereas the square in X ′ is not. These systems satisfy the same asser-
tions, but are certainly not PomL-bisimilar. 2

Proposition 4.7 If two non-auto-concurrent transition systems with in-
dependence are Assn-equivalent, then they are also PomL-bisimilar.

Proof See Appendix C. 2

As mentioned in the introduction, the restriction to systems without
auto-concurrency has to do with the logic being based on labels. Replac-
ing the backwards modalities ©a , where a is label, with modalities ©i ,
where i is an index , and defining

t̄ |=X ©i A iff ti ∈ BEn(t̄) & δ(i, t̄) |=X A,

we obtain a logic which is complete for PomL-bisimilarity without re-
strictions.

5 Conclusion

We have given concrete characterizations of PomL-bisimilarity on transi-
tion systems with independence. Our characterizations are easy to under-
stand and appear as conservative extensions of the corresponding char-
acterizations of interleaving bisimulation.

The present work leaves open the decidability of PomL-bisimilarity
for finite state systems. One approach would be to look for set W of
winning positions, generalizing the notion of duplicates in our argument
for decidability of bisimulation for ordinary transition systems. However,
it is not quite clear what the appropriate generalization should be in the
setting of transition systems with independence.

REFERENCES 19

References

[AJ92] S. Abramsky and R. Jagadeesan. Games and Full Completeness
for Multiplicative Linear Logic. DoC 92/24, Imperial College
of Science, Technology and Medicine, 1992.

[Bed88] M. A. Bednarczyk. Categories of asynchronous systems. PhD
thesis, University of Sussex, 1988. Technical report no. 1/88.

[Bed91] M. A. Bednarczyk. Heredity History Preserving Bisimulations.
Unpublished, Draft of 1991.

[Ben84] J. Van Bentham. Correspondence theory. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, vol-
ume 2. Reidel, 1984.

[GG89] R. van Glaabek and U. Goltz. Equivalence Notions for Con-
current Systems and Refinement of Actions. In MFCS ’89.
Springer-Verlag LNCS 379, 1989.

[GKP92] U. Goltz, R. Kuiper, and W. Penczek. Propositional Temporal
Logics and Equivalences. In Concur ’92. Springer-Verlag LNCS
630, 1992.

[HM85] M. C. Hennessy and A. J. R. G. Milner. Algebraic Laws for
Non-determinism and Concurrency. Journal of ACM, 32(1),
1985.

[HS85] M. Hennessy and C. P. Stirling. The power of the future perfect
in program logics. In A. R. Meyer, editor, Information and
Control, volume 67. Academic Press, Inc. , 1985.

[JNW93] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation and open
maps. In LICS ’93, 1993. To appear in Information and Com-
putation.

[Mil89] A. J. R. G. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[Old91] E.-R. Olderog. Nets, Terms and Formulas. Cambridge Univer-
sity Press, 1991.

20 REFERENCES

[Par81] D. M. R. Park. Concurrency and Automata on Infinite Se-
quences. In Theoretical Computer Science, 5th GL-conference.
Springer-Verlag LNCS 104, 1981.

[Pra86] V. R. Pratt. Modelling concurrency with partial orders. Inter-
national Journal of Parallel Programming, 15(1), 1986.

[RT88] A. Rabinoritch and B. Traktenbrot. Behaviour structures and
nets. Fundamenta Informatica, 11(4), 1988.

[Shi85] M. W. Shields. Concurrent machines. Computer Journal, 88,
1985.

[Sti93] C. Stirling. Modal and Temporal Logics for Processes, 1993.
Notes for Summer School in Logic Methods in Concurrency,
Department of Computer Science, Aarhus University.

[WN94] G. Winskel and M. Nielsen. Models for Cuncurrency. In
S. Abramsky and D. Gabbay, editors, Handbook of Logic in
Computer Science, volume 3. Oxford University Press, 1994.

A EVERY GAME HAS A WINNER 21

A Every Game Has a Winner

Proposition A.1 (Proposition 3.1 restated) For any game, there is
a winning strategy iff there is no winning counter-strategy.

Proof Let Γ be a game. Obviously, if there is a winning strategy in Γ,
there can be no winning counter-strategy.

For the converse direction, assume there is no winning counter-strategy.
Say τ a winning counter-strategy from (wcsf) p ∈ Pos(Γ) iff

λ(p) = O & ∀σ. (p ∈ Plays(σ, τ) ⇒ 〈σ|τ〉 is lost).

Suppose now that λ(p) = O. It can then be shown that if Opponent has
no winning counter-strategy from p, then

∀p · c ∈ Pos(Γ).
 p · c ∈ W , or

∃p · c · c′ ∈ Pos(Γ). (O has no wcsf p · c · c′).


Using this property, we define a strategy σ as follows. Whenever Op-
ponent has no winning counter-strategy from p ∈ Pos(Γ), and p · c ∈
Pos(Γ) \ W , we choose a configuration c′ such that p · c · c′ ∈ Pos(Γ)
and Opponent has no winning counter-strategy from p · c · c′. Define
σ(p · c) = c′.

By definition, σ is a strategy. In order to argue that σ is winning, let
τ be an arbitrary counter-strategy. Inductively in the length of p, it is
easy to show the following property:

∀p ∈ Plays(σ, τ).
 λ(p) = O & Opponent has no wcsf p, or

λ(p) = P & (σ is defined on p or p ∈ W)

 .

(Notice that our assumption that Opponent has no winning counter-
strategy amounts to the fact that Opponent has no winning counter-
strategy from the initial configuration c0.) But then, since σ is defined
whenever it it Player’s turn to move, the play 〈σ|τ〉 must be won. This
finishes the proof of the proposition. 2

22

B Proofs From Section 3

As an intermediate step we introduce yet another equivalence, denoted
iso-δ-bisimilarity. The main theorems 3.7 and 3.9 will be established by
completing the following picture in which ↪→ denotes set inclusion:

∼δ ∼PomL

∼Γ ∼iso-δ

B.1

oO

��

B.10
O/

oo

B.15
�o //

B.13

/
�

OO

The inclusions are labeled with references to corresponding propositions.

B.1 From δ-bisimilarity to Γ-equivalence

Proposition B.1 ∼δ ⊆ ∼Γ.

Proof Let T ⊆ Seqs(X)×Seqs(X ′) be a δ-bisimulation between X and
X ′, and define a partial function σ : Pos(Γ(X, X ′)) → C in the following
way:

• Whenever t̄ T t̄′ and t̄t ∈ Seqs(X), choose t′ such that t̄′t′ ∈
Seqs(X ′) and t̄t T t̄′t′. Then, for all p · (t̄t, t̄′) ∈ Pos(Γ(X, X ′)),
define

σ(p · (t̄t, t̄′)) = (t̄t, t̄′t′).

In a similar way, σ is defined to respond to moves on the right-hand
side.

• Whenever t̄ T t̄′ and ti ∈ BEn(t̄), we know, since T satisfies Aδ,
that t′i ∈ BEn(t̄′) and δ(i, t̄) T δ(i, t̄′). For all p · (i, δ(i, t̄), t̄′) ∈
Pos(Γ(X, X ′)) we define

σ(p · (i, δ(i, t̄), t̄′)) = (δ(i, t̄), δ(i, t̄′)).

Here, too, there is a symmetric definition.

By construction, σ is a strategy. We now argue that σ is winning: For
all counter-strategies τ it follows by induction in the length of p that

p · (t̄, t̄′) ∈ Plays(σ, τ) & λ(p · (t̄, t̄′)) = O ⇒ t̄ T t̄′.

Hence, from construction it follows that 〈σ|τ〉 is won. 2

B PROOFS FROM SECTION 3 23

B.2 Permutations as Pomsets

An iso-δ-bisimulation is a δ-bisimulations which furthermore respect iso-
morphisms between observations, i.e. between pomsets. Actually, we
present iso-δ-bisimulations without mentioning pomsets at all. Instead,
we use permutations of transition sequences. As we shall soon see, these
permit us to reason inductively.

If two consequtive transitions ti and ti+1 of a transition sequence t̄ are
independent, they can – due to Axiom 2 of Definition 2.2 – be swapped,
resulting in the (unique) sequence

t0 · · · ti−1si+1siti+2 · · · tn−1,

where si+1si is the unique completion of titi+1. A permutation is a series
of such “swappings”.

Formally, we define a permutation (in a given transition system with
independence X) to be a partial function • : ω∗ × Seqs(X) ⇀ Seqs(X),
where ω∗ is the set of natural numbers (here, including 0). We shall use
infix notation for •, and for π ∈ ω∗ and t̄ ∈ Seqs(X) we define π • t̄
recursively in the length |π| of π:

ε • t̄ is always defined and equals t̄.

iπ• t̄ is defined iff π• t̄ is defined, i ∈ {0, . . . , |t̄|−2}, and ri I ri+1, where
π • t̄ = r̄. If defined, iπ • t̄ equals r0 · · · ri−1si+1siri+2 · · · rn−1, where
si+1si is the unique completion of riri+1:

•

◦ • • • • • • •

•

si
@
@

@��r0 // . . . ri−1 //

si+1

~
~
~??

ri

@@@@@��

ri+2 // . . . rn−1 //

ri+1~~
~~

~??

It is straightforward to show that • possesses the “group action property”
ππ′ • t̄ = π • (π′ • t̄)

Definition B.2 A sequence π ∈ ω∗ is a permutation of a sequence t̄ ∈
Seqs(X) provided π• t̄ is defined. Write ΠX(t̄) for the set of permutations
of t̄.

Given a permutation π of a sequence t̄, we want 〈π, t̄〉(i) = j to express
that the i’th transition of t̄ by π is swapped to position j. This intuition
is captured in the following definition.

24 B.2 Permutations as Pomsets

Definition B.3 Suppose π is a permutation of t̄. Then, we define 〈π, t̄〉 :
{0, . . . , |t̄| − 1} → {0, . . . , |t̄| − 1} inductively in |π|.

〈ε, t̄〉 is the identity function.

〈kπ, t̄〉(i) =


k + 1 if k = 〈π, t̄〉(i)
k if k + 1 = 〈π, t̄〉(i)
〈π, t̄〉(i) otherwise

It is easy to see that 〈π, t̄〉 is a bijection. The inverse function is 〈π−1, π•t̄〉,
where π−1 is π reversed.

The following lemmata express two very natural properties of permu-
tations.

Lemma B.4 Let t̄ ∈ Seqs(X) and assume 〈π, t̄〉(i) = j for some permu-
tation π and indices i and j. Then ti ∈ BEn(t̄) iff (π • t̄)j ∈ BEn(π • t̄).

Proof By induction on |π| it can be shown that

〈π, t̄〉(i) = j & ti ∈ BEn(t̄) implies (π • t̄)j ∈ BEn(π • t̄). (1)

For the converse direction, we simply apply (1) to 〈π−1, π• t̄〉(j) = i & (π•
t̄)j ∈ BEn(π • t̄). 2

When two sequences t̄ and t̄′ have the same length, are equally la-
belled, and have the same permutations, they obviously represent iso-
morphic pomsets. This leads to the following definition.

Definition B.5 For t̄ ∈ Seqs(X) and t̄′ ∈ Seqs(X ′) we define

t̄ iso t̄′ iff |t̄| = |t̄′| & ∀i. (`(ti) = `′(t′i)) & ΠX(t̄) = ΠX′(t̄′).

Definition B.6 Let t̄, r̄ ∈ Seqs(X). Define t̄ ' r̄ iff there exists a per-
mutation π such that π • t̄ = r̄. Furthermore, if t̄′, r̄′ ∈ Seqs(X ′) and
π • t̄′ = r̄′, we write (t̄, t̄′) ' (r̄, r̄′).

Lemma B.7 Suppose π • t̄ = r̄ and π • t̄′ = r̄′, and assume 〈π, t̄〉(i) = j
and, similarly, 〈π, t̄′〉(i) = j. Then

(δ(i, t̄), δ(i, t̄′)) ' (δ(j, r̄), δ(j, r̄′)),

provided all deletions are well-defined.

B PROOFS FROM SECTION 3 25

Proof Induction in |π|. 2

Corollary B.8 With the assumptions of the previous lemma,

δ(i, t̄) iso δ(i, t̄′) implies δ(j, r̄) iso δ(j, r̄′).

A PomL-open morphism f : X → X ′ extends to a function Seqs(X) →
Seqs(X ′) in the obvious way. By abuse of notation, this function will also
be denoted by f . We can now state the fact that PomL-open maps
respect permutations.

Lemma B.9 If f : X → X ′ is PomL-open, t̄ ∈ Seqs(X), and π ∈ ω∗,
then

π • t̄ is defined iff π • f(t̄) is defined,

and when both are defined,

f(π • t̄) = π • f(t̄).

Proof The two statements are proved simultaneously by induction on
|π| using the group action property of •. The kernel of the argument is
that open maps respect completion of independence squares. 2

B.3 From PomL-bisimilarity to δ-bisimilarity

Before turning to the proof that ∼PomL
⊆ ∼δ, we notice that backwards

enablings can be expressed in terms of permutations. Using Axiom 3 of
Definition 2.2 it is easy to see that ti ∈ BEn(t̄) iff [n − 2, . . . , i + 1, i]
is a permutation of t̄. Furthermore, δ(i, t̄) is the one-step prefix of [n −
2, . . . , i + 1, i] • t̄.

Proposition B.10 ∼PomL
⊆ ∼δ.

Proof Suppose X and X ′ are PomL-bisimilar. Then there is a transition
system with independence Y and a span of PomL-open maps:

Y

X X ′

f

~~}}
}}
}} f ′

BBBBBB

26 B.4 From iso δ bisimilarity to PomL bisimilarity

Using the extensions of f and f ′ to sequences, we now define a relation
T ⊆ Seqs(X) × Seqs(X ′) by

T = {(f(r̄), f ′(r̄)) | r̄ ∈ Seqs(Y)}.

The claim is now that T is a δ-bisimulation. There are three axioms to
check.

Ainit: Trivial.

Abisim: Suppose t̄ T t̄′ and t̄t ∈ Seqs(X). Then there exists r̄ ∈ Seqs(Y)
such that t̄ = f(r̄) and t̄′ = f ′(r̄). Since f is zig-zag and src(t) =
tgt(t̄) = tgt(f(r̄)) = f(tgt (r̄)) there is a transition r such that
r̄r ∈ Seqs(Y) and f(r) = t. Define t′ = f ′(r). Then f(r̄r) = t̄t and
f ′(r̄r) = t̄′t′ so we conclude that t̄t T t̄′t′. Obviously, `′(t′) = `(t).
The proof of the second part of the axiom is similar and therefore
omitted.

Aδ: Let t̄ T t̄′ and assume ti ∈ BEn(t̄). Choose r̄ such that t̄ = f(r̄) and
t̄′ = f ′(r̄). Using the above characterization of ti ∈ BEn(t̄) we see
that π = [n − 2, . . . , i + 1, i] is a permutation of t̄. Lemma B.9 now
states that

f(π • r̄) = π • f(r̄) = π • t̄ and
f ′(π • r̄) = π • f ′(r̄) = π • t̄′.

Especially, π • t̄′ is defined, ensuring t′i ∈ BEn(t̄′). Moreover, we see
that π• t̄ T π• t̄′ and since T is obviously closed under simultaneous
prefix, we conclude that δ(i, t̄) T δ(i, t̄′), as required. By symmetry,
this completes the proof of Aδ.

2

B.4 From iso-δ-bisimilarity to PomL-bisimilarity

As earlier mentioned, an iso-δ-bisimulation is just a δ-bisimulation which
also respects isomorphism:

Definition B.11 A relation T ∈ Seqs(X) × Seqs(X ′) is an iso-δ-simu-
lation between X and X ′ iff it is a δ-bisimulation which satisfies the
following axiom:

Aiso t̄ T t̄′ ⇒ t̄ iso t̄′

B PROOFS FROM SECTION 3 27

We write X ∼iso-δ X ′ iff there is an iso-δ-bisimulation between X and
X ′, and say that X and X ′ are iso-δ-bisimilar.

In the proof that an iso-δ-bisimulation induces a span of PomL-open
maps, we need the iso-δ-bisimulation to be '-closed. But this is no
problem, as the '-closure of any iso-δ-bisimulation is itself an iso-δ-
bisimulation.

Lemma B.12 Let T be an iso-δ-bisimulation. Then the '-closure

{(r̄, r̄′) | ∃(t̄, t̄′) ∈ T . (t̄, t̄′) ' (r̄, r̄′)}

is an iso-δ-bisimulation, too.

Proof Only the axiom Aδ can cause troubles. But fortunately, we are
rescued by Lemma B.4 and Lemma B.7. 2

Proposition B.13 ∼iso-δ ⊆ ∼PomL
.

Proof Let T ⊆ Seqs(X)×Seqs(X ′) be an iso-δ-bisimulation. According
to Lemma B.12 we can without loss of generality assume that T is '-
closed. As a candidate for a common domain of a span of PomL-open
maps, we define the following structure which will be proved to be a
transition system with independence. Define

Y = (SY , iY , L, TranY , IY),

where

• SY = {[(t̄, t̄′)]' | t̄ T t̄′}, i.e. '-equivalence classes2,

• iY = [(ε, ε)], and

• TranY is defined by

y0
a−→y1 iff ∃t̄, t̄′, s1, s

′
1. (y0 = [(t̄, t̄′)] & y1 = [(t̄(s0

a−→s1), t̄′(s′
0

a−→s′
1))]).

Before defining IY we introduce “projection” morphisms f : Y → X and
f ′ : Y → X ′ as follows:

f([(t̄, t̄′)]) = tgt(t̄) and f ′([(t̄, t̄′)]) = tgt(t̄′).
2For convenience we shall from now on drop subscripts '.

28 B.4 From iso δ bisimilarity to PomL bisimilarity

Thus, every transition [(t̄, t̄′)] a−→[(t̄(s0
a−→s1), t̄′(s′

0
a−→s′

1))] = y0
a−→y1 of Y

induces transitions s0
a−→s1 = f(y0) a−→f(y1) and s′

0
a−→s′

1 = f ′(y0) a−→f ′(y1)
of X and X ′, respectively. Since also f([ε, ε)]) and f ′([ε, ε)]) denote the
initial states of X and X ′, respectively, f and f ′ are clearly well-defined
morphisms. Using the extensions of f and f ′ to transitions we are now
able to express when two transitions in Y are independent:

• r0 IY r1 iff f(r0) IX f(r1) & f ′(r0) IX′ f ′(r1).

When it is clear from the context which transition system we refer to,
we will drop the subscripts. It should be noticed that exactly T being
'-closed ensures the well-definedness of the components of Y .

We now show that Y is a transition system with independence and
that f and f ′ are PomL-open morphisms.

Y is a transition system with independence: Before proving the char-
acterizing axioms we notice that the relations ≺Y and ∼Y between
transitions in Y can be expressed by the corresponding relations in
X and X ′: For any transitions r0 and r1 in Y , we have

r0 ≺Y r1 iff f(r0) ≺X f(r1) & f ′(r0) ≺X′ f
′(r1), (2)

and similarly for ∼Y :

r0 ∼Y r1 iff f(r0) ∼X f(r1) & f ′(r0) ∼X′ f
′(r1). (3)

We are now ready to prove the axioms.

1. is a consequence of (3) in conjunction with Axiom (1) holding
for X and X ′.

2. Assume two independent consequtive transitions in Y ,

[(t̄, t̄′)] a−→ [(t̄(s a−→s1), t̄′(s′ a−→s′
1))]

b−→ [(t̄(s a−→s1)(s1
b−→u), t̄′(s′ a−→s′

1)(s′
1

b−→u′))].

Since independence in Y is defined component-wise, there are
independence squares

s

s1 I s2

u

a
~~}}
}} b

AAAA

b

AAAA a~~}}
}}

and

s′

s′
1 I s′

2

u′

a ������
b

>>>>��

b

>>>>�� a
������

B PROOFS FROM SECTION 3 29

in X and X ′, respectively. By definition of SY , we see that

t̄(s a−→s1)(s1
b−→u) T t̄′(s′ a−→s′

1)(s
′
1

b−→u′),

and since T is δ-closed, it must be the case that

t̄(s b−→s2) T t̄′(s′ b−→s′
2)

where s2 and s′
2 are determined uniquely above. Hence the

equivalence class [(t̄(s b−→s2), t̄′(s′ b−→s′
2))] is a state of Y and,

obviously, there are transitions

[(t̄, t̄′)] b−→ [(t̄(s b−→s2), t̄′(s′ b−→s′
2))]

a−→ [(t̄(s b−→s2)(s2
a−→u), t̄′(s′ b−→s′

2)(s′
2

a−→u′))].

Now, since s a−→s1 I s1
b−→u and s′ a−→s′

1 I s′
1

b−→u′, it follows that

(t̄(s a−→s1)(s1
b−→u), t̄′(s′ a−→s′

1)(s
′
1

b−→u′))
' (t̄(s b−→s2)(s2

a−→u), t̄′(s′ b−→s′
2)(s

′
2

a−→u′)).

This completes the square in Y . The required independencies
follow immediately, as IY is defined component-wise.

3. Both axioms are easy to establish using (2) and the definition
of IY .

This finishes the proof that Y is a transition system with indepen-
dence. It remains to show that f and f ′ are PomL-open morphisms.
The arguments are identical, so we present only the proof that f is
PomL-open.

f is zig-zag: Let f([(t̄, t̄′)]) a−→s be a transition in X where, by definition,
f([(t̄, t̄′)]) = tgt(t̄). Since t̄ T t̄′, there exists a transition tgt(t̄′) a−→s′

for some s such that

t̄(tgt(t̄) a−→s) T t̄′(tgt (t̄′) a−→s′).

Thus [(t̄(tgt(t̄) a−→s), t̄′(tgt(t̄′) a−→s′))] is a state of Y which by f is
mapped to s. Moreover, there is an a-transition from [(t̄, t̄′)] into
it. This proves that f is zig-zag.

30 B.5 From Γ equivalence to iso δ bisimilarity

f reflects consecutive independence: Suppose

[(t̄, t̄′)] a−→ [(t̄(s a−→s1), t̄′(s′ a−→s′
1))]

b−→ [(t̄(s a−→s1)(s1
b−→u), t̄′(s′ a−→s′

1)(s
′
1

b−→u′))]

and assume s a−→s1 IX s1
b−→u. Since

t̄(s a−→s1)(s1
b−→u) T t̄′(s′ a−→s′

1)(s
′
1

b−→u′)

and T respects iso, we also have s′ a−→s′
1 IX′ s′

1
b−→u′. Then, by defi-

nition of IY , the above transitions in Y must be independent, too.

We have now constructed a transition system with independence and
equipped it with PomL-open morphisms to X and X ′. This finishes the
proof of the proposition. 2

B.5 From Γ-equivalence to iso-δ-bisimilarity

The key observation underlying this result is that any winning strategy
in the backtracking game Γ(X, X ′) maintains isomorphisms between ob-
servations of the two systems.

Lemma B.14 A winning strategy σ in Γ(X, X ′) respects iso in the sense
that if p · (t̄, t̄′) is a play respecting σ, then t̄ iso t̄′.

Proof Assume towards contradiction that there are plays p · (t̄t, t̄′t′)
respecting σ such that ¬(t̄t iso t̄′t′). Choose p, t̄t, t̄′t′ with this property
and such that t̄t is of minimal length with that property. Since every
play respects length and labels, there are sequences iπ ∈ ω∗ such that

iπ • t̄t defined & iπ • t̄′t′ undefined (4)

(or vice versa). Choose iπ of minimal length with this property. Then,
furthermore,

π • t̄t defined & π • t̄′t′ defined. (5)

Suppose |t̄t| = n and write

π • t̄t = r0r1 · · · riri+1 · · · rn−1 and
π • t̄′t′ = r′

0r
′
1 · · · r′

ir
′
i+1 · · · r′

n−1,
(6)

where, by (4) and (5), ri I ri+1 and ¬(r′
i I r′

i+1).

B PROOFS FROM SECTION 3 31

We will now argue that in (6), i = n − 2, meaning that ri+1 and r′
i+1

are the last transitions. Assume towards contradiction that i < n − 2
and let k be such that 〈π, t̄t〉(k) = n − 1 and hence 〈π, t̄′t′〉(k) = n − 1.
Then, by Lemma B.4, (t̄t)k is backwards enabled in t̄t making it possible
for Opponent to do the backwards move

(t̄t, t̄′t′) > (k, δ(k, t̄t), t̄′t′).

Since σ is winning, Player is able match this move, and we end up
in (δ(k, t̄t), δ(k, t̄′t′)). Now, since t̄t was chosen minimal, we see that
δ(k, t̄t) iso δ(k, t̄′t′). Since ri I ri+1 and ¬(r′

i I r′
i+1), the only values of s

for which δ(s, r̄) iso δ(s, r̄′) can be true, are i and i+1. By Corollary B.8,
δ(n − 1, r̄) iso δ(n − 1, r̄′), so we conclude that n − 1 ∈ {i, i + 1}. But
n − 1 = i contradicts i + 1 being a legal index of r̄. Hence, n − 1 = i + 1
or, equivalently, i = n − 2.

Finally we can now rewrite (6) using the information that i = n − 2:

π • t̄t = r0r1 · · · riri+1 and
π • t̄′t′ = r′

0r
′
1 · · · r′

ir
′
i+1.

Let now l be such that 〈π, t̄t〉(l) = i and hence 〈π, t̄′t′〉(l) = i. Since
ri I ri+1, it follows from Lemma B.4 that (t̄t)l is backwards enabled in t̄t.
Hence, Opponent can do the backwards move

(t̄t, t̄′t′) > (l, δ(l, t̄t), t̄′t′).

But, since ¬(r′
i I r′

i+1), it follows from Lemma B.4 that (t̄′t′)l is not
backwards enabled in t̄′t′, so Player is stuck. This contradicts σ being
winning. 2

The proof of the proposition below is now straightforward.

Proposition B.15 ∼Γ ⊆ ∼iso-δ.

Proof Let σ be a winning strategy in Γ(X, X ′) and assume, in ac-
cordance with Lemma B.14, that σ respects iso. Define a relation T ⊆
Seqs(X) × Seqs(X ′) by

t̄ T t̄′ iff p · (t̄, t̄′) ∈ Plays(σ, τ) for some play p and counter-strategy τ .

We show that T is an iso-δ-bisimulation:

32 B.5 From Γ equivalence to iso δ bisimilarity

Aiso: t̄ T t̄′ ⇒ t̄ iso t̄′ follows directly from the fact that σ respects iso.

Abisim: Suppose t̄ T t̄′ and t̄t ∈ Seqs(X). Let p and τ be such that
p · (t̄, t̄′) ∈ Plays(σ, τ) and define

τ ′ = [(t̄t, t̄′)/p · (t̄, t̄′)],

which is the function equal to τ everywhere except at p · (t̄, t̄′) at
which it yields (t̄t, t̄′). Now3,

p′ = p · (t̄, t̄′) · (t̄t, t̄′) ∈ Plays(σ, τ ′),

forcing σ to be defined on p′. Inspecting the rules of Γ(X, X ′) we
see that σ(p′) equals (t̄t, t̄′t′) for some t′. But then t̄t T t̄′t′, as
required.

Aδ: Let t̄ T t̄′ and assume ti ∈ BEn(t̄). Choose p and τ such that
p · (t̄, t̄′) ∈ Plays(σ, τ) and define

τ ′′ = [(i, δ(i, t̄), t̄′)/p · (t̄, t̄′)].

Observe that

p′′ def= p · (t̄, t̄′) · (i, δ(i, t̄), t̄′) ∈ Plays(σ, τ ′′).

Being winning, σ is able to respond to this move with σ(p′′) =
(δ(i, t̄), δ(i, t̄′)). Hence, t′i ∈ BEn(t̄′), by the definition of Γ(X, X ′).
Furthermore, δ(i, t̄) T δ(i, t̄′), since p′′ ·(δ(i, t̄), δ(i, t̄′)) ∈ Plays(σ, τ).
By a symmetric argument, this finishes the proof. 2

3Here we use that strategies are defined on positions rather that configurations.

C PROOFS FROM SECTION 4 33

C Proofs From Section 4

Proposition C.1 (Proposition 4.5 restated) If two transition systems
with independence are PomL-bisimilar, then they are also Assn-equivalent.

Proof Let T be a δ-bisimulation between X and X ′. By structural
induction on assertions we show that for all A ∈ Assn, t̄ ∈ Seqs(X), and
t̄′ ∈ Seqs(X ′),

t̄ T t̄′ ⇒ (t̄ |=X A ⇔ t̄′ |=X′ A). (7)

¬A:
t̄ T t̄′ ⇒ (t̄ |=X A ⇔ t̄′ |=X′ A) (inductively)

⇔ (t̄ 6|=X A ⇔ t̄′ 6|=X′ A)
⇔ (t̄ |=X ¬A ⇔ t̄′ |=X′ ¬A) (by definition)∧

j∈J Aj:

t̄ T t̄′ ⇒ ∀j ∈ J. (t̄ |=X Aj ⇔ t̄′ |=X′ Aj) (inductively)
⇒ (∀j ∈ J. (t̄ |= Aj) ⇔ ∀j ∈ J. (t̄′ |=X′ Aj))
⇔ (t̄ |=X

∧
j∈J Aj ⇔ t̄′ |=X′

∧
j∈J Aj) (by definition)

〈a〉A: Suppose t̄ T t̄′ and t̄ |=X 〈a〉A. Then there exists r̄ such that
t̄ a−→r̄ and r̄ |=X A. Since t̄ T t̄′ there exists r̄′ such that t̄′ a−→r̄′ and
r̄ T r̄′. By the induction hypothesis, r̄′ |=X′ A, so we conclude that
t̄′ |=X′ 〈a〉A.

©a A: Suppose t̄ T t̄′ and t̄ |=X ©a A. Then there exists ti ∈ BEn(t̄)
such that `(ti) = a and δ(i, t̄) |=X A. Since t̄ T t̄′ we also have
t′i ∈ BEn(t̄′) and δ(i, t̄) T δ(i, t̄′), so inductively, δ(i, t̄′) |=X′ A.
Since T respects labels, t̄′ |=X′ ©a A, as required.

This finishes the proof of (7). The proposition follows by taking t̄ = t̄′ = ε.
2

Lemma C.2 Suppose X has no auto-concurrency and let t̄ ∈ Seqs(X).
Then, if ti, tj ∈ BEn(t̄) and `(ti) = `(tj), the transitions are equal, i.e.
i = j.

Proof Assume towards contradiction that i 6= j. Without loss of gener-
ality we may assume that i < j. Since ti ∈ BEn(t̄), by definition, ti I tk
for all k > i. This clearly contradicts X having no auto-concurrency. 2

34

For non-auto-concurrent systems, there is a simpler game, Γ′, charac-
terizing PomL-bisimilarity. Backtracking on indices can be substituted
by backtracking on labels, yielding rules like

(t̄, t̄′) > (a, r̄, t̄′) if r̄
a
; t̄,

where the a is a directive to Player to play backwards with an a-move in
the longer of the sequences. More concretely, Player must reply with an
application of the rule

(a, r̄, t̄′) > (r̄, r̄′) if r̄′ a
; t̄′.

Say that two transition systems with independence X and X ′ are Γ′-
equivalent iff Player has a winning strategy in Γ′(X, X ′).

Proposition C.3 Two non-auto-concurrent transition systems with in-
dependence are Γ′-equivalent iff they are Γ-equivalent.

Proof Let X and X ′ be transition systems with independence. First
we notice that there is a bijection C : Pos(Γ(X, X ′)) → Pos(Γ′(X, X ′))
defined inductively in length of the position:

C(ε, ε) = (ε, ε)
C(p · (t̄, t̄′)) = C(p) · (t̄, t̄′)

C(p · (t̄t, t̄′)) = C(p) · (t̄t, t̄′)
C(p · (t̄, t̄′t′)) = C(p) · (t̄, t̄′t′)

C(p · (t̄, t̄′) · (i, δ(i, t̄), t̄′)) = C(p · (t̄, t̄′)) · (`(ti), δ(i, t̄), t̄′)
C(p · (t̄, t̄′) · (i, t̄, δ(i, t̄′))) = C(p · (t̄, t̄′)) · (`(t′i), t̄, δ(i, t̄′))

Using that the plays of Γ(X, X ′) respect labels (i.e. that whenever (t̄, t̄′) ∈
Pos(Γ(X, X ′)), ∀i. (`(ti) = `(t′i))), it is easy to show that C is well-defined.
The inverse function C−1 of C is given inductively by very similar clauses.
As an example, let us see how C−1(p · (t̄, t̄′) · (a, r̄, t̄′)) (where r̄ a

; t̄) is
defined. By definition 4.1, there is an index i such that ti ∈ BEn(t̄),
`(ti) = a, and r̄ = δ(i, t̄). Moreover, this index is unique. We can thus
define

C−1(p · (t̄, t̄′) · (a, r̄, t̄′)) = C−1(p · (t̄, t̄′)) · (i, δ(i, t̄), t̄′)).

The well-definedness of C−1 follows from Lemma C.2 using that plays of
Γ(X, X ′) respect labels. It is straightforward to show that C and C−1 are
each others inverse.

C PROOFS FROM SECTION 4 35

For one direction, assume that σ is a winning strategy in Γ(X, X ′).
We then define a winning strategy σ′ in Γ(X, X ′) as follows: For each
p ∈ Pos(Γ′(X, X ′)), let

σ′(p) = σ(C−1(p)).

Using the bijection, it can be shown that σ′ is a winning strategy.
The other direction is managed in a similar way. 2

Proposition C.4 (Proposition 4.7 restated) If two non-auto-concur-
rent transition systems with independence are Assn-equivalent, then they
are also PomL-bisimilar.

Proof Assume towards contradiction that X and X ′ are Assn-equivalent
but not PomL-bisimilar. Then there can be no winning strategy in the
modified game Γ′(X, X ′). Hence, by Proposition 3.1, there is a winning
counter-strategy τ in Γ′(X, X ′). Using τ , we construct an assertion A(p)
for any play p such that

• p respects τ , and

• λ(p) = O.

Define the following partial order on such plays:

p′ ≺ p iff ∃c, c′. (p′ = p · c · c′).

As τ is winning, there can be no infinite plays respecting τ . Hence, ≺ is
well-founded. We now define A(p) by well-founded recursion on p. Let p
be a play of the above kind and suppose A(p′) is defined for all p′ ≺ p.
Since p respects τ , and λ(p) = O, τ(p) must be defined – otherwise τ
would not be winning. Assuming the last configuration of p is (t̄, t̄′),
consider now the following cases of τ(p):

τ(p) = (r̄, t̄′) where t̄ a−→r̄:

A(p) = 〈a〉(
∧

{A(p′) | ∃r̄′. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)})

τ(p) = (t̄, r̄′) where t̄′ a−→r̄′:

A(p) = ¬〈a〉(
∧

{¬A(p′) | ∃r̄. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)})

36

τ(p) = (a, r̄, t̄′) where r̄
a
; t̄:

A(p) = ©a (
∧

{A(p′) | ∃r̄′. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)})

τ(p) = (a, t̄, r̄′) where r̄′ a
; t̄′:

A(p) = ¬©a (
∧

{¬A(p′) | ∃r̄. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)})

The claim is now that if p is a play of the above kind, and the last
configuration of p is (t̄, t̄′), then

t̄ |=X A(p) & t̄′ |=X′ ¬A(p). (8)

Instantiating p to (ε, ε) yields |=X A(ε, ε) and |=X′ ¬A(ε, ε) which con-
tradicts the assumption X ∼Assn X ′.

The proof of the claim is by well-founded induction on p. We consider
the following four cases of τ(p):

τ(p) = (r̄, t̄′) where t̄ a−→r̄: To establish t̄ |=X A(p) we show

r̄ |=X

∧
{A(p′) | ∃r̄′. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)}.

Assume p′ = p · τ(p) · (r̄, r̄′) ≺ p for some r̄′. We are then required
to show r̄ |=X A(p′). But this follows inductively, since p′ respects
τ and the last configuration of p′ is (r̄, r̄′).

To establish t̄′ |=X′ ¬A(p) we assume towards contradiction that
t̄′ |=X′ A(p). Then there exists a transition sequence r̄′ such that
t̄′ a−→r̄′ and

r̄′ |=X′
∧

{A(p′) | ∃r̄′. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)}.

Now there is a move τ(p) >(r̄, r̄′), so p′ = p·τ(p)·(r̄, r̄′) ≺ p. Hence,
r̄′ |=X′ A(p′), but this contradicts the induction hypothesis.

τ(p) = (t̄, r̄′) where t̄′ a−→r̄′: Similar to the previous case.

τ(p) = (a, r̄, t̄′) where r̄
a
; t̄: To establish t̄ |=X A(p) we simply show

r̄ |=X

∧
{A(p′) | ∃r̄′. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)}.

Suppose p′ = p · τ(p) · (r̄, r̄′) ≺ p. We are then required to show
r̄ |=X A(p′), but this follows directly from the induction hypothesis.

C PROOFS FROM SECTION 4 37

We still need to show t̄′ |=X′ ¬A(p). Assume towards contradiction
that t̄′ |=X′ A(p). Then there exists r̄′ such that r̄′ a

; t̄′ and

r̄′ |=X′
∧

{A(p′) | ∃r̄′. (p′ = p · τ(p) · (r̄, r̄′) ≺ p)}.

Now there is a move τ(p) >(r̄, r̄′), so, in fact, p′ = p·τ(p)·(r̄, r̄′) ≺ p.
Hence, r̄′ |=X′ A(p′), which contradicts the induction hypothesis.

τ(p) = (a, t̄, r̄′) where r̄′ a
; t̄′: Symmetric. 2

Recent Publications in the BRICS Report Series

RS-94-1 Glynn Winskel. Semantics, Algorithmics and Logic: Ba-
sic Research in Computer Science. BRICS Inaugural Talk.
February 1994, 8 pp.

RS-94-2 Alexander E. Andreev. Complexity of Nondeterministic
Functions. February 1994, 47 pp.

RS-94-3 Uffe H. Engberg and Glynn Winskel.Linear Logic on Petri
Nets. February 1994, 54 pp.

RS-94-4 Nils Klarlund and Michael I. Schwartzbach. Graphs and
Decidable Transductions based on Edge Constraints. Febru-
ary 1994, 19 pp. Appears in:Trees in Algebra and Program-
ming CAAP '94(ed. S. Tison), LNCS 787, 1994.

RS-94-5 Peter D. Mosses.Unified Algebras and Abstract Syntax.
March 1994, 21 pp. To appear in: Recent Trends in Data
Type Specification(ed. F. Orejas), LNCS 785, 1994.

RS-94-6 Mogens Nielsen and Christian Clausen.Bisimulations,
Games and Logic. April 1994, 37 pp. Full version of paper
to appear in: New Results and Trends in Computer Science,
LNCS, 1994.

