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Lower Bounds for Monotone Span Programs∗

Amos Beimel† Anna Gál‡ Mike Paterson§

Abstract

The model of span programs is a linear algebraic model of computation. Lower
bounds for span programs imply lower bounds for contact schemes, symmetric branch-
ing programs and for formula size. Monotone span programs correspond also to lin-
ear secret-sharing schemes. We present a new technique for proving lower bounds for
monotone span programs. The main result proved here yields quadratic lower bounds
for the size of monotone span programs, improving on the largest previously known
bounds for explicit functions. The bound is asymptotically tight for the function
corresponding to a class of 4-cliques.

1 Introduction

Karchmer and Wigderson [14] introduced span programs as a linear algebraic model of
computation. A span program for a Boolean function is presented as a matrix over some
field with rows labeled by literals of the variables, and the size of the program is the number
of rows. The span program accepts an assignment if and only if the all-ones row is a linear
combination of the rows whose labels are consistent with the assignment. (Definitions are
given in Section 2.) The class of functions with polynomial size span programs is equivalent
to the class of functions with polynomial size counting branching programs [8], [14]. Span
program size is a lower bound on the size of symmetric branching programs [14]. The model
of symmetric branching programs is essentially the same as that of (undirected) contact
schemes (for definitions, see [14]). Lower bounds for span programs also imply lower bounds
for formula size.

Monotone span programs have only positive literals (non-negated variables) as labels of
the rows. They compute only monotone functions, even though the computation uses non-
monotone linear algebraic operations. It is known that every function with a polynomial
size span program is in NC (this follows from [3], [8], [14], [17]), but no monotone analog of

∗Most of this work was done while the authors were visiting BRICS, Basic Research in Computer
Science, Centre of the Danish National Research Foundation, Aarhus, Denmark
†Dept. of Computer Science, Technion, Haifa 32000, Israel. Email: beimel@cs.technion.ac.il
‡Dept. of Computer Science, Univ. of Chicago, Chicago, IL 60637, USA. Email: panni@cs.uchicago.edu
§Dept. of Computer Science, Univ. of Warwick, Coventry CV4 7AL, UK. Email: msp@dcs.warwick.ac.uk
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this result is known. It is not even known whether every function that has a polynomial size
monotone span program also has a polynomial size monotone circuit. The reduction in [14]
from symmetric branching programs to span programs preserves monotonicity, and thus
lower bounds for monotone span programs imply lower bounds for monotone symmetric
branching programs and for monotone formula size.

A different motivation for studying monotone span programs is secret-sharing schemes.
A (generalized) secret-sharing scheme is a cryptographic tool in which a dealer shares a
secret, taken from a finite set of possible secrets, among a set of parties such that only
some pre-defined authorized sets of parties can reconstruct the secret. To achieve this
goal the dealer distributes private shares to the parties such that any authorized subset of
parties can reconstruct the secret from its shares and any non-authorized subset cannot
even gain any partial information about the secret (in the information-theoretic sense).
The authorized sets are defined by a Boolean function f : {0, 1}m → {0, 1}, where m is
the number of parties, such that the authorized sets are the sets with their characteristic
vectors in f−1(1).

A secret-sharing scheme can only exist for authorized sets specified by monotone func-
tions: if a subset B can reconstruct the secret then every superset of B can also recon-
struct the secret. If the subsets that can reconstruct the secret are all the sets whose
cardinality is at least a certain threshold t, then the scheme is called a threshold secret-
sharing scheme. Threshold secret-sharing schemes were introduced by Blakley [5] and by
Shamir [25]. Secret-sharing schemes for general Boolean functions were first defined by Ito,
Saito and Nishizeki in [12]. Given any monotone function, they show how to construct a
secret sharing scheme in which the authorized sets are the sets specified by the function.

An important issue when designing secret-sharing schemes is the length of shares. For
example, even with the more efficient schemes of [2] and when there are only two possible
secrets, most functions require shares of length exponential in the number of parties. This
means that even in fairly small networks the parties will not have enough memory to
store their shares (leaving aside the question of secure storage). The question whether
there exist more efficient schemes, or if there exists a Boolean function that does not have
(space-) efficient schemes is open. This problem is one of the most important open problems
concerning secret-sharing. Some weak lower bounds on the length of the shares were proved
in [15, 2, 7, 9, 6, 20, 10]. The best lower bound was proved by Csirmaz [11]. His proof
shows that for every m there exists a Boolean function with m variables for which, in every
secret sharing scheme, the sum of the lengths of the shares is Ω(m2/ logm) times the length
of the secret (for every finite set of possible secrets).

Small monotone span programs give rise to efficient linear secret-sharing schemes (see [7,
14, 4]). We call these schemes linear, since the shares are a linear combination of the secret
and some random inputs. Karchmer and Wigderson [14] proved that if there is a monotone
span program of size s for some function then there exists a scheme for the corresponding
secret-sharing problem in which the sum of the lengths of the shares of all the parties is
s. Therefore, every lower bound on the total size of shares in a secret-sharing scheme is
also a lower bound on the size of monotone span programs for the same function. Most
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of the known secret-sharing schemes are linear, e.g., those in [25, 21, 12, 2, 26, 27, 7]
and all the schemes described in the survey of Stinson [28]. Hence, proving lower bounds
for span programs (linear schemes) proves lower bounds for most known schemes. It is
also an important step towards proving lower bounds on the length of the shares for all
secret-sharing schemes.

The Ω(m2/ logm) lower bound implied by [11] for monotone span program size is the
strongest previously known lower bound for an explicit function on m variables. In this
paper we present a new technique for proving lower bounds for monotone span programs.
Our largest lower bound is Ω(m2) for an explicit function on m variables. We present
several other applications of our technique to explicit functions. Some of our bounds are
asymptotically tight, all of them are tightup to constant factors.

We are able to show a linear (exactly m) upper bound for the monotone span program
size of a function on m variables, that is known to have Ω((m/ logm)3/2) monotone circuit
complexity. This gives some evidence that monotone span programs may be stronger than
monotone circuits. Nevertheless, our Ω(m2) lower bound for monotone span programs com-
puting the 4-cliques function is larger than the Ω((m/ logm)2) lower bound by Razborov’s
method ([23, 1, 13]) for monotone circuits computing the same function.

The paper is organized as follows. In Section 2 we give the basic definitions, an ap-
plication of Nečiporuk’s method [18] for span programs and a construction of a linear size
monotone span program for accepting non-bipartite graphs. The remainder of the paper is
devoted to our lower bound method for monotone span programs.

2 Preliminaries

First we state the definition of the model from [14].
Let F be a field. A span program over F is a labeled matrix M̂(M, ρ) where M is

a matrix over F , and ρ is a labeling of the rows of M by literals (variables or negated
variables). The size of M̂ is the number of rows in M .

For every input sequence δ ∈ {0, 1}m define the submatrix Mδ of M by keeping only
those rows r such that ρ(r) = xεi and δi = ε, i.e., rows whose labels are set to 1 by the
input δ. By definition, M̂ accepts δ if and only if 1 ∈ span(Mδ), i.e., if and only if there
is a linear combination of the rows of Mδ giving the vector 1. (The row vector 1 has the
value 1 for each column.)

A span program is called monotone if the labels of the rows are only the positive literals
{x1, . . . , xm}. We denote by SPF (f) (resp. mSPF (f)) the size of the smallest span program
(resp. monotone span program) over F that accepts an input δ if and only if f(δ) = 1.

We note that the number of columns does not effect the size of the span program.
However, we observe that it is always possible to use no more columns than the size of the
program (since we may restrict the matrix to a set of linearly independent columns without
changing the function that is computed). Following [14] and with this observation, we can
apply Nečiporuk’s method [18] to span programs, and get a lower bound of Ω(m3/2/ logm)
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for an explicit function with m = 2n log n variables. Let EDn be the function which receives
n numbers in the range {1, · · · , n2} and decides whether all the numbers are distinct.

Theorem 1. SPGF(2)(EDn) = Ω(m3/2/ logm) , where m = 2n log n.

Next we present a monotone span program of linear size (exactly m) for a function on
m variables, that is known to have Ω((m/ logm)3/2) monotone circuit complexity.

We consider the Non-Bipartiten function, whose input is an undirected graph on n

vertices, represented by m =
(
n
2

)
variables, one for each possible edge. The value of the

function is 1 if and only if the graph is not bipartite.

Theorem 2. mSPGF(2)(Non-Bipartiten) = m, where m =
(
n
2

)
.

Proof. We construct a monotone span program accepting exactly the non-bipartite graphs
as follows. There will be m rows, each labeled by a variable. There is a column for each
possible complete bipartite graph on n vertices. The column of a given complete bipartite
graph contains the value 0 in each row that corresponds to an edge of the given graph and
contains 1 in each row that corresponds to an edge that is missing from the given graph.

This program rejects every bipartite graph G. This is because for every bipartite graph
we can find at least one complete bipartite graph that contains it. Therefore, there will be
a column that contains only 0’s in the rows labeled by the edges of G. This means that we
cannot get the vector 1 as a linear combination of these rows.

Next we show that the program accepts every non-bipartite graph. Since the span
program is monotone, it is sufficient to show that it accepts every minimal non-bipartite
graph, i.e., every odd cycle. Let C be an arbitrary odd cycle. The intersection of any
odd cycle with any bipartite graph has an even number of edges, so C has an odd number
of edges which are not in any given bipartite graph. Hence the sum of the row vectors
corresponding to all the edges in C is odd in each column, i.e., gives the vector 1 over
GF(2), and so C is accepted by the span program.

We note that the lower bound by Razborov’s method (see [23, 1, 13]) for triangles also
applies to the function that accepts exactly the non-bipartite graphs, thus the monotone
circuit complexity of the function Non-Bipartiten is Ω((n/ log n)3) = Ω((m/ logm)3/2).

A minterm of a monotone function is a minimal set of its variables with the property
that the value of the function is 1 on any input that assigns 1 to each variable in the set, no
matter what the values of the other variables. It is convenient for us to refer to minterms
as sets of indices, by simply identifying a set of variables with the set of indices of the
corresponding variables.

We denote indices (variables) by lower case letters, and minterms (sets of variables) by
upper case letters, e.g., A. Script letters, such asM, will be used for families (sets) of sets,
and bold letters for vectors.
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3 The General Method for Proving Lower Bounds

The idea of our technique is to show that if the size of a span program (i.e., the number of
rows in the matrix) is too small, and the program accepts all the minterms of the function
f then it must also accept an input that does not contain a minterm of f , which means
that the program does not compute f . Our method may be viewed as an application of
the “fusion method” [24, 13, 30].

Let f : {0, 1}m → {0, 1} be a monotone Boolean function, andM the family of minterms
of f . Let A ⊆ M be a subfamily of the minterms, and let Ai ⊆ A be all the minterms in
A that contain i.

Let F be any field, and P a span program over F that accepts all the minterms from
A. Since P accepts all the minterms in A, for every minterm A ∈ A there exists at least
one linear combination V of the rows labeled by elements of A that equals the vector 1.
We can consider this combination as a sum of |A| vectors, each taken from the space of the
rows labeled by one element of A. That is, for every element i ∈ A there exists a vector,
denoted by V (A, i), in the span of the rows labeled by i, such that

∑
i∈A V (A, i) = 1. The

vector V (A, i) is called the vector of i in A.
We next study the consequences when the vectors of i in different minterms are linearly

dependent. For the next lemmas we recall that an affine combination of vectors is a linear
combination of vectors in which the sum (over F) of the coefficients of the vectors in the
combination is 1.

Lemma 1. Let the subfamily A of minterms of f satisfy the following condition.

C0. For each i ∈ {1, . . . ,m}, the set
⋃
B∈AiB \{i} does not contain any minterm of f .

Suppose that i ∈ A ∈ A, and that for some monotone span program P that computes f ,
the vector V (A, i) is a linear combination of vectors of i in other minterms from Ai. Then
such a combination must be an affine combination.

Proof. If V (A, i) is a linear combination of vectors of i in other minterms from Ai, then
there exist constants α1, . . . , α` such that

∑`
q=1 αqV (Aq, i) = V (A, i), where A1, . . . , A` are

minterms in Ai \ {A}. Consider the vector

v =
∑̀
q=1

αq
∑
k∈Aq

V (Aq, k)−
∑
k∈A

V (A, k) .

The contribution of vectors labeled by i to v is
∑
αqV (Aq, i)− V (A, i) = 0. Hence v is in

the span of the set of vectors labeled by elements of X =
⋃
B∈AiB \ {i}, and

v =
∑̀
q=1

αq1− 1 = (
∑̀
q=1

αq − 1)1 .

Since P computes f and, by condition C0, X does not contain a minterm of f , the vector
1 cannot be in the span of vectors labeled by X. The conclusion is that (

∑`
q=1 αq − 1) = 0

and the combination is affine.
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Definition 1. A pair (A, i), where A ∈ A is a minterm and i is an element of A, is
dangerous for the element j if j ∈ A and V (A, i) is an affine combination of the vectors in
{V (B, i) : B ∈ Ai \ Aj}.

We say that the pairs (A, i) and (A, j) are mutually dangerous if (A, i) is dangerous for
j and (A, j) is dangerous for i.

The next lemma is a key ingredient of our method.

Lemma 2. Let f be a monotone Boolean function, A a subfamily of its minterms, and
let P be a monotone span program that computes f . Let A ∈ A, and let i, j ∈ A be
two elements in A with the property that the set

⋃
B∈Ai∪Aj B \ {i, j} does not contain any

minterm of f . Then the pairs (A, i) and (A, j) cannot be mutually dangerous.

Proof. Assume that the pairs (A, i) and (A, j) are mutually dangerous. This means that
there exist constants α1, . . . , α`, such that

∑`
q=1 αq = 1 and

∑`
q=1 αqV (Aq, i) = V (A, i),

where A1, . . . , A` are minterms in Ai \ {A} that do not contain j. Similarly, there ex-
ist constants α′1, . . . , α′`′, such that

∑`′
q=1 α

′
q = 1 and

∑`′
q=1 α

′
qV (A′q, j) = V (A, j), where

A′1, . . . , A
′
`′ are minterms in Aj \ {A} that do not contain i. Consider the vector

v =
∑̀
q=1

αq
∑
k∈Aq

V (Aq, k) +
`′∑
q=1

α′q
∑
k∈A′q

V (A′q, k)−
∑
k∈A

V (A, k) .

The minterms A′1, . . . , A′`′ do not contain i, and so the contribution of vectors labeled
by i to v is

∑
αqV (Aq, i) − V (A, i) = 0, and similarly the vectors labeled by j do not

contribute anything to v. Hence v is in the span of the set of vectors labeled by elements
of Y =

⋃
B∈Ai∪Aj B \ {i, j}. However,

v =
∑̀
q=1

αq1 +
`′∑
q=1

α′q1− 1 = 1 .

Thus P accepts the set Y that, by a hypothesis of the lemma, does not contain a minterm
of f .

A simple technical lemma is proved now that will be used in the proof of Theorem 3.

Lemma 3. Let S be a set of vectors from a linear space, and let the dimension of S be d.
Suppose that no vector in S is an affine combination of the other vectors in S. Then the
number of vectors in the set S is at most d+ 1.

Proof. Let S ′ be a set of the same cardinality as S, which contains the vectors of S with
a new coordinate, coordinate zero, added to each vector and fixed to be 1. The dimension
of the set S ′ can only increase by 1 with respect to the set S, therefore the dimension is
at most d + 1. Now assume that this set S ′ is not linearly independent, so there exists a
vector in S ′ which is a linear combination of the rest of the vectors in S ′. Since the zero
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coordinate in all the vectors is 1, this combination must be affine. Hence the original vector
(without the coordinate zero) is also an affine combination of the rest of the vectors, which
contradicts the assumption of the lemma. Hence the set S ′ is linearly independent, and so
its cardinality is its dimension, which is at most d+ 1. But |S ′| is the same as |S|, and the
statement of the lemma follows.

Definition 2. Consider a pair (A, i) where A ∈ A is a minterm that contains the element i.
We say that this pair is good if V (A, i) is not an affine combination of the vectors in
{V (B, i) : B ∈ Ai \ {A}}.

Definition 3. Let f be a monotone Boolean function, and A a subfamily of its minterms.
We say that A is a critical subfamily, if for every minterm A ∈ A there exist two elements
i, j ∈ A such that the following two conditions are satisfied.

C1. The only minterm in A that contains both i and j is A, i.e., Ai ∩ Aj = {A}.

C2. The set
⋃
B∈Ai∪Aj B \ {i, j} does not contain any minterm of f .

We are now ready to present two general theorems for proving lower bounds for mono-
tone span programs.

Theorem 3. Let f : {0, 1}m → {0, 1} be a monotone Boolean function, and A a critical
subfamily of its minterms. Then, for every field F ,

mSPF(f) ≥ |A| −m .

Proof. Let F be any field, and P a monotone span program over F that computes f . For
any A ∈ A, let i, j be elements of A satisfying conditions C1 and C2. By condition C1, if
V (A, i) is an affine combination of the vectors in {V (B, i) : B ∈ Ai \ {A}}, then it is an
affine combination of vectors of i in other minterms from Ai that do not contain j. This
means that if the pair (A, i) is not good then it is dangerous for j, and similarly if the pair
(A, j) is not good then it is dangerous for i. Thus by Lemma 2 and C2, every minterm
A ∈ A contains at least one element i such that the pair (A, i) is good. This shows the
following claim.

Claim 1. There are at least |A| good pairs.

We can now bound the number of good pairs that one element i can belong to. Let di
denote the dimension of the linear space spanned by the rows labeled by i.

Claim 2. There are at most di + 1 good pairs that contain the element i.
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Proof. Consider the set S of vectors of i in the minterms of good pairs. By the definition
of good pairs, the same vector cannot be the vector of i for two good pairs. That is, the
number of good pairs to which i belongs is simply the cardinality of S. Furthermore, S
satisfies the property that no vector in S is an affine combination of the other vectors in
S. Now the claim follows from Lemma 3.

To complete the proof of Theorem 3 we note that by Claim 2 the number of good pairs
is at most

∑m
i=1(di + 1), and by Claim 1 the number of good pairs is at least |A|. Hence,

the size of the span program, which by definition is
∑m
i=1 di, is at least |A| −m.

Adding an extra condition to the theorem we get an even simpler proof technique giving
slightly stronger bounds.

Theorem 4. Let f be a monotone Boolean function and A a critical subfamily of its
minterms. In addition, let A satisfy condition C0. Then, for every field F ,

mSPF(f) ≥ |A| .
Proof. Let F be any field, and P a monotone span program over F that computes f . In
addition to the observations made in the proof of Theorem 3 we only need the following
claim.

Claim 3. There are at most di good pairs that contain the element i.

Proof. Consider the set S of vectors of i in the minterms of good pairs. As in the proof
of Claim 2, the number of good pairs to which i belongs is simply the cardinality of S, and
S satisfies the property that no vector in S is an affine combination of the other vectors in
S. Now the claim follows from Lemma 1.

From Claim 3 it follows that the total number of good pairs is a lower bound on the
size of the span program. From Claim 1, there are at least |A| good pairs, which concludes
the proof.

We emphasize that condition C2 of Definition 3 requires that the set
⋃
B∈Ai∪Aj B \{i, j}

does not contain any minterm of f , not just the weaker condition that it does not contain
any minterm from A. However it is possible to apply our technique to functions with
a subfamily of minterms that satisfies only this weaker condition, if the subfamily may
be described by a restriction of the function. This follows from the theorem, proved in
[14], that if g is a restriction of f then SPF (g) ≤ SPF (f), and if f is monotone then also
mSPF (g) ≤ mSPF (f). (A restriction of a function is obtained by fixing the values of some
variables and considering the function on the remaining variables.)

4 Applications of the General Method

4.1 Cliques of size three

We consider the Clique3,n function, whose input is an undirected graph on n vertices,
represented by m =

(
n
2

)
variables, one for each possible edge. The value of the function is
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1 if and only if the graph contains a clique of size three (a triangle).

Corollary 5. For every field F ,

mSPF (Clique3,n) ≥ 2(n/3)3 −O(n) = Ω(m
3
2 ) .

We omit the proof of this corollary. It is similar to the proof of the lower bound for
cliques of size four, that we present in detail.

4.2 Cliques of size four

The function Clique4,n is defined similarly to Clique3,n.

Corollary 6. For every field F ,

mSPF (Clique4,n) ≥ 3(n/4)4 −O(n2) = Ω(m2) .

Proof. We choose a critical subfamily of minterms for Clique4,n as follows. We fix a
partition of the vertices into four color classes, each of size bn/4c or dn/4e. Let K consist
of all 4-cliques having one vertex from each class. We refer to the 4-cliques that belong to
K as 4-colored cliques.

We show that K is a critical subfamily. Consider a clique K ∈ K with vertices
a1, a2, a3, a4 from color classes 1, 2, 3, 4 respectively, and two of its non-adjacent edges
e12 = {a1, a2} and e34 = {a3, a4}. We shall prove that the choice of two non-adjacent
edges from each clique in K satisfies the conditions of Definition 3. Two non-adjacent
edges uniquely determine a 4-clique, and so condition C1 is satisfied.

Let K12 be the family of cliques that contain the edge e12, and define K34 similarly. In
the next claim we prove that condition C2 is also satisfied.

Claim 4. Let G be the graph with edges E =
⋃
B∈K12∪K34

B \ {e12, e34}. Then G does not
contain a 4-clique.

Proof. Since K only contains 4-colored cliques, each edge in E has its endpoints in
different color classes. Thus if G contains a 4-clique it has to be a 4-colored clique. The
vertices a1, a2, a3, a4 do not form a clique in G, since the edges e12 and e34 are missing.
Hence, without loss of generality assume some vertex b1 (where b1 6= a1) from color class 1
is in the 4-clique. No edge incident to b1 is contributed by a clique from K12. Since all the
cliques from K34 contain the edge e34, the only neighbour of b1 in class 3 is a3, and its only
neighbour in class 4 is a4. But the edge {a3, a4} is missing. Thus b1 cannot participate in
a 4-clique.

We have proved that K is a critical subfamily. It is easy to see that K satisfies condition
C0 as well. Theorem 4 gives a lower bound of |K| = (n/4)4 −O(n2).

We get a stronger bound by observing that any two non-adjacent edges in each K ∈ K
satisfy the conditions of Definition 3. By Lemma 2, for at least one of any two non-adjacent
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edges of a clique, the corresponding clique–edge pair must be good. Thus for every clique
K ∈ K there are at least three edges such that the pair (K, e) is good. This shows that
there are at least 3|K| good pairs. As we have shown in the proof of Theorem 4, the number
of good pairs is a lower bound on the size of the span program, and the improved bound
follows.

Our lower bounds for Clique3,n and Clique4,n are tight up to constant factors.
Let us define Clique∗4,n to be the monotone Boolean function whose set of minterms is

K, i.e., the set of 4-colored cliques defined above for a fixed partition of the vertices into
approximately equal color classes. We observe that the above lower bound applies to this
function as well, and is asymptotically tight in this case.

Corollary 7. Let n = 4q. Then, for every field F ,

3q4 ≤ mSPF (Clique∗4,n) ≤ 3q4 + 3q3 .

4.3 A function with minterms of size 2

In this subsection we exhibit a function whose minterms are of size 2 with monotone span
complexity Ω(m3/2). Let L1, ..., Ln be n subsets of {1, ..., n} such that the intersection of
every two subsets is of size at most 1. We will describe a simple construction of such sets
later. Define the function f , which has m = 2n variables denoted {a1, a2, ..., an, b1, ..., bn},
and whose minterms are {{ai, bj} : j ∈ Li}.

Corollary 8. For every field F ,

mSPF(f) ≥
n∑
i=1
|Li| .

Proof. We have to prove that f satisfies the conditions of Theorem 4. First we show
that the family of all the minterms of f is critical. Condition C1 is obvious since the
intersection of any two minterms contains at most one variable. To prove condition C2,
we take an arbitrary minterm, say {a1, b1} without loss of generality, and consider the
set X = {bj : j ∈ L1} ∪ {ai : 1 ∈ Li} \ {a1, b1}. Suppose that there is some minterm, say
{ai, bj}, contained in X. Now 1 ∈ Li since ai ∈ X, and j ∈ L1 since bj ∈ X. We also have
1 ∈ L1 since {a1, b1} is a minterm, and j ∈ Li since {ai, bj} is a minterm. However j 6= 1,
and this contradicts the fact that the size of the intersection of L1 and Li is at most 1. It
is easy to see that condition C0 is also satisfied and we get the lower bound of

∑ |Li|.
One construction for the sets Li is to take simply the lines of the projective plane of

order q, where q can be a prime power. The number of points and lines is n = q2 + q + 1.
Each line has q + 1 points, and each point is on q + 1 lines. The intersection of every two
lines is a single point. We note that this and similar constructions of sets with pairwise

10



intersections of size at most 1 have other applications in Boolean complexity theory, see
for example [19], [22], [29].

We call the function obtained by these sets the Lines function. Hence, the lower bound
for the function Lines follows. We can show also an asymptotically matching upper bound.

Corollary 9. For every field F ,

mSPF (Lines) = n3/2 +O(n) = Θ(m3/2) .

5 Limitations of Theorems 3 and 4

We proved tight bounds of Θ(m2) for one function and Θ(m3/2) for another function with
minterms of size 2. The following theorem proves that these lower bounds are the best
achievable from Theorem 3 and Theorem 4.

Theorem 10. Let f be a monotone function and A a critical subfamily of its minterms.
Then |A| is at most

(
m
2

)
. If, in addition, all the minterms in A are of size 2, then |A| is at

most 1
2(m3/2 +m/2).

Proof. By our assumptions, each minterm in A has a pair of elements that does not
appear in any other minterm in A. Hence there are at most

(
m
2

)
minterms in A.

Let A contain only minterms of size 2. If A contained four minterms of the form
{i, j}, {i, j′}, {i′, j}, {i′, j′}, then the minterm {i′, j′} would be contained in

⋃
B∈Ai∪Aj B \

{i, j}, violating condition C2. Now let Si = {a : {i, a} is a minterm of f}, the set of other
variables that appear with i in a minterm in A. It follows that for each pair of variables
there is at most one i such that Si contains both elements of the pair. We get(

m

2

)
≥

m∑
i=1

(
|Si|
2

)
≥ 1

2m

(
m∑
i=1
|Si|

)2

−
m∑
i=1
|Si|/2

by Schwarz’s inequality. Hence
∑ |Si| ≤ m3/2 + m/2 for m > 2. (We note that this fact is

also known from extremal graph theory [16].) Since
∑ |Si| counts every minterm from A

twice, we have |A| ≤ 1
2(m3/2 +m/2).
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(Hungary) (1993) 453–467.

14



Recent Publications in the BRICS Report Series

RS-94-46 Amos Beimel, Anna Ǵal, and Mike Paterson. Lower
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