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Fibrations and Calculi of Fractions

Jaap van Oosten

BRICS∗

Department of Computer Science, University of Aarhus
Denmark

Abstract

Given a fibration E → B and a class Σ of arrows of B, one can con-
struct the free fibration (on E over B such that all reindexing functors over
elements of Σ are equivalences.

In this work I give an explicit construction of this, and study its prop-
erties. For example, the construction preserves the property of being fi-
brewise discrete, and it commutes up to equivalence with fibrewise exact
completions. I show that mathematically interesting situations are exam-
ples of this construction. In particular, subtoposes of the effective topos
are treated.

Introduction. In the conference in Tours, July 1994, Jean Bénabou ([B2])
presented an alternative treatment of the calculus of fractions of [GZ](see section
1). One of his results was:

Theorem 0.1 (Bénabou) Let
E
�� p

B
be a fibration and Σ ⊂ B a class of arrows

admitting a calculus of right fractions. Then the class S of arrows in E which are
cartesian over elements of Σ also admits a calculus of right fractions. There is a
map of fibrations

E

��
p

//PS E[S−1]

��
B //

PΣ
B[Σ−1]

if and only if all the reindexing functors σ∗ for σ ∈ Σ are equivalences. Moreover,
in this case the diagram shown is a pullback.
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation
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By “a map of fibrations” is meant a commutative square of categories as in the
theorem, where the vertical arrows are fibrations and the top horizontal arrow is
a cartesian functor.

This paper is about some constructions relating to this: I study the free

fibration (on
E
�� p

B
) such that there is a map of fibrations from

E
�� p

B
to it, which

inverts all the arrows in Σ on the base level, and consequently the free fibration

on
E
�� p

B
over B with the property that all reindexing functors over arrows in Σ are

equivalences (by theorem 0.1, these problems are equivalent).
It should be noted that this is the construction of a special kind of colimit in

the 2-category of fibrations (see [PTJ] and [H]; this is the category with fibrations
as objects, maps of fibrations as 1-cells and vertical natural transformations as
2-cells), namely a bi-coinverter (the author thanks John Power for this piece of
terminology). In a 2-category, a bi-coinverter for a diagram of two parallel 1-cells
with codomain A and a 2-cell between them, is the universal 1-cell departing
from A making the 2-cell invertible. Any class of arrows Σ of a given category B
can be seen as a natural transformation between the functors dom and cod from
the discrete category on Σ to B, and in the fibrational references given above it
is explained how every such 2-cell (in Cat) lifts to a 2-cell between two maps of

fibrations, if B is the base of a fibration
E
�� p

B
. The bi-coinverter of this 2-cell is

exactly the mentioned construction.
I show that some mathematically interesting situations are examples of this

construction: filter-quotient toposes over germs of topological spaces, and some
subtoposes of the effective topos Eff . There is also some material on preservation
of coproducts.

1 Preliminaries

In this section I recall some definition and basic facts.
Given a category C, a class of arrows Σ ⊂ C is said to admit a calculus of right

fractions ([GZ]) if the following conditions hold:

1. Σ contains all identities and is closed under composition;

2. Every diagram
W

��
s

X //f
Y

with s ∈ Σ can be completed to a commutative
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square

V

��
t

//f ′

W

��
s

X //f
Y

with t ∈ Σ;

3. Whenever tf = tg for some parallel pair f, g and t ∈ Σ, there is s ∈ Σ with
fs = gs

In [GZ] it is shown that there is a category C[Σ−1] and an arrow PΣ : C → C[Σ−1]
which is universal among functors with domain C inverting all arrows in Σ (i.e.
functors F such that F (s) is an isomorphism for all s ∈ Σ), and in case Σ admits a
calculus of right fractions, this functor has a very constructive look: the category
C[Σ−1] has the same objects as C, and morphisms A→ B are equivalence classes
of spans A Voo s //f

B with s ∈ Σ, where two such spans (s, f) and (t, g) are
equivalent if and only if there is a commutative diagram:

V

~~

s

| | |
| | |
| |

  

f

AAA
AAA
AA

X Z

OO
a

��
b

Y

W

``

t

B B B B B B B B

>>

g

}}}}}}}}

with sa = tb ∈ Σ. The functor PΣ sends f : A → B to the equivalence class of
the span (id, f).

[GZ] note the following facts: if C has finite limits, then C[Σ−1] also has
finite limits and PΣ preserves them; given a parallel pair of arrows f, g in C,
PΣ(f) = PΣ(g) if and only if there is t ∈ Σ with ft = gt, and PΣ(f) is an
isomorphism if and only if f fits into a diagram

��
t

//g

��

h

� �
� �
� �
�

��
s

//
f

with s, t ∈ Σ. One calls the set of f such that PΣ(f) is an isomorphism the
saturation of Σ and says that Σ is saturated if it is equal to its own saturation.
It is easy to prove, using the above characterization of elements in the saturation
of Σ, that if Σ admits a calculus of right fractions, then so does its saturation,
and so, in as much one only is interested in C[Σ−1], one may as well assume
that Σ is saturated. In case C has pullbacks, this will mean that Σ is a pullback
congruence([B1]), that is: a class of arrows which contains all isomorphisms, is
stable under pullback and such that for composable f, g, if two of f, g, fg are in
the class then so is the third.
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2 Construction

Theorem 2.1 Let
E
�� p

B
be a fibration, and suppose Σ ⊆ B is a collection of arrows

of B which admits a calculus of right fractions. There is a fibration
G
�� q

B[Σ−1]
,

together with a map of fibrations

E //i

��
p

G

��
q

B //
PΣ
B[Σ−1]

with the universal property that any map of fibrations

E

��
p

//f H

��
r

B //g
C

such that g inverts all the arrows from Σ, has a factorization through
G
�� q

B[Σ−1]
,

which factorization is unique up to isomorphism. Moreover, if
E
�� p

B
is left exact,

then
G
�� q

B[Σ−1]
is too.

Proof. Without loss of generality, we may assume that Σ is saturated , i.e. Σ =
P−1

Σ (iso). It is not hard to check that the class of those arrows in E which are
cartesian over maps in Σ admits a calculus of right fractions; let’s call this class
S.

The objects of G are equivalence classes of pairs (σ,A) where A is an ob-
ject of E and σ is an arrow in Σ with domain p(A). (σ,A) is equivalent to
(τ, B) if the codomains of σ and τ coincide, and there is a commutative square

A

~~
σ}
}
}
}

X Z

__

φ

@ @ @ @ @ @ @

�� ψ~ ~
~ ~
~ ~
~

B

``

τ

A
A
A
A

(This “diagram”, containing data from different categories,
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means that σp(φ) = τp(ψ). Whenever such a diagram is used, the dashed arrow
is in the base category) with σ and τ are in Σ, and φ, ψ are cartesian, and the
composite σp(φ) = τp(ψ) is in Σ. The reader will have no trouble verifying that
this is an equivalence relation.

A morphism of G is an equivalence class of triples 〈(σ,A), (φ, f), (τ, B)〉 where
(σ,A) and (τ, B) represent objects of G and A Voo φ //f

B is a span with φ ∈
S. Two such triples 〈(σ,A), (φ, f), (τ, B)〉, 〈(σ′, A′), (φ′, f ′), (τ ′, B′)〉 are equiva-
lent if there is a commutative diagram

A

~~

σ

}
}
}
}

Voo φ //f
B

  

τ

A
A
A
A

X L

OO

ζ

//g

��
η

K

OO
u

��
v

Y

A′

``

σ′

A
A
A
A

V ′ //f ′oo φ
′

B′

>>

τ ′

}
}
}
}

with φζ ∈ S and u, v ∈ S. Let us check that this relation is an equivalence
relation. Obviously, it is symmetric and reflexive. As to transitivity, suppose we
are given

A

��

σ










Voo φ //f
B

��

τ

1
1
1
1
1
1
1
1

L

OO

ζ

��
η

//g
K

OO
u

��
v

X A′oo σ
′_ _ _ V ′oo φ

′
//f ′

B′ //τ ′ ___ Y

L′

OO

ζ′

��
η′

//g′

K ′

OO

u′

��
v′

A′′

XX

σ′′

0
0
0
0
0
0
0
0

V ′′oo φ
′′

//f ′′

B′′

FF

τ ′′

�
�
�
�
�
�
�
�

First construct squares
L′′

��
β

//α
L

��
η

L′ //ζ′

V ′

and
K ′′

��
b

//a
K

��
v

K ′ //u′
B′

with all arrows in S and

then
U

��
a′

//h
K ′′

��
a

L′′ //gα
K

and
U ′

��
b′

//h′
K ′′

��
b

L′′ //g′β
K ′

with a′, b′ ∈ S and finally
U ′′

��
a′′

//b′′
U

��
a′

U ′ //b′
L′′

with a′′, b′′ ∈ S. Now vahb′′ = vgαa′b′′ = vgαb′a′′ = f ′ηαb′a′′ = f ′ζ ′βb′a′′ =
u′g′βb′a′′ = u′bh′a′′ = vah′a′′. Since va ∈ S we may, if necessary prefixing with
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an element from S, assume h′a′′ = hb′′. Then the diagram

A

~~

σ

|
|
|
| Voo φ //f

B

!!

τ

B
B
B
B

X U ′′

OO

//

��

K ′′

OO

ua

��
v′b

Y

A′′

``

σ′′

B
B
B
B

V ′′oo φ
′′

//f ′′

B′′

>>

τ ′′

|
|
|
|

commutes.
To define composition, let us first observe that if 〈(σ,A), (φ, f), (τ, B)〉 repre-

sents a morphism in G and (σ′, A′) is another representative of its domain, there
is a span A′ V ′oo φ

′
//f ′

B representing the same morphism, for if

A

~~

σ

}
}
}
}

X W

aa
α

B B B B B B B B

~~ β| | |
| | |
| |

A′

``

σ′

A
A
A
A

witnesses that (A, σ) and (A′, σ′) represent the same object,

the span A′ V ′oo βφ
′

//fα′

B gives the same morphism.
To compose morphisms represented by the spans

X Aoo σ_ _ _ Voo φ //f
B //τ ___ Y

and
Y B′oo τ

′_ _ _ Woo ψ //g
C //ν ___ Z

, find a span (ψ′, g′) representing the latter, such that the codomain of ψ′ is B, a
square

U

��
χ

//f ′

W ′

��
ψ′

V //f
B

as usual with χ ∈ S, and take the span X Aoo σ_ _ _ Uoo φχ //g′f ′

C //ν ___ Z as a
representative for the composition. We must check that this is independent of
the choice of representatives; that is if a span (φ′, f ′) is equivalent to (φ, f) and
(ψ′, g′) is equivalent to (ψ, g) then the compositions are equivalent. Let’s look at
the diagram witnessing those equivalences, in which also the relevant squares for
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the compositions are drawn:

D

}}

η

| | |
| | |
| |

!!

f̄

CCC
CCC

CC

A

~~

σ

}
}
}
} Voo φ //f

B Woo ψ //g
C

  

ν

A
A
A
A

X K

OO

//

��

L

OO

��

M

OO
m

//

��
m′

N

OO

��

Z

A′

``

σ′

A
A
A
A

V ′oo φ
′

//f ′

B′ W ′oo ψ
′

//g′

C ′

>>

ν′

}
}
}
}

D′

``

η′

B B B B B B B B

==

f̄ ′

{{{{{{{{

Now find L L′oo //M with L L′oo in S such that

B Woo ψ

L

OO

��

L′oo //M

OO
m

��
m′

B′ W ′oo ψ′

commutes, and
K ′

��
k

// L′

��
K // L

,

K1

��

//D

��
η

K ′ // V

and

K2

��

// D′

��
η′

K ′ // V ′

with all the left hand

arrows in S; finally

K ′′

��

//K1

��
K2 // K ′

with all arrows in S. Perhaps replacing K ′′ by

K ′′′ with K ′′′ //K ′′ in S, then

A

~~

σ

}
}
}
} Doo φη //gf̄

C

  

ν

A
A
A
A

X K ′′

OO

//

��

N

OO

��

Z

A′

``

σ′

A
A
A
A

D′oo φ
′η′ //g′f̄ ′

C ′

>>

ν′

~
~
~
~

The proof that composition is associative, as well as the typing of it, is left to
the reader. This completes the definition of G. The functor G //q E[Σ−1] sends
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the object represented by (σ,A) to the codomain of σ and the map represented
by the span (φ, f) to the map represented by the span (σp(φ), τp(f)). It is clear
that this defines a functor.

The functor E //q G sends the object A to the equivalence class of the
identity on p(A) and a morphism f : A→ B to the equivalence class of the span

A Aoo = //f
B . It is clear that we have a commutative square of categories.

To see that q is a fibration, as well as that i is a cartesian functor we prove
that the morphism represented by the span A Voo φ //f

B is cartesian (from
(σ,A) to (τ, B)) if the arrow f is cartesian w.r.t. p. So suppose we have

X Aoo σ_ _ _ Voo φ //f
B

  

τ

A
A
A
A

Y

X ′ A′oo
ρ
_ _ _ Woo

ψ
//

g B′

>>

τ ′

}
}
}
}

as two morphisms: from [(A, σ)] to [(B, τ )] and from [(A′, σ′)] to [(B′, τ ′)] =
[(B, τ )], respectively, such that the q-image of the downmost arrow factors through
the q-image of the topmost one. That means that in B we have:

X p(A)oo σ p(V )oo p(φ) //p(f)
p(B)

!!

τ

DDD
DDD

DD

C

<<
h
zzzzzzzzz

��

π

~ ~
~ ~
~ ~
~ ~

Doo λ

::
h̄
uuuuuuuuu

��
b

Y

X ′ p(A′)oo ρ
p(W )oo

p(ψ)
//

p(g)
p(B′)

55

ν

kkkkkkkkkkkkkkkkk

We know that (τ, B) and (τ ′, B′) represent the same object so there is

B

  

τ

A
A
A
A

B′′

==
α
{{{{{{{{

!!β BBB
BBB

BB
Y

B′

>>

ν

}
}
}
}

in E with α and β in S. Let D̄ //b
W cartesian over b, and

|D|

��
β′

//g′

B′′

��
β

D̄ //gb
B′

8



with β ′ ∈ S. Then we have: τp(αg′) = νp(β)p(g′) = νp(g)bp(β ′) = τp(f)h̄p(β ′).
Since τ ∈ Σ there is t ∈ Σ, t : D′ → p(|D|) such that p(αg′)t = p(f)h̄p(β ′)t.
Choose |t| : |D′| → |D| cartesian over t. Then αg′|t| factors uniquely through f
via an |h| : |D′| → V over h̄p(β ′)t.

So upstairs we have:

A Voo φ //f
B

  

τ

A
A
A
A

|D′|

OO

|h|

//g′t

��
bβ′t

B′′

��
β

Y

A′ Woo
ψ

//
g B′

>>

ν

~
~
~
~

and this gives the factorization. For (ρ, A′) and (ρp(ψ),W ) represent the same
object, and the span W ← |D| → V therefore gives the factorization [(ρ, A′)]→
[(σ,A)] = [(σp(φ), V )], and the composition is clear.

For the universal property, if

E

��
p

//F H

��
r

B //g
C

is a map of fibrations such that g inverts every map in g, then F inverts ev-
ery map in S since cartesian over an iso implies being an iso; we can therefore
define a unique (up to isomorphism) functor from G to H by sending the span

A Voo φ //f
B to F (f)F (φ)−1.

The left exactness property is proved in a similar way as in [GZ].

In the case of a left exact fibration (by which I mean a fibration which is a
finite limit preserving functor between left exact categories), or even just a fi-

bration
E
�� p

B
such that B has pullbacks, a far more conceptual and simple proof

can be given, because the construction in the proof of theorem 2.1 is really a
two-step construction: first add freely cocartesian arrows over arrows in Σ, and
then force (by a calculus of fractions construction) these to be isomorphic to the
existing cartesian arrows over arrows in Σ. First a theorem about preservation
of coproducts in the situation where one inverts vertical maps.

Theorem 2.2 Let
E
�� p

B
be a fibration and M a class of vertical maps in E which

9



admits a calculus of right fractions, so
E
�� p

B
factors through a functor E[M−1]→ B.

Then this functor is a fibration and PM : E → E[M−1] is cartesian.

Moreover, suppose Σ ⊂ B is a class of arrows such that
E
�� p

B
has cocartesian

liftings over elements of Σ; then PM preserves those cocartesian liftings if and
only if the two following conditions hold:

1. Any diagram
V ′

��
τ ′

X //f
Y

in E with f cocartesian over p(f) ∈ Σ and

τ ′ ∈ M, can be completed to a commutative square
V ′

��
τ ′

//f ′

V

��
τ

X //f
Y

with f ′

cocartesian over p(f) and τ in P−1
M (iso);

2. Any diagram

V

��
τ

X //
f

Y

with τ ∈M and f cocartesian, can be completed

to a commutative diagram
V ′

��
τ ′

//f ′

V

��
τ

X //f
Y

with τ ′ ∈ M and f ′ satisfying the

property: if k1fs = k2fs for s ∈ M and k1, k2 a parallel pair with p(k1) =
p(k2), then there is t ∈M with k1t = k2t

Proof. Following [B1] I write p/M for the unique factorization of p through
E[M−1]. I prove that PM preserves cartesian arrows; since E[M−1] has the same
objects as E, this shows that p/M is a fibration. If f : X → Y is cartesian
w.r.t. p and (s, g) : Z → Y an arrow in E[M−1] such that p/M((s, g)) factors
through f , then g factors through f so (s, g) factors through f . As for uniqueness,
suppose (s, g) and (t, h) represent maps in E[M−1] such that f(s, g) = f(t, h) and
p/M((s, g)) = p/M((t, h)) then p(g) = p(h) and there is a diagram

��

s

� �
� �
� �
�

//g

��

f

??
??
??
?OO

a

��
b

__

t

? ? ? ? ? ? ?
//

h

??

f

�������

10



with a, b vertical, fga = fhb. So ga = hb; so (s, g) and (t, h) represent the same
map in E[M−1]; so f is cartesian in E[M−1].

Now suppose PM preserves Σ-indexed coproducts. Condition 1) follows at

once: given

V ′

��
τ ′

X //
f

Y

, let f ′ : V ′ → V be cocartesian over p(f) at V ′ and

τ : V → Y the canonical vertical. Then since PM(f ′) and PM(fτ ′) are both
cocartesian, τ ∈ P−1

M (iso). As for 2), since M is a calculus of fractions there
is a square as pictured with τ ′ ∈ M, and PM(f ′) will be cocartesian; so if
k1f ′s = k2f ′s for k1, k2, s as in 2), then since f ′s is also cocartesian in E[M−1],
k1 = k2 in E[M−1]; so k1t = k2t for some t ∈M.

Conversely, let the conditions hold and f : X → Y cocartesian in E. Given
(τ ′, g) : X → Z in E[M−1] such that its image factors through f i.e. p(g) = hp(f)

for some h, since there is a square
V ′

��
τ ′

//f ′

V

��
τ

X //f
Y

with f ′ cocartesian, there is h̄ in

E over h with g = h̄f ′ so (τ ′, g) is the composition (τ, h̄)f . As for uniqueness,
suppose for two arrows in E[M−1]: (s1, k1) and (s2, k2) that their images are
equal and (s1, k1)f = (s2, k2)f . Without loss of generality we may assume that
s1 = s2 = τ , say. Find a square

V ′

��
τ ′

//f ′

V

��
τ

X //f
Y

as in 2); the compositions are (τ, ki)f = (τ ′, kif ′) and they are equal in E[M−1]
which means there is a diagram

��

τ ′

� �
� �
� �
�

��

k1f
′

??
??
??
?OO

u

��
v

__

τ ′

? ? ? ? ? ? ?

??

k2f ′

�������

with u, v ∈ M. Again, we may assume u = v and k1f ′u = k2f ′u. By property
2) then, k1t = k2t for some t ∈ M, which means that k1 = k2 in E[M−1], so
(τ, k1) = (τ, k2).

11



Theorem 2.3 Suppose the category B has pullbacks. Then the free fibration (in

the category of fibrations over B) on
E
�� p

B
with the property that all reindexing

functors σ∗ for σ ∈ Σ are equivalences, can be constructed in the following way:
first, let E ′ be the category (E↓B)∩Σ, that is the category whose objects are pairs
(A, σ) where A ∈ E and σ : p(A) → X is an element of Σ, and whose maps:
(A, σ) → (B, τ ) are pairs (f,m) with f : A → B and m : X → Y such that
τp(f) = mσ. This is fibered over B by the functor which sends (A, σ) to the
codomain of σ. Then take E ′[M−1], whereM is the class of vertical maps (φ, id)
with φ cartesian over p(φ) ∈ Σ.

Proof. Of course this follows by combining theorems 0.1 and 2.1 since the re-

quired fibration must be the pullback of the fibration
G
�� q

B[Σ−1]
constructed in 2.1,

along PΣ. However there is an independent argumentation which also serves to
explain the construction in 2.1. The category E ′ is fibered over B since for an
arrow m : X → Y in B and an object (B, τ : p(B)→ Y ) of E ′, to get the cartesian
over m one takes the pullback

p(A)

��
σ

//m′ p(B)

��
τ

X //m
Y

and chooses m̄ : A→ B cartesian (w.r.t. p) overm′ at B. The point is, that
E ′

�� cod
B

is the free fibration on
E
�� p

B
with Σ-indexed coproducts: that is, E ′ has cocartesian

liftings over all arrows in Σ, and any cartesian map E → H of fibrations over B
for which H has Σ-indexed coproducts, factors through E ′ by a cartesian functor
E ′ → H which preserves cocartesian arrows over elements of Σ. This is easy to
check: an arrow (f,m) is cocartesian if and only if f is an isomorphism.

It is not hard to see that the class M admits a calculus of right fractions.

Moreover, all the canonical vertical comparison maps ��
i

??
σ̄
������� //

σ

and ��
j

��

σ̄

??
??
??
?

//
σ

be-

tween a cocartesian and a cartesian lifting of σ ∈ Σ, are in M, as is obvious.
Furthermore, it follows by checking the conditions of theorem 2.2 forM that PM
preserves cocartesian liftings over elements of Σ. So in E ′[M−1], all the σ∗’s are
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equivalences, and it follows that if K is the free one on
E
�� p

B
with this property, we

have a unique (up to natural isomorphism) cartesian functor from K to E ′[M−1]
over B. On the other hand, since K has Σ-indexed coproducts there is a unique
one from E ′ to K, preserving these coproducts; but this functor must invert all
arrows in M since let (φ, id) : (A, σ : p(A) → X) → (B, τ : p(B) → X) an
element ofM. Then (φ, p(φ)) is cartesian: (A, id)→ (B, id) and the cocartesian
lifting over p(φ) at (A, id) lands at (A, p(φ)) so (φ, id) : (A, p(φ)) → (B, id) is a
comparison map. But the map (φ, id) : (A, σ) → (B, τ ) is the Στ -image of this
comparison map (Στ being the left adjoint of τ ∗) which must be inverted since
E ′ → K preserves Σ-indexed coproducts.
The only reason I asked for pullbacks in B in theorem 2.3 was, that without it,
the functor cod from E ′ = (E↓B) ∩Σ to B, need not be a fibration and therefore
the reasoning in the proof does not apply. However, the functor E ′[M−1] → B
constructed there always is, and it is equivalent (as a fibration over B) to the
pullback along PΣ : B → B[Σ−1] of the fibration G → B[Σ−1] constructed in 2.1.

So we can always apply the construction in 2.3, even if B does not have pull-
backs. By the pullback property then, we know that the resulting fibration has
fibrewise categorical property P if and only if G → B[Σ−1] has (categorical=stable
under equivalences).

Proposition 2.4 The construction of 2.3 preserves the properties of being fi-
brewise a preorder and of being fibrewise a groupoid. The construction of 2.1
moreover preserves the property of being fibrewise discrete. The resulting functor
from SetB

op
to SetB[Σ−1]op

is (PΣ)!, the left Kan extension along P op
Σ .

Proof. Recall that
E
�� p

B
is fibrewise a preorder if and only if p is faithful, and

E
�� p

B
is fibrewise a groupoid if and only if every map in E is cartesian.

So let
E
�� p

B
be faithful and

A

��
σ �
�
�

//φ1

//
φ2

B

��
τ�
�
�

X //
f

Y

two maps in E ′ (notation from 2.3) over the same map in B; since τp(φ1) = τp(φ2)
there is a ψ ∈ Σ, ψ : C ′ → p(A) with p(φ1)ψ = p(φ2)ψ. Pick ψ : C → A cartesian
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over ψ. Then since p is faithful, φ1ψ = φ2ψ where now ψ is a map:

C

��
σψ �
�
�

X

→
A

��
σ�
�
�

X

in E ′ over the identity on X. But this means that the two maps φ1, φ2 will be
equal in E ′[M−1].

If
E
�� p

B
is fibrewise a groupoid, let

A

  
σ @
@
@
@ A′oo ψ //φ

��
σ′�
�
� B

~~
τ}
}
}
}

X

represent a vertical map

in E ′[M−1]; then assuming Σ saturated, since τp(φ) ∈ Σ, p(φ) ∈ Σ and φ is
cartesian because all maps are; so the map is iso.

Moreover, if in the case of construction 2.1 we have that the original fibration
is discrete, then certainly the new one is fibrewise a preorder and a groupoid, but
then for any vertical map the domain and codomain are the same object, and
the unique iso is the identity. The statement about the functor between presheaf
categories is an easy verification.

3 Some mathematical examples

3.1 Filter quotient toposes and germs of topological spa-
ces

Let Et∗ denote the category of étale maps Y → (X, ∗) of topological spaces,
where ∗ is a point in the base space X; maps are commutative squares of spaces,
where the base map preserves the base point.

Et∗ is fibered over Top∗ (the category of topological spaces with a base point),
and the fibre over the space (X, ∗) is the topos of sheaves over X. Let Σ ⊂ Top∗

consist of the open embeddings. It is clear that Top∗[Σ−1] is the category with as
maps the germs of maps (X, ∗)→ (Y, ∗). It is easy to see what the fibers of the
fibration over Top∗[Σ−1], resulting from the construction in 2.1, will be: namely,
the fiber over (X, ∗) is the quotient of Sh(X) by the neighborhood filter of ∗.
This is because the fiber over object X in B[Σ−1], is the colimit of the fibers EY
for all σ : Y → X ∈ Σ. The filter quotient construction is described in detail in
[MM].

It should be noted that the filter quotient construction itself is an example of
2.1. Every topos E is fibered over the lattice Sub(1) of subobjects of 1, in the
sense that over U ≤ 1 we have the slice E/U . Given a filter U on Sub(1), the class
of those inequalities U ≤ V such that for some S ∈ U , S ∧ U = S ∧ V , admits
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a calculus of right fractions, resulting in the fraction category (poset) Sub(1)/U ;
and the new fiber over 1 (applying 2.1) is the filter quotient E/U .

3.2 Subtoposes of the effective topos

Let R be the category of subsets of IN and partial recursive functions: a map
f : A → B in R is the restriction to A of a partial recursive function which is
defined on A and lands in B.
R is fully embedded in the effective topos Eff as ¬¬-closed subobjects of N

(N denotes the natural numbers object of Eff), and I denote its image under the
embedding also by R. The fibration EffR → R is the restriction of the codomain
fibration to R.

[RR] show that this fibration arises from the following construction. Let ProjR

be the fibration over R defined by: objects are diagrams X
f
−−. I α→ J with X a

set, I α→ J in R and f a surjection of sets. Maps are commutative diagrams

X

��
f

// X ′

��
f ′

I

��
α

// I ′

��
α′

J // J ′

with the top row a map in Set and the bottom square inR. This is fibered overR
by the functor which takes the last component (ProjR is itself a kind of universal
construction, but that doesn’t concern me here). Now EffR is the fiberwise exact
completion of ProjR. This is a construction which can be performed on any left
exact fibration, and goes as follows (the reader is referred to [CCM] or [RR] for

unexplained notions): given a left exact fibration
E
�� p

B
, let the objects of Eex be

vertical pseudoequivalence relations (i. e. R
//
// X are vertical maps, as well as

those maps witnessing that it is a pseudoequivalence relation), and morphisms

from R
//r1

//
r2

X to S
//s1

//
s2

Y are equivalence classes of arrows X f→ Y such that

for some φ : R → S we have fri = siφ (i = 1, 2). Two such f, f ′ are equivalent
if for some T : X → S, s1T = f and s2T = f ′.

Let’s call a fibration fiberwise exact if it is left exact, every fiber is exact
and reindexing preserves the exact structure (quotients of equivalence relations).
Every map: E → F of fibrations over B such that F is fiberwise exact, factors
essentially uniquely through Eex → F which preserves the fiberwise exact struc-
ture. By an easy adaptation of the theory of exact completions (see [CCM] or
[RR]), a fiberwise exact fibration is of form Eex if and only if every fiber has
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enough projectives, the category of projectives in each fiber is left exact, and
reindexing preserves projectives in the fibers. In that case, it is the fiberwise
exact completion of its subfibration of projectives in the fibers.

Now [RR] remark that their construction of Eff applies as well to any other
Eff -like topos, constructed over another partial combinatory structure. In partic-
ular, one can look at the structure of A-recursive functions for a subset A ⊂ IN.
Computing these functions, one is allowed to consult an “oracle” which gives
answers to the question x ∈ A? for any x; of course this begins to be interesting
when A is not recursive. One has a topos EffA and it is known ([Hy], [P]) that
EffA is a sheaf subtopos of Eff . Let RA be the analogon of R with respect to
A-partial recursive functions. One has the fibration (EffA)RA → RA, and it is
likewise the exact completion of a left exact fibration ProjRA → RA.

Theorem 3.1 RA arises as a calculus of fractions construction out of R, and
the construction of 2.1, applied to the fibration EffR → R with respect to this
calculus of fractions, yields (EffA)RA → RA.

Proof. Assume some standard, primitive recursive coding of finite sequences
of natural numbers, written 〈x1, . . . , xn〉. Say that σ ∈ IN is an A-information
sequence if σ is of form 〈〈x1, i1〉, . . . , 〈xn, in〉〉 where x1 < . . . < xn and for all k,
1 ≤ k ≤ n, ik = 0 if xk ∈ A, and ik = 1 otherwise. In particular, the empty
sequence 〈〉 is an A-information sequence.

Let the class P of arrows in R be defined by: X ′ π→ X is in P if and only if
X ′ is of form X ′ = {〈x, σx〉 | x ∈ X}, where all σx are A-information sequences,
π is the projection 〈x, σx〉 7→ x, and there is a machine M which, consulting an
oracle, for all x ∈ X has a terminating A-recursive computation and σx codes
exactly the information about A this computation requires.

Let Σ be the class of arrows in R which are of form f→ or f→ π→ with f iso
and π ∈ P . I show that Σ admits a calculus of right fractions, and that RA is
isomorphic to R[Σ−1].

First, given X
π→ Y

f→ Z with π ∈ P and f iso, there is a commutative
diagram

X

��
g

//π
Y

��
f

X ′ //π′
Z

with g iso and π′ ∈ P , for if X = {〈y, σy〉 | y ∈ Y } let X ′ = {〈z, σf−1(z)〉 | z ∈ Z}.
Secondly, given X π→ Y

π′→ Z with π, π′ ∈ P , there is a commutative diagram

X

��
g

//π
Y

��
π′

X ′ //π′′
Z
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with g iso and π′′ ∈ P . For, if X = {〈y, σy〉 | y ∈ Y } and Y = {〈z, τz〉 | z ∈ Z},
let X ′ = {〈z, τz ◦ σ〈z,τz〉〉 | z ∈ Z} where τz ◦ σ〈z,τz〉 is the A-information sequence
obtained by taking the union of the sequences τz and σ〈z,τz〉. Suppose M computes
A-recursively τz for each z, and N computes likewise σy for each y. Then there
is obviously a machine which A-recursively computes τz ◦ σ〈z,τz〉 for each z. So
π′′ ∈ P . To show that g is iso, adapting M to act on 〈z, τz ◦σ〈z,τz〉〉, let it act on z
and instead of asking the oracle, consult the second part of the input τz ◦ σ〈z,τz〉.
This yields 〈z, τz〉 and repeating this with N gives the required inverse of g′.

¿From these two remarks it follows that Σ is closed under composition. It
trivially contains all identities, and since all arrows in Σ are mono in R the last
axiom for a calculus of fractions is trivially verified.

Furthermore, given

X

��
π

Z //
f

Y

with π ∈ P , there is a pullback diagram

W

��
g

//f ′

X

��

πZ ′

��
π′

Z //
f

Y

in R, with g iso and π′ ∈ P . For let Z ′ = {〈z, σf(z)〉 | z ∈ Z}, then Z ′ '
{〈〈y, σy〉, z〉 | y ∈ Y, z ∈ Z, f(z) = y} = {〈x, z〉 | πx = fz}.

Finally, note that any arrow f : X → Y in RA fits in a diagram
X ′

~~

π

| | |
| | |
| |

  

f ′

AAA
AAA
AA

X //
f

Y

with f ′ and π in R, and π ∈ P ; from this one easily deduces

that RA is isomorphic to R[Σ−1].
The last remark may be strengthened a bit by noting that for every commu-

tative square
J

��
g

//l
H

��
h

K //f
L

in RA with g and h in R, and every such resolution
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K ′

~~

π

| | |
| | |
| |

  

f ′

AAA
AAA
AA

K //
f

L

with π ∈ P and f ∈ R, there is a commutative prism

J ′

~~

π′

| | |
| |
| | |

  

l′

BBB
BBB
BB

��

J //l

��

g

H

��

K ′

~~

π

| | |
| | |
| |

  

f ′

BBB
BBB
BB

K //
f

L

with π′ ∈ P , l′ ∈ R.
To show that the fibration ProjRA → RA arises from ProjR → R by applying

the construction of 2.1 w.r.t. the class Σ, write E for ProjR, and let E ′ and M
be as in 2.3. A typical object of E ′ is of form

X

��
I

��
α

J

��
σ �
�
�

K

with σ ∈ Σ; send this to X−−.I σα→ K. This defines a functor E ′[M−1] →
P ∗Σ(ProjR) over R which, by the help of the prism remark, is seen to be fully
faithful and essentially surjective on objects.

The final statement of the theorem now follows from the following lemma.

Lemma 3.2 Let
E
�� p

B
be a left exact fibration. Then the construction of 2.3 (hence

that of 2.1) commutes with fibrewise exact completion: writing Σ(E)→ B for the
effect of construction 2.3 on E → B, Σ(Eex) is equivalent to (Σ(E))ex as fibrations
over B.

Proof. This is a simple consequence, by the universal properties of these con-
structions, of the following two remarks:
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1) If E → B is such that the reindexing functors σ∗ for all σ ∈ Σ are equivalences,
then the same holds for Eex → B.

For, a map [f ] :
S

�� ��
Y

→
R

�� ��
X

between vertical pseudoequivalence relations is carte-

sian in Eex if and only if
S

�� ��
Y

is isomorphic to (pf)∗(
R

�� ��
X

), where (pf)∗ is reindexing

in E.
Similarly, if E → B has cocartesian liftings over σ ∈ Σ such that the corre-

sponding coproduct functors Σσ are left exact, and [f ] :
S

�� ��
Y

→
R

�� ��
X

is over pf ∈ Σ,

then this is cocartesian if and only if
R

�� ��
X

is isomorphic to Σpf (
S

�� ��
Y

).

Alternatively, using choice to obtain a cleavage for E → B and using the 2-
functoriality of the construction (−)ex, one sees that it must preserve equivalences.

2) If E → B is fiberwise exact then so is Σ(E)→ B.
For again, let E ′ andM as in 2.3. To find the regular epi-mono factorization of a

typical vertical map
A

  
σ @
@
@
@ Voo φ //f

B

~~
τ}
}
}
}

X

, factor f as fi with f cartesian and i ver-

tical (w.r.t. E → B); and factor i. This is obviously stable under pullback. Since

τp(f) = σp(φ) ∈ Σ, the map
V ′

  τp(f) A
A
A
A

//
f

B

~~
τ~
~
~
~

X

is inM. To see that equivalence

relations are effective, it suffices to observe that every vertical equivalence relation
in Σ(E) is isomorphic to a suitable coproduct of vertical equivalence relations in
E. This goes as follows: let

R

  τ @
@
@
@ Voo φ //f1

//
f2

A

~~ σ~
~
~
~

X

a typical equivalence relation in E ′[M−1]. Since σp(f1) = σp(f2) there is ψ :
p(C) → p(V ) in Σ with p(f1)ψ = p(f2)ψ Choose ψ : C → V cartesian over ψ
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and let C ′ q→ A cartesian over p(f1)ψ. There are vertical maps C
//q1
//

q2
C ′ which

are the unique factorizations of fiψ through q. C
//q1
//

q2
C ′ may not be a vertical

equivalence relation in E, but pulling it back along a suitable element of Σ we
get one, and that one is the kernel pair of its quotient, since E → B is fiberwise
exact. This structure can then be transferred back again.

Alternatively, using choice to obtain a cleavage for E → B, one may observe
that exactness is the kind of structure that is preserved under filtered colimits.

There is a point about the definition of Σ in the proof of theorem 3.1 which
I think deserves to be made, although I’m not sure I understand the significance
of it. The definition is sufficiently “effective”, that is the axioms for a calculus of
fractions are validated recursively in indices for the morphisms of R (e.g. given

��
f

//
σ

with σ ∈ Σ, one can get indices for σ′, f ′ with σf ′ = fσ′ recursively in

indices for σ and f ; and given an index m̄ of a machine which A-recursively com-
putes m : A→ B in RA one can find, recursively in m̄, indices for its resolution

A′

~~

π

~ ~
~ ~
~ ~
~

  

m′

AA
AA
AA
A

A //
m B

with π ∈ Σ).

This means the following. R lives as internal category in Eff and there is
an internal functor p : R → Ω displaying Ω as the poset reflection of R in Eff .
Now the above remark entails that we can carry out the calculus of fractions
construction R[Σ−1] in Eff , and prove that it is isomorphic to RA (which also
lives in Eff). The poset reflection of RA is ΩA, the object of closed truth values
for the topology jA giving EffA as subtopos of Eff , and there is a commutative
diagram

R

��
p

//PΣ RA

��
pA

Ω //jA ΩA

in Eff .
This must have some meaning for the internal logic of Eff . For example, sup-

pose that Σ is an internal calculus of fractions in Eff , such that PΣ : R→R[Σ−1]
has a full and faithful right adjoint. This adjunction carries over to the poset
reflections, giving an internal topology in Eff .
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