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Strong Concatenable Processes: An Approach to
the Category of Petri Net Computations

Vladimiro Sassone
BRICS∗ – Computer Science Department

University of Aarhus, Denmark

Abstract. We introduce the notion of strong concatenable process for Petri
nets as the least refinement of non-sequential (concatenable) processes which can
be expressed abstractly by means of a functor Q[ ] from the category of Petri
nets to an appropriate category of symmetric strict monoidal categories with free
non-commutative monoids of objects, in the precise sense that, for each net N ,
the strong concatenable processes of N are isomorphic to the arrows of Q[N ].
This yields an axiomatization of the causal behaviour of Petri nets in terms of
symmetric strict monoidal categories.

In addition, we identify a coreflection right adjoint to Q[ ] and we characterize
its replete image in the category of symmetric monoidal categories, thus yielding
an abstract description of the category of net computations.

Introduction

Petri nets, introduced by C.A. Petri in [17] (see also [18, 20]), are unanimously
considered among the most representative models for concurrency, since they
are a fairly simple and natural model of concurrent and distributed computation.
However, Petri nets are, in our opinion, not yet completely understood.

Among the semantics proposed for Petri nets, a relevant role is played by the
various notions of process [19, 9, 2], whose merit is to provide a faithful account
of computations involving many different transitions and of the causal connec-
tions between the events occurring in a computation. However, process models,
at least in their standard forms, fail to bring to the foreground the algebraic
structure of nets and their computations. Since such a structure is relevant
to the understanding of nets, they fail, in our view, to give a comprehensive
account of net behaviours.

The idea of looking at nets as algebraic structures [20, 16, 23, 24, 3, 4, 15],
has been given an original interpretation by considering monoidal categories
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Strong Concatenable Processes

as a suitable framework [13]. In fact, in [13, 6] the authors have shown that
the semantics of Petri nets can be understood in terms of symmetric monoidal
categories—where objects are states, arrows processes, and the tensor product
and the arrow composition model respectively the operations of parallel and
sequential composition of processes. In particular, [6] introduced concatenable
processes—the slightest variation of Goltz-Reisig processes [9] on which sequen-
tial composition can be defined—and structured concatenable processes of a
Petri net N as the arrows of the symmetric strict monoidal category P[N ].
This yields an axiomatization of the causal behaviour of a net as an essentially
algebraic theory and thus provides a unification of the process and the algebraic
view of net computations.

However, also this construction is somehow unsatisfactory, since it is not
functorial. More strongly, as illustrated in Section 2, given a morphism between
two nets—which is nothing but a simulation—it may not be possible to identify
a corresponding monoidal functor between the respective categories of compu-
tations. This situation, besides showing that our understanding of the structure
of nets is still incomplete, has also other drawbacks, the most relevant of which
is probably that it prevents us to identify the category (of the categories) of net
computations, i.e., to axiomatize the behaviour of Petri nets “in the large”.

This paper presents an analysis of this issue and a solution based on the
new notion of strong concatenable processes, introduced in Section 4. These
are a slight refinement of concatenable processes which are still rather close to
the standard notion of process: namely, they are Goltz-Reisig processes whose
minimal and maximal places are linearly ordered. In the paper we show that,
similarly to concatenable processes, the strong concatenable processes of N can
be axiomatized as an algebraic construction on N by providing an abstract sym-
metric strict monoidal category Q[N ] whose arrows are isomorphic to the strong
concatenable processes of N . The category Q[N ] constitutes our proposed ax-
iomatization of the behaviour of N in categorical terms.

The key feature of Q[ ] is that, differently from P[ ], it associates to net N
a monoidal category whose objects form a free, non-commutative monoid. The
reason for renouncing to commutativity, a choice that at first glance may seem
odd, is explained in Section 2, where the following negative result is proved:
under very reasonable assumptions, no mapping from nets to symmetric strict
monoidal categories whose monoids of objects are commutative can be lifted to
a functor, since there exists a morphism of nets which cannot be extended to
a monoidal functor between the appropriate categories. Thus, abandoning the
commutativity of the monoids of objects seems to be a price that has to be paid
in order to obtain a functorial version of the algebraic semantics of nets given
in [6]. Then, bringing such a condition at the level of nets, instead of taking
multisets of places as sources and targets of computations, we consider strings
of places, a choice which leads us directly to strong concatenable processes.
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Correspondingly, a transition of N is represented by many arrows in Q[N ],
one for each different “linearization” of its pre-set and its post-set. However,
such arrows are “linked” to each other by a “naturality” condition, in the precise
sense that, when collected together, they form a natural transformation between
appropriate functors. This naturality axiom is the second relevant feature ofQ[ ]
and it is actually the key to keep the computational interpretation of the new
category Q[N ] surprisingly close to the category P[N ] of concatenable processes.

Concerning functoriality, in Section 3 we introduce TSSMC⊗, a category of
symmetric strict monoidal categories with free non-commutative monoids of ob-
jects, called symmetric Petri categories, whose arrows are equivalence classes of
those symmetric strict monoidal functors which preserve some further structure
related to nets, and we show that Q[ ] is a functor from Petri, a rich category
of nets introduced in [13], to TSSMC⊗. In addition, we prove that Q[ ] has
a coreflection right adjoint N [ ]: TSSMC⊗ → Petri. This implies, by general
reasons, that Petri is equivalent to an easily identified coreflective subcategory
of TSSMC⊗, namely the replete image of Q[ ]. The category TSSMC⊗, together
with the functors Q[ ] and N [ ], constitutes our proposed axiomatization (“in
the large”) of Petri net computations in categorical terms.

Although this contribution is a first attempt towards the aims of a functorial
algebraic semantics for nets and of an axiomatization of net behaviours “in the
large”, we think that the results given here help to deepen the understanding
of the subject. We remark that the refinement of concatenable processes given
by strong concatenable processes is similar and comparable to the one which
brought from Goltz-Reisig processes to them. Clearly, the passage here is less
obvious on intuitive grounds, since it brings us to model Petri nets, which after
all are just multiset rewriting systems, using strings. It is important, however,
to remind that the result of Section 2 makes strong concatenable processes
“unavoidable” if a functorial construction is desired. In addition, from the
categorical viewpoint, our approach is quite natural, since it is the one which
simply observes that multisets are equivalence classes of strings and then takes
into account the categorical paradigm, following which one always prefer to
add suitable isomorphisms between objects rather than considering explicitly
equivalence classes of them.

Some preliminary related results appear also in [21].
Notation. Given a categoryC, we denote the composition of arrows inC by the usual symbol
◦ and follow the usual right to left order. The identity of c ∈ C is written as idc. However,

we make the following exception. When dealing with a category in which arrows are meant to
represent computations, in order to stress this, we write arrow composition from left to right,
i.e., in the diagrammatic order, and we denote it by ; . Moreover, when no ambiguity arises,
idc is simply written as c. We shall use SSMC to indicate the category of (small) symmetric
strict monoidal categories and symmetric strict monoidal functors. Since the monoidal cat-
egories considered in the paper are always strict monoidal and (non-strictly) symmetric, we
may sometimes omit to mention all the attributes without causing misunderstandings.
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Strong Concatenable Processes

The reader is referred to [12] for the categorical concepts used in the paper. The basic
definitions concerning monads and symmetric strict monoidal categories are summarized, re-
spectively, in Appendices A and B.

Acknowledgements. I wish to thank José Meseguer and Ugo Montanari to whom I am
indebted for several discussions on the subject. Thanks to Mogens Nielsen, Claudio Hermida
and Jaap Van Oosten for their valuable comments on an early version of this paper.

1 Concatenable Processes

In this section we recall the notion of concatenable process [6] and we give the
definitions which will be used in the rest of the paper.
Notation. Given a function ν from a set S to the set of natural numbers ω, its support is
the subset of S consisting of those elements s such that µ(s) > 0. We denote by S⊕ the set
of finite multisets of S, i.e., the set of all functions from S to ω with finite support. We shall
represent a finite multiset ν ∈ S⊕ as a formal sum

⊕
i∈I nisi where {si | i ∈ I} is the support

of ν and ni = ν(si), i.e., as a sum whose summands are all nonzero.

Remark. We recall that S⊕ is a commutative monoid, actually the free commutative monoid
on S, under the operation of multiset union with unit element the empty multiset 0. Clearly,
⊕ can be extended to an endofunctor ( )⊕ on Set, the category of (small) sets and func-
tions, by taking, for each f :S0 → S1, the monoid homomorphism f⊕:S⊕0 → S⊕1 defined
by f⊕(

⊕
i∈I nisi) =

⊕
i∈I nif(si). This gives a monad (see Appendix A) (( )⊕, η, µ) on

Set, where ηS:S → S⊕ is the function which maps s ∈ S to the singleton multiset s, and
µS : (S⊕)⊕ → S⊕ is the monoid homomorphism which sends a multiset of multisets ν to the
multiset

⊕
ν obtained as union of the elements of ν. Of course, the ( )⊕-algebras are exactly

the commutative monoids and the ( )⊕-homomorphisms are the monoid homomorphisms.

Definition 1.1 (Petri Nets)
A Place/Transition Petri (PT) net is a structure N = (∂0

N , ∂
1
N : TN → S⊕N ),

where TN is a set of transitions, SN is a set of places, ∂0
N and ∂1

N are functions.

A morphism of PT nets from N0 to N1 is a pair 〈f, g〉, where f : TN0 → TN1 is a
function and g:S⊕N0

→ S⊕N1
is a monoid homomorphism, such that 〈f, g〉 respects

source and target, i.e., they make the two rectangles obtained by choosing the
upper or lower arrows in the parallel pairs of the diagram below commute.

TN0 S⊕N0

TN1 S⊕N1

∂0
N0 //

∂1
N0

//

f

��
g

��∂0
N1 //

∂1
N1

//

This, with the obvious componentwise composition of morphisms, defines the
category Petri of PT nets.
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1. Concatenable Processes

This describes a Petri net precisely as a graph whose set of nodes is a free
commutative monoid, i.e., the set of finite multisets on a given set of places.
The source and target of an arc, here called a transition, are meant to represent,
respectively, the markings consumed and produced by the firing of the transition.

Definition 1.2 (Process Nets and Processes)
A process net is a finite, acyclic net Θ such that

i) for all t ∈ TΘ, ∂0
Θ(t) and ∂1

Θ(t) are non-empty sets (as opposed to possibly
empty multisets);

ii) for all pairs t0 6= t1 ∈ TΘ, ∂iΘ(t0) ∩ ∂iΘ(t1) = ∅, for i = 0, 1.

Given N ∈ Petri, a process of N is a morphism π: Θ → N , where Θ is a
process net and π is a net morphism which maps places to places (as opposed
to morphisms which map places to markings).

For the purpose of defining processes at the right level of abstraction, we
need to make some identifications. Of course, we shall consider as identical pro-
cess nets which are isomorphic and, consequently, we shall make no distinction
between two processes π: Θ → N and π′: Θ′ → N for which there exists an
isomorphism ϕ: Θ→ Θ′ such that π′ ◦ϕ = π. Observe that the constraint on π
is relevant, since we certainly want process morphisms to map a single compo-
nent of the process net to a single component of N . Otherwise said, process
are nothing but labellings of Θ, which in turn is essentially a partial ordering of
transitions, with an appropriate element of N .

The equivalence of the following definition of P[N ] with the original one
in [6] has been proved in [22].

Definition 1.3

The category P[N ] is the monoidal quotient (see Appendix B) of F(N), the
free symmetric strict monoidal category generated by N , modulo the axioms

γa,b = ida⊕b if a, b ∈ SN and a 6= b,

t; (id ⊗ γa,a ⊗ id) = t if t ∈ TN and a ∈ SN ,
(id ⊗ γa,a ⊗ id); t = t if t ∈ TN and a ∈ SN ,

where γ is the symmetry isomorphism of F(N).

The arrows of P[N ] have a nice computational interpretation in terms of a
slight refinement of the classical notion of process consisting of a suitable layer
of labels to the minimal and to the maximal places of process nets in order to
distinguish among different istances of a place in a process of N .
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Definition 1.4 ( f-indexed orderings)
Given the sets A and B together with a function f :A → B, an f-indexed
ordering of A is a family {`b | b ∈ B} of bijections `b: f−1(b)→ {1, . . . , |f−1(b)|},
f−1(b) being as usual the set {a ∈ A | f(a) = b}.

Informally, an f-indexed ordering of A is a family of total orderings, one
for each of the partitions of A induced by f . In the following, given a process
net Θ, let min(Θ) and max(Θ) denote, respectively, its minimal and maximal
elements, which must be places.

Definition 1.5 (Concatenable Processes)
A concatenable process of N is a triple CP = (π, `, L) where

• π: Θ→ N is a process of N ;

• ` is a π-indexed ordering of min(Θ);

• L is a π-indexed ordering of max(Θ).

Two concatenable processes CP and CP ′ are isomorphic if their underlying
processes are isomorphic via an isomorphism ϕ which respects the ordering,
i.e., such that `′π′(ϕ(a))(ϕ(a)) = `π(a)(a) and L′π′(ϕ(b))(ϕ(b)) = Lπ(b)(b) for all
a ∈ min(Θ) and b ∈ max(Θ). As in the case of processes, we identify isomorphic
concatenable processes.

Clearly, it is possible to define an operation of concatenation of concaten-
able processes, whence their name. We can associate a source and a target in
S⊕N to any concatenable process CP , namely by taking the image through π of,
respectively, min(Θ) and max(Θ), where Θ is the underlying process net of CP .
Then, the concatenation of concatenable processes (π0: Θ0 → N, `0, L0): u→ v
and (π1: Θ1 → N, `1, L1): v → w is realized by merging the maximal places of
Θ0 and the minimal places of Θ1 using both the values of π0 and π1 and the
labellings to match those places one-to-one. Under this operation of sequential
composition, the concatenable processes of N form a category CP[N ] with iden-
tities those processes consisting only of places, which therefore are both minimal
and maximal, and such that ` = L.

Concatenable processes admit also a tensor operation ⊗ which can be though
of as the operation of putting two processes side by side and reorganizing the
labelling from left to right. The concatenable processes consisting only of places
are the symmetries which make CP[N ] into a symmetric strict monoidal cate-
gory; this clarifies that the role of the symmetries in a process is that of regulating
the flow of causality between subprocesses by permuting tokens appropriately.

Proposition 1.6

CP[N ] and P[N ] are isomorphic.
Proof. See [6]. X

6



2. A Negative Result about Functoriality

2 A Negative Result about Functoriality

Among the primary requirements usually imposed on constructions like P[ ]
there is that of functoriality. One of the main reasons supporting the choice
of a categorical treatment of semantics is the need of specifying further the
structure of the systems under analysis by giving explicitly the morphisms or,
in other words, by specifying how the given systems simulate each other. This,
in turn, means to choose precisely what the relevant (behavioural) structure of
the systems is. It is therefore clear that such morphisms should be preserved
at the semantic level. In our case, the functoriality of P[ ] means that if N
can be mapped to N ′ via a morphism 〈f, g〉, which by the very definition of
net morphisms implies that N can be simulated by N ′, there must be a way,
namely P[〈f, g〉], to see the processes of N as processes of N ′.

Unfortunately, this is not possible for P[ ]. More precisely, although it might
be possible to extend P[ ] to net morphisms, it is definitely not possible to
associates to a net morphism a symmetric monoidal functor, i.e., a functor
which respects the monoidal structure of processes, which is certainly what is
to be done in our case. The problem, as illustrated by the following example, is
due to the particular shape of the symmetries of P[N ] which, on the other hand,
is exactly what makes P[N ] capture quite precisely the notion of processes of N .

Example 2.1

Consider the nets N and N̄ in the picture below, where we use the standard
graphical representation of nets in which circles are places, boxes are transitions,
and sources and targets are directed arcs. We have SN = {a0, a1, b0, b1} and TN
consisting of the transitions t0: a0 → b0 and t1: a1 → b1, while SN̄ = {ā, b̄0, b̄1}
and TN̄ contains t̄0: ā→ b̄0 and t̄1: ā→ b̄1.

a0 a1 ā

t0 t1 t̄0 t̄1

b0 b1 b̄0 b̄1

'&
$%
��

'&
$%
��

'&
$%7777��
������� �

� �
��

� �
� �
��

� �
� �
��

� �
� �
��'&

$%
'&
$%

'&
$%

'&
$%

The morphism 〈f, g〉, where f(ti) = t̄i, g(ai) = ā and g(bi) = b̄i, i = 0, 1, cannot
be extended to a monoidal functor P[〈f, g〉]:P[N ] → P[N̄ ]. Suppose in fact
that F is such an extension. Then, it must be F(t0⊗ t1) = F(t0)⊗F(t1) = t̄0⊗ t̄1.
Moreover, since t0 ⊗ t1 = t1 ⊗ t0, we would have

t̄0 ⊗ t̄1 = F(t1 ⊗ t0) = t̄1 ⊗ t̄0.
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Strong Concatenable Processes

But this is impossible, since the leftmost and the rightmost terms of the chain
of equalities above are different arrows of P[N̄ ].

The problem can be explained formally by saying that the category of sym-
metries sitting inside P[N ], say SymN , is not free, and this is why we cannot
find an extension to P[N ] of the morphism 〈f, g〉:N → N̄ ↪→ P[N̄ ]. In fact,
Definition 1.3 states that SymN is generated modulo the axiom

γa,b = ida⊕b if a 6= b in SN .

Clearly, it is exactly this conditional axiom with a negative premise which pre-
vents SymN from being free. To make things worse, the theory illustrated
extensively in [6, 21] makes it clear that, in order for P[N ] to have the interest-
ing computational meaning it has, such an axiom is strictly needed. Moreover,
it is easy to observe that as soon as one imposes further axioms on P[N ] which
guarantee to get a functor, one annihilates all the symmetries and, therefore,
destroys the ability of P[N ] of dealing with causality.

There does not seem to be an easy and satisfactory solution to the functo-
riality problem for P[ ]. A possible solution which comes naturally to the mind
would consist of looking for a non strict monoidal functor, i.e., a functor F
together with a natural transformation ϕ:F (x1) ⊗ F (x2) �→ F (x1 ⊗ x2) which
substitutes the equality required by strict functors. However, simple examples
show that this idea does not lead anywhere, at least unless P[ ] is heavily mod-
ified also on the objects, since it is not possible to choose the components of ϕ
“naturally”.

The following proposition shows that the problem illustrated in Example 2.1
is serious, actually deep enough to prevent any naive modification of P[ ] to be
functorial.

Proposition 2.2

Let X [ ] be a function which assigns to each net N a symmetric strict monoidal
category whose monoid of objects is commutative and contains SN , the places
of N . Suppose further that the group of symmetries at any object of X [N ]
is finite. Finally, suppose that there exists a net N with a place a ∈ N such
that, for each n > 1, we have that the component at (na, na) of the symmetry
isomorphism of X [N ] is not an identity.

Then, there exists a Petri net morphism 〈f, g〉:N0 → N1 which cannot be ex-
tended to a symmetric strict monoidal functor from X [N0] to X [N1].
Proof. The key of the proof is the following observation about monoidal categories.

Let C be a symmetric strict monoidal category with symmetry isomorphism c.
Then, for all a ∈ C and for all n ≥ 1, we have (ca,(n−1)a)n = id , where, in order
to simplify the notation, throughout the proof we write na and cnx,y to denote,

8



2. A Negative Result about Functoriality

respectively, the tensor product of n copies of a and the sequential composition
of n copies of cx,y. To show that the above identity holds, consider for i = 1, . . . , n
the functor Fi from Cn, the cartesian product of n copies of C, to C defined as
follows.

(x1, . . . , xn) xi · · ·xn · · ·xi+1

(y1, . . . , yn) yi · · · yn · · · yi+1

� //

(f1,...,fn)

��
(fi···fnf1···fi+1)

��� //

CC
n Fi //

Moreover, consider the natural transformations φi: Fi �→ Fi+1, i = 1, . . . , n− 1 and
φn:Fn → F1 whose components at x1, . . . , xn are, respectively, cxi,xi+1 ···xnx1···xi−1

and cxn,x1···xn−1 . Finally, let φ be the sequential composition of φ1, . . . , φn. Then,
φ is a natural transformation x1 · · ·xn �→ x1 · · ·xn built up only from components
of c. From the Kelly-MacLane coherence theorem [11, 10] (see also Appendix B) we
know that there is at most one natural transformation consting only of identities
and components of c, and since the identity of F1 is one such transformation,
we have that φ = idF1 . Then, instantiating each variable with a, we obtain
(ca,(n−1)a)n = idna, as required.

It may be worth observing that the above property holds also for n = 0, provided
we define 0a = e and c0x,y = id .

It is now easy to conclude the proof. Let N ′ be a net such that, for each n, we have
c′na,na 6= id , where c′ is the symmetry natural isomorphism of X [N ′], and let N
be a net with two distinct places a and b and with no transitions, and let c′ be
the symmetry natural isomorphism of X [N ]. Since the group of symmetries at ab
is finite, there is a cyclic subgroup generated by ca,b, i.e., there exists k > 1, the
order of the subgroup, such that (ca,b)k = id and (ca,b)n 6= id for any 1 ≤ n < k.

Let p be any prime number greater than k. We claim that the Petri net morphism
〈f, g〉:N → N ′, where f is the (unique) function ∅ → TN ′ and g is the monoid
homomorphism such that g(b) = (p− 1)a and g is the identity on the other places
of N , cannot be extended to a symmetric strict monoidal functor F:X [N ]→ X [N ′].
In fact, from the first part of this proof, we know that (ca,(p−1)a)p = 1. Moreover,
by general results of group theory, the order of the cyclic subgroup generated by
ca,(p−1)a must be a factor of p and then, in this case, 1 or p. In other words, either
ca,(p−1)a = id or (ca,(p−1)a)n 6= id for all 1 ≤ n < p. If the second situation occurs,
then we have F((ca,b)k) = id and also F((ca,b)k) = (c′F(a),F(b))

k = (c′a,(p−1)a)k 6= id ,
i.e., F cannot exists. Thus, in order to conclude the proof, we only need to show
that, in our hypothesis, c′a,(p−1)a 6= id . For this, it is enough to observe that
c′a,(p−1)a = id implies c′na,na = id for n = p − 1, which is against our hypothesis
on N ′. In fact, c′ka,(p−1)a = ac′(k−1)a,(p−1)a ; c′a,(p−1)ana, whence it follows directly
that c′(p−1)a,(p−1)a = id . X

The contents of the previous proposition may be restated in different terms
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Strong Concatenable Processes

by saying that in the free category of symmetries on a commutative monoid M
there are infinite homsets. This means that dropping axiom γa,b = ida⊕b in
the definition of P[N ] causes an “explosion” of the structure of the symmetries.
More precisely, if we omit that axiom, we can find some object u such that
the group of symmetries on u has infinite order. Of course, since symmetries
represent causality, and as such they are integral parts of processes, this makes
the category so obtained completely useless for the kind of application we have
in mind.

The hypothesis of Proposition 2.2 can be certainly weakened in several ways,
at the expense of complicating the proof. However, we avoided such complica-
tions, since the conditions stated above are already weak enough if one wants to
regard X [N ] as a category of processes of N . In fact, since places represent the
atomic bricks on which states are built, one needs to consider them in X [N ],
since symmetries regulate the “flow of causality”, there will be cna,na different
from the identity, and since in a computation we can have only finitely many
“causality streams”, there will not be categories with infinite groups of sym-
metries. Therefore, the given result means that there is no chance to have a
functorial construction of the processes of N on the line of P[N ] whose objects
form a commutative monoid.

3 The Category Q[N ]

In this section we introduce the symmetric strict monoidal category Q[N ] which
is meant to represent the processes of the Petri net N and which supports
a functorial construction. This will allow us to characterize the category of
categories of net behaviours, i.e., to axiomatize the behaviour of nets “in the
large”. In fact, although [13] and [6] clarify how the behaviour of a single net
can be captured by a symmetric strict monoidal category, because of the missing
functoriality of P[ ], nothing is said about what the semantic domain for Petri
net behaviours should be.

Proposition 2.2 shows that, necessarily, there is a price to be payed. Here,
the idea is to renounce to the commutativity of the monoids of objects. More
precisely, we build the arrows of Q[N ] starting from the Sym∗N , the “free”
category of symmetries over the set SN of places of N . This makes transitions
have many corresponding arrows in Q[N ]; however, all the arrows of Q[N ]
which differ only by being instances of the same transition are linked together
by a “naturality” condition whose role is to guarantee that Q[N ] remains close
to the category P[N ] of concatenable processes. Namely, the arrows of Q[N ]
correspond to Goltz-Reisig processes in which the minimal and the maximal
places are totally ordered.
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3. The Category Q[N ]

Similarly to SymN , Sym∗N serves a double purpose. From the categorical
point of view it provides the symmetry isomorphism of a symmetric monoidal
category, while from the semantics viewpoint it regulates the flow of causal
dependency. It should be noticed, however, that here the point of view is strictly
more concrete than in the case of SymN . In fact, generally speaking, a symmetry
in Q[N ] must be interpreted as a “reorganization” of the tokens in the global
state of the net which, when reorganizing multiple instances of the same place,
as a by-product, yields a exchange of causes exactly as SymN does for P[N ].
Notation. In the following, we use S⊗ to indicate the set of (finite) strings on the set S,
more commonly denoted by S∗. In the same way, we use ⊗ to denote string concatenation,
while 0 denotes the empty string. As usual, for u ∈ S⊗, we indicate by |u| the lenght of u
and by ui its i-th element.

Remark. The construction of S⊗, which under the operation of string concatenation is the
free monoid on S, admits a corresponding monad (( )⊗, η, µ) on Set. In this case ( )⊗ is the
functor which associates to each set S the monoid S⊗ and to each f :S0 → S1 the monoid
homomorphism f⊗:S⊗0 → S⊗1 such that f⊗(u) =

⊗
i
f(ui), ηS :S → S⊗ is the injection

of S in S⊗, and µS :S⊗
2 → S⊗ is the obvious monoid homomorphism mapping a string of

elements of S⊗ to the concatenation of its component strings. Recall that the algebras for
such a monad are the monoids and the homomorphisms are the monoids homomorphisms.

Remark. A permutation of n elements is an automorphism of the segment of the first n
positive natural numbers. The set Π(n) of the n! permutations of n elements is a group under
the operation of composition of functions. The neutral element of Π(n) is the identity function
on {1, . . . , n} and the inverse of σ is its inverse function σ−1. The group Π(n) is called the
symmetric group on n elements, or of order n!. Due to its triviality, the notion of permutation
of zero elements is never considered. However, to simplify notations, we shall assume that the
empty function∅:∅→∅ is the (unique) permutation of zero elements.

A permutation σ leaves i fixed if σ(i) = i. A transposition is a permutation which leaves
all the elements fixed but two, say i and j, which are exchanged. We shall denote such a σ
simply as (i j). Transpositions are a relevant kind of permutations, since each permutation
can be written as a composition of transpositions. Moreover, since any transposition (i j) can
be expressed as the composition of “swappings” of adjacent integers, we have that the n − 1
transpositions on adjacent integers (1 2), (2 3), . . . (n − 1 n) generate the group Π(n). In
view of this fact, in the following we shall use the term transposition to indicate exclusively
permutations of the kind (i i+ 1).

Definition 3.1 (The Category of Permutations)
Let S be a set. The category Sym∗S has for objects the strings S⊗ and an arrow
p: u→ v if and only if p ∈ Π(|u|), i.e., p is a permutation of |u| elements, and v
is the string obtained by applying the permutation p to u, i.e., vp(i) = ui.
Arrows composition in Sym∗S is obviously given by the product of permutations,
i.e., their composition as functions, here and in the following denoted by ; .

Graphically, we represent an arrow p: u → v in Sym∗S by drawing a line
between ui and vp(i), as for example in Figure 1.

Of course, it is possible to define a tensor product on Sym∗S together with
interchange permutations which make it a symmetric monoidal category (see
also Figure 1, where γ is the permutation (1 2)).

11
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Figure 1: The monoidal structure of Sym∗S

Definition 3.2 (Operations on Permutations)
Given the permutations p: u→ v and p′: u′ → v′ in Sym∗S their parallel compo-
sition p⊗ p′: u⊗ u′ → v ⊗ v′ is the permutation such that

i 7→
{
p(i) if 0 < i ≤ |u|
p′(i− |u|) + |u| if |u| < i ≤ |u|+ |u′|

Given π ∈ Π(m) and m strings ui in S⊗, i = 1, . . . , m, the interchange permu-
tation π(u1, . . . , um) is the permutation p such that

p(i) = i−
h−1∑
j=1

|uj|+
∑

π(j)<π(h)

|uj| if
h−1∑
j=1

|uj| < i ≤
h∑
j=1

|uj|.

Clearly, ⊗ so defined is associative and furthermore a simple calculation
shows that it satisfies the equations

(p⊗ p′) ; (q ⊗ q′) = (p ; q)⊗ (p′ ; q′) and idu ⊗ idv = idu⊗v.

It follows easily that the mapping ⊗: Sym∗S × Sym∗S → Sym∗S defined by

(u, u′) u⊗ v

(v, v′) v ⊗ v′

� //

(p,p′)
��

(p⊗p′)
��� //

Sym∗SSym∗S × Sym∗S
⊗ //

is a functor making Sym∗S a strict monoidal category. Finally, the symmetric
structure of Sym∗S is made explicit through the interchange permutations.

12



3. The Category Q[N ]

Proposition 3.3 ( Sym∗S is symmetric strict monoidal)
For any set S, the family γ = {γ(u, v)}u,v∈Sym∗

S
provides the symmetry isomor-

phism endowing Sym∗S with a symmetric monoidal structure.
Proof. Recall that γ(u, v) is the interchange permutation defined from the permu-

tation γ = (1 2) in Π(2). It is just a matter of performing a few calculations to
verify that, for any p: u → u′ and p′: v → v′, the equations defining a symmetry
isomorphism i.e., equations (6) in Appendix B which in the current case reduce to

(γ(u, v) ⊗w) ; (v ⊗ γ(u,w)) = γ(u, v ⊗w)

γ(u, v) ; (p′ ⊗ p) = (p⊗ p′) ; γ(u′, v′)

γ(u, v) ; γ(v, u) = u⊗ v

hold. Observe that, in fact,

γ(u, v)(i) =

{
i+ |v| if 0 < i ≤ |u|

i− |u| if |u| < i ≤ |u|+ |v|

which shows the second equation. Moreover, it implies that (γ(u, v) ; (p′⊗p))(i) is
equal to p(i) + |v| if 0 < i ≤ |u|, and is equal to p′(i− |u|) if |u| < i ≤ |u|+ |v|. On
the other hand, we have that ((p⊗p′) ; γ(u′, v′))(i) is equal to p(i)+|v′| = p(i)+|v|
if 0 < i ≤ |u| and p′(i− |u|)+ |u| − |u| = p′(i− |u|) if |u| < i ≤ |u|+ |v|. Therefore,
the first equation holds. Concerning the last equation, we have that

(γ(u, v) ⊗w)(i) =


i+ |v| if 0 < i ≤ |u|

i− |u| if |u| < i ≤ |u|+ |v|

i if |u|+ |v| < i ≤ |u|+ |v|+ |w|

and, since

(v ⊗ γ(u,w))(i) =

{
i if 0 < i ≤ |v|
i+ |w| if |v| < i ≤ |v|+ |u|
i− |u| if |v|+ |u| < i ≤ |v|+ |u|+ |w|,

we have the required equality. X

The previous proposition justifies the use of the name symmetries for the
arrows of the groupoid Sym∗S . The key point about Sym∗S is that it is a free
construction. In order to show it, we need the following lemma [14, 5].

Lemma 3.4

The symmetric group Π(n) is (isomorphic to) the group G freely generated from
the set {τi | 1 ≤ i < n}, modulo the equations (see also Figure 2)

τiτi+1τi = τi+1τiτi+1;
τiτj = τjτi if |i− j| ≥ 1; (1)
τiτi = e;

where e is the neutral element of the group.
13
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Figure 2: Some instances of the axioms of permutations

Proof. The proof is by induction on n. First of all, observe that for n = 0 and
n = 1 the set of generators is empty and the equations are vacuous. Hence, G is
the free group on the empty set of generators, i.e., the group consisting only of the
neutral element, which is (isomorphic to) Π(0) and Π(1).

Suppose now that the thesis holds for n ≥ 1 and let us prove it for n + 1. It
is immediately evident that the permutations of n + 1 elements are generated by
the n transpositions, i.e., by those pemutations which leave all the elements fixed
but two adjacent ones, which are exchanged. Moreover, the transpositions satisfy
axioms (1), as a quick look to Figure 2 shows. It follows that the order of G must
not be smaller than the order of Π(n + 1), i.e., |G| ≥ (n + 1)!, where | | is the
cardinality function. Moreover, there is a group homomorphism h:G → Π(n+ 1)
which sends τi to the transposition (i i+ 1), and since the transpositions generate
Π(n+1), we have that h is surjective. Thus, in order to conclude the proof, we only
need to show that h injective, which clearly follows if we show that |G| = (n+ 1)!.

Let H be the subgroup of G generated by {τ1, τ2, . . . , τn−1} and consider the n+ 1
cosets H1, . . . , Hn+1, where Hi = Hτn · · · τi = {xτn · · · τi | x ∈ H}, 1 ≤ i ≤ n, and
Hn+1 = H. Then, for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n, consider Hiτj . The following
cases are possible.

i > j + 1. By the second of axioms (1), τj is permutable with each of τi, . . . , τn
and, therefore,

Hiτj = Hτn · · · τiτj

14
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Figure 3: The parallel composition of permutations

= Hτjτn · · · τi
= Hτn · · · τi = Hi.

i < j. Again by the second of (1), τj is permutable with each of τi, . . . , τj−2 and,
therefore,

Hiτj = Hτn · · · τiτj
= Hτn · · · τj+1τjτj−1τj · · · τi
= Hτn · · · τj+1τj−1τjτj−1 · · · τi by the first of (1)

= Hτj−1τn · · · τj+1τjτj−1 · · · τi by the second of (1)

= Hτn · · · τi = Hi.

i = j. Then Hjτj = Hτn · · · τjτj which, by the third of (1), is Hτn · · · τj+1 = Hj+1.
i = j + 1. Then Hj+1τj = Hτn · · · τj+1τj = Hj .

In other words, for 1 ≤ j ≤ n, the sets H1 . . . Hn+1 remain all unchanged by post-
multiplication by τj , except for Hj and Hj+1 which are exchanged with each other.
Now, since each element of G is a product τi1 · · · τik , it belongs to Hτi1 · · · τik , i.e.,
to one of the Hi. Hence, G is contained in the union of the Hi’s. It follows
immediately that, if H is finite, we have that |G| ≤ (n + 1) · |H|. However, by
induction hypothesis, H is (isomorphic to) Π(n), and thus H is finite and |H| = n!.
Therefore, |G| ≤ (n+ 1)!, which concludes the proof. X

We are now ready to show the announced fact about Sym∗S .

Proposition 3.5

Let S be a set, let C be a symmetric strict monoidal category and let F be a
function from S to the set of objects of C. Then, there exists a unique symmetric
strict monoidal functor F: Sym∗S → C extending F .
Proof. Let ⊗ be the tensor product, e the unit object, and γ:x1⊗x2

∼−→ x2⊗x1 the
symmetry natural isomorphism in C. There is of course a choice forced upon us
for the behaviour of F on objects: the monoidal extension of F , i.e., the mapping

F(0) = e and F(u⊗ v) = F(u)⊗ F(v) for u, v ∈ S⊗.

15



Strong Concatenable Processes

Concerning morphisms, we know by Lemma 3.4 that each arrow in Sym∗S can be
written as a composition of transpositions. Moreover, observe that the transposi-
tion (i i+1):u⊗a⊗b⊗v→ u⊗b⊗a⊗v, where u is a string of length i−1, coincides
in Sym∗S with the tensor of γ(a, b): a⊗b→ b⊗a with appropriate identities, namely
(u⊗ γ(a, b) ⊗ v). Thus, recalling also that 0⊗ γ(a, b) = γ(a, b) = γ(a, b) ⊗ 0, the
following definition defines F on all the arrows of Sym∗S.

F(u⊗ γ(a, b) ⊗ v) = F(u) ⊗ γF(a),F(b) ⊗ F(v) a, b ∈ S, u, v ∈ S⊗;

F(p ; p′) = F(p′) ◦ F(p). (2)

Observe that both the equations (2) are forced by the definition of symmetric strict
monoidal functor (see axioms (7) in Appendix B). It follows that the extension
of F to a strict monoidal functor, if it exists, is unique and must be given by (2).
Then, in order to conclude the proof, we only need to show that F is well-defined
and that it is a symmetric monoidal functor.

We first show that F is well-defined. For this, it is enough to show that the
axioms (1) of Lemma 3.4 are preserved by F. In fact, this implies that applying
the definition of F to two different factorizations of p actually yields the same result,
i.e., it implies that F is well-defined. Concering axioms (1), the third one matches
directly with the fact that the inverse of γF(a),F(b) is γF(b),F(a), while the second
one follows easily from the fact that ⊗ is a functor. In fact, in the hypothesis, we
have τi = (u⊗ γ(a, b)⊗ v⊗ c⊗ d⊗w) and τj = (u⊗ b⊗a⊗ v⊗ γ(c, d)⊗w). Thus,
we have that

F(τi ; τj) = (F(u)⊗ F(b) ⊗ F(a) ⊗ F(v)⊗ γF(c),F(d) ⊗ F(w)) ◦
(F(u)⊗ γF(a),F(b) ⊗ F(v)⊗ F(c)⊗ F(d)⊗ F(w))

= (F(u)⊗ γF(a),F(b) ⊗ F(v)⊗ γF(c),F(d) ⊗ F(w))

= (F(u)⊗ γF(a),F(b) ⊗ F(v)⊗ F(d)⊗ F(c)⊗ F(w)) ◦
(F(u)⊗ F(a) ⊗ F(b) ⊗ F(v)⊗ γF(c),F(d) ⊗ F(w))

= F(τj ; τi)

Finally, concerning the first axiom, we have

F(τi ; τi+1 ; τi) = (F(u)⊗ γF(b),F(c) ⊗ F(a) ⊗ F(v)) ◦
(F(u) ⊗ F(b) ⊗ γF(a),F(c) ⊗ F(v)) ◦

(F(u)⊗ γF(a),F(b) ⊗ F(c)⊗ F(v))

= (F(u)⊗ F(b) ⊗ γF(a),F(c) ⊗ F(v)) ◦
(F(u) ⊗ γF(a),F(b)⊗F(c) ⊗ F(v))

= (F(u)⊗ γF(a),F(c)⊗F(b) ⊗ F(v)) ◦
(F(u) ⊗ F(a)⊗ γF(b),F(c) ⊗ F(v))

= (F(u)⊗ F(c)⊗ γF(a),F(b) ⊗ F(v)) ◦
(F(u) ⊗ γF(a),F(c) ⊗ F(b) ⊗ F(v)) ◦

(F(u)⊗ F(a) ⊗ γF(b),F(c) ⊗ F(v))

= F(τi+1 ; τi ; τi+1)
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3. The Category Q[N ]

where the third equation is by naturality of γ and the others follow from the
coherence axiom for γ.

Let us prove that F is a symmetric monoidal functor. Since C is a symmetric strict
monoidal category, we have γe,x = γe⊗e,x = γe,x ⊗ e ◦ e ⊗ γe,x = γe,x ◦ γe,x, and
since γe,x is invertible, it follows that γe,x = idx. Of course, the same holds for
every symmetric strict monoidal category. Therefore, since F(idu) = F(γ(0, u))
and γe,F(u) = idF(u), we have that F(idu) = idF(u). This, together with the second
of the equations (2), means that F is a functor.

Observe further that for permutations p: u → v and p′:u′ → v′ in Sym∗S we have
p⊗ p′ = (p⊗ u′) ; (v ⊗ p′) (see also Figure 3). Then, we have that

F(p⊗ p′) = F(v ⊗ p′) ◦ F(p⊗ u′) = (F(v)⊗ F(p′)) ◦ (F(p) ⊗ F(u′)) = F(p)⊗ F(p′),

i.e., F is a strict monoidal functor.

Finally, thanks to the coherence axiom for symmetries, i.e., the first of axioms (6),1

we have that γ(a, b ⊗ c) = (γ(a, b) ⊗ c) ; (b ⊗ γ(a, c)) and thus, by the aforesaid
axiom and by the coherence of γ,

F(γ(a, b⊗ c)) = F((γ(a, b) ⊗ c) ; (b⊗ γ(a, c)))

= (F (b)⊗ γF (a),F (c)) ◦ (γF (a),F (b) ⊗ F (c))

= γF (a),F (b)⊗F (c) = γF(a),F(b⊗c).

Now, by considering the inverses of the arrows appearing in the coherence axiom,
we have that γ(a ⊗ b, c) = (a ⊗ γ(b, c)) ; (γ(a, c) ⊗ b) and that γF(a⊗b),F(c) =
(γF(a),F(c)⊗F(b)) ◦ (F(a)⊗ γF(b),F(c)). Therefore, it follows easily by induction that
F(γ(u, v)) = γF(u),F(v). Then, F maps each component of the symmetry natural
isomorphism of Sym∗S to the corresponding component of γ, i.e., F is a symmetric
monoidal functor. X

This result proves that the mapping S 7→ Sym∗S extends to a left adjoint
functor from Set to SSMC, the standard category of symmetric strict monoidal
(small) categories and symmetric strict monoidal functors. Equivalently, we can
say that Sym∗S is the free symmetric strict monoidal category on the set S.

Corollary 3.6

Let S be the symmetric strict monoidal category whose monoid of objects is S⊗,
the free monoid on S, and whose arrows are freely generated from a family of
arrows cu,v: u⊗v → v⊗u, for u, v ∈ S⊗, subject to the axioms (6) in Appendix B
(with γ properly replaced by c). Then S and Sym∗S are isomorphic.

1Strictly speaking, the first and the third of (6) are the coherence axioms for symmetries.
However, by abuse of language, we shall often refer to the first of (6) as the coherence axiom.
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Proof. By definition, S is the free monoidal category on S. In fact, since the
axioms (6) which define S hold in all symmetric strict monoidal categories, it is
immediate to verify that S enjoys the universal property stated in Proposition 3.5.
Then, exploiting in the usual way the uniqueness condition in this universal prop-
erty, we have that the functors F: Sym∗S → S and G:S → Sym∗S which are the
identity on the objects and which map, respectively, γ(u, v) to cu,v and cu,v to
γ(u, v) are inverse to each other. X

Now, we can define of Q[N ]. In the following, given a string u ∈ S⊗, let
M(u) denote the multiset corresponding to u, and given a net N let Sym∗N
denote the category Sym∗SN .

Definition 3.7 ( The category Q[N ])
Let N be a net in Petri. Then Q[N ] is the category which includes Sym∗N as
subcategory and has as additional arrows those defined by the following inference
rules:

t:M(u)→M(v) in TN
tu,v: u→ v in Q[N ]

α: u→ v and β: u′ → v′ in Q[N ]
α⊗ β: u⊗ u′ → v ⊗ v′ in Q[N ]

α: u→ v and β: v → w in Q[N ]
α ; β: u→ w in Q[N ]

plus the axioms expressing the fact that Q[N ] is a symmetric strict monoidal
category with symmetry isomorphism γ (see Appendix B), and the following
axiom involving transitions and symmetries.

p ; tu′,v′ = tu,v ; q where p: u→ u′ in Sym∗N and q: v→ v′ in Sym∗N . (Φ)

It is worth noticing that axiom (Φ) entails, as a particular case, the last two
axioms in the Definition 1.3 of P[N ], called axioms (Ψ) in [6], whenever they
make sense in Q[N ]. In fact, axiom (Φ) asserts that any diagram of the kind

u u′

v v′

p //

tu,v

��
tu′,v′

��
q

//

commutes. Now, fixed u = u′ and v = v′, choosing p = id , respectively q = id ,
one obtains the first, respectively the second of axioms (Ψ). Of course, when
v 6= v′ one rather obtains tu,v ; q = tu,v′, and when u 6= u′ one has p ; tu,v = tu′,v.

Exploiting Corollary 3.6, it is easy to prove that the following is an alterna-
tive description of Q[N ].
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Proposition 3.8

Q[N ] is (isomorphic to) the category C whose objects are the elements of S⊗N
and whose arrows are generated by the inference rules

u ∈ S⊗N
idu: u→ u in C

u, v in S⊗N
cu,v: u⊗ v → v ⊗ u in C

t:M(u)→M(v) in TN
tu,v: u→ v in C

α: u→ v and β: u′ → v′ in C
α⊗ β: u ⊗ u′ → v ⊗ v′ in C

α: u→ v and β: v → w in C
α; β: u→ w in C

modulo the axioms expressing that C is a strict monoidal category, namely,

α; idv = α = idu;α and (α; β); δ = α; (β; δ),
(α⊗ β) ⊗ δ = α⊗ (β ⊗ δ) and id0 ⊗ α = α = α⊗ id0, (3)

idu ⊗ idv = idu⊗v and (α⊗ α′); (β ⊗ β′) = (α; β)⊗ (α′; β′),

the latter whenever the righthand term is defined, the following axioms corre-
sponding to axioms (6) expressing that C is symmetric with symmetry isomor-
phism c

cu,v⊗w = (cu,v ⊗ idw); (idv ⊗ cu,w),
cu,u′; (β ⊗ α) = (α⊗ β); cv,v′ for α: u→ v, β: u′ → v′, (4)

cu,v; cv,u = idu⊗v,

and the following axiom corresponding to axiom (Φ)

p ; tu′,v′ ; q = tu,v where p: u→ u′ and q: v′ → v are symmetries.

Proof. It is enough to observe that the definition of C is simply the definition of
Q[N ] enriched with the axiomatization of Sym∗N provided by Corollary 3.6. X

The previous proposition is relevant, since it gives a completely axiomatic
description of the structure of Q[N ] which can be useful in many contexts. In
the following, we shall at each time use as definitions of Q[N ] and Sym∗N those
versions best suited for the actual application.

We show next that Q[ ] can be lifted to a functor from the category of
Petri nets to an appropriate category of symmetric strict monoidal categories
and (equivalence classes of) symmetric strict monoidal functors. The issue is
not very difficult now, since most of the work has been done in the proof of
Proposition 3.5. We start by showing that Q[ ] is a pseudo-functor from Petri

to SSMC in the sense made explicit by Proposition 3.9 below. More precisely,
we extend Q[ ] to a mapping from Petri net morphisms to symmetric strict
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monoidal functors in such a way that identities are preserved strictly, while net
morphism composition is preserved only up to a monoidal natural isomorphism.
In order to do that, the key point which is still missing is to be able to embed N
into Q[N ]. To achieve this, we assume for each set S a function inS :S⊕ → S⊗

such that M(inS(ν)) = ν, i.e., a function which chooses a “linearization” of
each ν ∈ S⊕. Clearly, corresponding to different choices of the functions inS ,
we shall have a different—yet equivalent—extension of Q[ ] to a pseudo-functor.
We would like to remark that this apparent arbitrariness of Q[ ] is not at all a
concern, since the relevant fact we want to show now is that such an extension
exists. Moreover, we shall see shortly that introducing the category SSMC⊗

one can completely dispense with the functions inS . In the following, given a
net N , we shall use inN to denote inSN .
Remark. An elegant way to express the idea of “linearization” of a multiset, would be to
look for a morphism of monads in: ( )⊕ �→ ( )⊗. This would indeed simplify the following
formal development and would make Q[ ] be a functor Petri → SSMC. However, such a
morphism does not exist. It is worth noticing that this is because it is not possibile to choose
the functions inN “naturally”.

Proposition 3.9 (Q[ ]: Petri→ SSMC)
Let 〈f, g〉:N0 → N1 be a morphism in Petri. Then, there exists a symmetric
strict monoidal functor Q[〈f, g〉]:Q[N0] → Q[N1] which extends 〈f, g〉. More-
over, Q[idN ] = idQ[N] and Q[〈f1, g1〉 ◦ 〈f0, g0〉] ∼= Q[〈f1, g1〉] ◦ Q[〈f0, g0〉].
Proof. Let 〈f, g〉:N0 → N1 be a morphism of Petri nets. Since g is a monoid

homomorphism from the free monoid S⊕N0
to S⊕N1

, it corresponds to a unique
function g ◦ ηSN0

from SN0 to S⊕N1
, where η is the unit of the “commutative

monoid” monad. Then, we obtain ĝ = inN1 ◦ g ◦ ηSN0
:SN0 → S⊗N1

, i.e., a function
from SN0 to the set of objects of Q[N1]. Then, from Proposition 3.5, we have
the symmetric strict monoidal functor F′: SymSN0

→ Q[N1]. Clearly, the objects
component of F′ is µ̄SN1

◦ ĝ⊗, where µ̄ is the multiplication of the “monoid”
monad. Finally, we extend F′ to a functor F from Q[N0] to Q[N1] by considering
the symmetric strict monoidal functor which coincides with F′ on SymN0

and maps
tu,v :u→ v to f(t)F(u),F(v): F(u)→ F(v). Since monoidal functors map symmetries
to symmetries, and since f(t) is a transition of N1, it follows immediately that F
preserves axiom (Φ), i.e., that F is well defined.

We show next that the above definition makes Q[ ] into a pseudo-functor. First of

all, observe that whatever the choice of inN , the function SN ↪→ S⊕N
inN→ S⊗N is the

inclusion of SN in S⊗N . It follows from the uniqueness part of the universal property
stated in Proposition 3.5 that Q[idN ]:Q[N ]→ Q[N ] is the identity functor. Now
consider 〈f0, g0〉:N0 → N1 and 〈f1, g1〉:N1 → N2 and, for i = 0, 1, let Fi be
Q[〈fi, gi〉]:Q[Ni]→ Q[Ni+1] and let F be Q[〈f1◦f0, g1 ◦g0〉]. We have to show that
F ∼= F1F0. Let u ∈ S⊗N0

. By definition, we have that F(ui) = inN2 ◦ g1 ◦ g0(ui) is a
permutation of F1F0(ui) = µ̄SN2

◦ĝ⊗1 ◦ĝ0(ui) and, therefore, there exists a symmetry
si: F(ui)→ F1F0(ui) inQ[N2]. Then, we take su to be s1⊗· · ·⊗sn: F(u)→ F1F0(u),
where n is the lenght of the string u. We shall prove that the family of the su,
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for u ∈ S⊗N0
is a natural transformation F �→ F1F0. Since s is clearly a monoidal

transformation and each su is an isomorphism, this concludes the proof.

We must show that for any α:u → v in Q[N0] we have F(α) ; sv = su ; F1F0(α).
Exploiting the characterization of Q[N0] given by Proposition 3.8, we proceed
by induction on the structure of α. The key to the proof is that s is monoidal,
i.e., su⊗v = su ⊗ sv , as a simple inspection of the definition shows. If α is an
identity, then the claim is obvious. Moreover, if α is a transition tu,v , then we
have F(α) = f1◦f0(t)F(u),F(v) and F1F0(α) = f1(f0(t))F1F0(u),F1F0(v) and the thesis
follows immediately from axiom (Φ). Let us consider now α = γ(u, v). Since F and
F1F0 are symmetric strict monoidal functors, the equation we have to prove reduces
to γ(F(u),F(v)) ; sv⊗su = su⊗sv ; γ(F1F0(u), F1F0(v)), which certainly holds since
{γ(u, v)}

u,v∈S⊗0
is a natural transformation x1⊗x2

�→ x2⊗x1. If α = α′⊗α′′, where

α′:u′ → v′ and α′′:u′′ → v′′ then, by induction, we have F(α′) ; sv′ = su′ ; F1F0(α′)
and F(α′′) ; sv′′ = su′′ ; F1F0(α′′). Then, we deduce

F(α′) ⊗ F(α′′) ; sv′ ⊗ sv′′ = su′ ⊗ su′′ ; F1F0(α′) ⊗ F1F0(α′′),

which is F(α) ; sv = su ; F1F0(α). Finally, in the case α = α′ ; α′′, where α′:u→ v
and α′′:u→ w, the induction is mantained by pasting the two commutative squares
in the following diagrams, which exist by the induction hypothesis

F(u) F1F0(u)

F(v) F1F0(v)

F(w) F1F0(w)

F(α′)

��

su //

F1F0(α′)

��

F(α′′)

��

sv
//

F1F0(α′′)

��
sw

//

Thus, F(α) ; sv = su ; F1F0(α), which concludes the proof. X

Therefore, due to technical reasons concerned with the lack of naturality of
the functions inN , Q[ ] fails to be a functor from Petri to SSMC. It is only a
pseudo-functor. However, it is worth remarking that this failure is intrinsically
different from the situation for P[ ], and that the pseudo-functoriality of Q[ ]
is already a valuable result. In fact, in the case of P[ ], we cannot lift net
morphisms to functors between the categories of processes, a failure which may
possibly rise doubts on the structure chosen to represent the processes of the
single net, while in the case of Q[ ], we just cannot define arrow composition
better that “up to isomorphism”. This simply brings us to the conclusion that
SSMC is not the correct target category for the functorial construction we are
looking for. Indeed, as we shall see in the following, it is easy to identify a
category SSMC⊗ of symmetric strict monoidal categories such that Q[ ] is a
functor Petri → SSMC⊗. Actually, this construction is already implicit in
Proposition 3.9 and corresponds to taking an appropriate quotient of SSMC.
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Definition 3.10 (Symmetric Petri Categories)
A symmetric Petri category is a symmetric strict monoidal category C in SSMC
whose monoid of objects is the free monoid S⊗ for some set S.

For any pair C and D of symmetric Petri categories, consider the binary
relation RC,D on the symmetric strict monoidal functors from C to D defined
as F RC,D G if and only if there exists a monoidal natural isomorphism σ: F ∼= G

whose components are all symmetries. Clearly, RC,D is an equivalence relation.
Moreover, if F′:C′ → C and G′:D→ D′ are symmetric strict monoidal functors,
then whenever F RC,D G we have G′FF′ RC′,D′ G′GF′. In fact, if σ: F ∼= G then
G′σF′: F′FG′ ∼= F′GG′, where G′σF′ is clearly monoidal and all its components
are symmetries. In other words, the family R is a congruence with respect to
functor composition. Therefore, the following definition makes sense.

Definition 3.11 (The category SSMC⊗)
Let SSMC⊗ be the quotient of the full subcategory of SSMC consisting of the
symmetric Petri categories modulo the congruence R.

Of course, concerning SSMC⊗ there is the following easy result.

Proposition 3.12 (Q[ ]: Petri→ SSMC
⊗)

Q[ ] extends to a functor from Petri to SSMC⊗.
Proof. For 〈f, g〉:N0 → N1, let Q[〈, f, g〉] be the equivalence class of the functor in
SSMC from Q[N0] to Q[N1] described in Proposition 3.9.

Then, by the cited proposition, for any PT net N , we have thatQ[idN ] = [idQ[N ]]R,
which is the identity ofQ[N ]. Moreover, we have proved that, for 〈f0, g0〉:N0 → N1

and 〈f1, g1〉:N1 → N2 in Petri, there exists a monoidal natural isomorphism
s:Q[〈f1 ◦ f0, g1 ◦ g0〉] ∼= Q[〈f1, g1〉] ◦Q[〈f0, g0〉] whose components are symmetries.
Then, Q[〈f1◦f0, g1◦g0〉] = Q[〈f1, g1〉]◦Q[〈f0, g0〉] in SSMC⊗, i.e.,Q[ ] is a functor
from Petri to SSMC⊗. X

Observe that, when describing Q[〈f, g〉] in SSMC
⊗, there is no need to

consider the family of functions in, since the extensions of 〈f, g〉 to a symmetric
strict monoidal functor corresponding to different choices of inS yield the same
functor in SSMC⊗.

However, the category SSMC⊗ is still too general for our purpose. In par-
ticular, it is easily noticed that Q[ ] is not full (though faithful), i.e., that that
there are functors from Q[N0] to Q[N1] in SSMC⊗ which do not correspond to
any morphism from N0 to N1 in Petri. This signifies that SSMC⊗ has too little
structure to represent net behaviours precisely enough; in other terms, since the
structure of the objects of a category C is “encoded” in the morphisms of C, it
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signifies that the morphisms of SSMC⊗ do not capture the structure of sym-
metric Petri categories precisely enough. Specifically, the transitions, which are
definitely primary components of nets, and as such are treated by the morphisms
in Petri, have no corresponding notion in SSMC⊗: we need to identify such a
notion and refine the choice of the category of net computations accordingly.
Notation. Given a symmetric monoidal categoryC, we use SymC to indicate the subcategory
of C consisting of the symmetries, i.e., of those arrows which are build up from identities and
components of symmetry isomorphism of C.

The key to accomplish our task is the following observation about axiom (Φ)
in Definition 3.7: as already mentioned, it simply expresses that the collection of
the arrows tu,v of Q[N ], for t ∈ TN and u, v ∈ S⊗N , is a natural transformation.
Namely, for C a symmetric Petri category with objects S⊗, and ν a multiset
in S⊕, let SymC,ν be the full subcategory of SymC consisting of those objects
u ∈ S⊗ such that M(u) = ν, and let inC,ν be the inclusion of SymC,ν in C.
Then, for ν, ν ′ ∈ S⊕, one obtains a pair of parallel functors πC,ν and πC,ν′
by composing inC,ν and inC,ν′ respectively with the first and with the second
projection of SymC,ν × SymC,ν′ .

SymC,ν

SymC,ν × SymC,ν′ C

SymC,ν′

inC,ν
FFFFFFF ""

π0

yy
yy

yy
y <<

πC,ν //
πC,ν′

//

π1

EEEEEEE ""
inC,ν′

xx
xx

xx
x <<

It follows directly from the definitions that, when C is Q[N ], axiom (Φ) states
exactly that, for all t: ν → ν ′ ∈ TN , the set {tu,v | M(u) = ν,M(v) = ν ′} is a
natural transformation from πQ[N],ν to πQ[N],ν′ .

A further very relevant property of the transitions of N when considered
as arrows of Q[N ] is that of being decomposable as a tensor only trivially and
as a composition only by means of symmetries. This is easily captured by the
following notion of primitive arrow.

Definition 3.13 (Primitive Arrows)
Let C be a symmetric Petri category. An arrow τ in C is primitive if

i) τ is not a symmetry;

ii) τ = α; β implies α is a symmetry and β is primitive, or viceversa;

iii) τ = α⊗ β implies α = id0 and β is primitive, or viceversa.
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A simple inspection of Definition 3.7 shows that the only primitive arrows
in Q[N ] are the arrows tu,v, for t:M(u) → M(v) a transition of N . As a
consequence, the natural transformations τ : πQ[N],ν

�→ πQ[N],ν′ whose compo-
nents are primitive are in one-to-one correspondence with the transitions of N .
Following the usual categorical paradigm, we then use the properties that char-
acterize the transitions of N in Q[N ], expressed in abstract categorical terms,
to define the notion of transition in any symmetric Petri category.

Definition 3.14 (Transitions of Symmetric Petri Categories)
Let C be a symmetric Petri category and let S⊗ be its monoid of objects. A
transition of C is a natural transformation τ : πC,ν �→ πC,ν′ , for ν, ν ′ in S⊕,
whose components τu,v are primitive arrows of C.

It is clear now what the extra structure required in SSMC⊗ is: transitions
must be preserved by morphisms of symmetric Petri categories. Formally, for
C and D in SSMC⊗ and F:C→ D in SSMC, F respects transitions if, for each
transition τ : πC,ν �→ πC,ν′ of C, there exists a transition τ ′: πD,ν̄ �→ πD,ν̄′ of D
such that F(τu,v) = τ ′

F(u),F(v) for all (u, v) in SymC,ν × SymC,ν′ ; in this case, we
say that τ ′ corresponds to τ via F.

Lemma 3.15

If F:C→ D preserves transitions, then for any transition τ of C, there exists a
unique transition τ ′ of D which corresponds to τ via F.
Proof. First observe that, for any symmetric Petri category C and any pair of

natural transformations τ, τ ′:πC,ν
�→ πC,ν′ whenever τu,v = τ ′u,v for some u and v,

then τ = τ ′. In fact, for any u′ and v′ there exists (s, s′): (u′, v) → (u, v′) in
SymC,ν × SymC,ν′ , and then τu′,v′ = s; τu,v ; s′ = s; τ ′u,v ; s′ = τ ′u′,v′ .

Now consider the transitions τ ′ and τ ′′ ofD and suppose that they both correspond
to τ via F. Then, F(τu,v) = τ ′F(u),F(v) = τ ′′F(u),F(v), which implies τ ′ = τ ′′. X

The previous lemma shows that any symmetric strict monoidal functor which
preserves transitions defines a mapping between the respective sets of transi-
tions. Then next lemma proves that this extends to the arrows of SSMC⊗.

Lemma 3.16

If F R G, then F respects transitions if and and only if G does so, and then τ ′

corresponds to τ via F if and only if τ ′ corresponds to τ via G.
Proof. Let σ: F �→ G:C→ D be a monoidal natural isomorphism whose components

are symmetries, suppose that F respects transitions, and consider a transition
τ :πC,ν

�→ πC,ν′ . By hypothesis, there exists a transition τ ′:πD,ν̄
�→ πD,ν̄′ of

D such that F(τu,v) = τ ′F(u),F(v) for all (u, v) ∈ SymC,ν × SymC,ν′ . Then, by
naturality of σ, G(τu,v) = σ−1

u ; τ ′F(u),F(v);σv , and therefore, by naturality of τ ′,
G(τu,v) = τ ′G(u),G(v) and the proof is concluded. X
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It follows now from Lemma 3.16 that the next definition is well given.

Definition 3.17 (Symmetric Petri Morphisms and the Category TSSMC⊗)
A morphism of symmetric Petri category is an arrow in SSMC⊗ which respects
transitions. We shall use TSSMC⊗ denote the (lluf) subcategory of SSMC⊗

whose arrows are the morphisms of symmetric Petri categories.

Finally, it is easy to prove that Q[ ] is actually a functor to TSSMC⊗.

Proposition 3.18 (Q[ ]: Petri→ TSSMC⊗)
The functor Q[ ] restricts to a functor from Petri to TSSMC⊗.
Proof. It is enough to verify that, for any morphism 〈f, g〉:N0 → N1 in Petri, a

representative F ofQ[〈f, g〉] respects transitions. But this follows at once, since f is
a function from TN0 to TN1 , since F(tu,v) = f(t)F(u),F(v), and since the transitions
of Q[Ni] are exactly the natural transformations {tu,v | M(u) = ν,M(v) = ν′},
for t: ν → ν′ ∈ TNi . X

Interestingly enough, we can identify a functor from TSSMC⊗ to Petri which
is a coreflection right adjoint to Q[ ]. It is worth remarking that this answers to
a possible legitimate doubt about the category TSSMC⊗: in principle, in fact,
the functoriality of Q[ ] could be due to a very tight choice of the target cate-
gory, e.g., the congruence R could induce too many isomorphisms of categories
and Q[ ] make undesirable identifications of nets. The existence of a coreflec-
tion right adjoint to Q[ ] is, of course, the best possible proof of the adequacy
of TSSMC⊗: it implies that Petri is embedded in it fully and faithfully. More
precisely, Petri is (equivalent to) a coreflective subcategory of TSSMC⊗. This
result supports our claim that TSSMC⊗ is an axiomatization of the category of
net computations.

Proposition 3.19 (Q[ ] a N [ ]: Petri→ TSSMC⊗ )
Let C be a symmetric Petri category, and let S⊗ be its monoid of objects. Define
N [C] to be the Petri net (∂0, ∂1: T → S⊕), where

• T is the set of transitions τ : πC,ν
�→ πC,ν′ of C;

• ∂0(τ : πC,ν
�→ πC,ν′) = ν;

• ∂1(τ : πC,ν �→ πC,ν′) = ν ′.

Then, N [ ] extends to a functor TSSMC⊗ → Petri which is right adjoint to Q[ ].
In addition, since the unit is an isomorphism, the adjunction is a coreflection.
Proof. Given any symmetric Petri category C, there is a (unique) symmetric strict

monoidal functor εC:QN [C]→ C which is the identity on the objects and which
sends the component at (u, v) of the transition τ : ν → ν′ of N [C], in the following
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denoted by [τ ]u,v , to the component τu,v of the corresponding natural transfor-
mation τ :πC,ν

�→ πC,ν′ : SymC,ν × SymC,ν′ → C. In fact, by naturality of τ , we
have that s; τu′,v′ = τu,v ; s′ for any symmetries s:u→ u′ and s′: v → v′ in SymC.
It follows then directly from Definition 3.7 that the conditions above define εC
(uniquely) as a symmetric strict monoidal functor from QN [C] to C. In addition,
since it clearly preserves transitions, we have that εC is a (representative of a) mor-
phism of symmetric Petri categories. We shall prove that εC enjoys the following
couniversal property: for each K:Q[N ] → C in TSSMC⊗, there exists a unique
morphism 〈f, g〉:N →N [C] in Petri such that the following diagram commutes.

QN [C] C

Q[N ]

εC //

Q[〈f,g〉]

OO

K
ooo

ooo
ooo

ooo
77

This proves that N [ ] is right adjoint to Q[ ], in symbols, Q[ ] a N [ ].

Let S⊗ denote the monoid of objects of C, and let (∂0, ∂1:T → S⊕) be N [C]
and F any representative of K. Since the object component of F is a monoid
homomorphism, we have M(F(u)) = M(F(v)) whenever M(u) = M(v). Then,
the function g: S⊕N → S⊕ which sends ν to M(F(uν)), for uν any linearization
of ν, is a well defined monoid homomorphism. Moreover, g does not depend
on the chosen representative of K, for if F R F′ then, for all u ∈ S⊗, there is
a symmetry σu: F(u) → F′(u), whence M(F(u)) = M(F′(u)). Concerning the
transitions, consider f :TN → T defined as f(t) = τ , where τ is the transition
of C corresponding via F to the transition {tu,v} of Q[N ]. By Lemma 3.15, f is
well-defined, and by Lemma 3.16, it does not depend on the representative of K.
Moreover, since f(t: ν → ν′) = τ implies that τ :πC,g(ν)

�→ πC,g(ν′), we have that
〈f, g〉:N →N [C] is a morphism in Petri.

We have to prove that εC ◦Q[〈f, g〉] = K in TSSMC⊗. Without loss of generality,
exploiting the fact that R is a congruence, we prove that ε ◦ G = F for choosen
representatives ε of εC, G of Q[〈f, g〉], and F of K. In particular, we can assume
that ε is the identity on the objects and that G(u) = F(u) for all u ∈ S⊗N . Then,
εG(tu,v) = ε([f(t)]G(u),G(v)) = f(t)G(u),G(v) = τF(u),F(v) = F(tu,v), the last equal-
ity being since τ is the transition of C corresponding to {tu,v} via F. The required
equality of functors follows now directly from Definition 3.7. Finally, the unique-
ness of 〈f, g〉 follows immediately, since if the diagram has to commute, then both
the definitions of f and g are forced.

By general results in category theory, the component ηN :N →NQ[N ] of the unit
of Q[ ] a N [ ] is the unique arrow which makes the diagram commute when C is
Q[N ] and K is the (equivalence class of the) identity of Q[ ]. Applying the previous
part of the proof, we have that ηN = 〈f, g〉, where g is the identity of S⊕N and f

sends t ∈ TN to {tu,v} ∈ TNQ[N ]. Since by the definitions of N [ ] and of transition
of Q[N ] we know that f is an isomorphism, we conclude that ηN is such. X
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We end this section by characterizing the replete image of Q[ ] in TSSMC⊗.

Proposition 3.20 (Petri ∼= PSSMC)
Let PSSMC be the full subcategory of TSSMC⊗ consisting of those symmetric
Petri categories C whose arrows can be generated by tensor and composition
from symmetries, and components of transitions of C, uniquely up to the ax-
ioms of symmetric strict monoidal categories, i.e., axioms (3) and (4), and the
naturality of transitions, i.e., axiom (Φ).
Then, PSSMC and Petri are equivalent.
Proof. By general results in category theory, it is enough to show that C belongs to
PSSMC if and only if the component εC:QN [C]→ C of the counit of Q[ ] a N [ ]
is an isomorphism. Let ε be a representative of εC. Clearly, εC is iso if and
only if ε is such. Moreover, since ε is an isomorphism on the objects, it is iso if
and only if it is an isomorphism on each homset. Then the result follows, since
each arrow of C can be written as tensor and composition of symmetries and
component of transitions if and only if ε is surjective on each homset, and this
can be done uniquely (up to the equalities that necessarily hold in any symmetric
Petri category) if and only if ε is injective on each homset. X

4 Strong Concatenable Processes

In this section we introduce a slight refinement of concatenable processes and we
show that they are abstractly represented by the arrows of the category Q[N ]. In
other words, we find a process-like representation for the arrows of Q[N ]. This
yields a functorial construction for the category of the processes of a net N . Once
again most of the work has already been done in the proof of Proposition 3.5
and therefore our task is now easy.

Definition 4.1 (Strong Concatenable Processes)
Given a petri net N in Petri, a strong concatenable process of N is a tuple
(π, `, L) where π: Θ→ N is a process of N , and `: min(Θ) → {1, . . . , |min(Θ)|}
and L: max(Θ) → {1, . . . , |max(Θ)|} are isomorphisms, i.e., total orderings of,
respectively, the minimal and the maximal places of Θ.
An isomorphism of strong concatenable processes is an isomorphism of the un-
derlying processes which, in addition, preserves the orderings ` and L. As usual,
we identify isomorphic strong concatenable processes.

So, a strong concatenable process is a non-sequential process where the
minimal and maximal places are linearly ordered. Graphically, we shall rep-
resent strong concatenable processes by using the usual representation of non-
sequential processes enriched by labelling the minimal and the maximal places
with the value of, respectively, ` and L. An example is shown in Figure 4.
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Figure 4: A strong concatenable process for the net of Example 2.1

As in the case of concatenable processes, it is easy to define an operation
of concatenation of strong concatenable processes. We associate a source and
a target in S⊗N to each strong concatenable process by taking the string corre-
sponding to the linear ordering of, respectively, min(Θ) and max(Θ). Then, the
concatenation of (π0: Θ0 → N, `0, L0): u → v and (π1: Θ1 → N, `1, L1): v → w
is the concatenable process (π: Θ→ N, `, L): u→ w defined as follows (see also
Figure 5), where, in order to simplify notations, we assume that SΘ0 and SΘ1

are disjoint.

• Let A be the set of pairs (x, y) such that x ∈ max(Θ0), y ∈ min(Θ1)
and `(y) = L(x). By the definitions of concatenable processes and of
their sources and targets, each element of max(Θ0) belongs exactly to
one pair of A, and of course the same happens to min(Θ1). Consider
S0 = SΘ0 \max(Θ0) and S1 = SΘ1 \min(Θ1). Then, let in0:SΘ0 → S0∪A
be the function which is the identity on x ∈ S0 and maps x ∈ max(Θ1) to
the corresponding pair in A. Define in1:SΘ1 → S1∪A analogously. Then,

Θ = (∂0, ∂1: TΘ0 + TΘ1 → (S0 ∪ S1 ∪A)⊕),

where + denotes the disjoint union of sets and functions, and

– ∂0 = in⊕0 ◦ ∂0
Θ0

+ in⊕1 ◦ ∂0
Θ1

;

– ∂1 = in⊕0 ◦ ∂1
Θ0

+ in⊕1 ◦ ∂1
Θ1

;

• Suppose πi = 〈fi, gi〉, for i = 0, 1, and consider the function g(a) = gi(a)
if a ∈ Si and g((x, y)) = g0(x) = g1(y) otherwise. Then π = 〈f0 + f1, g〉.

• `(a) = `0(a) if a ∈ min(Θ0) and `((x, y)) = `0(x) if (x, y) ∈ min(Θ).

• L(a) = L1(a) if a ∈ max(Θ1) and L((x, y)) = L1(y) if (x, y) ∈ max(Θ).
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Figure 5: An example of the algebra of strong concatenable processes

Proposition 4.2

Under the above defined operation of sequential composition, the strong con-
catenable processes of N form a category CQ[N ] with identities those processes
consisting only of places, which therefore are both minimal and maximal, and
such that ` = L.

Strong concatenable processes admit a tensor operation ⊗ such that, given
SCP0 = (π0: Θ0 → N, `0, L0): u→ v and SCP1 = (π1: Θ1→ N, `1, L1): u′→ v′,
SCP0⊗SCP1 is the strong concatenable process (π: Θ→ N, `, L): u⊗u′ → v⊗v′
given below (see also Figure 5).

• Θ = (∂0
Θ0

+ ∂0
Θ1
, ∂1

Θ0
+ ∂1

Θ1
: TΘ0 + TΘ1 → (SΘ0 + SΘ1 )⊕);

• π = π0 + π1;

• `(in0(a)) = `0(a) and `(in1(a)) = |min(Θ0)|+ `1(a);

• L(in0(a)) = L0(a) and L(in1(a)) = |max(Θ1)|+ L1(a).

It is easy to verify that ⊗ is a functor ⊗: CQ[N ] × CQ[N ] → CQ[N ]. The
strong concatenable processes consisting only of places are analogous in CQ[N ]
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of the permutations of Q[N ]. In particular, for any u, v ∈ S⊗, the strong
concatenable process γ̄(u, v) consisting of places in one-to-one correspondence
with the elements of the string u⊗ v mapped by π to the corresponding places
of N , and such that `(ui) = i, `(vi) = |u| + i, L(ui) = |v| + i and L(vi) = i,
plays in CQ[N ] the role played by the permutation γ(u, v) in Q[N ] (see also
Figure 6).

Proposition 4.3

Under the above defined tensor product CQ[N ] is a symmetric strict monoidal
category whose symmetry isomorphism is the family {γ̄(u, v)}u,v∈S⊗

N
. Moroever,

the subcategory of CQ[N ] consisting of the processes with only places is the
category of symmetries of CQ[N ] and is isomorphic to Sym∗N .
Proof. Concerning the first claim, it is enough to verify that CQ[N ] satisfies the

axioms (6) with respect to ⊗ and the symmetries γ̄(u, v) defined above. The task
is really immediate and thus omitted.

Let Sym be the subcategory of the processes consisting only of places of CQ[N ].
Since ⊗ restricts to a functor Sym×Sym → Sym, we have that Sym is a symmet-
ric strict monoidal category with symmetry isomorphism {γ̄(u, v)}

u,v∈S⊗
N

. Then,

by Proposition 3.5, there exists a functor F from Sym∗N to Sym, corresponding to
the identity function on S⊗N , which is the identity on the objects and such that
F(γ(u, v)) = γ̄(u, v). Moreover, since for any u, v ∈ S⊗N the strong concatenable
processes from u to v in Sym are clearly isomorphic to the permutations p:u→ v

in Sym∗N , it follows easily that F is full and faithful. Therefore, F is an isomor-
phism. This means that Sym is generated via composition and tensor product
from the symmetries γ̄(u, v) and from the identities, i.e., that Sym is the category
of symmetries of CQ[N ]. X

The transitions t of N are faithfully represented in the obvious way by pro-
cesses with a unique transition which is in the post-set of any minimal place
and in the pre-set of any maximal place, minimal and maximal places being in
one-to-one correspondence, respectively, with ∂0

N (t) and ∂1
N (t). Thus, varying `

and L on the process corresponding to a transition we obtain a representative
in CQ[N ] of each instance tu,v of t in Q[N ] (see also Figure 6).

We can show the announced correspondence between CQ[N ] and Q[N ].

Proposition 4.4

CQ[N ] and Q[N ] are isomorphic.
Proof. First of all observe that CQ[N ] satisfies axiom (Φ) of Definition 3.7, the

symmetries and the (instances of) transitions being as explained above. In order to
prove this claim, let Tu,v = (π0: Θ0 → N, `0, L0) and Tu′,v′ = (π1: Θ1 → N,`1, L1)
be different instances of some transition t, and let S: u → u′ and S′: v → v′ be
symmetries of CQ[N ]. Moreover, suppose that S−1 and S′ correspond, respectively,
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Figure 6: A transitions tu,v: u→ v and the symmetry γ(u, v) in CQ[N ]

to the permutations p:u′ → u and q: v → v′ in Q[N ]. Then, S−1 ; Tu,v ; S is
(isomorphic to) (π0: Θ0 → N, p ◦ `0, q ◦ L0). Consider the function g:SΘ0 → SΘ1

such that g(x) = `−1
1 (p(`0(x))) if x ∈ min(Θ0) and g(x) = L−1

1 (q(L0(x))) if x ∈
max(Θ1). Clearly, by definition of Θ0 and Θ1, g is an isomorphism. Moreover,
since for each x ∈ min(Θ0) and y ∈ max(Θ0) we have that u`0(x) = u′p(`0(x)) and
vL0(y) = u′q(L1(y)), it follows that π1(g(x)) = u′`1(g(x)) = u′p(`0(x)) = u`0(x) = π0(x)
and that π1(g(y)) = u′L1(g(y)) = u′q(L0(y)) = uL0(y) = π0(y). Therefore, we have
an isomorphism 〈f, g⊗〉: Θ0 → Θ1, where g⊗:S⊗Θ0

→ S⊗Θ1
is the free monoidal

extension of g and f is the function which maps the unique transition in Θ0 to the
unique transition in Θ1. Then, S−1 ; Tu,v ; S′ = Tu′,v′ , i.e., (Φ) holds.

Thus, since by definition Q[N ] is the free symmetric strict monoidal category built
on Sym∗N plus the additional arrows in TN and which satisfies axiom (Φ), there is a
strict monoidal functor H:Q[N ]→ CQ[N ] which is the identity on the objects and
sends the generators, i.e., symmetries and transitions, to the corresponding strong
concatenable processes. We want to show that H is an isomorphism. Observe
that, by Proposition 4.3, we already know that H is an isomorphism between the
corresponding categories of symmetries.

fullness. It is completely trivial to see that any strong concatenable process SCP
may be obtained as a concatenation SCP0 ; . . . ; SCPn of strong concatenable
processes SCP i of depth one. Now, each of these SCP i may be split into the
concatenation of a symmetry Si0, the tensor of the (processes representing the)
transitions which appear in it plus some identities, say ui ⊗

⊗
j
T ij and finally

another symmetry Si1. The intuition about this factorization is as follows. We
take the tensor of the transitions which appear in SCP i in any order and multiply
the result by an identity concatenable process in order to get the correct source and
target. Then, in general, we need a pre-concatenation and a post-concatenation
with a symmetry in order to get the right indexing of minimal and maximal places.
Then, we finally have

SCP = S0
0 ; (u1 ⊗

⊗
j
T1
j ) ; (S0

1 ; S1
0 ) ; . . . ; (Sn−1

1 ; Sn0 ) ; (un ⊗
⊗

j
Tnj ) ; Sn1

which shows that every strong concatenable process is in the image of H.
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faithfulness. The arrows of Q[N ] are equivalence classes, modulo the axioms stated
in Definition 3.8, of terms built by applying tensor and sequential composition to
the identities idu, the symmetries cu,v , and the transitions tu,v . We have to show
that, given two such terms α and β, whenever H(α) = H(β) we have α =E β,
where =E is the equivalence induced by the axioms (3), (4) and (Φ).

First of all, observe that if H(α) is a strong process SCP of depth n, then α can
be proved equal to a term

α′ = s0; (idu1 ⊗
⊗

j
τ1
j ); s1; . . . ; sn−1; (idun ⊗

⊗
j
τnj ); sn

where, for 1 ≤ i ≤ n, τ ij = (tij)ui
j
,vi
j

and the transitions tij , for 1 ≤ j ≤ ni, are
exactly the transitions of SCP at depth i and where s0, . . . , sn are symmetries.
Moreover, we can assume that in the i-th tensor product

⊗
j
τ ij the transitions are

indexed according to a global ordering ≤ of TN assumed for the purpose of this
proof, i.e., ti1 ≤ · · · ≤ tini , for 1 ≤ i ≤ n. Let us prove our claim. It is easily shown
by induction on the structure of terms that using axioms (3) α can be rewritten as
α1; . . . ;αh, where αi =

⊗
k
ξik and ξik is either a transition or a symmetry. Now,

observe that by functoriality of ⊗, for any α′:u′ → v′, α′′:u′′ → v′′ and s:u → u,
we have α′ ⊗ s ⊗ α′′ = (idu′ ⊗ s ⊗ idu′′ ); (α′ ⊗ idu ⊗ α′′), and thus, by repeated
applications of (3), we can prove that α is equivalent to s̄0; ᾱ1; s̄1 . . . ; s̄h−1; ᾱh,
where s̄0, . . . , s̄h−1 are symmetries and each ᾱi is a tensor

⊗
k
ξ̄ik of transitions

and identities. The fact that the transitions at depth i can be brought to the i-th
tensor product, follows intuitively from the facts that they are “disjointly enabled”,
i.e., concurrent to each other, and that they depend causally on some transition at
depth i− 1. In particular, the sources of the transitions of depth 1 can be target
only of symmetries. Therefore, reasoning formally as above, they can be pushed
up to ᾱ1 exploiting axioms (3). Then, the same happens for the transitions of
depth 2, which can be brought to ᾱ2. Proceeding in this way, eventually we show
that α is equivalent to the composition ¯̄s0; ¯̄α1; ¯̄s1 . . . ; ¯̄sn−1; ¯̄αn; ¯̄sn of the symmetries
¯̄s0, . . . , ¯̄sn and the products ¯̄αi =

⊗
k

¯̄ξ
i

k of transitions at depth i and identities.

Finally, the order of the ¯̄ξ
i

k can be permuted in the way required by ≤. This
is achieved by pre- and post-composing each product by appropriate interchange
symmetries. More precisely, let σ be a permutation such that

⊗
k

¯̄ξ
i

σ(k) coincides

with idui ⊗
⊗

j
τ ij , suppose that ¯̄ξ

i

k:uik → vik, for 1 ≤ k ≤ ki. Then, by definition
of interchange permutation in Sym∗N , we have that

σ(ui1, . . . , u
i
ki

); (
⊗

k
¯̄ξ
i

σ(k)) = (
⊗

k
¯̄ξ
i

k);σ(vi1, . . . , v
i
ki

),

and then, since σ(ui1, . . . , u
i
ki

) is an isomorphism, we have that

(idui ⊗
⊗

j
τ ij) = σ(ui1, . . . , u

i
ki

)−1; (
⊗

k
¯̄ξ
i

k);σ(vi1, . . . , v
i
ki

).

Now, applying the same argument to β, one proves that it is equivalent to a
term β′ = p0;β0; p1; . . . pn−1;βn; pn, where p0, . . . , pn are symmetries and βi is
the product of (instances of) the transitions at depth i in H(β) and of identities.
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Then, since H(α) = H(β), and since the transitions occurring in βi are indexed in
a predetermined way, we conclude that βi = (idui ⊗

⊗
j
τ̄ ij), where τ̄ ij = (tij)ūi

j
,v̄i
j

i.e.,

α′ = s0; (idu1 ⊗
⊗

j
(t1j)u1

j
,v1
j
); s1; . . . ; sn−1; (idun ⊗

⊗
j
(tnj )un

j
,vn
j

); sn

β′ = p0; (idu1 ⊗
⊗

j
(t1j)ū1

j
,v̄1
j
); p1; . . . ; pn−1; (idun ⊗

⊗
j
(tnj )ūn

j
,v̄n
j

); pn. (5)

In other words, the only possible differences between α′ and β′ are the symmetries
and the sources and targets of the corresponding instances of transitions. Observe
now that the steps which led from α to α′ and from β to β′ have been performed by
using the axioms which define Q[N ] and since such axioms hold in CQ[N ] as well
and H preserves them, we have that H(α′) = H(α) = H(β) = H(β′). Thus, we
conclude the proof by showing that, if α and β are terms of the form given in (5)
which differ only by the intermediate symmetries and if H(α) = H(β), then α
and β are equal in Q[N ].

We proceed by induction on n. Observe that if n is zero then there is nothing to
show: since we know that H is an isomorphism on the symmetries, s0 and p0, and
thus α and β, must coincide. To provide a correct basis for the induction, we need
to prove the thesis also for n = 1.

depth 1. In this case, we have

α = s0; (idu ⊗
⊗

j
(tj)uj ,vj ); s1

β = p0; (idu ⊗
⊗

j
(tj)ūj ,v̄j ); p1.

Without loss of generality we may assume that p0 and p1 are identities. In fact,
we can multiply both terms by p−1

0 on the left and by p−1
1 on the right and obtain

a pair of terms whose images through H still coincide and whose equality implies
the equality in Q[N ] of the original α and β.

Let (π: Θ→ N, `,L) and (π̄: Θ̄→ N, ¯̀, L̄) be, respectively, the strong concatenable
processes H(idu⊗

⊗
j
(tj)uj ,vj ) and H(idu⊗

⊗
j
(tj)ūj ,v̄j ). Clearly, we can assume

that H(s0) and H(s1) are respectively (π0: Θ0 → N,`′, `) and (π1: Θ1 → N,L,L′),
where Θ0 is min(Θ), Θ1 is max(Θ), π0 and π1 are the corresponding restrictions
of π, and `′ and L′ are the orderings respectively of the minimal and the maximal
places of Θ.

Then, we have that H(s0; (idu ⊗
⊗

j
(tj)uj ,vj ); s1) is (π: Θ → N,`′, L′), and by

hypothesis there is an isomorphism ϕ: Θ → Θ̄ such that π̄ ◦ ϕ = π and which
respects all the orderings, i.e., ¯̀(ϕ(a)) = `′(a) and L̄(ϕ(b)) = L′(b), for all a ∈ Θ0

and b ∈ Θ1. Let us write idu ⊗
⊗

j
(tj)uj ,vj as

⊗
k
ξk and idu ⊗

⊗
j
(tj)ūj,v̄j

as
⊗

k
ξ̄k, where ξk, respectively ξ̄k, is either a transition (tj)uj ,vj , respectively

(tj)ūj ,v̄j , or the identity of a place in u. Clearly, ϕ induces a permutation, namely
the permutation σ such that ξ̄σ(k) = ϕ(ξk). In order for ϕ to be a morphism
of nets, it must map the (places corresponding to the) pre-set, respectively post-
set, of (tj)uj ,vj to (the places corresponding to the) pre-set, respectively post-set,
of (tσ(j))ūσ(j),v̄σ(j) . It follows that (π1: Θ1 → N,L,L′), which is H(s1), must be
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a symmetry obtained by post-concatenating the image via H of the interchange
symmetry σ(v̄1, . . . , v̄ki) in CQ[N ] with a tensor product

⊗
j
S1
j of symmetries,

one for each t occurring in α, where S1
j : vj → v̄j , whose role is to reorganize the

tokens in the post-sets of each transitions. Reasoning along the same lines, we can
conclude that (π0: Θ0 → N, `, `′), which is H(s0)−1, must be a symmetry obtained
by concatenating a tensor product

⊗
j
S0
j , where S0

j :uj → ūj is a symmetry,
with the image via H of the interchange symmetry σ(ū1, . . . , ūki ). Then, since H
is an isomorphism between SymQ[N ] and SymCQ[N ], s0 and s1 must necessarily
be, respectively, σ(ū1, . . . , ūki)

−1; (idu⊗
⊗

j
s0
j), and (idu⊗

⊗
j
s1
j );σ(v̄1, . . . , v̄ki),

where s0
j : ūj → uj and s1

j : vj → v̄j are symmetries.

Then, by distributing the tensor of symmetries on the transitions and using (Φ),
we show that α = σ(ū1, . . . , ūki )

−1; (idu ⊗
⊗

j
s0
j ; (tj)uj ,vj ; s

1
j);σ(v̄1, . . . , v̄ki ) =

σ(ū1, . . . , ūki )
−1; (idu ⊗

⊗
j
(tj)ūj ,v̄j );σ(v̄1, . . . , v̄ki), which, by definition of inter-

change symmetry, is (idu ⊗
⊗

j
(tj)ūj,v̄j ). Thus, we have α =E β as required.

Inductive step. Suppose that n > 1 and let α = α′;α′′ and β = β′;β′′, where

α′ = s0; (idu1 ⊗
⊗

j
τ1
j ); s1; . . . ; sn−1 and α′′ = (idun ⊗

⊗
j
τnj ); sn

β′ = p0; (idu1 ⊗
⊗

j
τ̄1
j ); p1; . . . ; pn−1 and β′′ = (idun ⊗

⊗
j
τ̄nj ); pn

We show that there exists a symmetry s in Q[N ] such that H(α′; s) = H(β′) and
H(s−1;α′′) = H(β′′). Then, by the induction hypothesis, we have (α′; s) =E β′

and (s−1;α′′) =E β′′. Therefore, we conclude that (α′; s; s−1;α′′) =E (β′;β′′), i.e.,
that α = β in Q[N ].

Let (π: Θ → N, `, L) be the strong concatenable process H(α) = H(β). Without
loss of generality we may assume that the strong processes H(α′) and H(β′) are,
respectively, (π: Θ′ → N, `′, Lα

′
) and (π′: Θ′ → N, `′, Lβ

′
), where Θ′ is the subnet

of depth n − 1 of Θ, `′ is the appropriate restriction of ` and finally Lα
′

and
Lβ
′

are orderings of the places at depth n − 1 of Θ. Consider the symmetry
S = (π̄: Θ̄→ N, ¯̀, L̄) in CQ[N ], where

• Θ̄ is the process nets consisting of the maximal places of Θ′;

• π̄: Θ̄→ N is the restriction of π to Θ̄;
• ¯̀= Lα

′
;

• L̄ = Lβ
′
.

Then, by definition, we have H(α′);S = H(β′). Let us consider now α′′ and β′′.
We can assume that H(α′′) andH(β′′) are, respectively, (π′′: Θ′′ → N,`α

′′
, L′′) and

(π′′: Θ′′ → N,`β
′′
, L′′), where Θ′′ is the process net obtained by removing from Θ

the subnet Θ′, L′′ is the restriction of L to Θ′′, and `α
′′

and `β
′′

are orderings of
the places at depth n− 1 of Θ. Now, in our hypothesis, it must be Lα

′
= `α

′′
and

Lβ
′

= `β
′′

, which shows directly that S−1;H(α′′) = H(β′′). Then, s = H−1(S) is
the required symmetry of Q[N ].

Then, since H is full and faithful and is an isomorphism on the objects, it is an
isomorphism and the proof is concluded. X
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Conclusions

In this paper we studied the issue of functoriality for the categorical/algebraic
viewpoint of Petri net processes introduced in [6]. We gave a negative result
showing that no naive modification of P[N ] can be functorial. Then, we intro-
duced the strong concatenable processes as the least modification of concaten-
able processes which takes such a result into account and we showed that the
construction of the strong concatenable processes can be expressed via a functor
Q[ ]. This shows that, in a sense, strong concatenable processes are the least
extension of concatenable processes which yields functoriality, i.e., the least ex-
tension of Goltz-Reisig processes which yields an operation of concatenation and
admits a functorial treatment.

In addition, the paper proposed TSSMC⊗ as an axiomatization of the cate-
gory of (categories of) net behaviours; the appropriateness of such a category to
the purpose has been proved by showing that Q[ ] embeds coreflectively Petri
in TSSMC⊗.

The choice of the category of Petri nets studied in the paper, namely Petri
exactly as defined in [13] and used in [6], has been suggested by the existence
of the open problem of functoriality of the process semantics. It is worth re-
marking, however, that such a category is rather general, in the precise sense
of allowing all the reasonable morphisms, as introduced in [23, 24], which map
transitions to transitions. Nevertheless, more general kinds of morphisms, e.g.,
mapping transitions to computations, have been occasionally proposed in the
literature [24, 13]. A question which may be worth investigating in the future
concerns the categorical axiomatizations of the behaviour of nets, analogous to
the one presented here, when such morphisms are considered.
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Strong Concatenable Processes

A Monads

A monad [8, 12] on a category C is a triple (T , η, µ), where T :C → C is an
endofunctor, η: IdC

�→ T is a natural transformation, called the unit of the
monad, µ: T2 �→ T is a natural transformation, called the multiplication of the
monad, such that

µ � ηT = 1T = µ � Tη (Unit law);
µ � Tµ = µ � µT (Associative law).

Monads are strictly related to algebraic constructions. In order to appreciate
this fact, one should think of T as being the “free construction”, in the precise
sense of associating to each object c ∈ C a “free algebra” Tc on c, one should
think of η as the injection of c in the “free algebra” on it, and one should think
of µ as providing the interpretation for the operations in Tc.

A T -algebra is a pair (c, h), where c ∈ C and h: Tc→ c is a morphism, called
the structure map, such that

h ◦ ηc = idc (Unit);
h ◦ Th = h ◦ µc (Associativity).

Observe that for any c we have that (Tc, µc) is an algebra.
A morphism of T -algebras, or T -homomorphism, f : (c, h) → (c′, h′) is an

arrow f : c→ c′ in C such that

h′ ◦ Tf = f ◦ h.

T -algebras and their morphisms define the category CT .
The well know fact that homomorphisms of algebras whose source is a

free algebra Tc are uniquely identified by their behaviour on c has the fol-
lowing counterpart in the theory of monads: there is a bijection between the
T -homomorphisms (Tc, µc) → (c′, h′) in CT and the arrows c → c′ in C. Such
one-to-one correspondence is expressed by following diagram.

HomC(c, c′) HomCT ((Tc, µc), (c′, hc′))

# "hc′◦T ( )

��

! 
◦ηc

OO

In fact, for each arrow f : c → c′ in C, it follows from the naturality of η that
hc′ ◦ Tf ◦ ηc = hc′ ◦ ηc′ ◦ f , which, by the unit law of structure maps, is f .
On the other hand, given a homomorphism g: (Tc, µc)→ (c′, hc′), we have that
hc′ ◦T(g◦ηc) = g◦µc◦Tηc by definition of T -homomorphism, and g◦µc◦Tηc = g
by the unit law of monads.
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B. Symmetric Strict Monoidal Categories

B Symmetric Strict Monoidal Categories

A symmetric strict monoidal category [1, 7, 12] is a category C together with a
functor ⊗:C× C → C, called the tensor product, and a selected object e ∈ C,
the unit object, such that ⊗, when viewed as a pair of operations respectively
on objects and arrows of C, forms two monoids whose units are e and ide, and
together with a family of arrows γx,y: x⊗ y → y ⊗ x, for x and y objects of C,
such that, for each f : x→ y and g: x′ → y′ in C,

(idy ⊗ γx,z) ◦ (γx,y ⊗ idz) = γx,y⊗z

(g ⊗ f) ◦ γx,y = γx′,y′ ◦ (f ⊗ g); (6)
γy,x ◦ γx,y = idx⊗y

Notice that the equations above mean, respectively, that γ satisfies the relevant
Kelly-MacLane [11, 10] coherence axiom, that γ = {γx,y}x,y∈C is a natural
transformation ⊗ �→ ⊗◦∆, where ∆ is the endofunctor on C×C which “swaps”
its arguments, and that γx,y is an isomorphism with inverse γy,x. The role of γ
is to express the commutativity “up to isomorphism” of the structure by giving
explicitly the isomorphism, e.g., between x⊗y and y⊗x. Then, the axioms above
guarantee the reasonable requirement that between two given objects there is
at most one such structural isomorphism, i.e., they guarantee the coherence of
the structural isomorphism γ.

Theorem [11, 10]. Every diagram of natural transformations each
arrow of which is obtained by repeatedly applying ⊗ to “instances”
of γ and identities, where in turn “instances” means components
of the natural transformation at objects of C obtained by repeated
applications of ⊗ to e and to “variables”, commutes.

A symmetry in a symmetric monoidal category is any arrow obtained as
composition and tensor of “instances” of γ and identities. We write SymC to
denote the subcategory of a symmetric monoidal category C whose objects are
those of C and whose arrows are the symmetries of C.

A symmetric strict monoidal functor from (C,⊗, e, γ) to (D,⊗′, e′, γ′) is a
functor F:C→ D such that

F(e) = e′,

F(x⊗ y) = F(x)⊗′ F(y), (7)
F(γx,y) = γ′Fx,Fy .

These data define the category SSMC of symmetric strict monoidal (small)
categories and symmetric strict monoidal functors.
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Strong Concatenable Processes

Given the symmetric strict monoidal categories C and D and the symmetric
strict monoidal functors F:C → D and G:C → D, a monoidal transformation
from F to G is a natural transformation σ: F �→ G such that

σe = ide′ ,
σu⊗v = σu ⊗′ σv. (8)

Given a (symmetric monoidal) category C and a family R of binary relations
on the homsets of C (in particular a set of equations E on parallel arrows of C)
the (monoidal) quotient of C modulo R, is the category C/R, whose objects
are those of C and whose arrows are the equivalence classes of the arrows of C
modulo the least equivalence closed with respect to arrow composition (and
tensor product) which contains R.
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