
B
R

IC
S

R
S

-94-29
C

ram
er&

D
am

g̊ard:
S

ecure
S

ignature
S

chem
es

B
ased

on
Interactive

P
rotocols

BRICS
Basic Research in Computer Science

Secure Signature Schemes Based on
Interactive Protocols

Ronald Cramer
Ivan Damgård

BRICS Report Series RS-94-29

ISSN 0909-0878 September 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Secure Signature Schemes based on
Interactive Protocols

Ronald Cramer (CWI, Amsterdam),
Ivan Damg̊ard (BRICS ∗, Aarhus University)

September 15, 1994

Abstract

A method is proposed for constructing from interactive protocols
digital signature schemes secure against adaptively chosen message
attacks. Our main result is that practical secure signature schemes
can now also be based on computationally difficult problems other
than factoring (see [9]), such as the discrete logarithm problem.

More precisely, given only an interactive protocol of a certain type
as a primitive, we can build a (non-interactive) signature scheme that
is secure in the strongest sense of Goldwasser, Micali and Rivest
(see [9]): not existentially forgeable under adaptively chosen mes-
sage attacks. There are numerous examples of primitives that satisfy
our conditions, e.g. Feige-Fiat-Shamir, Schnorr, Guillou-Quisquater,
Okamoto and Brickell-Mc.Curley ([7], [15], [10], [13], [3]).

In fact, the existence of one-way group homomorphisms is a suffi-
cient assumption to support our construction. As we also demonstrate
that our construction can be based on claw-free pairs of trapdoor one-
way permutations, our results can be viewed as a generalization of
[9].

∗Basic Research in Computer Science, Centre of the Danish National Research
Foundation

1

1 Introduction

This paper deals with the construction of secure signature schemes. By
”secure”, we mean that some well-defined computational assumption can be
shown to be sufficient for the scheme not to be existentially forgeable, even
under an adaptive chosen message attack. This notion of optimal security
was introduced in [9]. Most, if not all, signature schemes used in practice
such as ISO9796/RSA or DSA are based on a computational assumption that
is certainly necessary for this kind of security, but not known to be sufficient.

Goldwasser, Micali and Rivest [9] were the first to find a provably secure
signature scheme, based on the existence of claw-free pairs of trapdoor one-
way permutations. Merkle [11] showed essentially that existence of collision
intractable hash functions is a sufficient assumption. Naor and Yung showed
that any one-way permutation is also enough [12], and finally this was reduced
to any one-way function (which is also a necessary assumption) by Rompel
[14].

Although secure signature schemes are generally less efficient than the
ones used in practice, the efficiency of the GMR scheme is not too bad when
based on factoring, and by relying on the (perhaps) stronger assumption that
RSA is hard to invert, Bos and Chaum [2] have been able to build an even
more efficient secure scheme.

Recently, Dwork and Naor [5] have exhibited an efficient and secure sig-
nature scheme whose security is also equivalent to the difficulty of RSA-
inversion. In contrast with other schemes that use authentication trees, such
as [9], they are able to re-use the authenticating nodes many times. As a
result of this and further exploitations of the specific properties of the RSA
functions, the length of their signatures can be made quite small, although
a price has to be paid in the form of a large public file.

On the theoretical side, the reduction in the necessary assumptions by
[11], [12] and [14] have come at the price of dramatically reduced efficiency.
In particular, signatures have become larger. Where a GMR signature is
of length O(k) bits, where k is the security parameter (ignoring here any
dependency on the number of messages signed), a Naor-Yung signature would
typically be of length O(k2) bits, because a full preimage under a one-way
function is required to authenticate 1 bit.

Thus it has been an open question whether secure signatures with effi-
ciency comparable to or better than that of GMR could be based on more

2

general assumptions than claw-free pairs of trapdoor one-way permutations.
In this paper, we show that secure signature schemes with signatures as

short as those of GMR can be built if so called signature protocols exist. In
particular, our schemes have the same property as GMR that the length of
signatures grow logarithmically with the number of messages signed. Note
that Goldreich [8] has shown that the GMR scheme can be modified so that
all signatures have length O(k log k) bits. This same modification applies to
our scheme as well.

Dropping some technical details, a signature protocol is an interactive
protocol for a hard problem that uses three messages, where the prover speaks
first and the verifier sends a random challenge as the second message. The
essential properties are

• The protocol must be secure (zero-knowledge) against the honest veri-
fier.

• The challenge must be longer than the prover’s first message.

• It must be infeasible for a cheating prover to answer more than one
challenge in a given protocol execution.

We show that it is sufficient for the existence of signature protocols that
one-way group homomorphisms exist. This has a nice theoretical conse-
quence, because it shows that, compared to GMR, the trapdoor property
can be traded for the homomorphism property without getting longer signa-
tures. Moreover, our construction allows us, in both signature generation and
verification, to minimize the number of evaluations of the one-way function
and replace them by evaluations of the group operation in the the groups
involved. This means that we can use the discrete logarithm assumption as
a basis for secure signatures in a much more efficient way than known be-
fore. Where earlier methods would, with security parameter k, require O(k2)
exponentiations per basic authentication step and give signatures of length
O(k2) bits, our method requires O(1) exponentiations and gives signatures
of length O(k).

We also show that existence of a three pass public coin proof of knowl-
edge for any hard problem 1 and a collision intractable hash function implies
existence of signature protocols. Although the hash function alone would be

1A hard random self-reducible problem would be enough for this

3

P V

(a, aux(a))← Pa(x, w)
a−−−−−−−−−→

c← {0, 1}CP
c←−−−−−−−−−

r← Pr(x, w; a, aux(a), c)
r−−−−−−−−−→

φ(x, a, c, r) ?= 1

Figure 1: Protocol P , common input x, private input for P is w

enough to construct secure signatures, using our method may lead to shorter
signatures (O(k) compared to O(k2)), depending on the protocol used.

2 Signature Protocols

This section is devoted to defining the basic building block, a signature pro-
tocol, that is used in our construction for secure signatures.

Let P be a three round public coin protocol where the prover speaks first.
Figure 1 depicts the kind of protocol we will look at. It resembles a proof of
knowlege for a binary relation R (see for instance [6] for details), in that the
prover can always make the verifier accept on common input x, if the prover
knows w such that (x, w) ∈ R.

Indeed, by running (probabilistic) polynomial time algorithm Pa on x
and his secret witness w, the prover P computes his initial message a, and
some (secret) auxiliary information aux(a). The length of this first message
a is denoted AP , the authentication length, which only depends on x. After
having received a, the verifier V chooses a challenge c uniformly at random,
and sends it to P . The length of admissible challenges in P is called the
challenge length CP (we will sometimes abuse this notation to refer to the set
of possible challenges). Also here, it is assumed to depend only on x. The
prover P completes the conversation by running (probabilistic) polynomial
time algorithm Pr on x, w, a, c, and, the auxiliary information aux(a) for

4

a. The resulting response r is submitted to the verifier V . We will assume
that the procedure φ that the verifier V invokes to test the validity of the
conversation, is a polynomial time algorithm. The collection of all possible
accepting conversations with respect to x will be denoted Acc(x). For the
rest of this paper, P will denote a protocol as described above.

For the purpose of constructing secure signature schemes, the protocol P
does not, however, have to satisfy the ordinary soundness condition. Instead,
we require the following.

Definition 1 Let k be a security parameter for protocol P. Suppose we are
given a probabilistic polynomial time generator G for relation R that on input
1k produces (x, w) ∈ R, such that no probabilistic polynomial time algorithm,
given x as input, can generate two accepting conversations (with respect to x)
(a, c, r), (a, c′, r′) from Acc(x), with c 6= c′, except with negligible probability
of success. Then P is called collision intractible over G.

Next, we need the protocol P to be secure in the following sense. Instead
of requiring the protocol to be zero-knowledge against an arbitrary verifier,
we only demand that conversations with an honest verifier (i.e., a verifier
who follows protocol P as desired) can be simulated. Additionally, we require
that the simulator outputs accepting conversations where the challenge can
be chosen in advance, i.e., the simulator can take any value c as input, and
will output an accepting conversation where the challenge is equal to c. A
protocol P satisfying these conditions will be called special honest verifier
zero-knowledge.

More precisely, let (x, w) ∈ R and let a prover P and a verifier V with
common input x be given. The prover has w as private input. Then P(x, w)
denotes the probability distribution on Acc(x) induced by conversations be-
tween P and V , provided that they both follow protocol P honestly. We
require the following.

Definition 2 Let (x, w) ∈ R. Suppose we are given a probabilistic polyno-
mial time algorithm S with the following properties.

1. On input x and any c ∈ CP , S outputs an accepting conversation from
Acc(x).

2. The distribution of S(x, c), where c is chosen uniformly at random from
CP, is equal to P(x, w).

5

Then P is called special honest verifier zero knowledge, and S its special
simulator.

In the following we will demonstrate that a protocol P that is special
honest verifier zero-knowledge, is in fact secure against a slightly more general
verifier. It follows immediately from Definition 2 that, for each fixed c ∈
CP , S(x, c) outputs conversations (a, c, r) ∈ Acc(x) with exactly the same
distribution as (a ← Pa(x, w), c, r ← Pr(x, w, a, aux(a), c)), i.e., according
to the honest prover who has access to (x, w). Therefore, it is sufficient
that challenges c are independently chosen from the first message in any
given execution of P , in order for the conversations to be simulatible. In
other words, c may depend on anything (including the history of executions,
x, etc.) but the prover’s first message a in the given execution, and the
conversation is still simulatible. This proves the following theorem.

Theorem 1 If Ṽ is any probabilistic polynomial time verifier who, in any
given execution of protocol P, chooses the challenge c independently from the
prover’s first message a, then the conversation between prover P and verifier
Ṽ can be simulated by means of the special simulator S.

Summarizing, we require the following of our protocol P in order for it
to support our construction of (non-interactive) secure signature schemes.

Definition 3 Suppose P satisfies the following conditions.

1. CP > AP.

2. P is collision-intractible over G.

3. P is special honest verifier zero-knowledge.

Then P is called a signature protocol. If P satisfies the second condition and
is honest verifier zero-knowledge (so it does not necessarily have a special
simulator), P is called a quasi signature protocol.

We now demonstrate that any given signature protocol P can be trans-
formed into a new signature protocol P∗ where the challenge length CP∗ can
be of any size polynomial in the security parameter k.

6

Theorem 2 Suppose there exists a signature protocol P for relation R and
generator G, then there is a signature protocol P∗ for R and G, satisfying
that CP∗ = t, for any t polynomial in the security parameter k.

Proof: Without loss of generality, we may assume that AP + 1 = CP The
protocol P∗ goes as follows:

1. The prover sends a first message a to the verifier, where a is computed
as in P .

2. The verifier sends t random bits b1, . . . , bt.

3. The prover sends t conversations in P , (ai, ci, ri), i = 1, . . . , t, where
ci = bi||ai+1 for i = 1, . . . , t− 1 and ct = bt||0|| · · · ||0.

4. The verifier checks that a = a1, that all conversations are accepting
conversations, and that ci = bi||ai+1 for i = 1, . . . , t − 1, and that
ct = bt||0|| · · · ||0.

By construction, the challenge length t for P∗ can be chosen what we
want it to be, provided t = poly(k). Suppose now that we are given two
accepting conversations in P∗ for some public string x with the same first
message a, but with different challenges (b1, . . . , bt) and (b′1, . . . , b′t). Let,
for j = 1 . . . t, (aj, cj , rj) and (a′j, c′j , r′j) be the respective replies in those
conversations in P∗, and let i be an index such that bi 6= b′i. Clearly, this
implies that ci 6= c′i. Take i to be the smallest index such that ci 6= c′i.
If i = 1, we have a collision in P with respect to x, as by definition of
P∗, we must have a1 = a′1 = a.On the other hand, if i > 1, ci−1 must
be equal to c′i−1, i.e., bi−1||ai = b′i−1||a′i. But then ai = a′i and we have
a collision (ai, ci, ri), (a′i, c′i, r′i) in P with respect to x. Therefore, P∗ is
collision-intractible over R and G.

As for special honest verifier zero-knowledge of P∗, we now exhibit a special
simulator S∗ for P∗, that runs S as a subroutine. S∗ starts by receiving
a public string x and a challenge (b1, . . . , bt) as input. It proceeds by
putting ct = bt||0|| · · · ||0, and feeding x and ct to S. After S has output
an accepting conversation (at, ct, rt) in P with respect to x, S∗ repeats the
following for i = t−1 . . . 1. Put ci = bi||ai+1, feed x and ci to S and receive
an accepting conversation (ai, ci, ri) from S. By invoking Theorem 1, it is
clear that S∗ generates accepting conversations in P∗ with respect to x,

7

with exactly the same distribution as the conversations with the honest
verifier in P∗. 2

Thus, in the constructions to follow, whenever we have a signature pro-
tocol, we may assume that the challenge length is whatever we need it to
be.

Before investigating under which general assumptions signature protocols
can be shown to exist, we mention some examples of proofs of knowledge that
can be viewed as signature protocols.

• Guillou-Quisquater [10].

• Okamoto [13], both the factoring and the RSA-versions.

• Fiat-Shamir [7] (if the number of secret roots is chosen sufficiently large)

Schnorr’s discrete log protocol [15] does not directly satisfy the condi-
tions, but can be modified to do so since it is based on a one-way group
homomorphism (see below).

3 Sufficient Assumptions

The most general computational assumptions we have been able to find,
sufficient for existence of signature protocols, is the existence of one-way
group homomorphisms, and the existence of claw-free pairs of trapdoor one-
way permutations. No implication is known in either direction between these
two assumptions.

One-Way Group Homomorphisms

Definition 4 A family of one-way group homomorphisms is a family of
group homomorphisms F = {f : G → H}. In the following, we let kf =
log2(|H|), i.e. the number of bits needed to represent an element in H. We
will sometimes drop subscript f , if it is clear which f we refer to. The family
has to satisfy the following properties:

1. There is a polynomial time algorithm which given f and w ∈ G, com-
putes f(w) in time polynomial in k.

8

2. There is a probabilistic polynomial time algorithm which on input 1k

outputs an element f : G → H chosen uniformly from F , subject to
k = kf .

3. The elements f : G → H ∈ F satisfy that there is a probabilistic
algorithm which given G outputs an element chosen uniformly from G,
in time polynomial in k.

4. The one-way property: Let A be any probabilistic polynomial time al-
gorithm which receives input f and f(w), where f, w are chosen as
in points 2 and 3. Then the probability that A outputs y such that
f(y) = f(w) is superpolynomially small in k.

5. The elements f : G → H ∈ F satisfy that group operation and inver-
sion in G and H can be computed in time polynomial in k.

An example of such a family could be the case where the homomorphisms
are discrete exponentiation modulo a prime, i.e. each element f : G→ H is
described by a k-bit prime p and an element g ∈ Zp. G is the additive group
modulo p−1, H is the multiplicative group modulo p, and f(w) = gw mod p.

Given a family as in this definition, we can make a binary relation and a
generator for it:

Definition 5 Let F be as in Definition 4. Then RF is the binary rela-
tion consisting of pairs ((f, x1, . . . , xkf+1), (w1, . . . , wkf+1)), where f ∈ F and
f(wi) = xi. GF is the generator that on input 1k generates f using prop-
erty 2 of Definition 4, generates w1, . . . , wkf+1 using property 3 and finally
computes xi = f(wi).

Theorem 3 Suppose F is a family of one-way group homomorphisms. Then
there exists a signature protocol for RF and GF .

Proof: The protocol claimed takes f, x1, . . . , xk+1 as common input, while
w1, . . . , wk+1 are private input to the prover. The protocol is now a straight-
forward generalization of Feige-Fiat-Shamir [7] and goes as follows:

1. The prover chooses a random r ∈ G and sends f(r) to the verifier.

2. The verifier chooses bits e1, . . . , ek+1 at random and sends them to
the prover.

9

3. The prover returns z = r · we11 · · ·w
ek+1
k+1 . The verifier checks that

f(z) = f(r) · xe11 · · · x
ek+1
k+1

This protocol is clearly complete with probability 1. Honest verifier zero
knowledge is clear by standard arguments: first choose z and e1, . . . , ek+1

at random, then use this to compute an f(r)-value. It is also clear that the
challenge is one bit longer than the first message from the prover. Thus,
only the collision intractable property remains to be argued:

So assume by contradiction that some enemy A can produce z, z′ and
(e1, . . . , ek+1) 6= (e′1, . . . , e

′
k+1) such that f(z) = f(r) · xe11 · · · x

ek+1
k+1 and

f(z′) = f(r) · xe
′
1

1 · · ·x
e′k+1
k+1 . This means that

f(z · z′−1) = xd1
1 · · ·x

dk+1
k+1 ,

where all di are 1, −1 or 0, and at least one of them is non-zero.

We can then build the following algorithm which will invert f with the help
of A: given a random f -image x, generate an output seemingly coming
from GF as follows: choose w1, . . . , wk+1 and 1 ≤ j ≤ k + 1 at random.
Put xi = f(wi) for i 6= j, and xj = f(wj) · x. Now run A’s algorithm
with f and the xi’s as input. Clearly the set of xi is distributed exactly as
output from GF , whence A’s success probability is the same as in real life.
Note that if A has success, we can write xdj as

xdj = f(z · z′−1 ·
∏
i

w−dii)

Now note that the set of xi’s contains no information about j, whence
the probability that dj 6= 0, given that A has success, is at least equal to
1/(k + 1). 2

Remark 1 It is clear that the protocol constructed in the proof above can
be modified to have any challenge length desired by having more xi-values.
Enlarging the challenge length in this way will be more efficient than using
Theorem 2.

Examples of possible one-way group homomorphisms are the RSA func-
tions, squaring modulo a composite number, or discrete exponentiation mod-
ulo a prime, or on an elliptic curve.

10

It would be natural to try to generalize the result to any random self-
reducible problem. It is known that a random self-reducible problem has
a protocol that is in our terminology a quasi-signature protocol [16]. It
is not clear, however, how to get longer challenges based only on the self-
reducible property. But if in addition we assume we have a family of colli-
sion intractable hash functions we can use the compression properties of the
hash functions to build a signature protocol. Briefly, a family of collision
intractable hash functions H is a family of easily computable compression
functions, such that it is easy to select a random function with output length
k but computationally infeasible to find collisions for such a function with
probability non-negligible in k.

Since, however, quasi-signature protocols are not assumed to be special
honest verifier zero-knowledge (only honest verifier zero-knowledge), we need
the following technical lemma before going any further.

Lemma 1 Let P be honest verifier zero-knowledge and collision-intractable
over R and G. Then P can be compiled into a protocol P∗ (for relation R
and generator G), that is also collision-intractable over R and G but that
additionally satisfies special honest verifier zero-knowledge.

Proof: The claimed protocol works as follows. The prover has access to
(x, w) ∈ R, while the verifier has access to x. Let k be a security parameter,
let l = poly(k), and let {0, 1}t be the set of admissible challenges in P .

1. The prover computes l first messages a1, . . . , al as in P , and sends
them to the verifier.

2. The verifier chooses l random bits b1, . . . , bl, and sends them to the
prover.

3. The prover chooses l random t − 1-bitstrings β1, . . . , βl, and puts
c1 = β1||b1, . . . , cl = β1||bl, and computes the responses r1, . . . , rl
according to P , taking the challenges to be c1, . . . , cl. These values
are sent to the verifier, who checks whether c(t)

1 = b1, . . . , c
(t)
l = bl

and whether (a1, c1, r1), . . . , (al, cl, rl) are accepting conversations in
P with respect to x.

First, we show that collision-intractibility is preserved under this compi-
lation. Suppose we are given two accepting conversations in P∗, with the

11

same first message (a1, . . . , al), but with different challenges (b1, . . . , bl)
and (b′1, . . . , b′l). Let the respective replies be (β1, . . . , βl, r1, . . . , rl) and
(β ′1, . . . , β ′l, r′1, . . . , r′l), and let i be an index such that bi 6= b′i. Then clearly,
(ai, βi||bi, ri) and (ai, β ′i||b′i, r′i) are two accepting conversations in P for the
same public string x, with βi||bi 6= β ′i||b′i. We conclude that P∗ is collision-
intractable over R and G.

The special simulator S∗ for P∗ runs P ’s simulator S as a subroutine, and
is defined as follows. Run S 2l times. At the end, there are certainly
l conversations that have challenges with the same least significant bit,
”0” or ”1”. By the properties of S, these events are equally likely to
occur. If we repeat this procedure poly(k) times, the probability that
all resulting blocks of l conversations have the same “parity” is equal to
1
2
poly(k). So, with overwhelming probability two blocks of l conversations

are output, one of which has ”0” as the least significant bit for all its l
conversations, while the other has ”1”. Therefore, if S∗ receives a challenge
(b1, . . . , bl) ∈ {0, 1}l as input, together with the public string x, it can
output an accepting conversation (in P∗) with (b1, . . . , bl) as the challenge
in polynomial time with overwhelming probability, by just selecting, for
each bi, a conversation from the corresponding block. Furthermore, it is
clear that the honest verifier in P∗ receives l conversations from P where
each of these conversations is according to conversations with an honest
verifier in P . By construction, it is clear that S∗ does the same: using
simulator S to select honest verifier conversations in P according to the
least significant bit in the challenge, while the selection is according to
uniform bits. 2

Theorem 4 Suppose there exists a quasi signature protocol P for relation R
and generator G and that a family H of collision intractable hash functions
exists. Then there exists a signature protocol P∗ for RH and GH. Here RH
consists of pairs ((x, h), w) where (x, w) ∈ R, w is of length k bits and h ∈ H
has output length k. The generator GH runs G to generate (x, w) and then
selects h ∈ H with the desired output length.

Proof: First note that by Lemma 1, we may assume that P is special honest
verifier zero-knowledge. Then observe that a repetition of P in parallel is
trivially a quasi signature protocol. Moreover, from any quasi signature
protocol, we can always construct a new one with any smaller challenge

12

length by letting the prover choose part of the challenge. Hence we may
without loss of generality assume that CP = k + 1. Let t = AP + 1. Then
protocol P∗ goes as follows:

1. The prover sends a first message a to the verifier computed as in P .

2. The verifier sends t random bits b1, . . . , bt.

3. The prover sends t conversations in P , (ai, ci, ri), i = 1, . . . , t.

4. The verifier checks that a = a1, that all conversations are accepting
conversations, and that ci = bi||h(ai+1) for i = 1, . . . , t− 1, and that
ct = bt||0|| · · · ||0.

It is easy to verify that this protocol has all the required properties. (see the
proof of Theorem 2). In particular, collision intractability can be proved
observing that a collision for P∗ would imply either a collision for P or for
h. 2

We have chosen to use in the above theorem a whole family of hash func-
tions (in stead of a single fixed function) because this fits into our theoretical
model. In practice, many hash functions do not come from a family but have
a fixed description, such as MD4 or SHS. Our construction will also work
with one fixed hash function, and the argument that a successful enemy
would have to break either the hash function or the quasi signature protocol
would be the same as before.

Claw-Free Pairs of Trapdoor One-Way Permutations

In [9], a secure signature scheme is exhibited, based on (a family of) claw-
free pairs of trapdoor one-way permutations. Informally, a pair of distinct
permutations (f0, f1) is called claw-free, if it is hard to compute x and y
such that f0(x) = f1(y). Knowledge of the trapdoor information, however,
enables efficient inversion of the permutations and computation of claws. In
[9], an example of such a family is given, whose claw-freeness is equivalent
to the difficulty of factoring Blum-integers.

In the following we will show that the existence of a family of claw-free
pairs of trapdoor one-way permutations is a sufficient condition for the exis-
tence of signature protocols. Moreover, building a signature protocol from a

13

P V

a← V
a−−−−−−−−−→

c← {0, 1}t
c←−−−−−−−−−

r← f−1
[c] (a)

r−−−−−−−−−→
a

?= f[c](r)

Figure 2: Signature Protocol P based on (f0, f1)

claw-free pair of trapdoor permutations as described below and then apply-
ing our general construction to this signature protocol results in essentially
the same signature scheme as the original GMR sheme. Hence our results
can be viewed as a generalization of [9].

Let (f0, f1) be a pair of functions from a family F of claw-free pairs of
trapdoor one-way permutations as output by a generator GF on input 1k,
and let s denote the trapdoor information. The corresponding binary relation
RF consists of all such pairs ((f0, f1), s).

Furthermore, let t be a non-constant polynomial in k. For each c ∈
{0, 1}t, with c = c1||c1|| · · · ||ct, f[c] denotes the function fc1 ◦ fc1 ◦ · · · ◦ fct ,
which is also a permutation. Using the trapdoor information for (f0, f1),
such a function f[c] can efficiently be inverted. Note also that any pair of
permutations (f[c], f[c′]), with c, c′ ∈ {0, 1}t and c 6= c′, is claw-free. Let V
denote the set that is permuted by f0 and f1. The protocol P , depicted in
Fig. 2 is based on (f0, f1), and it is assumed that the prover P has access to
the trapdoor information s.

This protocol satisfies the conditions of a signature protocol by standard
arguments. We thus have the following theorem.

Theorem 5 Suppose F is a family of claw-free pairs of trapdoor one-way
permutations. Then there exists a signature protocol for RF and GF .

14

4 Main Result

We will now present the new signature scheme ΣP , based on a signature
protocol P . In Section 5, the following theorem will be proven.

Theorem 6 Let P be a signature protocol for relation R and generator G.
Then the signature scheme ΣP is not existentially forgeable under adaptively
chosen message attacks.

It is assumed that we are given a signature protocol P for relation R and
generator G. By Theorem 2, we may assume that for each security parameter
k and for each instance (x, w) as output by running G(1k), the (non-constant)
polynomial t(k) satisfies t = CP ≥ 3 · AP . The construction of ΣP from P
works as follows.

Initialization Phase
Given a security parameter k, the signer uses the generator G to gen-
erate two solved instances x0 and x1, with respective witnesses w0 and
w1. He also computes (a1

1, aux(a1
1)) ← Pa(x1, w1) and puts (x0, x1, a1

1)
in his public directory.

Signing Phase
Let m ∈ {0, 1}t be the message to be signed and let i ≥ 1. The i-th
signature, on a message m ∈ {0, 1}t, is computed as follows. First, the
signer computes

1. (ai0, aux(ai0))← Pa(x0, w0),

2. ri0 ← Pr(x0, w0; ai0, aux(ai0),m),

3. (a2i
1 , aux(a2i

1))← Pa(x1, w1), (a2i+1
1 , aux(a2i+1

1))← Pa(x1, w1),

4. ri1 ← Pr(x1, w1; ai1, aux(ai1), a
2i
1 ||a2i+1

1 ||ai0).

The signer stores a2i
1 , aux(a2i

1), a2i+1
1 , aux(a2i+1

1), ai0, ri1. Let Auth(ai0)
be an authentication path for ai0, i.e. Auth(ai0) consists of all tuples
(aj1, a

2j
1 , a

2j+1
1 , aj0, r

j
1), with 1 ≤ j ≤ i, such that aj1 is an ancestor of

ai1. We assume that the tuples in Auth(ai0) are ordered in decreas-
ing ancestry from left to right. The signature σ(m) on m consists of
(Auth(ai0), ri0).

15

Verification Phase
The receiver puts σ(m) ≡ (Auth(ajr0), rjr0), where r is the number
of tuples in Auth(ai0) and (ajl1 , a

2jl
1 , a2jl+1

1 , ajl0 , r
jl
1) is the l-th tuple in

Auth(ajr0). After having checked whether aj11
?= a1

1, the receiver has to
perform the following verifications, for j = 2, . . . , r.

1. ajl1
?∈ {a2jl−1

1 , a
2jl−1+1
1 }

2. φ(x1, a
jl
1 , a

2jl
1 ||a2jl+1

1 ||ajl0 , rjl1) ?= 1.

Finally, he checks whether φ(x0, a
jr
0 ,m, r

jr
0) = 1. If all verifications hold,

the signature is accepted.

Note that, by assumption on the challenge length t(k), 2·AP(x1)+AP(x0) ≤ t,
so the challenges are long enough to encode the strings a2i

1 ||a2i+1
1 ||ai0. These

strings can be padded up to t bits, if necessary, using standard techniques.
As we have also assumed that all occurring values have fixed length de-
scriptions (depending only on the corresponding public string), parsing these
concatenations is easy.

5 Proof of Security

Our notion of security for signature schemes is that of [9]. In this section we
show that no polynomially bounded adversary can construct a forgery on a
message that hasn’t been signed by the real signer, even if he is allowed to get
polynomially many signatures on messages that he has chosen in an adaptive
fashion. We first briefly outline the proof of Theorem 6. It will be shown
that the existence of such a successful forger contradicts the assumption that
the protocol P is collision intractable over the generator G. To this end, we
compile this successful forger into an attacker that breaks that assumption.

Before proceeding with the proof, we will briefly outline our approach.
Let k be a given security parameter. A key-observation is that, for any fixed
polynomial number, say P (k), of signatures, the signature scheme ΣP can be
simulated perfectly and efficiently if one of the two witnesses w0 and w1 is
discarded right after generation.

Bearing this in mind, we will build a cracking algorithm A∗ which gets a
problem instance x (as generated by G) as input, and generates a collision

16

for this instance using the forgery algorithm A as a subroutine. To do this,
A∗ builds an instance of ΣP from x and a pair (x′, w′) generated by running
G. The public key will be the pair (x, x′), randomly permuted. By the
perfectness of this simulation of ΣP , we can runA and handle all its signature
requests and expect the same probability of success as in “real life”. The
proof is then finalized by observing that a successsful forgery leads to a
collision for the instance x with probability 1/2.

In the following theorem, it is assumed that we are given a signature
protocol P for generator G and relation R. By Theorem 2, we may assume
that for each security parameter k and for each instance (x, w) as output by
running G(1k), the (non-constant) polynomial t(k) satisifies t = CP ≥ 3 ·AP .

Theorem 7 Any probabilistic polynomial time cracking algorithm A that
forges a signature on a new message with probability ε(k), after at most poly-
nomially many calls to a signer, can be compiled into probabilistic polynomial
time procedure A∗ that breaks the collision intractability of P over G with
probability of the order of ε(k)). The running time of A∗ is of the same order
as the running time of A.

Proof: Let a security parameter k be given, and let x be an instance of P
generated by G on input 1k.

We now describe how A∗ cracks the collision intractability of P by using
the forger A and the following simulation of ΣP . A∗ receives x as input.

A∗ first runs G on input 1k in order to obtain a solved instance (x′, w′).
Then a bit b is chosen at random. Put (xb, wb) = (x′, w′), and x1−b = x.

For the simulation, we distinguish between two cases.
Case b = 0: We create an authentication tree with P (k) internal nodes,
starting at the leaves. The leaves aj1 are generated as follows.

1. cj ← {0, 1}t

2. (aj1, cj, r
j
1)← S(x1, cj).

For children a2i
1 and a2i+1

1 , generate ai0 ← Pa(x0, w0). Then the parent ai1
will be generated as

(ai1, a
2i
1 ||a2i+1

1 ||ai0, ri1)← S(x1, a
2i
1 ||a2i+1

1 ||ai0).

17

The resulting instance (x0, x1, a1
1) of ΣP is sent to the forger A. After this,

the cracking algorithm can start making its (at most P (k)) calls.

The above takes care of Auth(ai0), for i = 1, . . . , P (k). Note that this
simulation can now deal with any signature request, as the i-th signa-
ture request, on a message mi, can be completed by computing ri0 ←
Pr(x0, w0; ai0, aux(ai0),mi).

Case b = 1:

1. Generate (a1
1, aux(a1

1))← Pa(x1, w1), and send the instance (x0, x1, a1
1)

to the forger A.

2. Let mi ∈ {0, 1}t be the i-th message to be signed. Generate ai0 ←
S(x0,mi). Proceed as in Step 3 of the signing phase of ΣP .

Note that in both cases the simulation can deal with any signature request,
by the properties of the special simulator S. Furthermore, the distribution
of the ai0, ri0, ai1 and ri1 is always according to the honest signer who has
access to both w0 and w1, by Theorem 1. Thus the simulation is perfect,
and we may now assume that the cracking algorithm outputs a forgery on
a new message (i.e, a message that has not been signed by the simulator)
m̃. Without loss of generality, we assume that this happens after exactly
P (k) calls, with probability ε(k).

Let (Auth(a0), r0) be the forgery, on a new message m̃. Suppose that
a0 = aj0 for some 1 ≤ j ≤ P (k), with probability ε1(k). As m̃ has not been
signed by the simulation, we must have m̃ 6= mj, so A∗ can get a collision
for P from (a0, m̃, r0) and (aj0,mj, rj0).

If, on the contrary, a0 6= aj0 for all 1 ≤ j ≤ P (k), then there clearly
exist a tuple (a′1, a′′1, a′′′1 , a′0, r′1) in Auth(a0) and a node ai1 in the tree, with
a′1 = ai1, such that ai1 is a leaf or ai1 is an internal node with a′′1||a′′′1 ||a′0 6=
a2i

1 ||a2i+1
1 ||ai0.

In case ai1 is an internal node, say with probability ε2(k), we immediately
get a collision. If ai1 is a leaf, with probability ε3(k), however, the proba-
bility that a′′1||a′′′1 ||a′0 6= ci is 1− 1

2t , as the distribution of ai1 is independent
of the distribution of cj (by the properties of the special simulator), and cj

was chosen uniformly at random. Thus in this case we get a collision with
probability 1− 1

2t . ¿From the perfectness of the simulation it follows that

18

the distribution of everything sent to A is independent of b. Therefore the
probability that A∗ can compute a collision for the instance x1−b = x is

1
2
ε1(k) +

1
2
ε2(k) +

1
2

(1− 1
2t

)ε3(k) ≥ 1
2
ε(k)− 1

2t+1 ε3(k),

which is clearly of the same order as ε(k). Thus we have shown that any
forger of the signature scheme ΣP can be turned very efficiently into a
cracker of the collision intractibility of P , with essentially the same prob-
ability of success.

2

Remark 2 Consider the following (potentially) stronger notion of security
for signature schemes. Instead of requiring forgery on a new message to be
infeasible, one could, more generally, demand that forging a new signature
is infeasible. Obviously, this implies that a forger cannot produce a signature
on a message that has never really been signed. Additionally, however, it is
now infeasible to forge a new signature on a message that has previously been
signed. We believe that, from a theoretical viewpoint, this is the proper and
most general notion of security for signature schemes. Taking minor changes
into account, our proof can easily be accomodated to this (potentially) slightly
stronger notion.

6 Concrete Examples

We now describe a signature scheme whose security is equivalent to the diffi-
culty of computing discrete logarithms, by applying our main construction to
a suitable transformation of the discrete log based protocol of Schnorr [15].
In its basic form, this is a protocol for proving knowledge of a discrete log in
a group G of prime order q. Such a group can be realized, for example as a
subgroup of ZZ∗p, where p is a prime, and q divides p− 1.

Let g 6= 1, and let x = gw be the common input. P is given w as private
input. The protocol is a proof of knowledge for the relation that consists of
pairs ((x, g,G), w) such that x = gw in G. Let k denote the number of bits
needed to represent an element of G and let l = blog2 qc. Then the protocol
works as follows:

1. The prover chooses z at random in [0, . . . , q), and sends a = gz to V .

19

2. The verifier chooses c at random in [0, . . . , q), and sends it to P .

3. P sends r = (z + cw) mod q to V , and V checks that gr = a xc.

Completeness trivially holds with probability 1. Correct answers to two
different c-values give two equations r1 = z + wc1 mod q and r2 = z +
wc2 mod q so we find that w = (r1−r2)/(c1−c2) mod q. Therefore, assuming
we generate inputs for the protocol by choosing w at random in G, we have
collision intractability provided that it is infeasible to find w from gw for
random w.

Finally, note that by choosing c and r at random, we can make a simulated
conversation (grx−c, c, r) between the honest verifier and prover. Since c can
be chosen freely, we get special honest verifier zero-knowledge.

Thus this protocol is a quasi-signature protocol. With some modifica-
tions, it can be turned into a signature protocol: we will have as input to
the protocol d instances instead of 1, (x1, w1), . . . , (xd, wd), where xi = gwi.
Then the new protocol P goes as follows:

1. The prover chooses z at random in [0, . . . , 2l), and sends a = gz to V .

2. The verifier chooses c1, . . . , cd at random in [0, . . . , 2l), and sends them
to P .

3. P sends r = (z + c1w1 + · · · + cdwd) mod q to V , and V checks that
gr = a · xc11 · · ·xcdd .

Completeness and special honest verifier zero-knowledge are clear by the
same arguments as above. Collision intractability can be shown by essentially
the same proof as for Theorem 3. Finally, it is clear that by choosing d large
enough, we can get a large enough challenge length, and therefore a signature
protocol.

We can now carry out our construction of the signature scheme ΣP (see
also Section 4). To set up an instance of ΣP , the signer generates two
independent instances of P , (x, w) ≡ ((x1, w1), . . . , (xd, wd)) and (x, w) ≡
((x1, w1), . . . , (xd, wd)), with xi = gwi and xi = gwi for i = 1, . . . , d. The wi
and wi are chosen at random from ZZq. Note that both these instances use
the same pair (g,G). The root of the authentication tree, a1

1, is computed as
a1

1 = gz
1
1 , where z1

1 is chosen at random from ZZq. The initialization phase of

20

ΣP is completed when the public key of the signer, (x, x, a1
1), is placed in the

public directory.
We will now show how the signer computes the first signature on a mes-

sage m ∈ {0, 1}d·l, where m = m1|| . . . ||md and the mi are l-bitstrings, to be
interpreted as members of [0 . . . 2l).

First, he computes a1
0 as a1

0 = gz
1
0 , with z1

0 chosen at random from ZZq, and
r1

0 as r1
0 = z1

0 +m1w1 + · · ·+mdwd. Before establishing an authentication for
a1

0, he computes a2
1 and a3

1 (in the same way as a1
1). Next, a1

0 is authenticated,
together with a2

1 and a3
1, by computing r1

1 as r1
1 = z1

1 +µ1w1 · · ·+µdwd, where
µ1|| · · · ||µd = a2

1||a3
1||a1

0. The µi are l-bitstrings, to be interpreted as members
of [0, . . . , 2l).

The values r1
0 , r1

1, a1
0, a2

1 and a3
1 are forwarded to the receiver, who checks

whether

1. gr1
0

?= a1
0 · xm1

1 · · ·xmdd , and

2. gr1
1

?= a1
1 · x

µ1
1 · · ·xµdd .

Note that the values a2
1 and a3

1 are ready to play the role of a1
1 in the

second and third execution of ΣP , i.e., to authenticate a2
0, a4

1, a5
1, and a3

0,
a6

1, a7
1, respectively. Additionally, however, an authentication path has to be

given in any execution after the first one, to trace an authenticating node
ai1 back to a1

1. An authentication path for a node ai1 consists of all tuples
(aj1, a

2j
1 , a

2j+1
1 , aj0, r

j
1) such that aj1 is an ancestor of ai1. For example, an au-

thentication path for a5
1 would effectively consist of (a2

1, a
3
1, a

1
0, r

1
1, a

4
1, a

5
1, a

2
0, r

2
1),

and the receiver will have to perform the necessary verifications.
We get signatures of length O(k) bits, where k is the number of bits

needed to represent an element in G. Moreover, one authentication step
requires a constant number of exponentiations in G, both for signing and
verification. Note that the 1 exponentiation needed from the signer uses
input independent from the bits authenticated (c1, . . . , cd). Therefore we can
use the idea suggested by Schnorr of having the signer can precompute this
exponentiation if some idle time is available on his computer. This way the
on-line time to generate a signature becomes almost negligible.

Previously, the only known way to get a signature scheme provably secure
based on discrete log was to use the method from [4] to build a collision
intractable hash function and then use Merkle’s construction. This would
require an exponentiation for each bit processed in the hashing, and moreover

21

we would need as a part of the signature a full preimage under the hash
function to authenticate 1 bit. Therefore we would get signatures of length
O(k2) bits and would need O(k2) exponentiations to make a signature.

7 Conclusion

We have shown that the existence of signature protocols is a sufficient condi-
tion for the existence of signature schemes that are not existentially forgeable
under adaptively chosen message attacks, which is the strongest notion of se-
curity for signature schemes (see [9]). The length of the signatures in our
schemes grows logarithmically in the number of signatures. In addition to
the existence of claw-free pairs of trapdoor one-way permutations, on which
the scheme from [9] is based, the most general computational assumption we
have been able to find, sufficient for the existence of signature protocols, is
the existence of one-way group homomorphisms. As an example, we have
presented a signature scheme whose security is equivalent to the difficulty of
computing discrete logarithms.

Acknowledgements

It’s a pleasure to thank Berry Schoenmakers for many valuable discussions
and comments. Also thanks to Matt Franklin for commenting on an earlier
version of this paper.

References

[1] M. Abadi, E. Allender, A. Broder, J. Feigenbaum and L. Hemachandra:
On Generating Solved Instances of Computational Problems, Proc. of
Crypto 88, Springer Verlag LNCS series.

[2] J.Bos and D.Chaum: Provably Unforgeable Signatures, Proc. of Crypto
92, Springer Verlag LNCS series.

[3] E. F. Brickell and K. S. McCurley: An Interactive Identification Scheme
Based on Discrete Logarithms and Factoring, Journal of Cryptology,
5(1), pp.29–39, 1992.

22

[4] I.Damg̊ard: Collision Free Hash Functions and Public-Key Signature
Schemes, Proc. of EuroCrypt 87, Springer Verlag LNCS series.

[5] C.Dwork, M.Naor: An Efficient Existentially Unforgeable Signature
Scheme and its Applications, to appear in the Proceedings of Crypto’94,
Santa Barbara, August 1994, Springer Verlag LNCS series.

[6] U.Feige, A.Shamir: Witness Indistinguishable and Witness Hiding Pro-
tocols, Proc. of STOC 90.

[7] U. Feige, A. Fiat and A. Shamir: Zero-Knowledge Proofs of Identity,
Journal of Cryptology 1 (1988) 77–94.

[8] O. Goldreich: Two Remarks concerning the GMR Signature Scheme,
Proc. of Crypto 86, Springer Verlag LNCS series.

[9] S. Goldwasser, S. Micali and R. Rivest: A Digital Signature Scheme
Secure Against Chosen Message Attacks, SIAM Journal on Computing,
17(2): 281-308, 1988.

[10] L. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Proto-
col fitted to Security Microprocessor Minimizing both Transmission and
Memory, Proc. of EuroCrypt ’88, Springer Verlag LNCS series.

[11] R.C.Merkle: A Digital Signature Based on a Conventional Encryption
Function, Proc. of Crypto 87, Springer Verlag LNCS series.

[12] M.Naor and M.Yung: Universal One-Way Hash Functions and their
Cryptographic Applications, Proc. of STOC 89.

[13] T. Okamoto: Provably Secure and Practical Identification Schemes and
Corresponding Signature Schemes, Proc. of Crypto ’92, pp.31–53, Santa
Barbara, August 1992.

[14] J.Rompel: One-Way Functions are Necessary and Sufficient for Secure
Signatures, Proc. of STOC 90.

[15] C.P. Schnorr: Efficient Signature Generation by Smart Cards, Journal
of Cryptology, 4(3):161–174, 1991.

23

[16] M.Tompa and H.Woll: Random Self-Reducibility and Zero-Knowledge
Proof of Information Possession, Proc. of FOCS 87.

24

Recent Publications in the BRICS Report Series

RS-94-29 Ivan Damg̊ard and Ronald Cramer. Secure Signature
Schemes Based on Interactive Protocols. September 1994.
24 pp.

RS-94-28 Oded Goldreich.Probabilistic Proof Systems. September
1994. 19 pp.

RS-94-27 Torben Bräuner. A Model of Intuitionistic Affine Logic
from Stable Domain Theory (Revised and Expanded Ver-
sion). September 1994. 19 pp. Full version of paper
appearing in: ICALP '94, LNCS 820, 1994.

RS-94-26 Søren Riis.Count(q) versus the Pigeon-Hole Principle.
August 1994. 3 pp.

RS-94-25 Søren Riis.Bootstrapping the Primitive Recursive Func-
tions by 47 Colors. August 1994. 5 pp.

RS-94-24 Søren Riis.A Fractal which violates the Axiom of Deter-
minacy. August 1994. 3 pp.

RS-94-23 Søren Riis.Finitisation in Bounded Arithmetic. August
1994. 31 pp.

RS-94-22 Torben Bräuner. A General Adequacy Result for a Linear
Functional Language. August 1994. 39 pp. Presented at
MFPS '94.

RS-94-21 Søren Riis.Count(q) does not imply Count(p). July 1994.
55 pp.

RS-94-20 Peter D. Mosses and Mart´n Musicante. An Action Se-
mantics for ML Concurrency Primitives. July 1994. 21 pp.
To appear in Proc. FME '94 (Formal Methods Europe,
Symposium on Industrial Benefit of Formal Methods),
LNCS, 1994.

RS-94-19 Jens Chr. Godskesen, Kim G. Larsen, and Arne Skou.
Automatic Verification of Real–Timed Systems UsingEp-

silon. June 1994. 8 pp. Appears in: Protocols, Specifi-
cation, Testing and Verification PSTV '94.

