
B
R

IC
S

R
S

-94-28
O

.G
oldreich:

P
robabilistic

P
roofS

ystem
s

BRICS
Basic Research in Computer Science

Probabilistic Proof Systems

Oded Goldreich

BRICS Report Series RS-94-28

ISSN 0909-0878 September 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Probabilistic Proof Systems

Oded Goldreich∗

Department of Applied Mathematics and Computer Science
Weizmann Institute of Science, Rehovot, Israel.

September 1, 1994

Abstract

Various types of probabilistic proof systems have played a central role in the de-
velopment of computer science in the last decade. In this exposition, we concentrate
on three such proof systems — interactive proofs, zero-knowledge proofs, and proba-
bilistic checkable proofs — stressing the essential role of randomness in each of them.

This exposition is an expanded version of a survey written for the proceedings
of the International Congress of Mathematicians (ICM94) held in Zurich in 1994.
It is hope that this exposition may be accessible to a broad audience of computer
scientists and mathematians.

∗Partially supported by grant No. 92-00226 from the United States - Israel Binational Science Founda-
tion (BSF), Jerusalem, Israel. Revised and expanded while visiting BRICS, Basic Research in Computer
Science, Center of the Danish National Research Foundation.

0

1 Introduction

The glory given to the creativity required to find proofs, makes us forget that it is the less
glorified procedure of verification which gives proofs their value. Philosophically speaking,
proofs are secondary to the verification procedure; whereas technically speaking, proof
systems are defined in terms of their verification procedures.

The notion of a verification procedure assumes the notion of computation and fur-
thermore the notion of efficient computation. This implicit assumption is made explicit
in the definition of NP , in which efficient computation is associated with (deterministic)
polynomial-time algorithms.

Definition 1 (NP-proof systems): Let S ⊆ {0, 1}∗ and ν : {0, 1}∗ × {0, 1}∗ 7→ {0, 1} be a
function so that x ∈ S if and only if there exists a w ∈ {0, 1}∗ such that ν(x, w) = 1. If ν
is computable in time bounded by a polynomial in the length of its first argument then we
say that S is an NP-set and ν defines an NP-proof system.

For example, in propositional calculus a proof is a sequence of assertions, each being
a form of an axiom or is obtained by applying an inference rule on previous assertions.
Thus, the verification procedure consists of checking the justification of each assertion in
the sequence. Clearly, this procedure can be implemented by a very efficient algorithm. In
contrast, it is widely believed that there exists no efficient algorithm for finding proofs to
given assertions in propositional calculus (since the task is NP-Hard – see below).

Traditionally, NP is defined as the class of NP-sets (cf., [22]). Yet, each such NP-set can
be viewed as a proof system. For example, consider the set of satisfiable Boolean formulae.
Clearly, a satisfying assignment π for a formula φ constitutes an NP-proof for the assertion
“φ is satisfiable” (the verification procedure consists of substituting the variables of φ by
the values assigned by π and computing the value of the resulting Boolean expression).

The formulation of NP-proofs restricts the “effective” length of proofs to be polyno-
mial in length of the corresponding assertions (since the running-time of the verification
procedure is restricted to be polynomial in the length of the assertion). However, longer
proofs may be allowed by padding the assertion with sufficiently many blank symbols.
So it seems that NP gives a satisfactory formulation of proof systems (with efficient ver-
ification procedures). This is indeed the case if one associates efficient procedures with
deterministic polynomial-time algorithms. However, we can gain a lot if we are willing to
take a somewhat non-traditional step and allow probabilistic verification procedures. In
particular,

• Randomized and interactive verification procedures, giving rize to interactive proof
systems, seem much more powerful (i.e., “expressive”) than their deterministic coun-
terparts.

• Such randomized procedures allow the introduction of zero-knowledge proofs which
are of great theoretical and practical interest.

1

• NP-proofs can be efficiently transformed into a (redundant) form which offers a trade-
off between the number of locations examined in the NP-proof and the confidence in
its validity (see probabilistically checkable proofs).

In all abovementioned types of probabilistic proof systems, explicit bounds are imposed
on the computational complexity of the verification procedure, which in turn is personified
by the notion of a verifier. Furthermore, in all these proof systems, the verifier is allowed to
toss coins and rule by statistical evidence. Thus, all these proof systems carry a probability
of error; yet, this probability is explicitly bounded and, furthermore, can be reduced by
successive application of the proof system.

Basic background from computational complexity

The following are standard complexity classes

• P denotes the class of sets in which membership can be decided in (deterministic)
polynomial-time. Namely, for every S ∈ P there exists a (deterministic) polynomial-
time algorithm A so that x ∈ S iff A(x) = 1, for all x ∈ {0, 1}∗. Note that P
is a subset of NP consiting of these NP-sets for which proofs of membership (i.e.,
NP-proofs) can be efficiently found (rather than merely exist).

• RP (resp., BPP) denotes the class of sets in which membership can be decided
in probabilistic polynomial-time with one-sided (resp., two-sided) error probability.
Specifically,

– for every S ∈ RP there exists a probabilistic polynomial-time algorithm A so
that

for every x ∈ S Prob(A(x)=1) = 1
whereas

for every x 6∈ S Prob(A(x)=1) ≤ 1
2

where the probability is taken uniformly over all possible outcomes of the inter-
nal coin tosses of algorithm A.

– for every S ∈ BPP there exists a probabilistic polynomial-time algorithm A so
that

for every x ∈ S Prob(A(x)=1) ≥ 2
3

whereas

for every x 6∈ S Prob(A(x)=1) ≤ 1
3

2

In both cases, the non-trivial probability bounds may be change in various ways
preserving the complexity class.

• NP denotes the class of NP-sets and coNP denotes the class of their complements
(i.e., S ∈ coNP iff S ∈ NP , where S def= {0, 1}∗ − S).

• A set S is polynomial-time reducible to a set T if there exists a polynomial-time
computable function f so that x ∈ S iff f(x) ∈ T , for every x. A set is NP-hard if
every NP-set is polynomial-time reducible to it. A set is NP-complete if it is both
NP-hard and in NP .

• PSPACE denotes the class of sets in which membership can be decided in polynomial-
space (i.e., the work-space taken by the decider is polynomial in length of the input).

Obviously, P ⊆ RP ⊆ BPP ⊆ PSPACE. It is not hard to see that RP ⊆ NP
and that NP ⊆ PSPACE. It is widely believed that P 6= NP and NP 6= PSPACE.
Furthermore, it is also believed that NP 6= coNP . NP-hard sets (or tasks) are assumed
to be infeasible, since if an NP-hard set is in P then NP = P (by virtue of the reductions
of all NP-sets to each NP-hard set).

Conventions

When presenting a proof system, we state all complexity bounds in terms of the length of
the assertion to be proven (which is viewed as an input to the verifier). Namely, polynomial-
time means time polynomial in the length of this assertion. Note that this convention is
consistent with our definition of NP-proofs.

Denote by poly the set of all integer functions bounded by a polynomial and by log
the set of all integer functions bounded by a logarithmic function (i.e., f ∈ log iff f(n) =
O(log n)).

Basic Background from combinatorics

A (simple) graph, G, is a pair (V,E) where E is a set of 2-subsets of V ; i.e., for every
e ∈ E it holds |e ∩ V | = 2. The elements of V are called vertices and the elements of E
are called edges. In this exposition we consider only simple finite graphs.

Two graphs, G1 =(V1, E1) and G2 =(V2, E2), are called isomorphic if there exists a 1-1
and onto mapping, φ, from the vertex set V1 to the vertex set V2 so that {u, v} ∈ E1 if
and only if {φ(v), φ(u)} ∈ E2. The (“edge preserving”) mapping φ, if existing, is called an
isomorphism between the graphs.

A graph G= (V,E) is said to be 3-colorable if there exists a function π :V 7→ {1, 2, 3}
so that π(v) 6= π(u) for every {u, v} ∈ E. Such a function, π, is called a 3-coloring of the
graph.

3

2 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations, it is only
natural to associate the notion of efficient computation with probabilistic and interactive
polynomial-time computations. This leads naturally to the notion of interactive proof
systems in which the verification procedure is interactive and randomized, rather than
being non-interactive and deterministic. Thus, a “proof” in this context is not a fixed and
static object but rather a randomized (dynamic) process in which the verifier interacts
with the prover. Intuitively, one may think of this interaction as consisting of “tricky”
questions asked by the verifier to which the prover has to reply “convincingly”. The above
discussion, as well as the following definition, makes explicit reference to a prover, whereas
a prover is only implicit in the traditional definitions of proof systems (e.g., NP-proofs).

2.1 Definition

Loosely speaking, an interactive proof is a game between a computationally bounded ver-
ifier and a computationally unbounded prover whose goal is to convince the verifier of the
validity of some assertion. Specifically, the verifier is probabilistic polynomial-time. It is
required that if the assertion holds then the verifier always accepts (i.e., when interacting
with an appropriate prover strategy). On the other hand, if the assertion is false then the
verifier must reject with probability at least 1

2 , no matter what strategy is being employed
by the prover. A sketch of the formal definition is given in Item (1) below. Items (2) and
(3) introduce additional complexity measures which can be ignored in first reading.

Definition 2 (Interactive Proofs – IP) [30]:

1. An interactive proof system for a set S is a two-party game, between a verifier executing
a probabilistic polynomial-time strategy (denoted V) and a prover which executes a
computationally unbounded strategy (denoted P), satisfying

• Completeness: For every x ∈ S the verifier V always accepts after interacting
with the prover P on common input x.

• Soundness: For every x 6∈ S and every potential strategy P ∗, the verifier V
rejects with probability at least 1

2, after interacting with P ∗ on common input x.

2. Let m and r be integer functions. The complexity class IP(m(·), r(·)) consists of sets
having an interactive proof system in which, on common input x, the verifier makes
at most r(|x|) coin tosses and the total number of messages exchanged between the
parties is bounded by m(|x|).

3. Let M and R be set of integer functions. Then, IP(M,R) denotes ∪m∈M,r∈RIP(m(·), r(·)).
Finally, IP(m(·)) def= IP(m(·), poly) and IP def= IP(poly).

4

In Item (1), we have followed the standard definition which specifies strategies for both the
verifier and the prover. An alternative presentation only specifies the verifier’s strategy
while rephrasing the completeness condition as follows:

there exists a prover strategy P so that, for every x ∈ S, the verifier V always
accepts after interacting with P on common input x.

Arthur-Merlin games1 introduced in [4] are a special case of interactive proofs; yet, as
shown in [31], this restricted case has essentially2 the same power as the general case
previously introduced in [30]. Also, in some sources interactive proofs are defined so that
two-sided error probability is allowed; yet, this does not increase their power [21].

2.2 The role of randomness

Randomness is essential to the formulation of interactive proofs; if randomness is not
allowed (or if it is allowed but zero error is required in the soundness condition) then
interactive proof system collapse to NP-proof systems (i.e., IP(poly, 0) equals NP). The
reason being that the prover can predict the verifier’s part of the interaction and thus it
suffices to let the prover send the full transcript of the interaction and let the verifier check
that the interaction is indeed valid. (In case the verifier is not deterministic, the transcript
sent by the prover may not match the outcome of the verifier coin tosses.) The moral is
that there is no point to interact with predictable parties which are also computationally
weaker3.

2.3 The power of interactive proofs

A simple example demonstrating the power of interactive proofs follows. Specifically, we
present an interactive proof for proving that two graphs are not isomorphic. It is not
known whether such a statement can be proven via an NP-proof system.

Construction 1 (Interactive proof system for Graph Non-Isomorphism) [24]:

• Common Input: A pair of two graphs, G1 = (V1, E1) and G2 = (V2, E2). Suppose,
without loss of generality, that V1 = {1, 2, ..., |V1|}, and similarly for V2.

1In Arthur-Merlin games, the verifier must send the outcome of any coin it tosses (and thus need not
send any other information).

2Here and in the next sentence, not only IP remains invariant under the various definitions, but also
IP(m(·)), for every integer function satisfying m(n) ≥ 2 for every n. However, it is not known whether
IP(m(·), r(·)) is preserve as well.

3This moral represents the prover’s point of view. Certainly, from the verifier’s point of view it is
benefitial to interact with the prover, since it is computationally stronger.

5

• Verifier’s first step (V1): The verifier selects at random one of the two input graphs,
and sends to the prover a random isomorphic copy of this graph. Namely, the verifier
selects uniformly σ ∈ {1, 2}, and a random permutation π from the set of permuta-
tions over the vertex set Vσ. The verifier constructs a graph with vertex set Vσ and
edge set

E
def= {{π(u), π(v)} : {u, v}∈Eσ}

and sends (Vσ, E) to the prover.

• Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,
then the prover should be able to distinguish (not necessarily by an efficient algorithm)
isomorphic copies of one graph from isomorphic copies of the other graph. However,
if the input graphs are isomorphic then a random isomorphic copy of one graph is
distributed identically to a random isomorphic copy of the other graph.

• Prover’s step: Upon receiving a graph, G′ = (V ′, E′), from the verifier, the prover
finds a τ ∈ {1, 2} so that the graph G′ is isomorphic to the input graph Gτ . (If both
τ = 1, 2 satisfy the condition then τ is selected arbitrarily. In case no τ ∈ {1, 2}
satisfies the condition, τ is set to 0). The prover sends τ to the verifier.

• Verifier’s second step (V2): If the message, τ , received from the prover equals σ
(chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common input).
Otherwise the verifier outputs 0 (i.e., rejects the common input).

The verifier strategy presented above is easily implemented in probabilistic polynomial-
time. We do not known of a probabilistic polynomial-time implementation of the prover’s
strategy, but this is not required. The motivating remark justifies the claim that Con-
struction 1 constitutes an interactive proof system for the set of pairs of non-isomorphic
graphs, which is a coNP-set (not known to be in NP).

Interactive proofs are powerful enough to prove any coNP assertion (e.g., that a graph is not
3-colorable) [36]. Furthermore, the class of sets having interactive proof systems coincides
with the class of sets that can be decided using a polynomial amount of work-space [43].

Theorem 1 [43]: IP = PSPACE.

Recall that it is widely believed that NP ⊂ PSPACE. Thus, under this conjecture,
interactive proofs are more powerful than NP-proofs.

Concerning the finer structure of the IP hierarchy it is known that this hierarchy has a
“linear speed-up” property [7]. Namely, for every integer function, f , so that f(n) ≥ 2
for all n, the class IP(O(f(·))) collapses to the class IP(f(·)). In particular, IP(O(1))
collapses to IP(2). It is conjectured that coNP is not contained in IP(2), and conse-
quently that interactive proofs with unbounded number of message exchanges are more

6

powerful than interactive proofs in which only a bounded (i.e., constant) number of mes-
sages are exchanged. Yet, the class IP(2) contains sets not known to be in NP ; e.g.,
Graph Non-Isomorphism (as shown above).

2.4 How powerful should the prover be?

Assume that a set S is in IP . This means that there is a verifier V that can be convinced
to accept any input in S but cannot be convinced to accept any input not in S. One
may ask how powerful should a prover be so that it can convince the verifier V to accept
any input in S. More interestingly, considering all possible verifiers which give rise to
an interactive proof system for S, what is the minimum power required from a prover
which satisfies the completeness requirement with respect to one of these verifiers? We
stress that, unlike the case of computationally-sound proof systems (see Sec. 5), we do
not restrict the power of the prover in the soundness condition but rather consider the
minimum complexity of provers meeting the completeness condition. Specifically, we are
interested in relatively efficient provers which meet the completeness condition. The term
‘relatively efficient prover’ has been given three different interpretations.

1. A prover is considered relatively efficient if, when given an auxiliary input (in addition
to the common input in S), it works in (probabilistic) polynomial-time. Specifically,
in case S ∈ NP , the auxiliary input maybe an NP-proof that the common input
is in the set4. This interpretation is adequate and in fact crucial for applications in
which such an auxiliary input is available to the otherwise-polynomial-time parties.
Typically, such auxiliary input is available in cryptographic applications in which
parties wish to prove in (zero-knowledge) that they have conducted some compu-
tation correctly resulting in some string x. In these cases the NP-proof is just the
transcript of the procedure by which x has been computed and thus the auxiliary
input is available to the proving party. See [24].

2. A prover is considered relatively efficient if it can be implemented by a probabilistic
polynomial-time oracle machine with oracle access to the set S itself. (Note that
the prover in Construction 1 has this property.) This interpretation generalizes the
notion of self-reducibility of NP-sets. (By self-reducibility of an NP-set we mean that
the search problem of finding an NP-witness is polynomial-time reducible to deciding
membership in the set.) See [10].

3. A prover is considered relatively efficient if it can be implemented by a probabilistic
machine which runs in time which is polynomial in the deterministic complexity of
the set. This interpretation relates the difficulty of convincing a “lazy verifier” to the
complexity of finding the truth alone. Hence, in contrast to the first interpretation

4Still, even in this case the interactive proof need not consist of the prover sending the auxiliary input to
the verifier; e.g., an alternative procedure may allow the prover to be zero-knowledge (see Construction 2).

7

which is adequate in settings where assertions are generated along with their NP-
proofs, the current interpretation is adequate in settings in which the prover is given
only the assertion and has to find a proof to it by itself (before trying to convince a
lazy verifier of its validity). See [38].

3 Zero-Knowledge Proof Systems

Zero-knowledge proofs, introduced in [30], are central to cryptography. Furthermore, zero-
knowledge proofs are very intruiging from a conceptual point of view, since they exhibit
an extreme contrast between being convinced of the validity of a statement and learning
anything in addition while receiving such a convincing proof. Namely, zero-knowledge
proofs have the remarkable property of being both convincing while yielding nothing to
the verifier, beyond the fact that the statement is valid. Formally, the fact that “nothing is
gained by the interaction” is captured by stating that whatever the verifier can efficiently
compute after interacting with a zero-knowledge prover, can be efficiently computed from
the assertion itself without interacting with anyone.

3.1 A sample definition

Zero-knowledge is a property of some interactive proof systems, or more acurately of some
specified prover strategies. The formulation of the zero-knowledge condition considers two
ensembles of probability distributions, each ensemble associates a probability distribution
to each valid assertion. The first ensemble respresents the output distribution of the verifier
after interacting with the prover strategy P , where the verifier is not necessarily employing
the the specified strategy (i.e., V) – but rather any efficient strategy. The second ensemble
represents the output distribution of some probabilistic polynomial-time algorithm (which
does not interact with anyone). The basic paradigm of zero-knowledge asserts that for every
ensemble of the first type there exist a “similar” ensemble of the second type. The specific
variants differ by the interpretation given to ‘similarity’. The most strict interpretation,
leading to perfect zero-knowledge, is that similarity means equality. Namely,

Definition 3 (perfect zero-knowledge) [30]: A prover strategy, P , is said to be perfect
zero-knowledge over a set S if for every probabilistic polynomial-time verifier strategy, V ∗,
there exists a probabilistic polynomial-time algorithm, M∗, such that

(P, V ∗)(x) = M∗(x) , for every x ∈ S

where (P, V ∗)(x) is a random variable representing the output of verifier V ∗ after interact-
ing with the prover P on common input x, and M∗(x) is a random variable representing
the output of machine M∗ on input x.

8

A somewhat more relaxed interpretation, leading to almost-perfect zero-knowledge, is
that similarity means statistical closeness (i.e., negligible difference between the ensembles).
The most liberal interpretation, leading to the standard usage of the term zero-knowledge
(and sometimes referred to as computational zero-knowledge), is that similarity means
computational indistinguishability (i.e., failure of any efficient procedure to tell the two
ensembles apart). Since the notion of computational indistinguishability is a fundamental
one, it is indeed in place to present a definition of it.

Definition 4 (computational indistinguishability) [29, 44]: An integer function, f , is
called negligible if for every positive polynomial p and all sufficiently large n, it holds that
f(n) < 1

p(n) . (Thus, multiplying a negligible function by any fixed polynomial yields a
negiligible function.)
Two probability ensembles, {Ax}x∈S and {Bx}x∈S, are indistinguishable by an algorithm D
if

d(n) def= max
x∈S∩{0,1}n

{|prob(D(Ax)=1)− Prob(D(Bx)=1)|}

is a negligible function. The ensembles {Ax}x∈S and {Bx}x∈S are computationally indistin-
guishable if they are indistinguishable by every probabilistic polynomial-time algorithm.

The definitions presented above are a simplified version of the actual definitions. For
example, in order to guarantee that zero-knowledge is preserved under sequential compo-
sition it is necessary to slightly augment the definitions. For details see [26].

3.2 The power of zero-knowledge

A simple example, demonstrating the power of zero-knowledge proofs, follows. Specifically,
we will present a simple zero-knowledge proof for proving that a graph is 3-colorable. The
interactive proof will be described using “boxes” in which information can be hidden and
later revealed. Such “boxes” can be implemented using one-way functions (see below).

Construction 2 (Zero-knowledge proof of 3-colorability) [24]:

• Common Input: A simple graph G=(V,E).

• Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a random per-
mutation, π, over {1, 2, 3}, and sets φ(v) def= π(ψ(v)), for each v ∈ V . Hence, the
prover forms a random relabelling of the 3-coloring ψ. The prover sends the verifier
a sequence of |V | locked and nontransparent boxes so that the vth box contains the
value φ(v);

• Verifier’s first step: The verifier uniformly selects an edge {u, v} ∈ E, and sends it
to the prover;

9

• Motivating Remark: The verifier asks to inspect the colors of vertices u and v;

• Prover’s second step: The prover sends to the verifier the keys to boxes u and v;

• Verifier’s second step: The verifier opens boxes u and v, and accepts if and only if
they contain two different elements in {1, 2, 3};

The verifier strategy presented above is easily implemented in probabilistic polynomail-
time. The same holds with respect to the prover’s strategy, provided it is given a 3-coloring
of G as auxiliary input. Clearly, if the input graph is 3-colorable then the prover can cause
the verifier to accept always. On the other hand, if the input graph is not 3-colorable
then any contents put in the boxes must be invalid on at least one edge, and consequently
the verifier will reject with probability at least 1

|E| . Hence, the above game exhibits a
non-negligible gap in the accepting probabilities between the case of 3-colorable graphs
and the case of non-3-colorable graphs. To increase the gap, the game may be repeated
sufficiently many times (of course, using independent coin tosses in each repetition). The
zero-knowledge property follows easily, in this abstract setting, since one can simulate the
real interaction by placing a random pair of different colors in the boxes indicated by the
verifier. This indeed demonstrates that the verifier learns nothing from the interaction
(since it expects to see a random pair of different colors and indeed this is what it sees).
We stress that this simple argument is not possible in the digital implementation since
the boxes are not totally ineffected by their contents (but are rather effected, yet in an
indistinguishable manner).

As stated above, the “boxes” need to be implemented digitally, and this is done using an
adaquately defined “commitment scheme”. Loosely speaking, such a scheme is a two phase
game beteen a sender and a receiver so that after the first phase the sender is “committed”
to a value and yet, at this stage, it is infeasible for the receiver to find out the committed
value. The committed value will be revealed to the receiver in the second phase and it
is guaranteed that the sender cannot reveal a value other than the one committed. Such
commitment schemes can be implemented assuming the existence of one-way functions
(i.e., loosely speaking, functions that are easy to compute but hard to invert, such as
multiplication of two large primes) [39, 32].
Using the fact that 3-colorability is NP-complete, one gets zero-knowledge proofs for any
NP-set.

Theorem 2 [24]: Assuming the existence of one-way functions, any NP-proof can be ef-
ficiently transformed into a (computational) zero-knowledge interactive proof.

Thm. 2 has a dramatic effect on the design of cryptographic protocols (cf., [24, 25]).
In a different vein and for the sake of elegancy, we mention that, using further ideas and
under the same assumption, any interactive proof can be efficiently transformed into a
zero-knowledge one [33, 11].

10

The above results may be contrasted with the results regarding the complexity of
almost-perfect zero-knowledge proof systems; namely, that almost-perfect zero-knowledge
proof systems exist only for sets in IP(2) ∩ coIP(2) [19, 1], and thus are unlikely to exist
for all NP-sets. Also, a very recent result seems to indicate that one-way functions are
essential for the existence of zero-knowledge proofs for “hard” sets (i.e., sets which cannot
be decided in average polynomial-time)[40].

3.3 The role of randomness

Again, randomness is essential to all the above mentioned (positive) results. Namely, if
either verifier or prover is required to be deterministic then only BPP-sets can be proven
in a zero-knowledge manner [26]. However, BPP-sets have trivial zero-knowledge proofs
in which the prover sends nothing and the verifier just test the validity of the assertion by
itself5. Thus, randomness is essential to the usefulness of zero-knowledge proofs.

4 Probabilistically Checkable Proof Systems

When viewed in terms of an interactive proof system, the probabilistically checkable proof
setting consists of a prover which is memoryless. Namely, one can think of the prover
as being an oracle and of the messages sent to it as being queries. A more appealing
interpretation is to view the probabilistically checkable proof setting as an alternative way
of generalizing NP . Instead of receiving the entire proof and conducting a deterministic
polynomial-time computation (as in the case of NP), the verifier may toss coins and query
the proof only at location of its choice. Potentially, this allows the verifier to utilize very
long proofs (i.e., of super-polynomial length) or alternatively examine very few bits of an
NP-proof.

4.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilistic
polynomial-time verifier having access to an oracle which represents a proof in redundent
form. Typically, the verifier accesses only few of the oracle bits, and these bit positions
are determined by the outcome of the verifier’s coin tosses. Again, it is required that if
the assertion holds then the verifier always accepts (i.e., when given access to an adaquate
oracle); whereas, if the assertion is false then the verifier must reject with probability at
least 1

2 , no matter which oracle is used. The basic definition of the PCP setting is given in

5Actually, this is slightly inaccurate since the resulting “interactive proof” may have two-sided error,
whereas we have required interactive proofs to have only one-sided error. Yet, since the error can be made
negligible by successive repetitions this issue is insignificant. Alternatively, one can use ideas in [21] to
eliminate the error by letting the prover send some random-looking help.

11

Item (1) below. Yet, the complexity measures introduced in Items (2) and (3) are of key
importance for the subsequent discussions, and should not be ignored.

Definition 5 (Probabilistic Checkable Proofs – PCP):

1. A probabilistic checkable proof system (pcp) for a set S is a probabilistic polynomial-
time oracle machine (called verifier), denoted V , satisfying

• Completeness: For every x ∈ S there exists an oracle set πx so that V , on input
x and access to oracle πx, always accepts x.

• Soundness: For every x 6∈ S and every oracle set π, machine V , on input x and
access to oracle π, rejects x with probability at least 1

2 .

2. Let r and q be integer functions. The complexity class PCP(r(·), q(·)) consists of sets
having a probabilistic checkable proof system in which the verifier, on any input of
length n, makes at most r(n) coin tosses and at most q(n) oracle queries. We stress
that here, as usual in complexity theory, the oracle answers are always binary (i.e.,
either 0 or 1).

3. Let R and Q be sets of functions. Then, PCP(R,Q) denotes ∪r∈R,q∈QPCP(r(·), q(·)).

The above model was suggested in [20] and shown related to a multi-prover model intro-
duced previously in [12]. The fine complexity measures were introduced and motivated
in [17], and further advocated in [3]. A related model was presented in [6], stressing the
applicability to program checking.

We stress that the oracle πx in a pcp system constitutes a proof in the standard math-
ematical sense6. Yet, this oracle has the extra property of enabling a lazy verifier, to toss
coins, take its chances and “assess” the validity of the proof without reading all of it (but
rather by reading a tiny portion of it).

4.2 The power of probabilistically checkable proofs

Clearly, PCP(poly, 0) equals BPP, whereas PCP(0, poly) equals NP . It is easy to prove
an upper bound on the non-deterministic time complexity of sets in the PCP hierarchy.
In particular,

Proposition 1 : PCP(log, poly) is contained in NP.

6Jumping ahead, the oracles in pcp systems characterizing NP have the property of being NP proofs
themselves.

12

These upper bounds turn out to be tight, but proving this is much more difficult (to say the
least). The following result is a culmination of a sequence of great works [5, 6, 17, 3, 2].7

Theorem 3 [2]: NP is contained in PCP(log, O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarithmi-
cally many coins and makes only a constant number of queries exist for every set in the
complexity class NP . It follows that NP-proofs can be transformed into NP-proofs which
offer a trade-off between the portion of the proof being read and the confidence it offers.
Specifically, if the verifier is willing to tolerate an error probability of ε then it suffices to
let it examine O(log(1/ε)) bits of the (transformed) NP-proof. These bit locations need to
be selected at random.

The characterization ofNP in terms of probabilistically checkable proofs plays a central
role in recent developments concerning the difficulty of approximation problems (cf., [17],
[2] and [37]). To demonstrate this relationship, we first note that Theorem 3 can be
rephrases without mentioning the class PCP altogether. Instead, a new type of polynomial-
time reductions, which we call amplifying, emerges.

Theorem 4 (Theorem 3 — Rephrased): There exists a constant ε > 0, and a polynomial-
time computable function f , mapping the set of 3CNF formulae8 to itself so that

• As usual, f maps satisfiable 3CNF formulae to satisfiable 3CNF formulae; and

• f maps non-satisfiable 3CNF formulae to (non-satisfiable) 3CNF formulae for which
every truth assignment satisfies at most a 1− ε fraction of the clauses.

The function f is called an amplifying reduction.

proof sketch (Thm. 3 ⇒ Thm. 4): Start by considering the pcp for a satisfiable 3CNF
(guaranteed by Theorem 3). Use the fact that the pcp system used in the proof of Theo-
rem 3 is non-adaptive9 (i.e., the queries are determined as a function of the input and the
random-tape – and do not depend on answers to previous queries). Next, associate the
bits of the oracle with Boolean variables and introduce a (constant size) Boolean formula

7The sequence has started with the characterization of PCP(poly, poly) as equal non-deterministic
exponential-time [5], and continued with its scaled-down in [6, 17] which led to the NP ⊆
PCP(polylog, polylog) result of [17]. The first PCP-characterization of NP, by which NP =
PCP(log, log), has appeared in [3] and the cited result was obtained in [2]. This sequence of works,
directly related to the stated theorem, was built on and inspired by works from various settings such as
interactive proofs [36, 43, 18], program-checking [14, 23, 42], and private computation with oracles [8].

8A 3CNF formula is a Boolean formula consisting of a conjunction of clauses, where each clause is a
disjunction of upto 3 literals. (A literal is variable or its negation.).

9Actually, this assumption is not essential since one can easily convert an adaptive system into a non-
adaptive one, while incurring an exponential blowup in the query complexity (which in our case is a
constant).

13

for each possible outcome of the sequence of O(log n) coin tosses, describing whether the
verifier would have accepted given this outcome. Finally, using auxiliary variables, convert
each of these formulae into a 3CNF formula and obtain (as the output of the reduction)
the conjunction of all these polynomially many clauses. 2

As an immediate corollary one gets results concerning the intractability of approximation.
For example,

Corollary 1 : There exists a constant ε > 0, so that the following approximation problem
(known as Max3Sat) is “NP-hard” (i.e., cannot be solved in polynomial-time unless P =
NP)

Given a satisfiable 3CNF formulae, find a truth assignment which satisfies at
least a 1− ε fraction of its clauses.

4.3 The role of randomness

No trade-off between the number of bits examined and the confidence is possible if one
requires the verifier to be deterministic. In particular, PCP(0, q(·)) contains only sets
that are decidable by a deterministic algorithms of running time 2q(n) · poly(n). It follows
that PCP(0, log) = P . Furthermore, since it is unlikely that all NP-sets can be decided
by (deterministic) algorithms of running time, say, 2n · poly(n), it follows that PCP(0, n)
cannot contain NP .

5 Other Probabilistic Proof Systems

In this section, we shortly review some variants on the basic model of interactive proofs.
This variants include models in which the prover is restricted in its choice of strategy,
a model in which the prover-verifier interaction is restricted, and a model in which one
proves “knowledge” rather than “facts”.

5.1 Restricting the prover’s strategy

We stress that the restrictions discussed here refer to the strategies employed by the prover
both in case it tries to prove valid assertions (i.e., the completeness condition) and in case
it tries to fool the verifier to believe false statements (i.e., the soundness condition). Thus,
the validity of the verifier decision (concerning false statements) depends on whether this
restriction (concerning “cheating” prover strategies) really holds. The reason to consider
these restricted models is that they enable to achieve results which are not possible in the
general model of interactive proofs (cf., [12, 15, 34, 38]). We consider restrictions of two
types: computational or physical.

14

We start with a physical restriction. In the so-called multi-prover interactive proof
model, denoted MIP (cf., [12]), the prover is split into several (say, two) entities and the
restriction (or assumption) is that these entities cannot interact with each other. Actually,
the formulation allows them to coordinate their strategies prior to interacting with the
verifier10 but it is crucial that they don’t exchange messages among themselves while
interacting with the verifier. The multi-prover model is reminiscent of the common police
procedure of isolating collaborating suspects and interrogating each of them separately.
On the other hand, the multi-prover model is related to the pcp model [20]. Interestingly,
the multi-prover model allows to present (perfect) zero-knowledge proofs for all NP-sets,
without relying on any comutational assumptions [12]. Furthermore, these proofs can be
made very efficient in terms of communication complexity [16].

We now turn to computational restrictions. Since the effect of this restriction is
more noticable in the soundness condition, we refer to these proof systems as being
computationally-sound. Two variants have been suggested. In argument systems [15],
the prover stategy is restricted to be probabilistic polynomial-time with auxiliary input
(analogously to item (1) in Sec. 2.4). In CS-proofs [38], the prover stategy is restricted to
be probabilistic and run in time polynomial in the time required to validate the assertion
(analogously to item (3) in Sec. 2.4). Interestigly, computationally-sound interactive proofs
can be much more communication-efficient than (regular) interactive proofs; cf. [34, 38].

5.2 Non-interactive zero-knowledge proofs

Actualy the term “non-interactive” is somewhat misleading. The model, introduced in
[13], consists of three entities: a prover, a verifier and a uniformly selected sequence of bits
(which can be thought of as being selected by a trusted third party). Both verifier and
prover can read the random sequence, and each can toss additional coins. The interaction
consists of a single message sent from the prover to the verifier, who then is left with the
decision (whether to accept or not). Based on some reasonable complexity assumptions,
one may construct non-interactive zero-knowledge proof systems for every NP-set (cf.,
[13, 18, 35]).

5.3 Proofs of knowledge

The concept of a proof of knowledge, introduced in [30], is very appealing; yet, its precise
formulation is much more complex than one may expect (cf. [9]). Loosely speaking, a
knowledge-verifier for a relation R guarantees the existence of a “knowledge extractor”
that on input x and access to any interactive machine P ∗ outputs a y, so that (x, y)∈R,
within complexity related to the probability that the verifier accepts x when interacting
with P ∗. By convincing such a knowledge-verifier, on common input x, one proves that he
knows a y so that (x, y) ∈R. It can be shown that the protocol which result by successively

10This is implicit in the universal quantifier used in the soundness condition.

15

applying Construction 2 suffiently many time constitutes a “proof of knowledge” of a 3-
coloring of the input graph.

5.4 Knowledge complexity

Zero-knowledge is the lowest level of a knowledge-complexity hierarchy which quantifies the
“knowledge revealed in an interaction” [30]. Knowledge complexity may be defined as the
minimum number of oracle-queries required in order to (efficiently) simulate an interaction
with the prover [28]. Preliminary results concerning this measure have appeared in [27].

Acknowledgement

I am grateful to Shafi Goldwasser for suggesting the essential role of randomness as the
unifying theme for this exposition.

References

[1] W. Aiello and J. Hastad. Perfect Zero-Knowledge Languages can be Recognized in
Two Rounds. In 28th FOCS, pages 439–448, 1987.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and
Intractability of Approximation Problems. In 33rd FOCS, pages 14–23, 1992.

[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of
NP. In 33rd FOCS, pages 1–13, 1992.

[4] L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421–420,
1985.

[5] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has
Two-Prover Interactive Protocols. In 31st FOCS, pages 16–25, 1990.

[6] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Poly-
logarithmic Time. In 23rd STOC, pages 21–31, 1991.

[7] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and
a Hierarchy of Complexity Classes. JCSS, Vol. 36, pp. 254–276, 1988.

[8] D. Beaver and J. Feigenbaum. Hiding Instances in Multioracle Queries. In 7th
STACS, Springer Verlag, LNCS Vol. 415, pages 37–48, 1990.

[9] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92.

16

[10] M. Bellare and S. Goldwasser. The Complexity of Decision versus Search. SIAM
Journal on Computing, Vol. 23, pages 97–119, 1994.

[11] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali and P. Ro-
gaway. Everything Provable is Probable in Zero-Knowledge. In Crypto88, Springer
Verlag, LNCS Vol. 403, pages 37–56, 1990

[12] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive
Proofs: How to Remove Intractability. In 20th STOC, pages 113–131, 1988.

[13] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Ap-
plications. In 20th STOC, pages 103–112, 1988.

[14] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to
Numerical Problems. In 22nd STOC, 1990.

[15] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge.
JCSS, pages 156–189, 1988. Extended abstract, by Brassard and Crépeau, in 27th
FOCS, 1986.

[16] C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra, Low Communication 2-Prover
Zero-Knowledge Proofs for NP. In Crypto92.

[17] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating Clique
is almost NP-complete. In 32nd FOCS, pages 2–12, 1991.

[18] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string. In 31st FOCS, pages 308–317, 1990.

[19] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th STOC, pages
204–209, 1987.

[20] L. Fortnow, J. Rompel and M. Sipser. On the Power of Multi-Prover Interactive
Protocols. In Proc. 3rd IEEE Symp. on Structure in Complexity Theory, pages
156–161, 1988.

[21] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, “On Completeness
and Soundness in Interactive Proof Systems”, Advances in Computing Research: a
research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pp. 429–
442, 1989.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

17

[23] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
Testing/Correcting for Polynomials and for Approximate Functions. In 23th STOC,
pages 32–42, 1991.

[24] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol.
38, No. 1, pages 691–729, 1991. Extended abstract in 27th FOCS, 1986.

[25] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game or a
Completeness Theorem for Protocols with Honest Majority. In 19th STOC, pages
218–229, 1987.

[26] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. Journal of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

[27] O. Goldreich, R. Ostrovsky and E. Petrank. Knowledge Complexity and Compu-
tational Complexity. In 26th STOC, 1994.

[28] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. In 32nd FOCS,
pp. 59–68, 1991.

[29] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages
270–299, 1984. Extended abstract in 14th STOC, 1982.

[30] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interac-
tive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989.
Extended abstract in 17th STOC, 1985.

[31] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof
Systems. In 18th STOC, pages 59–68, 1986.

[32] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom
Generator from any One-Way Function. Manuscript, 1993. See preliminary versions
by Impagliazzo et. al. in 21st STOC and H̊astad in 22nd STOC.

[33] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87,
Springer Verlag, LNCS Vol. 293, pages 40–51, 1987.

[34] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th
STOC, pages 723–732, 1992.

[35] J. Kilian. On the Complexity of Bounded-Interaction and Noninteractive Zero-
Knowledge Proofs. to appear in 35th FOCS, 1994.

[36] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive
Proof Systems. In 31st FOCS, pages 2–10, 1990.

18

[37] C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization
Problems, In 25th STOC, pages 286–293, 1993.

[38] S. Micali. CS Proofs. to appear in 35th FOCS, 1994.

[39] M. Naor. Bit Commitment using Pseudorandom Generators. In Crypto89, pages
123–132, 1990

[40] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial
Zero-Knowledge, In Proc. 2nd Israel Symp. on Theory of Computing and Systems
(ISTCS93), IEEE Computer Society Press, pages 3–17, 1993.

[41] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Com-
plexity Classes. In 20th STOC, pages 229–234, 1988.

[42] R. Rubinfeld and M. Sudan. Testing Polynomial Functions Efficiently and over
Rational Domains. In Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms,
pages 23–32, 1992.

[43] A. Shamir. IP=PSPACE. In 31st FOCS, pages 11–15, 1990.

[44] A.C. Yao. Theory and Application of Trapdoor Functions. In 23st FOCS, pages
80–91, 1982.

19

Recent Publications in the BRICS Report Series

RS-94-28 Oded Goldreich.Probabilistic Proof Systems. September
1994. 19 pp.

RS-94-27 Torben Bräuner. A Model of Intuitionistic Affine Logic
from Stable Domain Theory (Revised and Expanded Ver-
sion). September 1994. 19 pp. Full version of paper
appearing in: ICALP '94, LNCS 820, 1994.

RS-94-26 Søren Riis.Count(q) versus the Pigeon-Hole Principle.
August 1994. 3 pp.

RS-94-25 Søren Riis.Bootstrapping the Primitive Recursive Func-
tions by 47 Colors. August 1994. 5 pp.

RS-94-24 Søren Riis.A Fractal which violates the Axiom of Deter-
minacy. August 1994. 3 pp.

RS-94-23 Søren Riis.Finitisation in Bounded Arithmetic. August
1994. 31 pp.

RS-94-22 Torben Bräuner. A General Adequacy Result for a Linear
Functional Language. August 1994. 39 pp. Presented at
MFPS '94.

RS-94-21 Søren Riis.Count(q) does not imply Count(p). July 1994.
55 pp.

RS-94-20 Peter D. Mosses and Mart´n Musicante. An Action Se-
mantics for ML Concurrency Primitives. July 1994. 21 pp.
To appear in Proc. FME '94 (Formal Methods Europe,
Symposium on Industrial Benefit of Formal Methods),
LNCS, 1994.

RS-94-19 Jens Chr. Godskesen, Kim G. Larsen, and Arne Skou.
Automatic Verification of Real–Timed Systems UsingEp-

silon. June 1994. 8 pp. Appears in: Protocols, Specifi-
cation, Testing and Verification PSTV '94.

RS-94-18 Sten Agerholm.LCF Examples in HOL. June 1994. 16
pp. To appear in: Proceedings of the 7th International
Workshop on Higher Order Logic Theorem Proving and
its Applications, LNCS, 1994.

