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A Model of Intuitionistic Affine Logic
From

Stable Domain Theory
(Revised and Expanded Version)

Torben Braüner∗

BRICS†

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

Girard worked with the category of coherence spaces and continuous stable maps
and observed that the functor that forgets the linearity of linear stable maps has
a left adjoint. This fundamental observation gave rise to the discovery of Linear
Logic. Since then, the category of coherence spaces and linear stable maps, with
the comonad induced by the adjunction, has been considered a canonical model of
Linear Logic. Now, the same phenomenon is present if we consider the category of
pre dI domains and continuous stable maps, and the category of dI domains and
linear stable maps; the functor that forgets the linearity has a left adjoint. This gives
an alternative model of Intuitionistic Linear Logic. It turns out that this adjunction
can be factored in two adjunctions yielding a model of Intuitionistic Affine Logic;
the category of pre dI domains and affine stable functions. It is the goal of this
paper to show that this category is actually a model of Intuitionistic Affine Logic,
and to show that this category moreover has properties which make it possible to
use it to model convergence/divergence behaviour and recursion.

∗Internet: tor@daimi.aau.dk
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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1 Introduction

The category of dI domains and continuous stable functions is well known from the liter-
ature. It is for example described in [Win87] where it is shown equivalent to the category
of stable event structures with stable maps, a category whose objects are a model for
concurrency. A pre dI domain is a generalisation of a dI domain where we do not assume
the existence of a bottom element. The category of pre dI domains and continuous stable
functions will be denoted by predIs. The monoidal closed category of dI domains and
linear stable functions, dIl is for example described in [Zha93] where it is shown equiva-
lent to another model of concurrency, namely the category of stable event structures with
linear maps. Now, the adjunction

predIs
� ⊃

>
!
- dIl

can be decomposed up to isomorphism into two adjunctions, and moreover, one can do it
in two different ways:

predIs
� ⊃

>
!
- predIa

dIst

( )⊥

?

a

∪

6

� ⊃

>
!
- dIl

( )⊥

?

a

∪

6

where predIa is the category of pre dI domains and affine stable functions, and dIst is
the category of dI domains and strict stable functions. The functor ( )⊥ is the usual
lift construction. In [Jac] similar situations are described, where an adjunction inducing
another model of Intuitionistic Linear Logic (ILL) can be decomposed into adjunctions in
two different ways, inducing models of Intuitionistic Affine Logic (IAL) and Intuitionistic
Relevant Logic (IRL). Now, the question is whether that also is the case here.

The adjunction between predIs and dIst induces a comonad on dIst, but how about the
symmetric monoidal closed structure necessary to make it a model of IRL? The obvious
internal-hom would be the strict stable function space (, and the obvious symmetric
monoidal structure would be smash product ⊗ with the Sierpinsky space I as unit. We
would then get the correct isomorphism:

dIst(A⊗ B,C) ∼= dIst(A,B( C)

The strict stable function space of two dI domains is a dI domain, but that is unfortunately
not necessarily the case with the smash product. There is a counter example; the partial
order

(I × I)⊗ (I × I)

is not a dI domain. There does not seem to be any other obvious symmetric monoidal
structure around, so we will not follow this track further.

The adjunction between predIs and predIa induce a comonad on predIa, but in this case
it turns out that we do have a symmetric monoidal closed structure around. The category
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predIa is actually a model of full ILL, and since the unit of the tensor product is a terminal
object, it is a model of IAL too. So the answer to the above mentioned question is a partial
yes. Moreover, the adjunction between predIa and dIl induce a monad on predIa. The
monad is strong, so we can model convergence/divergence behaviour, cf. [Mog89]. One
can define fixpoints in a sense suitable for models of ILL and IAL, and it turns out that
we have such fixpoints in an appropriate subcategory of predIa which enables us to model
recursion too. It will be the goal of the present paper to describe the category predIa.

The relevant categories will be defined formally in the next section. In the third section
we will show that predIa is a model of IAL. In the fourth section, predIa will be shown
to have a strong monad. The fifth section will deal with fixpoints in predIa.

The work in the present paper is motivated by giving a sound and adequate denotational
semantics to the term language for ILL, extended with recursion. Types are interpreted
as pre dI domains, and terms as affine stable functions. The details of this work can be
found in [Braa]. Moreover, fixpoints in a sense suitable for models of ILL and IAL are
dealt with from a proof-theoretic point of view in [Brab].

2 Definition of the relevant categories

Definition 2.1 Let (D,v) be a (possibly empty) poset, and assume that every non-empty
finitely bounded X ⊆ D have join tX and meet uX. A subset X is finitely bounded iff
every finite subset of X has an upper bound. Note that D does not necessarily have a
bottom element.

An prime element of D is an element d s.t. d v tX ⇒ ∃x ∈ X.d v x for any non-empty
finitely bounded subset X. We will denote the set of prime elements of D by Dp.

D is called prime algebraic iff ∀d ∈ D.({d′ ∈ Dp|d′ v d} 6= ∅& d = t{d′ ∈ Dp|d′ v d}).
A finite element of D is an element d s.t. d v tX ⇒ ∃x ∈ X.d v x for any directed
subset X. We will denote the set of finite elements of D by Do.

D is called finitary iff ∀d ∈ Do.|{d′ ∈ D|d′ v d}| <∞
A pre dI domain is a finitary prime algebraic domain. A dI domain is a pre dI domain
with a bottom element.

We will denote the set of minimal elements of D by Dm.

Note that each element in a pre dI domain has exactly one minimal element below it.
This entails that a pre dI domain can be considered as a (not necessarily finite) sum of
dI domains.

Definition 2.2 A monotone function f : D → E between pre dI domains is called stable
iff f(uX) = uf(X) for any non-empty finitely bounded subset X. A monotone function
f : D → E between pre dI domains is called affine iff f(tX) = tf(X) for any non-empty
finitely bounded subset X. We will call an affine function f linear if both D and E are
dI domains and f(⊥) =⊥.
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Definition 2.3 Let predIs be the category of pre dI domains and continuous stable func-
tions, predIa the category of pre dI domains and affine stable functions, and dIl the
category of dI domains and linear stable functions.

Proposition 2.4 Let f : D → E be a continuous function between two pre dI domains
s.t. e v f(d) where d is arbitrary and e is finite. We can then find a finite minimal d′ v d
with the property that e v f(d′). If f moreover is stable, then d′ is the least d′′ v d such
that e v f(d′′).

Proof. Assume that f : D → E be a continuous function s.t. e v f(d) where d is
arbitrary and e is finite. We then have

f(d) = f(t{d′ ∈ Dp|d′ v d})
= f(t{d′ ∈ Do|d′ v d})
= t{f(d′)|d′ ∈ Do & d′ v d}

The assumption that D is prime algebraic gives us the first equation, the second comes
from the fact that Dp ⊆ Do, and the third comes from continuity of f , and the fact that
t{d′ ∈ Do|d′ v d} is directed. But e is finite and {f(d′)|d′ ∈ Do & d′ v d} is directed,
so e v t{f(d′)|d′ ∈ Do & d′ v d} entails that there is at least one finite d′ v d such that
e v f(d′). Now, we can pick a minimal finite d′ v d with that property because D is
finitary and because any element below a finite element is finite. Assume moreover that
f is stable and d′′ v d such that e v f(d′′), then e v f(d′) u f(d′′) = f(d′ u d′′). But
d′ u d′′ v d′ and d′ is minimal, so d′ = d′ u d′′. Thus, d′ v d′′. 2

This motivates the following definition:

Definition 2.5 Let f : D→ E be a continuous stable function. We define

Trace(f) = {(d, e) ∈ Do ×Ep|e v f(d) & ∀d′ v d.(e v f(d′)⇒ d = d′)}

In what follows, X ↑ means that X has an upper bound. There is a close connection
between functions and traces:

Theorem 2.6 Let {(di, ei)|i ∈ I} ⊆ Do ×Ep for some indexing set I s.t.

1. ∀d ∈ D.∃i ∈ I.di v d

2. ∀J ⊆fin I.({dj|j ∈ J}↑⇒ {ej|j ∈ J}↑)

3. ∀i, j ∈ I.(di↑dj & ei = ej)⇒ di = dj

4. ∀i ∈ I.∀e ∈ Dp.e v ei⇒ ∃j ∈ I.(ej = e & dj v di)

Then the function f : D→ E defined as

f(d) = t{e|∃d′ v d.∃i ∈ I.(d′, e) = (di, ei)}

is a continuous stable function, and conversely, if f : D → E is a continuous stable
function, then Trace(f) has the above mentioned properties. Moreover, the operations
are each others inverses.
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Proof. If {(di, ei)|i ∈ I} has the mentioned properties, then it is straightforward to
check that f is a continuous stable function. Conversely, let {(di, ei)|i ∈ I} = Trace(f)
for some continuous stable function f . If d ∈ D, then ∃e ∈ Ep.e v f(d) because E
is prime algebraic. We can then find a finite minimal d′ v d s.t. e v f(d′), that is,
(d′, e) ∈ Trace(f), cf. Proposition 2.4. Thus, 1 is proved. 2 is obvious. Assume that
di↑dj & ei = ej. Then f(di u dj) = f(di) u f(dj) and so ei, ej v f(di u dj), which entails
that di = di u dj = dj . This proves 3. Assume that e v ei where e ∈ Dp. Then e v f(di),
so we can find a finite minimal d′ v di s.t. e v f(d′), that is, (d′, e) ∈ Trace(f), cf.
Proposition 2.4. This proves 4. It is straightforward to check that the operations are each
others inverses. 2

From now on, we shall frequently identify a continuous stable function with its trace.
There is a nice way of seeing whether a function is affine or not by looking at its trace:

Proposition 2.7 Let f : D → E be a continuous stable function. Then π0(f) ⊆ Dp iff
f is affine.

Proof. Assume that π0(f) ⊆ Dp, and let X be non-empty finitely bounded. We obviously
have tf(X) v f(tX). Conversely, if e ∈ Ep such that e v f(tX), then there exists a
d ∈ Eo such that (d, e) ∈ f and d v tX, cf. Theorem 2.6. But d ∈ Ep, cf. the
assumption that π0(f) ⊆ Dp. This entails that there exists a x ∈ X such that d v x, and
thus, e v f(x) v f(tX). We conclude that f(tX) v tf(X). Conversely, assume that f
is affine, and let (d, e) ∈ f . Then e v f(d). But f(d) = f(t{d′ ∈ Dp|d′ v d}) which is
equal to t{f(d′)|d′ ∈ Dp & d′ v d} because f is assumed to be affine. This entails that
there exists a d′ ∈ Dp such that d′ v d and e v f(d′). We conclude that d = d′, because
d is minimal, and thus d ∈ Dp. 2

The following two results about composition of functions are very useful:

Theorem 2.8 Let f : C → D and g : D → E be continuous stable functions. Then

f ; g = {(c, e)|∃(c1, d1), ..., (cn, dn) ∈ f.{c1, ..., cn}↑ & c = t1≤i≤nci & (t1≤i≤ndi, e) ∈ g}

Proof. First note that Theorem 2.6 entails that {d1, ..., dn}↑. Now, assume that
(c, e) ∈ f ; g. Then e v g(f(c)) entails that there exists a d v f(c) such that (d, e) ∈ g,
cf. Proposition 2.4. Now, let {d1, ..., dn} = {d′ ∈ Dp|d′ v d}. Then we have for each
i ∈ {1, ..., n} that di v f(c) entails that there exists a ci v c such that (ci, di) ∈ f , cf.
Proposition 2.4. Thus, t1≤i≤nci v c and t1≤i≤ndi = d, which entails that
e v g(f(t1≤i≤nci)), cf. Theorem 2.6. We conclude that c = t1≤i≤nci, because c is
minimal. Conversely, assume that (c1, d1), ..., (cn, dn) ∈ f such that {c1, ..., cn} ↑ and
(t1≤i≤ndi, e) ∈ g. We have e v g(f(t1≤i≤nci)), cf. Theorem 2.6. Now, assume that we
have a c v t1≤i≤nci such that e v g(f(c)). This entails that there exists a d v f(c) such
that (d, e) ∈ g, cf. Proposition 2.4. But d v f(c) v f(t1≤i≤nci) and
t1≤i≤ndi v f(t1≤i≤nci), that is, d↑ t1≤i≤ndi, which entails that d = t1≤i≤ndi, cf. Theo-
rem 2.6. Then we have for each i ∈ {1, ..., n} that di v f(c) entails that there exists a
c′i v c such that (c′i, di) ∈ f , cf. Proposition 2.4. But c′i v c v t1≤i≤nci and ci v t1≤i≤nci,
that is, c′i↑ ci, which entails that c′i = ci, cf. Theorem 2.6. So t1≤i≤nc′i v c v t1≤i≤nci
entails that c = t1≤i≤nci, and we conclude that (t1≤i≤nci, e) ∈ f ; g. 2
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Corollary 2.9 Let f : C → D and g : D → E be continuous stable functions. Assume
moreover that g is affine. Then

f ; g = {(c, e)|∃d ∈ D.(c, d) ∈ f & (d, e) ∈ g}

that is, the trace of the composition is equal to the traces composed as relations.

Proof. Assume that (c1, d1), ..., (cn, dn) ∈ f such that {c1, ..., cn}↑ and (t1≤i≤ndi, e) ∈ g.
The function g is affine, so t1≤i≤ndi ∈ Dp, cf. Proposition 2.7, which entails that there
exists a q ∈ {1, ..., n} such that t1≤i≤ndi = dq . But then ci v cq for every i ∈ {1, ..., n},
cf. Theorem 2.6, and we conclude that t1≤i≤nci = cq. 2

3 The category predIa is a model of IAL

3.1 Definition of categorical models of ILL and IAL

In [BBdPH92] proof-theoretic considerations are used to derive axioms for a category
modelling multiplicative ILL. We take the resulting model as canonical:

Definition 3.1 A linear category is a symmetric monoidal closed category (C, I,⊗,()
equipped with

• A symmetric monoidal comonad (!, ε, δ,m,mI).

• Monoidal natural transformations e :!(−)→ I and d :!(−)→!(−)⊗!(−) s.t.
1. eA and dA are maps of coalgebras,
2. eA and dA give the free coalgebra (!A, δ) structure of a cocommutative comonoid,
3. maps between free coalgebras are maps between cocommutative comonoids.

Remark. The assumption that the comonad is symmetric monoidal means that ! is a
symmetric monoidal functor and ε and δ are monoidal natural transformations. When
assuming the natural transformations e and d to be monoidal, we are assuming the func-
tors I and !(−)⊗!(−) to have the obvious monoidal structure induced by the monoidal
structure on !. Hence, the assumption that the natural transformation e is monoidal
amounts to commutativity of the following diagrams:

!A⊗!B
mA,B- !(A⊗B)

I ⊗ I

eA ⊗ eB
? ∼= - I

eA⊗B

?

I
mI - !I

@
@
@
@
@

I
R

I

eI

?
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The assumption that the natural transformation d is monoidal amounts to commutativity
of the following diagrams:

!A⊗!B
mA,B - !(A⊗ B)

!A⊗!A⊗!B⊗!B

dA ⊗ dB
? Id⊗ ∼= ⊗Id- !A⊗!B⊗!A⊗!B

mA,B ⊗mA,B- !(A⊗ B)⊗!(A⊗B)

dA⊗B

?

I
mI - !I

@
@
@
@
@

∼=
R

I ⊗ I
@
@
@
@
@

mI ⊗mI
R

!I⊗!I

dI

?

It can be shown that (I,mI) and (!A⊗!A, (δA⊗δA);m!A,!A) are coalgebras. The assumption
that eA is a map of coalgebras amounts to eA being a map from (!A, δA) to (I,mI), and
the assumption that dA is a map of coalgebras amounts to dA being a map from (!A, δA)
to (!A⊗!A, (δA⊗ δA);m!A,!A).

Definition 3.2 A model of ILL is a linear category with finite products (×, 1) and finite
sums (+, 0). A model of IAL is a model of ILL where I ∼= 1.

It is easy to see that the arguments found in [BBdPH92] for a linear category can be ex-
tended to the full ILL, and to IAL. For example will the presence of a uniquely determined
map A→ I for any object A in a model of IAL enables us to interpret the weakening rule
in an appropriate way.

3.2 predIa is a model of IAL

Given X ⊆ D we define pdqX = {d′ ∈ X|d′ v d}. First of all, we need a symmetric
monoidal structure on predIa:

Definition 3.3 Let f : D → D′ and g : E → E′ be maps in predIa. We define a
bifunctor ⊗ : predIa × predIa → predIa as follows:

D ⊗ E = ({t ⊆ Dp × Ep|(π1(t))↑ & (π2(t))↑ & t 6= ∅ & t is down-closed },⊆)
f ⊗ g = {(p(d, e)q, p(d′, e′)q)|(d, d′) ∈ f & (e, e′) ∈ g}

Proposition 3.4 The bifunctor ⊗ together with the pre dI domain I = ({⊥},=) give
symmetric monoidal structure to predIa.
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Note that
(D ⊗ E)o = {t ∈ D ⊗ E||t| <∞}
(D ⊗ E)p = {p(d, e)q|d ∈ Dp & e ∈ Ep}
(D ⊗ E)m = {{(d, e)}|d ∈ Dm & e ∈ Em}

Hence, (D⊗E)p ∼= Dp×Ep ordered coordinatewise. This is the key in showing that every
functor (−)⊗D has a right adjoint D( (−).

Definition 3.5 Given two pre dI domains D and E, we define a new pre dI domain as
follows:

D( E = (predIa(D,E),⊆)

Thus, we take all affine stable functions from D to E and order them by inclusion. It is
straightforward to check that this is a pre dI domain. The following lemma gives us a
handle on the prime elements:

Lemma 3.6 f ∈ (D( E)p & f 6= ∅ iff
f ∈ D( E & ∃(d, e) ∈ f.f = f ∩ (p(d, e)q ∪Dm × Em)

The lemma induces the following definition:

Definition 3.7 The lemma says that if f ∈ (D ( E)p and f /∈ (D ( E)m, then there
is a uniquely determined element (d, e) ∈ f such that f = f ∩ (p(d, e)q ∪Dm × Em). We
will denote this element by top(f).

Now, we want to extend the function that sends the object E into the object D( E to
a functor, which is right adjoint to (−) ⊗ D. It is sufficient for every object E to give
a map evalE,D : (D ( E) ⊗D → E with the property that for every f : C ⊗D → E,
there exists a uniquely determined g : C → (D( E) which makes the following diagram
commute:

(*)

C ⊗D
@
@
@
@
@

g ⊗D

R

E

f

?
� evalE,D (D( E)⊗D

Thus, we define:

Definition 3.8 Given objects E and D, we define the map evalE,D : (D( E)⊗D→ E
as follows:

evalE,D =
{(p(f, d)q, e)|f ∈ ((D( E)p \ (D( E)m) & top(f) = (d, e)}∪
{(p(f, d)q, e)|f ∈ (D( E)m & (d, e) ∈ f}

9



Theorem 3.9 For every map f : C ⊗D → E, there exists a uniquely determined map
g : C → (D( E) which makes (*) commute. The map g is given by

g = {(c, ‖ (d, e) ‖fc )|(p(c, d)q, e) ∈ f}

where
‖ (d, e) ‖fc=
{(d′, e′)|∃c′ v c.d′ v d & e′ v e & (p(c′, d′)q, e′) ∈ f}∪
{(d′, e′)|∃c′ v c.({(c′, d′)}, e′) ∈ f}

Hence, we have specified a right adjoint D ( (−) to every functor (−) ⊗ D such that
eval(−),D is counit.

Now, we want to have a comonad on predIa. The forgetful functor U from predIa to
predIs has a left adjoint !. This adjunction induces a comonad on predIa, namely

(!U, ε :!U → Id, !ηU :!U →!U !U)

where Id is the identity functor on predIa, η is the unit, and ε is the counit of the
adjunction. We will first define an operation on pre dI domains as follows:

Definition 3.10 Given a pre dI domain D, we define a new pre dI domain !D as follows:

!D = ({t ⊆ Do|t↑ & t 6= ∅ & t is down-closed },⊆)

Note that
(!D)o = {t ∈!D||t| <∞}
(!D)p = {pdq|d ∈ Do}
(!D)m = {{d}|d ∈ Dm}

Hence, (!D)p ∼= Do with the inherited ordering. This is the key in showing that the
forgetful functor from predIa to predIs has a left adjoint. Now, ! is a function from
objects in predIs to objects in predIa, and we want to extend this function to a functor
which is left adjoint to the forgetful functor.

It is sufficient for every pre dI domain D to give a continuous stable function ηD : D →!D
with the property that for every continuous stable function f : D → E there exists a
uniquely determined affine stable function g :!D→ E which makes the following diagram
commute:

(**)

D
ηD - !D

	�
�
�
�
�

g

E

f

?

Thus, we define:

Definition 3.11 Given an object D, we define the continuous stable function ηD : D →!D
as follows:

ηD = {(d, pdq)|d ∈ Do}

10



Theorem 3.12 For every continuous stable function f : D → E, there exists a uniquely
determined affine stable function g :!D→ E which makes (**) commute. The function g
is given by

g = {(pdq, e)|(d, e) ∈ f}

Hence, we have specified a left adjoint ! to the forgetful functor such that η is unit. We
will rename the induced comonad on predIa to

(!, ε :!→ Id, δ :!→!!)

It will be useful to state the constructions in explicit terms:

Given a continuous stable function f : D → E, the affine stable function !f :!D →!E is
defined as follows:

!f = {(pdq, peq)|d ∈ Do & e ∈ Eo & e v f(d) & ∀d′ v d.(e v f(d′)⇒ d = d′)}

The components εD :!D → D and δD :!D →!!D of the natural transformations ε and δ
are defined as follows:

εD = {(pdq, d)|d ∈ Dp}
δD = {(pd1 t ...t dnq, p(p{d1, ..., dn}q)q)|d1, ..., dn ∈ Dp & {d1, ..., dn}↑}

We moreover want that the comonad (!, ε, δ) is symmetric monoidal which means that !
is a symmetric monoidal functor and ε and δ are monoidal natural transformations. That
! is symmetric monoidal means that it comes equipped with a map mI : I →!I and a
natural transformation m :!(−)⊗!(+)→!(−⊗+), which matches the symmetric monoidal
structure, that is, makes certain diagrams commute. See the appendix. This motivates
the following definition:

Definition 3.13 We define a map mI : I →!I, and a natural transformation m with
components mD,E :!D⊗!E →!(D ⊗E) as follows:

mI = {(⊥, {⊥})}
mD,E = {(p(pt(π1(t))q, pt(π2(t))q)q, ptq)|t ∈ (D ⊗ E)o}

Theorem 3.14 The map mI together with the natural transformation m gives symmetric
monoidal structure to the functor ! s.t. ε and δ are monoidal natural transformations.

Finally, we want to have monoidal natural transformations e :!(−)→ I and
d :!(−)→!(−)⊗!(−), which motivates the following definition:

Definition 3.15 We define natural transformations e and d with components eD :!D→ I
and dD :!D→!D⊗!D as follows:

eD = {({d},⊥)|d ∈ Dm}
dD = {(pd t d′q, p(pdq, pd′q)q)|d, d′ ∈ Do & d↑d′}

Proposition 3.16 The natural transformations e and d are monoidal.
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The following three propositions say that the extra conditions on eD and dD are satisfied:

Proposition 3.17 The maps eD and dD are maps of coalgebras, that is,
eD : (!D, δD)→ (I,mI) and dD : (!D, δD)→ (!A⊗!A, (δA⊗ δA);m!A,!A).

Proposition 3.18 The maps eD and dD give the free coalgebra (!D, δD) the structure
of a cocommutative comonoid, that is, each (!D, eD :!D → I, dD :!D →!D⊗!D) is a
cocommutative comonoid.

Proposition 3.19 Maps between free coalgebras are maps between cocommutative comonoids,
that is, if f : (!D, δD)→ (!E, δE) then f : (!D, eD, dD)→ (!E, eE, dE).

Now, it is easy to check that predIa has finite products and finite sums in the usual way,
hence it is a model of ILL. Moreover, the unit I of the tensor product ⊗ is obviously a
terminal object, hence predIa is a model of IAL.

4 A strong monad on the category predIa

The forgetful functor U from dIl to predIa has a left adjoint (−)⊥. This adjunction
induces a monad on predIa, namely

(U(−)⊥, lift : Id→ U(−)⊥, Udown′(−)⊥ : U(−)⊥U(−)⊥ → U(−)⊥)

where Id is the identity functor on predIa, lift is the unit, and down′ is the counit of the
adjunction. We will first define a function (the lift construction) from pre dI domains to
dI domains as follows. The definition assumes an injective function x−yD on D, and an
element ⊥D different from all elements in the image of x−yD.

Definition 4.1 Given a pre dI domain D, we define a dI domain D⊥ with the underlying
set {xdy|d ∈ D} ∪ {⊥}. The order on D⊥ is the order inherited from D extended s.t. ⊥
is a bottom element.

Note that (D⊥)p = {xdy|d ∈ Dp} ∪ {⊥}. This is the key in showing that the forgetful
functor from dIl to predIa has a left adjoint. Now, (−)⊥ is a function from objects in
predIa to objects in dIl, and we want to extend this function to a functor which is left
adjoint to the forgetful functor.

It is sufficient for every pre dI domain D to give an affine stable function liftD : D→ D⊥
with the property that for every affine stable function f : D → E where E is a dI domain,
there exists a uniquely determined linear stable function g : D⊥ → E which makes the
following diagram commute:

(***)

D
liftD- D⊥

	�
�
�
�
�

g

E

f

?
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Thus, we define:

Definition 4.2 Given an object D, we define the affine stable function liftD : D → D⊥
as follows:

liftD = {(d, xdy)|d ∈ Dp} ∪ {(d,⊥)|d ∈ Dm}

Theorem 4.3 For every affine stable function f : D → E, where E is a dI domain,
there exists a uniquely determined linear stable function g : D⊥ → E which makes (***)
commute. The function g is given by

g = {(xdy, e)|(d, e) ∈ f & e 6=⊥} ∪ {(⊥,⊥)}

Hence, we have specified a left adjoint (−)⊥ to the forgetful functor such that lift is unit.
We will rename the induced monad on predIa to

((−)⊥, lift : Id→ (−)⊥, down : (−)⊥⊥ → (−)⊥)

It will be useful to state the constructions in explicit terms:

Given an affine stable function f : D → E, the linear stable function f⊥ : D⊥ → E⊥ is
defined as follows:

f⊥ = {(xdy, xey)|(d, e) ∈ f} ∪ {(⊥,⊥)}
The component downD : D⊥⊥ → D⊥) of the natural transformations down is defined as
follows:

downD = {(xxdyy, xdy)|d ∈ Dp} ∪ {(⊥,⊥)}
Thus, we have a monad on predIa. It turns out that the monad is strong w.r.t. the
symmetric monoidal structure, that is, there is a “strength” natural transformation t :
(−)⊗ (+)⊥ → (−⊗+)⊥ such that certain diagrams commute. See the appendix.

Definition 4.4 We define a natural transformation t with components
tD,E : D ⊗E⊥ → (D⊗ E)⊥ as follows:

tD,E =
{(p(d, xey)q, x(p(d, e)q)y)|d ∈ Dp & e ∈ Ep}∪
{(p(d,⊥)q,⊥)|d ∈ Dm}

Theorem 4.5 The natural transformation t makes the monad ((−)⊥, lift, down) strong
w.r.t. the symmetric monoidal structure.

5 Fixpoints in the category predIa

5.1 Categorical fixpoints as usual

The definitions and results concerning fixpoints and fixpoint operators in this subsection
can also be found in [Poi92]. To start things off, we will state a definition of fixpoints in
a category with finite products. In what follows, ∆A : A→ A× A is the diagonal map.
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Definition 5.1 A category C with finite products has fixpoints iff for every map
f : A×B → B there exists a specified fixpoint f† : A→ B with the property that

f† = [A
∆A- A× A Id×f†- A× B f- B]

Note how the diagonal map is used to copy parameters. We can deal with fixpoint
operators if the category is closed w.r.t. the product structure:

Definition 5.2 A cartesian closed category C has fixpoint operators iff for every object
B there is an arrow YB : [B ⇒ B]→ B with the property that for every f : A× B → B
the map curry(f);YB is a fixpoint of f .

Fixpoints and fixpoint operators are related cf. the following result:

Proposition 5.3 A cartesian closed category C has fixpoints iff it has fixpoint operators.

5.2 Categorical fixpoints in models of ILL and IAL

Proofs of the results in this subsection can be found in [Brab]. I will now consider
fixpoints in a linear context. The categorical considerations in the following part of the
paper applies to models of ILL, and thus to models of IAL. We can not use the previous
definition of fixpoints because it assumes the presence of finite products.

Definition 5.4 Let (C, I,⊗) be a monoidal category equipped with a comonad (!, ε, δ),
and with a natural transformation d having components: dA :!A→!A⊗!A. We say that C
has linear fixpoints iff for every map f :!A⊗!B→ B there exists a specified linear fixpoint
f ] :!A→ B with the property that

f ] = [!A
dA- !A⊗!A

Id⊗γ(f ])- !A⊗!B
f- B]

where γ : C(!A,B)→ C(!A, !B) is the coKleisli operator, that is,

γ(h) = [!A
δA- !!A

!h- !B]

It is simply an extension of the definition of fixpoints in a category with finite products
to a linear context, where we have only a “diagonal map” dA for objects of the shape !A.
We can deal with linear fixpoint operators if our category is closed w.r.t. the monoidal
structure:

Definition 5.5 Let (C, I,⊗,() be a monoidal closed category equipped with a comonad
(!, ε, δ), and with a natural transformation d having components dA :!A→!A⊗!A. We say
that C has linear fixpoint operators iff for every object B there is an arrow
Y lin
B :!(!B( B)→ B with the property that for every f :!A⊗!B→ B the map
γ(curry(f));Y lin

B is a linear fixpoint of f .

Linear fixpoints and linear fixpoint operators are under appropriate circumstances related
in a way analogous to the way fixpoints are related to fixpoint operators.
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Proposition 5.6 A linear category has linear fixpoints iff it has linear fixpoint operators.

Now, the definition of linear fixpoints can be explained in terms of fixpoints in the category
of free coalgebras. Given a category C equipped with a comonad (!, ε, δ), the coEilenberg-
Moore category, C! is the category of coalgebras, and the category of free coalgebras is the
full subcategory of C!, whose objects are free coalgebras, that is, coalgebras of the type
(!A, δ). Recall that we have an adjunction U ! a F ! between C! and C. The forgetful functor
U ! : C! → C simply forgets the coalgebra structure, while the free functor F ! : C → C!

takes any object A to the free coalgebra (!A, δ). The adjunction induces the following
natural bijection between maps:

φ(C,h),A : C!((C, h), (!A, δ)) ∼= C(C,A)

where (C, h) is a coalgebra, and A is an object of C. The bijection is given by
φ(f) = (f ; εA) : C → A and φ−1(g) = h; !g : (C, h)→ (!A, δ).

In [Bie94] it is shown that C! w.r.t. a symmetric monoidal category (C, I,⊗) equipped
with a symmetric monoidal comonad (!, ε, δ,m,mI) has an induced symmetric monoidal
structure; the unit I of the tensor product is given by (I,mI), and given two coalgebras
(A, k) and (B, h), their tensor product (A, k)⊗ (B, h) is the coalgebra
(A ⊗ B, (k ⊗ h);mA,B). If moreover the category is a linear category (not necessarily
with (, that is, (−) ⊗ A does not necessarily have a right adjoint A ( (−)), then the
symmetric monoidal structure on C! is a finite product structure, that is, I is a terminal
object, and ⊗ is a binary product.

Theorem 5.7 Let C be a linear category (not necessarily with (), then

h : (!A, δ)→ (!B, δ) is fixpoint of f : (!A, δ)⊗ (!B, δ)→ (!B, δ) iff

φ(h) :!A→ B is linear fixpoint of φ(f) :!A⊗!B→ B

It is obvious that if the the category of free coalgebras is closed under finite products,
that is, the terminal object (I,mI) is isomorphic to a free coalgebra, and given two free
coalgebras (!A, δ) and (!B, δ), their tensor product (A, k)⊗ (B, h) is isomorphic to a free
coalgebra, then it inherits the finite products from the ambient category. This leads to
the following corollary:

Corollary 5.8 Let C be a linear category (not necessarily with () s.t. the category of
free coalgebras is closed under finite products. Then the category of free coalgebras has
fixpoints iff C has linear fixpoints.

If the category of free coalgebras w.r.t. a linear category is closed under finite products
then it has finite products, as mentioned above. In [Bie94] it is shown that the category of
free coalgebras moreover is cartesian closed. Given two free coalgebras (!A, δ) and (!B, δ),
their exponential object (!A, δ) ⇒ (!B, δ) is given by the free coalgebra (!(!A( B), δ).
Hence:

Theorem 5.9 Let C be a linear category s.t. the category of free coalgebras is closed
under finite products. Then the category of free coalgebras has fixpoint operators iff C has
linear fixpoint operators.
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This result can also be derived more explicitly, namely as a straightforward consequence
of the following theorem:

Theorem 5.10 Let C be a linear category s.t. the category of free coalgebras is closed
under finite products in C!. Then Y(!B,δ) : (!B, δ)⇒ (!B, δ)→ (!B, δ) is a fixpoint operator
in the category of free coalgebras iff φ(Y(!B,δ)) :!(!B( B)→ B is a linear fixpoint operator
in C.

Now, under which circumstances is the category of free coalgebras closed under finite
products? The following observation induces a sufficient condition:

Proposition 5.11 Let C be a category with a comonad (!, ε, δ). If C has terminal object
1 then (!1, δ) is a terminal object in C!, and if C has binary product × then (!(A× B), δ)
is a binary product of (!A, δ) and (!B, δ) in C!.

This has the consequence that if C is a model of ILL as defined above, then the category of
free coalgebras is closed under finite products. Note that the category of free coalgebras
is equivalent to the coKleisli category; it is straightforward to check that the comparison
functor from C! to C! is an equivalence of categories when considered as a functor from C!

to the category of free coalgebras.

5.3 Fixpoints in predIa

The previous discussion on (linear) fixpoints supplied us with a characterisation of linear
fixpoints; the category of free coalgebras induced by predIa is cartesian closed, and predIa
has linear fixpoint operators if and only if the category of free coalgebras has fixpoints in
the usual sense. But the category of free coalgebras is equivalent to predIa!, and it is easy
to see that predIa! is isomorphic to predIs. Now, according to [HP90], a cartesian closed
category with fixpoints and finite sums is equivalent to the category with one object and
one arrow. So predIs cannot have fixpoints since it is cartesian closed and has finite sums.
This entails that predIa cannot have linear fixpoints. But if we cut our model down to
the full subcategory of dI domains and affine stable functions, dIa we still have a model
of IAL, except that we do not have finite sums. Neither does the category of dI domains
and continuous stable functions, dIs have finite sums. This category is equivalent to the
category of free coalgebras induced by the comonad on dIa, so it is cartesian closed; the
finite product structure is given in the usual way, and the exponential object [A⇒ B] is
the set of traces of continuous stable functions ordered by inclusion. Moreover, we have
fixpoint operators in dIs:

Theorem 5.12 Given a dI domain A, the continuous stable function YA : [A⇒ A]→ A
defined as YA(f) = tn∈ωfn(⊥) is a fixpoint operator.

This entails that we have linear fixpoint operators in dIa.
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A Appendix, categorical prerequisites

I will now review some fundamental (and relevant) definitions and results in category
theory. Most of them can be found (implicitly or explicitly) in [Mac71].

A.1 Monoidal categories etc.

Definition A.1 A monoidal category is a 6-tuple (C, I,⊗, α, λ, ρ) where C is a category
containing a neutral element I for a bifunctor ⊗ : C × C → C equipped with natural
isomorphisms α, λ, ρ having components

αA,B,C : A⊗ (B ⊗ C)→ (A⊗ B)⊗C λA : I ⊗A→ A ρA : A⊗ I → A

These are required to satisfy the socalled Kelly-Mac Lane equations, which are: the pen-
tagon law (Id ⊗ α);α; (α ⊗ Id) = α;α, the triangle law α; (ρ ⊗ Id) = (Id ⊗ λ), and
λI = ρI . Such a monoidal category is symmetric if there is an additional “symmetry”
natural isomorphism γ with components

γA,B : A⊗ B → B ⊗ A

satisfying γ; γ = Id, ρ = γ;λ , and α; γ;α = (Id⊗ γ);α; (γ ⊗ Id).

A monoidal functor F from (C, I,⊗, α, λ, ρ) to (C′, I ′,⊗′, α′, λ′, ρ′) is a functor F : C → C′
equipped with a map mI′ : I ′ → F (I) and a natural transformation m : F (−)⊗′ F (+)→
F (−⊗+) which match the involved structure, that is, (Id⊗′m);m;F (α) = α′; (m⊗′Id);m,
(mI′ ⊗′ Id);m;F (λ) = λ′, and (Id ⊗′ mI′);m;F (ρ) = ρ′. It is a symmetric monoidal
functor if additionally γ′;m = m;F (γ). F preserves the (symmetric) monoidal structure
(or F is a morphism of (symmetric) monoidal categories) iff mI′ and m are isomorphisms.

A monoidal natural transformation between monoidal functors F, F ′ : C → C′ is a natural
transformation σ : F → F ′ satisfying m; σ = (σ ⊗′ σ);m′ and mI′; σI = m′I′.

A (symmetric) monoidal closed category is a (symmetric) monoidal category where each
functor (−)⊗ A has a right adjoint; it will be denoted by A( (−).

Note that one obtains 2-categories of (symmetric) monoidal categories.

A.2 Monads etc.

Definition A.2 A monad ((−)⊥, lift, down) on C is a functor (−)⊥ : C → C, and two
natural transformations

lift : IdC → (−)⊥ down : (−)⊥⊥ → (−)⊥

s.t. the following diagrams commute:
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(−)⊥⊥⊥
down⊥- (−)⊥⊥

(−)⊥⊥

down(−)⊥

? down- (−)⊥

down

?

(−)⊥
lift(−)⊥- (−)⊥⊥ �

lift⊥ (−)⊥
@
@
@
@
@

Id(−)⊥
R 	�

�
�
�
�

Id(−)⊥

(−)⊥

down

?

Definition A.3 Let (C, I,⊗, α, λ, ρ) be a monoidal category and ((−)⊥, lift, down) a
monad on C. The monad is called strong iff there is a “strength” natural transforma-
tion t : (−)⊗ (+)⊥ → (−⊗+)⊥ s.t. the following diagrams commute:

A⊗ (B ⊗C⊥)
Id⊗ t- A⊗ (B ⊗ C)⊥

t- (A⊗ (B ⊗ C))⊥

(A⊗ B)⊗ C⊥

α

? t - ((A⊗ B)⊗ C)⊥

α⊥

?

I ⊗A⊥
t- (I ⊗ A)⊥

@
@
@
@
@

λ
R

A⊥

λ⊥

?

A⊗ B Id⊗ lift- A⊗B⊥
@
@
@
@
@

lift
R

(A⊗ B)⊥

t

?

A⊗ B⊥⊥
t- (A⊗ B⊥)⊥

t⊥- (A⊗B)⊥⊥

A⊗ B⊥

Id⊗ down

? t - (A⊗ B)⊥

down

?

A.3 Comonads etc.

Definition A.4 A comonad (!, ε, δ) on C is a functor ! : C → C, and two natural trans-
formations

ε :!→ IdC δ :!→!!

s.t. the following diagrams commute:

!
δ - !!

!!

δ

? δ! - !!!

!δ

?

!

	�
�
�
�
�

Id!

@
@
@
@
@

Id!

R

! �
ε!

!!

δ

? !ε - !

Definition A.5 Given a comonad (!, ε, δ) on C, one can define the coKleisli category,
C! as follows: the objects are the same as in C, the morphisms are given by C!(A,B) =
C(!A,B). If f : A → B is an arrow in C!, then the corresponding arrow in C is denoted
by f∗ :!A→ B. Now, given f : A→ B and g : B → C, arrows in C!, their composition is
defined to be (f ; g)∗ = δA; !(f∗); g∗ :!A→ C. Given an object A, the unit is defined to be
(IdA)∗ = εA :!A→ A.
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