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Abstract

For each p ≤ 2 there exist a model M∗ of I∆0(α) which satisfies
the Count(p) principle. Furthermore if p contain all prime factors of
q there exist n, r ∈ M∗ and a bijective map f ∈ Set(M∗) mapping
{1, 2, ..., n} onto {1, 2, ..., n+ qr}.

A corollary is a complete classification of the Count(q) versus
Count(p) problem. Another corollary solves an open question ([3]).

In this note I state and prove a Theorem which actually can be viewed as
the main result of [9].

Theorem: Suppose that r(n) is an function with
(a) limn→∞ r(n) =∞.

(b) For all ε > 0 limn→∞
qr(n)

nε
= 0

For each q, p ≥ 2 Count(p) 6` PHP∗∗+qr(∗)(bij) if p divides a power of q.

Here PHP∗∗+s(bij) is the the elementary principle stating that there does
not exists n and a bijective map from {1, 2, ..., n} onto {1, 2, ..., n+ s}.And
Count(p) is the elementary matching principle stating that if {1, 2, ..., n} is
divided into disjoint p-element subsets, then p divides n.
Proof: As in [9] let M be a countable non-standard model of first order
Arithmetic. Then by a similar forcing construction (which actually avoids
∗Basic Research in Computer Science, Centre of the Danish National Research
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certain technical problems) we expand M by a generic bijection f mapping
{1, 2, ..., n} onto {1, 2, ...., n + qr(n)}. Assumption (a) allows us to assume
that qr(n) is a non-standard number. Furthermore condition (b) ensures that
the circuit collapsing argument goes through. Now it follows by the analysis
in [9] that the Count(p) principle can never be forced false. If it was false,
there would exists an impossible M-definable object. In this case a forest
of (D,R)-labelled trees where | R | − | D |= qr(n), but where all trees
would have hight dominated by some standard number. This violates the
main lemma (lemma 6.1.5) in [9]. Finally M∗ is got a the initial segment
{m ∈M : nk > m, k ∈ N}. 2

Corollary 1: Let r(n) be as above. For each q, p ≥ 2
Count(p) 6` PHP∗∗+qr(∗)(bij) if and only if p divides a power of q.

Corollary 2: For fixed q, p ≥ 2 the following is equivalent
(a) p divides a power of q
(b) Count(q) ` Count(p).

Proof: The implication (a) ⇒ (b) was shown in [4] or [9]. The implication
(b) ⇒ (a) follows from the Theorem. According to the Theorem Count(p)
6` PHP∗∗+qr(∗)(bij) if Count(q) ` Count(p). But then by the easy ‘only if’ in
corollary 1, p must divide a power of q. 2

Let PHP∗+p∗ (inj) be the the statement that there is no n and no injective map
from {1, 2, ...., n+p} into {1, 2, ...., n} and let PHP∗∗+p(sur) be the statement
that there is no n and no surjective map from {1, 2, .., n} onto {1, 2, ..., n+p}.
Corollary 3:
(a) PHP∗∗+1(bij) 6` PHP∗+1

∗ (inj).
(b) PHP∗+1

∗ (inj) a` PHP∗∗+1(sur).
(c) Count(q) 6` PHP∗+1

∗ (inj).

Proof: (b) is a simple exercise, and (a) clearly follows from (c). To show (c)
notice that PHP∗+1

∗ (inj) ` PHP∗∗+qr(∗)(bij) for any r. 2

This solves an open question concerning the strength of the pigeon hole
principle for injective maps [3]. Actually it shows that:

Corollary 4: There exists a modelM∗ of I∆0(α) in which Count(p) holds for
each p ∈ N\{1}. Yet, there exists n ∈M∗ and an injective map f ∈ Set(M∗)
mapping {1, 2, ..., n+ 1} into {1, 2, ..., n}.
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Proof: By the completeness theorem it suffice to show that for each finite
set p1, p2, .., pl of integers, the conjunction Count(p1) ∧ ....∧ Count(pl) does
not imply PHP∗+1

∗ (inj). This follows by an argument similar to the one given
for (c) in corollary 3. 2
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