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Abstract

I solve a conjecture originally studied by M. Ajtai. It states that for different
primes q, p the matching principles Count(q) and Count(p) are logically inde-
pendent. I prove that this indeed is the case. Actually I show that Count(q)
implies Count(p) exactly when each prime factor in p also is a factor in q.

1 The logic of elementary counting

“She loves me, she loves me not, she loves me,. . .” The final answer does not depend
on the order in which the leaves are pulled of. Every child who is familiar with the
process of counting knows that. The underlying logical principle states that a set A

has a well-defined cardinality modulo 2. Yet, the Count(2) principle can fail in quite
strong systems of Arithmetic [2],[3]. Similarly for the counting principle modulo p

(=Count(p)) where she can be in p states of mind.
This is very difficult to visualise. In 1962 Cohen invented the famous technique of

forcing. He used the method to show the independence of the continuum conjecture.
Inspired by these ideas Ajtai showed that the elementary pigeon-hole principle need
not hold in strong systems of Arithmetic [2]. Ajtais result was a major break through.
The main novelty was the mixture of forcing and powerful probabilistic techniques.

The Count(q) versus Count(p) problem has various formulations and variants.
The most famous variant is from circuit complexity theory [13]. It asks (in the

∗This work was initiated at Oxford University England.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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base case) whether there exist bounded depth, polynomial size circuits which counts
the number of 1’s (in the input string) modulo p. This was answered (negatively)
independently in [13] and [1]. Later [14] gave a near optimal exponential lower bound.
The question becomes particular challenging if we also allow gates which can count
modulo q. In [27] the case was settled for different prime numbers q and p. The
general classification is still open. It has been conjectured that the answer is positive
exactly when q contains all prime factors in p [5]. However even the simple case where
q = 6 and p = 5 has now been open for more than five years (PC. Haastad, Krajicek,
Pudlak).

Ajtais version of the problem is technically more involved (‘presumably more dif-
ficult’ to cite [16]). One formulation (given in [10]) concerns the question whether
for different primes q and p there exist arithmetical models M, which satisfies the
Count(q) principle, but which does not satisfies the Count(p) principle? The method
in [27] is not sufficient. Still circuit complexity (especially the method of collapsing
circuits by use of random evaluations) is of major importance [16], [24].

In this paper I answer Ajtais question. Actually I give a complete classification.
It agree with what has been conjectured for the circuits. I.e. the answer is positive
exactly when all prime factors in p belong to q.

1.1 Non-standard Arithmetic

It it well known that there are interesting and useful geometrical structures in which
the (obvious) parallel postulate fail. The models I construct in this paper (and the
ones constructed in [2] and [3]) suggests that there exist a similar phenomenon in
Arithmetic! As an illustration of this idea suppose that we live in some “non-
Euclidean” Arithmetical world M. Locally the universe M agrees with the real
universe. Statements concerning concrete finite objects have unaltered truth value.
However, globally i.e. when it comes to the behaviour at infinity, there can be dis-
agreement. Thus even though each concrete (“finite”) set A of numbers has a well
defined cardinality this property might not be globally valid.

To illustrate the idea further suppose (as an example) that the Count(2) principle
is valid in M. What is the status of the Count(4) principle? Or slightly less general is
it possible that there exists a “ number” n′ such that the ordered set {1, 2, ..., 4n′ +r}
of “numbers” can be divided into disjoint 4-element subsets, and r ∈ {1, 2, 3}?

Consider the following argument: We want to show (reasoning inside M) that a
set of numbers of the form {1, 2, ..., n} can be divided into a collection of disjoint 4
element subsets only when n is divisible by 4. Suppose that on the contrary some
interval {1, 2, .., 4n′ + r}, r ∈ {1, 2, 3} can be divided into a collection P of disjoint 4
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element subsets. The case where r = 1 or r = 3 can be excluded for trivial reasons. To
see this sub-divide each 4-element subset into two 2-element subsets. This induces a
partitioning of {1, 2, ..., 4n′ +r} into disjoint 2-element subsets violating the Count(2)
principle.

The case where r = 2 require a more involved argument 3 . Consider all pairs of
{1, 2, ..., 4n′ + 2}. It only requires a quite weak part of arithmetic to prove that these
pairs are in 1-1 correspondence with {1, 2, ...,

(
4n′+2

2

)
}. And even less Arithmetical

assumptions to show that
(

4n′+2
2

)
is an odd number. To get a contradiction (by

violating the Count(2) principle) it suffices to show that the partitioning P induces a
partitioning R of all pairs of {1, 2, ..., 4n′+2} into disjoint 2 element sets. Consider the
pair {v1, v2}. If both v1 and v2 belongs to the same 4-element subset {v1, v2, v3, v4} ∈
P let {{v1, v2}, {v3, v4}} ∈ R. Otherwise suppose v1 ∈ {w1, w2, w3, w4} ∈ P and
v2 ∈ {w̃1, w̃2, w̃3, w̃4} ∈ P . All elements are listed after size. So there are unique
i, j ≤ 4 such that v1 = wi and v2 = w̃j. If i 6= j let {{v1, v2}, {w̃i, wj}} ∈ R. If i = j

let {{v1, v2}, {wi′, w̃i′}} ∈ R where 1′ = 2, 2′ = 1, 3′ = 4 and 4′ = 3. This completes
the argument.

To summarise: We considered a structure SI constructed from I := {1, 2, ..., n}.
In this concrete case the structure consisted of all pairs of {1, 2, .., 4n′ + 2}. This
structure SI had the property that partial partitions of {1, 2, ..., 4n′+2} into 4 element
subsets induced (in a flexible way) pairings of the elements in SI . And crucially the
structure SI contained an odd number of elements. One could try to modify the type
of argument to the case where for example q = 2 and p = 3. At an early stage in
this research J.Krajicek showed me some ingenious constructions attempting show
that Count(3) was a consequence of Count(2). However as J.Krajicek pointed out
careful calculations always seems to give the wrong parities. Irrespectively of the
ingenuity however clever the structures S was constructed, it always seemed to end
up containing an even number of elements. So it seemed that strong “forces” wanted
Count(2) and Count(3) to be independent.

In retrospect this is of course a simple consequence of the general classification.
It is a direct consequence of the fact that the Count(2) and the Count(3) principles
are independent in powerful Arithmetical structures. The first step in showing this
was obtained when I reduced the general Count(q) versus Count(p) problem to the
study of “generic systems”. And by introducing a certain refinement technique I was
able to reduce the Count(q) versus Count(p) problem to questions concerning forests
of specially labelled trees.

3I learned this type of argument from J. Krajicek and P.Pudlak.
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1.2 A forest containing 16821302548060 trees

The first main result in the paper links the Count(q) versus Count(p) questions to a
class of purely combinatorial problems.

Suppose T1, T2, ...., Tu is a collection of specially labelled trees (i.e. a forest).
Suppose that each type of branch appears 0 modulo q times. Does q divide u ? This
of course depends on how the trees are labelled. I consider labels of a type which
is determined by two numbers (p, n). A naive conjecture states that (besides some
trivial counter examples) q indeed divides u.

It turns out that there exist “exceptional” forests which violate this naive conjec-
ture. As an example when q = 2 and p = 4, I show that there is a forest where each
type of branch appears an even number of times. However the forest contains 635
trees (which is an odd number). When q = 3 and p = 9 there are also exceptional
forests. In these each type of branch appears 0 modulo 3 times, yet the number
of trees is not divisible by 3. The smallest concrete example I have found contains
16821302548060 trees.

The first main result in the paper shows that the existence of such exceptional
forests and the existence of (non-trivial) implications between Count(q) and Count(p)
are two sides of same coin. The two examples correspond to the fact that Count(2)
implies Count(4) and that Count(3) implies Count(9). It turns out that Count(q)
implies Count(p) in systems of Bounded Arithmetic when all prime factors in p ap-
pears in q. According to my first main result a priori there must exist exceptional
forest for all such q and p. Actually I follow an alternative route. I show how one
can construct proofs (in systems of Bounded Arithmetic) of Count(p) from Count(q)
directly based on such forests.

Early in this research the exceptional forests caused a major complication. At
that stage all my attempts to collapse forests to particularly nice normal forms failed.
The probabilistic arguments did not quite work. Essentially the exceptional forests
was the only obstacle. First when I managed to isolate these asymptotically, I was
able to complete the analysis.

At present I do not have a complete picture of all exceptional forests. However
it turns out that the asymptotic classification in this paper is sufficiently strong to
provide a complete solution of the Count(q) versus Count(p) problem in the base-case
(i.e. when the terms in underlying language have polynomial growth rate).
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1.3 Why are these problems important

The counting principles themselves are of course trivial. Or more specifically they hold
in the category of finite sets. There are various reasons to examine these elementary
counting principles.

First of all they play an important role in Bounded Arithmetic. As already pointed
out in non-Euclidean geometry the (obvious) parallel postulate is not assumed to hold.
Bounded Arithmetic resembles this phenomenon. Here the (obvious) induction ax-
iom scheme is restricted. Which parts of number theory holds in models of Bounded
Arithmetic? This question was first studied intensively by J.Paris, A.Wilkie and
many of their students. Many basic number theoretical facts are provable in system
of Bounded Arithmetic [7]. Other facts require new proofs. I believe that Bounded
Arithmetic raises an important and serious possibility. It seems that the provabil-
ity (in specific systems of Bounded Arithmetic) of elementary number theoretical
statements as a rule could be intimately linked to deeper number theoretical prob-
lems/theorems. At present there are only sporadic suggestions of this. One such
is that if a certain fragment (often denoted by S1

2 [8]) proves that the set of prime
numbers is in NP (this can be proved in ordinary Arithmetic), then the prime num-
bers must actually be polynomial time recognisable. At present this is only known
conditionally by assuming the validity of the General Riemann Hypothesis [17]. A
stronger fragment (often denoted S2) are know to show the infinitude of the set of
prime numbers. This fact goes hand in hand with Sylvesters prime number theorem
[18]. Besides this consider the quantifier elimination phenomenon (the strength of
eliminating logic!). Clearly Bounded Arithmetic does not have quantifier elimina-
tion. However, one might still be able to eliminate many of its logical-like features.
It should be possible to get our hands on the underlying unifications features arising
from the induction schema. So perhaps Bounded Arithmetic is tight up with the
prestigious discipline of number theory (see [17] for a further discussion).

In any case the work by [18] and later [7] illustrates the central role of elementary
counting principles in Bounded Arithmetic. In general the status of the elementary
counting principles in models of Bounded Arithmetic seems to be a very deep problem.
The paper solves this in the special case where all terms of the underlying language
have polynomial growth rate, and contain at least one unspecified function or relation
symbol 4 .

Second, systems of Bounded Arithmetic are linked to “low complexity reason-
ing”. One fundamental problem is to clarify the relation between automated versus

4One of the major challenges is to understand the case where each function and relation are fully
specified.
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intelligent reasoning. It seems natural to suggest that automatic reasoning (when
this implemented in praxis) is only able to give a proper representation of objects
of low complexity. The elementary process of counting introduces unpleasantly high
complexity. A computation involving a counting task might (asymptotically) require
exponentially many steps as a function of the length of the input. In practice this
very soon becomes intractable for computers. Thus in low complexity reasoning we
cannot assume that we are be able to count. To verify that the cardinality of a set A

is unique, we would have verify that all bijections f : A → {1, 2, ..., m} requires the
same m. This is computationally intractable even for small sets A.

We can view Count(p) as a spark of pure intelligence. The paper shows that
(mechanical) systems, more specifically systems which reason (using first or even
second order logic) within finite structures in certain cases are not able to establish
any link between Count(q) and Count(p).

Finally another (related) problem is to examine the efficiency of propositional
proof systems. This type of problems has already been studied intensively in the
literature [2], [3], [11], [16], [19], [21], [24]. In S.Cook and Recknow [11] it was shown
that the efficiency of propositional proof systems is a natural way of studying the
NP versus co-NP problem. Then later [19] these problems was linked to Bounded
Arithmetic. And then in [2] the problems was shown also to be tight up with methods
and problems from circuit complexity. Recently a fascinating ‘ultra filter construction’
by Razborov [22] even suggest links to higher set-theory. In any case the study of
the complexity of elementary counting provides some of the strongest known results
in the field of circuit complexity.

The growth rate of the terms in the underlying language L of Bounded Arithmetic
is a very precise measure of the axiom systems “intelligence”. Most number theory
is provable when the language contains function of exponential growth rate. At this
level we have real intelligence. Ideally we would like to study what happens to the
relative strength of the counting principles, when the intelligence of the underlying
system approaches the level of real intelligence. The paper allows us to do this in
principle. However, until we have a general picture of the exceptional forests, this
problem remains open.

1.4 The main results

In the following discussion let L be a countable first order language. Assume that
L contains function symbols for the basic arithmetical operations ‘+’ and ‘·’. Also
assume that the behaviour of terms and (the specified) relations are specified through
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a suitable set ΨL of purely universal axioms. And assume that L contains at least
one unspecified relation symbol.

An axiom system (= I∆0(L) or just I∆0 when L is clear from the context) of
Bounded Arithmetic consists of the axioms ΨL together with the celebrated induction
axiom schema, (θ(0) ∧ ∀x (θ(x) ⇒ θ(x + 1))) → ∀z θ(z). However, in Bounded
Arithmetic (unlike in ordinary Arithmetic), we require all quantifiers in each θ to be
bounded by terms in the language L. More specifically, each quantifier is required to
appear in the context ∀x(x ≤ t → ... or ∃x(x ≤ t ∧ ....

The elementary pigeon-hole principle (=PHPp p ∈ N) states (in one of its many
formulations) that for no n do there exists a bijection from {1, 2, ..., n} onto {1, 2, ..., n+
p}. More specifically, the ∆0-PHPp axiom schema states (for each bounded formula
θ(x, y)) that,

∀z (¬∀x ≤ z∃!y ≤ z + p θ(x, y, z) ∨ ¬∀y ≤ z + p∃!x ≤ z θ(x, y, z)).

A weak form of the pigeon-hole principle is obtained by only considering monotone
bijections. It is not hard to show that this form of the pigeon hole principle is
equivalent to the usual induction principle.

The Count(p) principle (for a fixed number p ∈ N) states that if {1, 2, ...., n} is
divided into disjoint subsets each containing exactly p elements, then p divides n.
More specifically, the ∆0-Count(p) principle is the schema,

∀z ((∀x1 ≤ z∃!x2, ...., xp ≤ z (x2 < x3 < ... < xp ∧ θ(x1, x2, ..., xp)

∧¬x1 = x2 ∧ .... ∧ ¬x1 = xp)) → ∃y y · p = z).

In the first section I show,

Theorem Assume that p ≥ 2. Let L be any language where all terms have sub-
exponential growth rate. Then there exists a model M∗ in which

(1) The Count(p) principle fails.

(2) All ∆0-pigeon-hole principles holds.

A similar result was proved by Ajtai in [3], but only in case where all terms was as-
sumed to have polynomial growth rate. Later Krajicek, Pudlak and Wood [16] made
a major improvement in the underlying probabilistic method. They showed the the-
orem (in essence) in the case where (2) is replaced by the ∆0-induction principle (or
equivalent the ∆0-pigeon-hole principle for monotone bijections). The theorem has
been shown independently by Beame and Pitassi [21]. Actually they showed a differ-
ent (but essentially equivalent) result concerning the length of proofs in propositional
proof systems.
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In section 2, the next section I construct the model M∗. And in the next two
sections I show that M∗ has the required properties. Actually in section 4 it is shown
that,

Theorem Besides (1) and (2) the model M∗ satisfies the ∆0-Count(q) principle ex-
actly (under some weak extra assumptions) when there are no forest T1, T2, ...Tu of
(p, n)-labelled trees where all branches appear 0 modulo q times, but u 6= 0 modulo q.

The precise formulation of the result link the growth rate of terms in the underlying
language L to an extra condition on the asymptotic hight of the trees.

In section 5 I develop a general method to produce exceptional forests. It is shown
that exceptional forests exist (for q and p) when all prime factors in p divides q.
Furthermore the construction of such forests can be carried out inside any model of
Bounded Arithmetic, so we get the following positive part of the classification.

Proposition Let M∗ be a model of Bounded Arithmetic in which the ∆0-Count(q)
principle holds. If all prime factors in p divides q, then M∗ satisfies the ∆0-Count(p)
principle.

In section 6 I return to the main problem. This is to show that Count(p) not is a
logical consequence of Count(q) when p contains a prime factor not in q. This is
shown (in the case all terms have polynomial growth rate) by showing

(1) For each exception q-forests T1, T2, ..., Tu of (p, n) trees, one can construct an
exceptional q-forest T ′

1, T
′
2, .., T

′
u′ of labelled trees related to the PHPqk-principle. No

tree in this new forests has higher hight than all trees in the old forest.

(2) Suppose that T ′
1, T

′
2, ..., T

′
u′ is an exceptional q-forest of decision trees for the

PHPqk-principle. Then at least one of the trees has hight ≥ k.

Combining this we get,

Theorem Suppose that q and p are fixed. Suppose that p contains a prime factor
which does not divide q. For each k there exists nk such that for each n ≥ nk there
are no exceptional q-forests of (p, n)-labelled trees.

Finally in section 7 I combine this result with theorem 1.4 and proposition 1.4. This
gives the full classification,

Main Theorem (formulation 1) Let T be any system of Bounded Arithmetic over
some countable language L. Suppose that L in addition to containing the language
of arithmetic also contains at least one undefined relational symbol. Suppose that all
terms t in L have polynomial growth rate. Then for all q, p ∈ N the following are
equivalent:

8



(a) there exists a model M of T in which Count(q) holds and Count(p) fails.

(b) All prime factors in p divide q.

The result has various essentially equivalent formulations.

Main Theorem (formulation 2) Let ACAtop be the following modification of the
celebrated system ACA. As ACA the system ACAtop has the full arithmetical com-
prehension. And it is equipped with the full induction axiom for sets. The “only”
difference between this system and the normal second order Arithmetic is that the
basic universal axioms are modified so the that universe contains a largest (unspeci-
fied) number c. All basic operations are modified (e.g. c + 1 = c). Any list of purely
universal axioms might also be added. Suppose that the axiomatisation is non-trivial
e.g. allows an infinite model. Then the following are equivalent:

(a) Count(p) holds in all structures which satisfies ACAtop and the Count(q)
principle.

(b) All prime factors in p appear in q.

Another formulation states that,

Main Theorem (formulation 3) Let P be one of the usual textbook systems in
Hilbert style propositional logic. Let Countscheme(q) denote the substitution axiom
scheme which arrives from the canonical Booleanization of the Count(q) principle.
Let P ′ := P+ Countschema(q). Then there are polynomial-size bounded depth P ′-
proofs of Count(p) exactly when all prime factors in p divide q.

In all formulations the negative part of the classification has a heuristic explanation.
The analysis shows that when k becomes large, it becomes arbitrarily difficult 5

(but as it turns out never impossible) to show PHPqk from Count(q). On the other
hand if p contains a prime factor not in q it is uniformly (in k) easy to show PHPqk

from Count(p). So Count(p) is not a consequence (a bounded depth polynomial-size
consequence in formulation 2) of Count(q) in this case.

Finally I mention the recent and independent developments in [4] and [6].

2 Constructing the model

2.1 Translating formulas into circuits

Let M be a countable non-standard model of Th(N) over a countable first order
language L (which extends the language of arithmetic). Let p ∈ ω, p ≥ 2 and let

5Measured by the hight of the corresponding forest.
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I := {1, 2, ..., n} ⊆ M, n ∈ M \ ω be fixed. Here ω denote the set of standard integer
in M. As is common a set A ⊆ M is said to be M-definable if there exists m ∈ M
such that a ∈ A if and only if a belong to the sequence coded by m.

Definition 2.1.1 For each A ⊆ I with | A |= p we introduce a variable pA. The set
of all such variables is denoted by VARI,p. ♣

Definition 2.1.2 A (Boolean) circuit π (with input variables in X) of size s(π) and
depth d(π) is defined inductively as follows:
(a) The constants ‘0’ and ‘1’ are circuits with s(‘1’) = s(‘0’) = d(‘1’) = d(‘0’) = 1.
(b) Each p ∈ X is a circuit with s(p) = d(p) = 1.
(c) If π is a circuit, then ¬π is a circuit with s(¬π) = s(π)+1 and d(¬π) = d(π)+1.
(d) If π1, π2, ..., πr are circuits, then ∧jπj and ∨jπj are circuits with s(∧jπj) =
s(∨jπj) = 1 + Σj s(πj) and d(∧jπj) = d(∨jπj) = 1 + maxjd(πj). ♣

Definition 2.1.3 Let Bd(X) denote the (Boolean) circuits π with input variables X

of depth d(π) ≤ d. Let B<ω(X) := ∪d∈ω Bd(X). ♣

Definition 2.1.4 For ψ ∈ B<ω(VARI,p) and ρ : VARI,p → {0, 1} (not required to be
M-definable), we define the truth-table evaluation ψρ inductively as follows:
(a) ‘0’ρ = 0, ‘1’ρ = 1.
(b) pρ

A = 1 iff ρ(pA) = 1.
(c) (¬π)ρ = 1 iff πρ = 0.
(d) (∧jπj)ρ = 1 iff πρ

j = 1 for all j.

(e) (∨jπj)ρ = 1 iff πρ
j = 1 for some j. ♣

Let LM be L extended by a constant ca for each a ∈ M. Let LM(P ) be LM ex-
tended with an p-ary relation symbol. There exists a canonical translation of Bounded
LM(P )-sentences into circuits in B<ω(VARI,p).

Definition 2.1.5 For each sentence ψ ∈ LM(P ) we define εψ ∈ B<ω(VARI,p) induc-
tively as follows:
(a) For any k-ary relation symbol ( 6= P ): εR(a1,...,ak) :=‘1’ if M |= R(a1, .., ak), ‘0’
otherwise.
(b) εP (a1,...,ap) := pA if A = {a1, ..., ap} ⊆ I and | A |= p, ‘0’ otherwise.
(c) ε¬π := ¬επ.

(d) επ∨π′ := επ ∨ επ′

(e) επ∧π′ := επ ∧ επ′

(f) ε∃x(x≤u∧θ(x,u)) := ∨a≤u εθ(a,u).

(g) ε∀x(x≤u→θ(x,u)) := ∧a≤u εθ(a,u). ♣
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Notice that if ψ ∈ LM(P ) has ≤ d quantifiers, all bounded by t ∈M, and ψ contains
k logical connectives, then s(εψ) ≤ ktd and d(εψ) ≤ d + k.

Lemma 2.1.6 Suppose that P is a partitioning of {1, 2, ..., n} into disjoint classes
each containing exactly p elements. Let ρP : VARI,p → {0, 1} be defined by A ∈ P ↔
ρP (pA) = 1. Then for ψ ∈ LM(P ) the following statements are equivalent:
(a) (M, P ) |= ψ.
(b) (εψ)ρP = 1.

Proof: Induction on the number of logical constants in ψ. 2

2.2 The forcing set up

As above let M be a countable non-standard model of Th(N) over a countable first
order language L which extends the language of arithmetic. We have fixed p ≥ 2 and
I := {1, 2, ..., n} ⊆ M, n ∈M \ ω. Let LM and LM(P ) be defined as above.

Definition 2.2.1 We say that ρ is a partial p-partitioning iff
(a) ∀A ∈ ρ A ⊆ I .
(b) ∀A ∈ ρ | A |= p.

(c) ∀A, B ∈ ρ A 6= B → A ∩ B = ∅.

Let Set(ρ) := ∪A∈ρ A ⊆ I . ♣

Definition 2.2.2 For k ∈ N let

Pk := {ρ : ρ is a partial p −partitioning and (n− | Set(ρ) |)k ≥ n}.

We define P := ∪k∈N Pk. The elements in P are ordered under inclusion. An element
ρ ∈ P is called a (forcing) condition. We use letters A, B, C, ... to denote subsets of
P . ♣

Notice that P1 ⊆ P2 ⊆ .... ⊆ Pr ⊆ .... ⊆ P , for each r ∈ ω. The idea is to use (P , ⊆)
as the set of forcing conditions. As in [23]:

Definition 2.2.3 We say that D ⊆ P is dense iff ∀g ∈ P∃h ∈ D h ⊇ g.

We say that D is quasi-definable iff there exists a formula θ(x) ∈ LM(Rω) such
that D := {m ∈M : M |= θ(m)} (the relation Rω is defined by Rω(a) ↔ a ∈ ω). ♣

Example 2.2.4 P is dense and quasi-definable. P is not LM-definable.
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Definition 2.2.5 We say that ρG ⊆ P is a generic filter iff
(i) ∀α ∈ ρG∀β ∈ P β ⊆ α → β ∈ ρG.

(ii) ∀α, β ∈ ρG∃γ ∈ ρG γ ⊇ α ∧ γ ⊇ β.
(iii) For D ⊆ P dense and quasi-definable ρG ∩ D 6= ∅.

We use the abbreviation ρ̃G := ∪α∈ρG
α. ♣

2.3 Generic objects

Lemma 2.3.1 If ρG ⊆ P is a generic filter, then ρ̃G defines a partition of {1, 2, ..., n}
into disjoint p-subsets.

Proof: The only problem is to show Set(ρG) = I . For an arbitrary u ∈ I let
Du := {α ∈ P : u ∈ set(α)}. It is straightforward to show that Du is dense and
quasi-definable so Du ∩ ρG 6= ∅. Thus for each u ∈ I there exists αu ∈ Du ∩ ρG, and
thus each u ∈ Set(ρ̃G). 2

Lemma 2.3.2 For each ρ0 ∈ P there exists a generic filter ρG ⊆ P such that ρ0 ∈ ρG.

Proof: Recall that both M and L are assumed to be countable, so there are only
countably many quasi-definable dense sets. Let these be D1, D2, .... According to the
definition of denseness there exists a sequence of conditions ρ1 ⊆ ρ2 ⊆ .... ∈ P with
ρj ∈ Dj, j = 1, 2, ... and ρ1 ⊇ ρ0. Clearly ρ0 ∈ ρG := {ρ : ρ ⊆ ρk for some k ∈ ω} is
a generic filter. 2

Definition 2.3.3 For a sentence ψ ∈ LM(P ) we define the forcing relation |` by
letting
ρ |` ψ iff (M, ρ̃G) |= ψ for all generic filters ρG 3 ρ. ♣

Lemma 2.3.4 If (M, ρ̃G) |= ψ for a generic filter ρG, then there exists ρ0 ∈ P such
that ρ0 |` ψ.

Proof: By use of induction on the logical complexity of a general formula ψ(~x), it is
not hard to show that {(~a, ρ) ∈Mr × P : ρ |` ψ(c~a)} is quasi-definable. Continuing
this argument for each LM(P )-sentence ψ, D := {ρ ∈ P : ρ |` ψ ∨ ρ |` ¬ψ} is both
quasi-definable and dense. For the required ρ0 take any ρG ∩ D. 2

Definition 2.3.5 For θ, ψ ∈ B<ω(VARI,p) and ρ ∈ P , θ ≡ρ ψ if θρ̃G = ψρ̃G for each
generic filter ρG 3 ρ.

For θ ∈ B<ω(VARI,p) and ρ ∈ P we say that ρ forces θP = 1 (θP = 0) if for all
generic ρG 3 ρ, θρ̃G = 1 (θρ̃G = 0). This is written ρ |` θP = 1 (ρ |` θP = 0). ♣
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The next lemma shows how each appearance of ¬ can be eliminated.

Lemma 2.3.6 Suppose that i0 ∈ A, A ⊆ I, | A |= p.

Suppose that π1 := ¬pA and π2 := ∨B pB, where B runs through all B ⊆ I with
| B |= p, A 6= B and i0 ∈ B. Then π1 ≡ρ π2 for all ρ ∈ P .

Proof: Direct verification. 2

Lemma 2.3.7 For any Boolean circuit θ ∈ Bd(VARI,p), there exists a negation-free
circuit θ̃ ∈ Bd(VARI,p) such that θ ≡ρ θ̃ for any ρ ∈ P. Furthermore, s(θ̃) ≤
s(θ) ·

(
n−1
p−1

)
.

Proof: First notice that ¬ ∨i πi ≡∅ ∧i ¬πi, and that ¬ ∧i πi ≡∅ ∨i ¬πi. So without
loss of generality we can assume that negations appear only in front of the input
variables. For each input variable pA pick i0 ∈ A and replace each appearance of ¬pA

with ∨B: i0∈B∧B 6=A pB. According to lemma 2.3.6 θ ≡∅ θ̃. This new circuit θ̃, still has
depth d. Furthermore, s(θ̃) ≤ s(θ) · maxi0(s(∨B: i0∈B,B 6=A pB)) = s(θ) ·

(
n−1
p−1

)
. 2

Lemma 2.3.8 For each bounded ψ ∈ LM(P ), ρ |` ψ iff ρ |` (εψ)P = 1.

Proof: Induction on the number of logical constants in ψ. 2

Definition 2.3.9 Two conditions α and β are incompatible (α ⊥ β) if
∃A ∈ α∃B ∈ β A 6= B ∧ A ∩ B 6= ∅.

Two conditions α and β are compatible (α || β) if
∀A ∈ α∀B ∈ β A 6= B → A ∩ B = ∅. ♣

Definition 2.3.10 B ⊆ P is a basis for P iff
(a) ∀α, β ∈ B α 6= β → α ⊥ β.
(b) ∀ρ ∈ P∃α ∈ B ρ || α. ♣

Definition 2.3.11 || B ||:= maxβ∈B(| Set(β) |). ♣

Lemma 2.3.12 Suppose that || B ||k< n for all k ∈ ω (or in short-hand notation
|| B ||< n

1
ω ). If ρ ∈ P and ρ || β, then ρ ∪ β ∈ P .

Proof: Assume that ρ ∈ P . Thus there are k0 ∈ ω such that (n− | Set(ρ) |)k0 ≥ n.
Also assume that β ∈ B, where || B ||≤ n

1
ω . Clearly | Set(β) |2k0≤ n. Suppose ρ || β.

We have to show ρ ∪ β ∈ P . To show this, it suffices to show that

(n− | set(ρ ∪ β) |)2k0 ≥ (n− | set(ρ) | − | Set(β) |)2k0

13



≥ (n
1

k0 − n
1

2k0 )2k0 ≥ n.

To do this notice that 2kn
1
2 ≤ n for any k ∈ ω. 2

The next lemma shows an important technical point in Ajtai’s choice of P . It
allows us to assume that ∅ |` ψ in cases where ρ0 |` ψ for some ρ0 ∈ P . To see this
replace I := {1, 2, ..., n} by I ′ := {1, 2, ...., n′} where n′ := n− | Set(ρ0) |. The lemma
shows that if P ’ is defined as P but with the underlying set I replaced by I ′, then P ’
can be identified with the set of conditions in P which extends ρ0.

Lemma 2.3.13 Fix ρ ∈ P. Define

Pρ := {ρ̃ : ρ̃ is a partial p-partition of I \ set(ρ) and ρ̃ ∪ ρ ∈ P},

Pk(J) := {ρ̃ : ρ̃ is a partial p-partition of J and (n′− | Set(ρ̃) |)k ≥ n′} where J ⊆ I

and n′ :=| J |.

Let P(J) := ∪k∈ω Pk(J).

If J = Set(ρ) for ρ ∈ P, then Pρ = P(Set(ρ)).

Proof: First we show the inclusion Pρ ⊆ P(Set(ρ)). Suppose that ρ̃ ∈ Pρ. By
definition for some k0 ∈ ω, such that n′ ≤ n ≤ (n− | Set(ρ̃ ∪ ρ) |)k0

= (n− | Set(ρ̃) | − | Set(ρ) |)k0 = (n′− | Set(ρ̃) |)k0 , so ρ̃ ∈ P(Set(ρ)).
Second, we show that the inclusion P(Set(ρ)) ⊆ Pρ. According to the assumption

that ρ ∈ P there exists l0 ∈ ω such that (n− | Set(ρ) |)l0 ≥ n. According to the
assumption that ρ̃ ∈ Pρ, there exists l1 ∈ ω such that (n− | Set(ρ) | − | Set(ρ̃) |
)l1 ≥ n− | Set(ρ) |. Now (n− | Set(ρ ∪ ρ̃) |)l0l1 = (n− | Set(ρ) | − | Set(ρ̃) |)l0l1

≥ (n− | Set(ρ) |)l0 ≥ n, so ρ ∪ ρ̃ ∈ P . 2

Lemma 2.3.14 Suppose that B is a basis for P and H ⊆ B. Suppose also that
|| B ||< n

1
ω . Then

(a) ρ |` (∨h∈H h)P = 1 iff ρ is incompatible with all conditions h′ ∈ B \ H.
(b) ρ |` (¬ ∨h∈H h)P = 1 iff ρ is incompatible with all conditions h′ ∈ H.

Proof: (a) ⇒: Suppose that ρ |` (∨h∈H h)P = 1, but ρ is compatible with h′ ∈ B\H.
By use of lemma 2.3.12 ρ′ := ρ ∪ h′ ∈ P . By using property (a) of a basis (definition
2.3.10) h′ is incompatible with all conditions in H. Clearly ρ′ ⊇ h so ρ′ is incompatible
with all conditions in H. But then (∨h∈H h)ρ̃G = 0 for each generic filter ρG 3 ρ′

(which exists by lemma 2.3.2). This contradicts ρ |` (∨h∈H h)P = 1.
(a) ⇐: Assume that ρ is incompatible with all h′ ∈ B \ H, and let

D := {ρ′ ∈ P : (ρ′ is compatible with some h′ ∈ H) or (ρ′ is incompatible with ρ)}.

By definition 2.3.10, D ⊆ P is dense. Also D is quasi-definable. So according to
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lemma 2.3.2, there exists a generic filter ρG 3 ρ. By definition 2.2.5 (iii) there exists
α ∈ D ∩ ρG, so there exists h ∈ H with h ⊆ α ⊆ ρ̃G.

(b) ⇒ / (b) ⇐ are proved as (a) ⇒ / (a) ⇐. 2

Lemma 2.3.15 Let ε1, ε2, ...., εu u ∈ M, be an M-definable sequence of Boolean
circuits, each of the form εj :≡ ∨h∈Hj h. Let B1, ..., Bu be an M-definable sequence
and suppose that t < n

1
ω such that:

(a) for each j = 1, 2, ...u Bj ⊆ P, is a basis for P,
(b) for each j = 1, 2, .., u || Bj ||< t,
(c) for each j = 1, 2, ..., u, Hj ⊆ Bj.

Then for every generic filter ρG either

(a) for all j ∈ {1, 2, .., u}, ερ̃G
j = 0, or

(b) there exists j0 ≤ u such that ερ̃G
j0

= 1 and ερ̃G
j = 0 for each j < j0.

Proof: Let

D := {ρ ∈ P : (∃j0∃β ∈ Hj0 β || ρ ∧ ∀γ ∈ ∪j<j0Hj ρ ⊥ γ) or (∀γ ∈ ∪j≤uHj ρ ⊥ γ)}.

Clearly D is quasi-definable. For each ρ0 ∈ P , if ρ0 is compatible with some β ∈ ∪jHj,
then there must be a smallest j0 such that ρ0 is compatible with some β ∈ Hj0 . Here
we uses that the least number principle is valid inM. Now ρ := h∪ρ0 ∈ P (by lemma
2.3.12), and thus ρ ∈ D. So D is dense. By definition 2.2.5 (iii) there exists ρ ∈ ρG∩D.
This condition ρ is incompatible with all h ∈ Hj, j < j0. As ρ̃G ⊇ ρ ⊇ h ∈ Hj0

clearly (∨h∈Hj0
h)ρ̃G = 1. 2

2.4 The key lemma

Recall thatM is a countable non-standard model of Th(N) over a countable first order
language L. As above we have fixed p ∈ ω\{1}, and I := {1, 2, ..., n} ⊆ M, n ∈M\ω.
As above the set P of forcing conditions consists of partial p-partitions ρ of I with
| Set(ρ) |≤ n − n

1
ω for some k ∈ ω.

Lemma 2.4.1 (key lemma) Let θ1, θ2, ..., θu be an M-definable sequence of depth
≤ d ∈ ω circuits with Σu

j=1 s(θj) ≤ nt for some t < n
1
ω (i.e. tk < n for all k ∈ ω).

Let ρ0 ∈ P. There exists ρ ⊇ ρ0, ρ ∈ P and an M-definable sequence ε1, ε2, ..., εu

of circuits together with an M-definable sequence B1, B2, .., Bu such that
(a) for j = 1, 2, .., u each Bj, is a basis for P,
(b) for j = 1, 2, ...u each εj is of the form ∨h∈Hj h for some Hj ⊆ Bj,
(c) for each j = 1, 2, ..., u, θj ≡ρ εj,
(d) for some s ≤ t · log(t) (actually for some s ≤ ω · t), || β ||≤ s.
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If we combine the key lemma with lemma 2.3.15 we get:

Corollary 2.4.2 If θ1, θ2, ....θu is an M-definable sequence of depth d ∈ ω circuits
with Σn

j=1 s(θj) ≤ nt for some t < n
1
ω , then for any generic filter ρG ⊆ P either

(a) for all j ≤ u θρ̃G
j = 1, or

(b) there exists j0 ≤ u, such that θρ̃G
j0

= 1 and θ̃ρ̃G
j = 0 for all j < j0.

Before we prove the key lemma, we need to do some preparatory work.

2.5 Random conditions

My aim is to add a suitable probability distribution µ on the space P of forcing
conditions.

Lemma 2.5.1 For k ≥ 2p + 1, k ∈ N, and fix m < n such that (n − m)k+1 >

n ≥ (n − m)k. Let µsym be the symmetrical probability distribution (perceived from
inside M) on the set {ρ ∈ P :| Set(ρ) |= m}. For each h ∈ P with | h |< n

1
ω ,

Pr(h ⊆ ρ) > n
1
2 Pr(h || ρ ∧ ¬(h ⊆ ρ)).

Proof: Notice that for fixed J ⊆ I with | J |= m the number η(m, p) of partial
p-partitions ρ with Set(ρ) = J is

η(m, p) =
m!

(p!)
m
p (m

p
)!

when m is divisible by p and 0 otherwise. The set {ρ ∈ P :| Set(ρ) |= m} contains(
n
m

)
· η(m, p) elements. If h ∈ P , | Set(h) |= up and J ⊆ I \ Set(h) with | J |= b,

then

Pr(h ⊆ ρ∧J∩Set(ρ) = ∅) =

(
n−up−b
m−up

)
η(m − up, p)(

n
m

)
η(m, p)

=
(n − up − b)!(n − m)!(p!)u(m

p
)!

n!(n − m − b)!(m
p

− u)!

Now suppose n − n
1
k ≤ m < n − n

1
k+1 , and b, u < n

1
ω . There exists a suitable real (in

the sense of M) c ∈ [0, 1] such that Pr(h ⊆ ρ ∧ J ∩ Set(ρ) = ∅)
= ( 1

n
)u(p−1)+b(1− 1

k+c
). Here we use the fact that a sufficiently strong part of real analysis

can be developed inside M. Now

Pr(h || ρ ∧ ¬(h ⊆ ρ)) = Σu−1
j=0 Σh′⊆h,|h′|=j Pr(h′ ⊆ ρ ∧ (Set(h) \ Set(h′) ∩ Set(ρ) = ∅))

= Σu−1
j=0Σh′⊆h,|h′|=j (

1
n

)( p
k+c

−1)j+pu(1− 1
k+c

)
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= Σu−1
j=0

(
u

j

)
(
1
n

)( p
k+c

−1)j+pu(1− 1
k+c

)

In general Σu−1
j=0

(
u
j

)
aj = (a + 1)u − au. Let a := n1− p

k+c , and notice that Σu−1
j=0

(
u
j

)
aj ≤

2uau−1. Thus

Σu−1
j=0

(
u

j

)
(
1
n

)( p
k+c

−1)j+pu(1− 1
k+c

) = 2u(
1
n

)pu(1− 1
k+c

) · (
1
n

)( p
k+c

−1)(u−1)

= 2u · (
1
n

)(p−1))u+(1− p
k+c

)

= Pr(h ⊆ ρ) · 2u(
1
n

)(1− p
k+c

) ≤ Pr(h ⊆ ρ) · (
1
n

)
1
2

when k ≥ 2p + 1. In all estimates c is chosen as a suitable real constant in [0, 1]. 2

Lemma 2.5.2 Fix k ∈ N. Also fix t < n
1
ω . Then there exists a (global) probability

distribution µglo on the M-definable set consisting of all partial p-partitions, such that
for each h ∈ P with | h |≤ t

(i) If C(ρ) is a monotone property (i.e. C(ρ) ∧ ρ ⊆ ρ′ → C(ρ′)), then

Pr(C(ρ) | h || ρ) ≥ 1
8

· Pr(C(ρ) | h || ρ ∧ ¬(h ⊆ ρ)),

(ii) there is s ∈M \ ω such that Pr(ρ 6∈ P4k ∨ (ρ 6∈ P \ Pk)) ≥ 1 − exp(ns).

Proof: Notice that in general Pr(C | B1 ∨ B2 ∨ ... ∨ Bk) ≤ maxjPr(C | Bj), so if
h := ∪i∈F {Ai}, it suffices to construct a suitable µglo which besides (ii) has Pr(C |
∧i∈F Ai ∈ ρ) ≥ Pr(C | (∧i∈G Ai ∈ ρ) ∧ (∧j∈F\G Set(ρ) ∩ Aj = ∅)) for any G ⊆ F .
Let A :≡ ∧i∈F (Ai ∈ ρ), B :≡ ∧i∈G (Ai ∈ ρ) ∧ (∧i∈F\G (Ai ∩ Set(ρ) = ∅)), C ≡ C(ρ),
and for l = 0, 1, 2, ... let Dl :≡| ρ |= l. Let Pl :≡ Pr(Dl), and let g :=| G |. We
choose µglo symmetric on each each set {ρ : Dl}. We define µglo by choosing suitable
numbers p0, p1, ...pu with Σjpj = 1. Notice that any µglo defined this way, for any
l = g, g + 1, ...., u has Pr(C | A ∧ Dl) ≥ Pr(C | B ∧ Dl−g). To see this notice that
any monotone property C can be written as a disjunction ∨δ (δ ⊆ ρ). Thus for
l = g, g + 1, ..., u we have

(∗)
Pr(C ∧ A ∧ Dl)

Pr(A ∧ Dl)
≥ Pr(C ∧ B ∧ Dl−g)

Pr(B ∧ Dl−g)

We have to show that Pr(C∧A)
Pr(A) ≥ 1

8 · Pr(C∧B)
Pr(B) . Now

Pr(C ∧ A)
Pr(A)

=
Σl Pr(C ∧ A ∧ Dl) · pl

Σl Pr(A ∧ Dl) · pl
≥ (1 + Σg−1

l=0 )−1 ·
Σu

l=g Pr(C ∧ A ∧ Dl) · pl

Σu
l=g Pr(A ∧ Dl) · pl

17



The inequality holds because A is a monotone property and Σg−1
l=0 Pr(A ∧ Dl)pl ≤

Σg−l
l=0Pr(A ∧ Dg)pl ≤ Σ2g

l=g Pr(A ∩ Dl)pl ≤ Σu
l=gPr(A ∧ Dl)pl. This holds because

2g < n
1
ω < l0 as long as pl+g ≥ pl for l ≤ g. But by (∗)

Σu
l=g Pr(C ∧ A ∧ Dl) · pl

Σu
l=g Pr(A ∧ Dl) · pl

≥ Σu−g
0 Pr(C ∧ B ∧ Dl) · pl+g

Σu−g
l=0 Pr(B ∧ Dl) · pl+g

≥
Σl Pr(C ∧ B ∧ Dl) · pl · minl(

pl+g

pl
)

Σl Pr(B ∧ Dl) · pl · maxl(
pl+g

pl
)

= minl(
pl+g

pl

) · minl(
pl

pl+g

) · Pr(C ∧ B)
Pr(B)

.

Now we are ready to define p0, p1, .... Recall that g ≤| h |≤ t.
For l < l0 let pl+1 := 2

1
t · pl, and for l0 ≤ l let pl+1 := 2−1

t pl. Now minl(
pl+t

pl
) =

minl( pl

pl+t
) = 1

2 and (1 + Σt−1
l=0pj)−1 ≤ 1

2 so

Pr(C ∧ A)
Pr(A)

≥ 1
8

· Pr(C ∧ B)
Pr(B)

.

Thus (i) holds. Furthermore notice that if (n − pl0)k ≥ n > (n − pl0)k−1 then the
probabilities are sufficiently concentrated around l0 to ensure that (ii) is satisfied. 2

The factor 1
8 can be replaced by any standard rational q < 1. Also notice that there

are many other choices of the distribution p0, ..., pu. One can for instance choose the
binomial distribution with mean l0. The point is that minl(

pl+t

pl
) ·minl( pl

pl+t
) is not too

small, while at the same time the probability distribution tails off sufficiently fast.
Notice that a phenomenon reminiscent of the complementary principle, is involved.

If µglo is focussed on some Pk then (i) cannot hold. On the other hand if µglo is
unfocussed and global (ii) cannot hold. As an example of the first claim consider the
property C(ρ) :≡ ∃δ (| δ |= l0− | h | +1 ∧ Set(δ) ∩ Set(h) = ∅ ∧ δ ⊆ ρ. If pl0 = 1 then
Pr(C | h ⊆ ρ) = 0 while Pr(C | h || ρ ∧ ¬(h ⊆ ρ)) = 1. By lemma 2.5.1 this is a
violation of condition (i).

Corollary 2.5.3 For k ≥ 2p + 1, k ∈ N and t < n
1
ω there exists a M-definable

probability distribution µ on P4k, such that

(1) for each h ∈ P with | h |< t, Pr(h ⊆ ρ) > n
1
2 · Pr(h || ρ ∧ ¬(h ⊆ ρ)),

(2) for each monotone property C(ρ)
Pr(C(ρ) ∨ ρ 6∈ P2k | h || ρ) ≥ 1

8 · Pr(C(ρ) ∨ ρ 6∈ P2k | h || ρ ∧ ¬(h ⊆ ρ)).

Proof: Let µ be the (normalised) probability distribution obtained by restricting µglo

to P4k. 2

We need the following elementary fact:
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Lemma 2.5.4 For each number w,

Pr(A | B ∧ C) ≥ w · Pr(A | B) iff Pr(C | A ∧ B) ≥ w · Pr(C | B).

Proof: Both sides holds iff Pr(A ∧ B ∧ C)Pr(B) ≥ w · Pr(A ∧ B)Pr(B ∧ C). 2

Corollary 2.5.5 If µ is chosen on P4k such that condition (1) and (2) in corollary
2.5.3 hold, then

Pr(hj ⊆ ρ ∨ ρ 6∈ P2k | hj || ρ ∧ (ρ⊥h1) ∧ .... ∧ (ρ⊥hj−1)) ≥ 1
8

· Pr(hj ⊆ ρ | hj || ρ).

Proof: Let A :≡ (ρj ⊆ ρ), B :≡ hj || ρ and let C ≡ (ρ⊥h1)∧....∧(ρ⊥hj−1)∨¬ρ ∈ P2k.
The lemma now follows by use of condition (2) in corollary 2.5.3 and lemma 2.5.4. 2

2.6 Collapse of circuits

In order to prove the key lemma we prove that:

Lemma 2.6.1 Suppose that θ :≡ ¬(∨h∈H h) where s(θ) ≤ nt for some t < n
1
ω . Let

s < n
1
ω . Suppose that µ is a probability distribution satisfying (1) and (2) in corollary

2.5.3 on P4k for some k ≥ 2p + 1, k ∈ ω. Then there exists an M-definable set
C ⊆ Pk such that C ⊆ {ρ ∈ P4k : ∃H̃ ⊆ P , || H̃ ||≤ ps such that θ ≡ρ ∨h∈H̃ h with
s(∨h∈H̃ h) ≤ nt} and such that

µ(C) ≥ 1 − (
1
n

)
ks−2ps

2k

Corollary 2.6.2 Let ε1, ε2, ..., εu be an M-definable sequence of depth ≤ d circuits
with Σj s(εj) ≤ nt for some t < n

1
ω . Let ρ0 ∈ P. There exists ρ ⊇ ρ0, ρ ∈ P

and an M-definable sequence ε′
1, ...., ε

′
u of depth ≤ d − 1 (when d ≥ 3) circuits, with

Σj s(ε′
j) ≤ nt such that s(ε′

j) ≤ s(εj) j = 0, 1, 2, ..... When d = 2 there exists an
M-definable sequence ε′

1, ε
′
2, ..., ε

′
u of depth ≤ 2 circuits of the form ε′

j :≡ ∨h∈Hj h.
Furthermore, each set Hj ⊆ P contains conditions h which have all | Set(h) |≤ ps

for some s with s > ω · t, and s < n
1
ω .

Proof: (lemma 2.6.1 ⇒ corollary 2.6.2). By use of lemma 2.3.7 we can assume
ε1, ε2, ..., εu are all negation-free. There is an M-definable sequence ε̃1, ..., ε̃u of depth
≤ d − 1 circuits, where all “input nodes” are depth ≤ 2 circuits. Let π1, π2, ..., πr be
theM-definable sequence of these. Clearly r ≤ nt. Without loss of generality, each πj

is either a “disjunction of conjunctions” or is a “conjunction of disjunctions”. Notice
Σj s(πj) < nt. By use of lemma 2.6.1 (which according to lemma 2.3.13 also holds
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when the underlying set I is replaced by I ′ := I \ Set(ρ0)) for some fixed k ≥ 2p + 1,
for each j ≤ r there exists an M-definable sequence C1, ..., Cr ⊆ Pk each with

µ(Cj) ≥ 1 − (
1

n− | Set(ρ) |)
ks−2ps

2k

such that for j = 1, 2, .., r and all ρ ∈ Cj πj ≡ρ ∨h∈H ′h if πj is a disjunction of
conjunctions, and πj ≡ρ ¬(∨h∈H ′ h) if πj is a conjunction of disjunctions.

Now µ(C1 ∩ C2 ∩ .... ∩ Cr) ≥ 1 − r · ( 1
n
)

ks−2ps
2k > 0 (when s ≥ 2kt). So there exists

ρ ∈ C1 ∩ .... ∩Cr with ρ ⊇ ρ0. Replace each depth ≤ 2 “input” circuits with a suitable
depth ≤ 2 circuit. 2

Repeated use of this corollary (applied at most d times) reduces problem of proving
the key lemma to that of proving lemma 2.6.1.

2.7 The switching lemma

Definition 2.7.1 For i ∈ I let

Ei := {h′ : h′ ⊇ h ∧ Set(h′) ⊇ Set(h) ∪ {i}∧ | h′ |≤| h | +1}.

♣

Definition 2.7.2 We say that H2 ⊆ P is an atomic tree-like refinement of H1 ⊆
P , (H1 →ATR H2) if ∃h ∈ H1∃i ∈ I H2 = (H1 ∪ Ei(h)) \ {h}.

We say that H̃ is a tree-like refinement of H, (H →TR H̃) if there exists an
M-definable sequence (H0, H1, ..., Hr) such that H0 = H, Hr = H̃ and for each
j < r Hj →ATR Hj+1. ♣

Definition 2.7.3 B ⊆ P is a tree-like basis if {∅} →TR B. ♣

Lemma 2.7.4 Suppose that B ⊆ P is M-definable and that || B ||< nt for some fixed
t < 1

ω
. If B is a tree-like basis, then B is a basis for P.

Proof: First notice that each α, β ∈ B (α 6= β) are incompatible. Suppose that
ρ0 ∈ P is incompatible with all β ∈ B. Let (B0, ..., Br) be an M-definable sequence
with B0 := {∅}, Br := B and where Bj →ATR Bj+1 for j = 0, 1, ..., r − 1. M satisfies
the least number principle so there must be a smallest j0 such that ρ0 is incompatible
with all β ∈ Bj0. There exists β ′ ∈ Bj0−1 compatible with ρ0. As | set(β ′) |≤ n

1
ω by

lemma 2.3.12 ρ = ρ0 ∪ β ′ ∈ P . Let i0 ∈ I such that Bj0 = (Bj0−1 ∪ Ei0(β ′′)) \ {β ′′}.

Now as ρ (like ρ0) is incompatible with all conditions in Bj0 , β ′ 6∈ Bj0 and thus
β ′ = β ′′. We get the required contradiction by noticing that ρ ∈ P must be compatible
with some ρ′ ∈ Ei0(β ′) 2
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Definition 2.7.5 For H ⊆ P and for ρ ∈ P let

Hρ := {h′ ∈ P : h′ = h \ ρ for some h ∈ H with h || ρ}.

We say that B refines H if for each β ∈ B and each h ∈ H if β || h, there is h′ ∈ H
such that h′ ⊆ β. ♣

Lemma 2.7.6 If B is a basis which refines H, and HB := {β ∈ B : ∃h ∈ H β ⊇ h}
then ∨h∈H h ≡ρ ∨h′∈HB h′ for all ρ ∈ P .

Proof: Straightforward. 2

Lemma 2.7.7 Let H ⊆ P be a collection of conditions with ∀h ∈ H, | Set(h) |≤ nt

for some fixed t < n
1
ω . Let ρ0 ∈ Pk, k ∈ ω, and let µ be a probability distribution on

P4l(I \ Set(ρ0)) (l ≥ 2p + 1) which satisfies the conditions in corollary 2.5.3.
If ρ ∈ P4l(I \ Set(ρ0)) is chosen randomly according to the probability distribution

µ, then for each s < n
1
ω , with probability ≥ 1−( 1

n−|Set(ρ0)|)
ks−2ps

2k there exists a tree-like
basis B which refines Hρ such that || B ||≤ ps.

This lemma immediately implies lemma 2.6.1. To see this let

C := {ρ : ∃B a tree − like basis which refines H and || B ||≤ ps}.

Notice C is M-definable. According to lemma 2.7.6, the θ in lemma 2.6.1, has θ ≡ρ

∨h∈HB h where HB := {β ∈ B : ∃h ∈ H β ⊇ h}. Thus to show the key lemma it
suffices to show lemma 2.7.7.

2.8 Some games involving forcing

As above assume M to be a countable non-standard model. Assume also that p ∈
N \ {1} and I := {1, 2, ..., n} ⊆ M, with n ∈ M \ ω be fixed. Let P1 ⊆ P2 ⊆ .... ⊆
Pr ⊆ .... ⊆ P , r ∈ ω, be the stratification of P defined above. Our aim is to show
lemma 2.7.7.

Definition 2.8.1 Suppose that t ≤ s where s < n
1
ω (e.g. t, s are small) and let

< h1, h2, ..., hv >∈ M, v ∈M be a sequence of conditions with | Set(hj) |≤ t, j ≤ v.
Suppose also that {h1, h2, ..., hv} is complete for P (i.e. ∀ρ ∈ P ∃j ≤ v ρ || hj). The
game G(n, k, t, s, < h1, h2, ..., hv >) is played by two players I and II as follows:

Round 0: Player I selects a condition ρ ∈ Pk.
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Round 1: Consider the first i ≤ v where h1 := hi is compatible with ρ (which exists
because the collection {h1, .., hv} is assumed to be complete for P).

If ρ ⊇ h1 player I wins and the output of the game is ∅.
If Set(h1) \ Set(ρ) 6= ∅ let a1 := min(Set(h1) \ Set(ρ)) ∈ I . Player II selects an

p-element set A ⊆ I such that:
(1) {A} is compatible with ρ ({A} || ρ).
(2) {A} is incompatible with h1 ({A} ⊥ h1).
(3) a1 ∈ A.

Let δ1 := {A} and proceed to the next round.

Round j+1: Consider the next condition hj+1 := hij+1 , ij+1 > ij compatible with ρ∪δj

(according to lemma 2.3.12 such exists because ρ∪δj ∈ P when j ≤ s, and {h1, ..., hv}
is complete for P).

If ρ ∪ δj ⊇ hj+1 player I wins and the output of the game is δj.
If Set(hj+1) \ Set(ρ) 6= ∅ let aj+1 := min(Set(hj+1) \ Set(ρ)) ∈ I . Player II selects

a p-element set A ⊆ I such that:
(1) A ∩ Set(ρ) = ∅.
(2) {A} is incompatible with hj+1.
(3) aj+1 ∈ A.

Let δj+1 := δj ∪ {A}, and proceed to the next round.

Round s+1: If this round is reached, player II wins and the game is terminated. ♣

Notice that player I does influence the game after the choice of ρ. The strategies
of player I can thus be identified with the conditions in Pk.

Definition 2.8.2 We call ρ ∈ Pk a winning strategy for player I, if player wins
irrespectively of what player II chooses. ♣

Lemma 2.8.3 Suppose that H = H0 ∪H1 is complete for P (i.e. ∀ρ ∈ P ∃h ∈ H ρ ||
h). Suppose that H0 := {h1, ..., hu} and H1 := {hu+1, ..., hv} u ≤ v ∈ M. Consider
the game G(n, k, t, s, < h1, h2, ..., hv >), and suppose that ρ ∈ Pk is a winning strategy
for player I. Let B be the set of possible outputs (when player II varies his/her possible
plays). Then B is a tree-like basis relative to I \ Set(ρ). Furthermore, B refines Hρ

0

and has || B ||≤ ps.

Proof: We are given a winning strategy ρ for player I. We have to show that B is a
tree-like basis. We view each δ constructed at a certain stage in an actually played
game, as a (uniquely defined) “situation”. Let S(δ) denote the situations which can
be reached from δ. We want to construct B as a sequence

{∅} →ATR B1 →ATR .... →ATR Bj →ATR Bj+1 → .... → B.
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Suppose that Bj has been constructed. Pick any situation δ′ which has not been
reached so far, but which can be reached from a situation corresponding to a δ ∈ Bj

which has already been considered. Let Bj+1 := (Bj ∪ Ea(δ)) \ {δ} where a :=
min(Set(h) \ Set(ρ)). Here h denotes the next hi compatible with ρ in the situation
corresponding to δ. As ρ was assumed to be a winning strategy for player I, this
procedure terminates, and all β ∈ B get | Set(β) |≤ ps.

Finally we show that B refines Hρ
0. We have to show that if h || β for some h ∈ Hρ

0

and β ∈ B, then there exists h′ ∈ Hρ
0 such that h′ ⊆ β. So suppose β is compatible

with (hj)ρ ∈ {(h1)ρ, (h2)ρ, ..., (hu)ρ}. If β ⊇ (hj)ρ we are done. If ¬(β ⊇ (hj)ρ the
game which produced β, must have terminated before hj so there must be j′ < j such
that (hj′)ρ ⊆ β. As the sequence h1, h2, ..., hu, hu+1, ..., hv had all the elements from
H0 listed in the beginning, (hj′)ρ ∈ Hρ

0. 2

The next theorem shows that “almost all” (in the sense of µ) strategies ρ are winning
strategies for player I. More specifically:

Theorem 2.8.4 Consider the game G(n, k, t, s, < h1, h2, ..., hv >). Let WI ⊆ Pk be
the set of winning strategies for player I (we only consider M-definable strategies). If
µ is a probability distribution on P4k which satisfies condition (1) and (2) in corollary
2.5.3, then

µ(WI) ≥ 1 − (
1
n

)
ks−2ps

2k .

Notice that t does not enter the estimate as long as t < n
1
ω .

We show theorem 2.8.4 by comparing the game G(n, k, t, s, < h1, h2, .., hv >) with
another game G′(n, k, t, s).

Definition 2.8.5 The game G′(n, k, t, s) is played by two players I and II as follows
(all sets etc. are M-definable).

Player II selects J ⊆ I , with | J |≤ ps, and selects a sequence h1, h2, .., hl of
conditions each with Set(hi) ⊆ I \ J , and | Set(hi) |≤ t.

Player I then selects a condition ρ ∈ Pk. Consider the first condition h := hj

compatible with ρ (if there is no such player I wins). If h ⊆ ρ player I wins, otherwise
player II wins. ♣

In this game player II makes the choices before player I. Clearly player I always has a
winning reply (just choose ρ ⊇ h1). We claim almost all player I’s replies are winning:

Theorem 2.8.6 Let W̃I(τ ) be the set (M-definable) of replies ρ which ensure a win
for player I after player II made a choice τ . Then if µ is a probability distribution
which satisfies condition (1) and (2) in corollary 2.5.3,

µ(W̃I(τ )) ≥ 1 − (
1
n

)
1
2 .
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Proof: First notice

µ(W̃I(τ )) ≥ minj Pr(hj ⊆ ρ | hj || ρ ∧ ρ ⊥ h1 ∧ ... ∧ ρ ⊥ hj−1).

According to lemma 2.5.4 and condition (2) in corollary 2.5.3 for any j

Pr(hj ⊆ ρ | hj || ρ ∧ (ρ ⊥ h1) ∧ .... ∧ (ρ ⊥ hj−1)) ≥ Pr(hj ⊆ ρ | hj || ρ)

(let A ≡ (hj ⊆ ρ), B ≡ hj || ρ and C ≡ ρ ⊥ h1 ∧ .... ∧ ρ ⊥ hj−1). But by condition
(1) in corollary 2.5.3

Pr(hj ⊆ ρ | hj || ρ) =
Pr(hj ⊆ ρ)

Pr(hj ⊆ ρ) + Pr(hj || ρ ∧ ¬(hj ⊆ ρ))
≥ 1 − (

1
n

)
1
2 . 2

Lemma 2.8.7 Suppose that µ satisfies condition (1) and (2) in corollary 2.5.3. Let
w = maxτ (µ(W̃I(τ )). Then for each strategy v of player II in the first game

µ(W̃I(v)) ≥ 1 − (1 − w)s ≥ 1 − (
1
n

)
s
2 .

Proof: The task for player II to survive round 1 of the game G′(n, k, t, s) (if player
I selects the reply ρ randomly) is “easier” than the task of surviving any specific
round j of the game G(n, k, t, s, < h1, h2, ..., hv >). More formally the probability
Pr(survives round k | history of the game) is

≥ minjPr(hj ⊆ ρ | hj || ρ ∧ (ρ ⊥ h1) ∧ ... ∧ (ρ ⊥ hj−1)) ≥ minj Pr(hj ⊆ ρ | hj || ρ).

2

Lemma 2.8.8

µ(WI) ≥ 1 − (Σv(µ(W̃I(v)))) ≥ 1 − (
1
n

)
s
2 · n

ps
k ≥ 1 − (

1
n

)
ks−2ps

2k > 0

when k ≥ 2p + 1.

Proof: The number of strategies for player II in the first game is ≤ n
ps
k . 2

This completes the proof of theorem 2.8.4. Now lemma 2.7.7 follows by combining
lemma 2.8.3 and theorem 2.8.4.

2.9 Some consequences

Suppose that M is a countable non-standard model of Th(N) in some countable first
order language L. Suppose L extends the language of Arithmetic. Let p ≥ 2, p ∈ ω

and let n ∈M \ ω. Assume that n not is divisible by p. Let

M∗
n := {m ∈M : t(n) > m for some term t ∈ L}.

So far we are able to prove:
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Theorem 2.9.1 (weak version) If all terms t ∈ L have sub-exponential growth
rate, then for each generic filter ρG (M∗

n, ρ̃G) |= ¬Count(p). On the other hand
(M∗

n, ρ̃G) satisfies induction for bounded LP -formulas. As above ρ̃G := ∪α∈ρG
α.

In the next two sections I strengthen this result. I show that the the model (M∗
n, ρ̃G)

satisfies the Count(q) principle exactly when certain exceptional forests do not exists.
Proof: The argument is very similar to the argument in [2]. So I only outline the
argument.

It suffices to show that the least number principle is valid for bounded LP -formulas
with parameters in M∗

n. Now translate each instance of the least number principle
into a Boolean circuit of the form LNPu(π1, π2, .., πu) := πu ∨(∨j≤u(¬πj ∧(∧k<j πk))).
According to the general collapsing result from section 1, each πj can be replaced
(and this can be done simultaneously) by disjunction of small positive conjunctions
(or by negations of disjunctions of small positive conjunctions). According to the
key lemma (lemma 2.4.1) for any generic filter ρG if (πu)ρ̃G = 0 there exists j0 ≤ u

with (πj0)ρ̃G = 0 and with (πj)ρ̃G = 1 for all j < j0. A simple argument shows that
LNPu(π1, ..., πu)ρ̃G = 1. By lemma 2.1.6 (M∗

n, ρ̃G) satisfies induction for bounded
LP -formulas with parameters in M∗

n. 2

3 Forests of decision trees

The specially labelled trees we are going to consider can also be viewed as decision
trees 6 . In our case the decisions concern a (hypothetical) partitioning of a finite set
I := {1, 2, ..., n} into disjoint p element subsets. To avoid trivial counter examples we
always assume n is much larger than both p and the hight of the trees. All trees are
rooted and finite (in later parts of the argument “finite” in the sense of a non-standard
model of first order Arithmetic). When we follow a branch from the root towards the
leafs we make successive decisions building up (parts of) some mathematical object.
In this case a partial partitioning of I into disjoint p-element subsets. At each vertex
v, except at the leafs, there is assigned a “question” iv ∈ I . At the vertex v we are
asked to decide which p element subset A ⊆ I the element iv belongs to. All possible
choices which define the partitioning at iv have to be represented. There is a one to
one correspondence between possible choices (at iv) and the sons from iv. The label
α of a branch is identified with the final object (here a partial partitioning) which
has been constructed.

Suppose that we are given a forest T1, T2, ..., Tu of decision trees. If each object (label

6I think that this view is due to P.Beame and T.Pitassi
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on branch) appears 0 modulo q times, does q divide u? If there exists a global object
(in this case when p divides n) the answer is always positive.

This type of question has not previously been considered in the literature. For almost
any mathematical structure, it is possible to define such decision trees. They specify
the local diagrams. In section 6 our analysis naturally leads us to consider another
type of decision trees. Now let us focus on (p, n)-labelled trees. Notice first that each
(p, n)-labelled tree is a graphical representation of a tree-like basis. Because of this,
the concepts from section 2 (like conditions and restrictions ) will keep their obvious
meaning.

My aim is show that we have the following characterisation.

Theorem Let q, p ≥ 2 and h ∈ N. Suppose that h > q. Then the following statements
always hold simultaneously.

(a) All prime factors in p divide q.

(b) There exists n0 such that for all n > n0 which are not divisible by p there is a
(p, n)-labelled forest T1, T2, ...., Tu such that:

(i) All trees have hight ≤ h.
(ii) Each type of branch appears 0 modulo q times.
(iii) u 6= 0 modulo q.

Later I also discuss the general case where there are less restrictions on the (asymp-
totic) hight of the trees.

3.1 Some easy results

First let me illustrate the definition with a few trivial observations.

Example 3.1.1 Suppose that p divides q and that p does not divide n. Consider the
forest

L
LL

.

�
��

\
\\

\
\\

.L
LL

�
�� \

\\L
LL

�
��

1 2 n

It contains n trees (6= 0 modulo q) trees. Each branch appears exactly q (=0 modulo
q) times.

This type of forests are so simple that we don’t consider them as exceptional. They
correspond to the fact that in the special case where p divides q, Count(p) is a (trivial)
consequence of Count(q).
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Observation 3.1.2 Suppose that F is a forest of (p, n)-labelled trees. Suppose that
each branch appears 0 modulo q times. Then there exists a forest F ′ of (p, n + p)-
labelled trees such that

(i) The forest F ′ contains the same number of trees as F .
(ii) Each branch in F ′ appears 0 modulo q times.
(iii) The hight of the highest trees in F ′ is at most 1 higher than the highest tree

in F .

This immediately shows that if there exists an exceptional forest F for some n, this
will also be the case for all larger n′ as long as n′ = n modulo p. Here are two easy
negative results,

Theorem 3.1.3 Suppose that p divides n. Suppose that T1, T2, ..., Tu is a (p, n)-
labelled forest where each branch appears 0 modulo q times. Then u = 0 modulo
q.

Proof: According to the assumption p divides n so there exists a partitioning ρglobal

of {1, 2, ..., n} into disjoint sets A1, A2, .., An
p

⊆ {1, 2, .., n} each containing p elements.
The partition ρglobal extends exactly one branch from each tree. Clearly, ρglobal allows
us to define a partitioning of the trees T1, T2, ..., Tu into disjoint classes each containing
exactly q trees. 2

Using a similar idea we notice

Theorem 3.1.4 Suppose that T1, T2, ..., Tu is a forest of (p, n)-labelled trees. Suppose
that the sum of the heights of all trees is smaller than n

p
. If all branches appear 0

modulo q times, then u = 0 modulo q.

Proof: Select a branch β1 := α1 from the tree T1. The branch must be compatible
with at least one branch α2 ∈ T2. Let β2 := β1 ∪ α2. This branch (=condition) must
be compatible to at least one branch α3 ∈ T3. Eventually we construct a condition ρ

which extends exactly one branch in each tree. 2

One can try to elaborate on this type of argument. A (very naive) strategy is to try
to choose short branches from each tree. It is not hard to see that this method breaks
down when u > n.

In [24] I presented a graph theoretical argument. It used a generalisation of a
well-known theorem from graph theory. This theorem states that if in a graph G all
vertex have degree at least as large as 1

2 · | Gvertex |, then G contains a Hamiltonian
circuit. This type of argument breaks down even when u is significantly smaller than
n2. Very early in this work it was clear that results relevant for Bounded Arithmetic
all would require techniques which at least would be able to deal (when n tends to
infinity) with the case where u > nk for arbitrarily fixed k.
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3.2 Breaking down trees

Let T be a (p, n)-labelled tree. Consider the following “move“.

�
�

�
�

@
@

@
@

�
��

\
\\ \

\\�
�� \

\\
�

��
\

\\�
��.

.
T
TT

�
��

.

+ + + + +

T T T

T

T T T

1 2 v

v21
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Suppose that F := {T1, ..., Tu} is any forest. Repeated application of this allows us
to break down the trees in F . Eventually all trees can be brought on the following
normal form.
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Let us call such trees perfectly unbalanced (=PU). Clearly we have,

Lemma 3.2.1 Fix q ≥ 2, q ∈ N. Let F := {T1, ..., Tu} be any forest. There exists a
forest F ′ := {T ′

1, T
′
2, ...., T

′
u′} in which each (type of) branch counted modulo q appears

the same number of times as in F . Furthermore (also counted modulo q) the number
u′ of trees in F ′ equals the number u of trees in the forest F .

Notice that the PU-trees have a very simple representation. The PU-tree represented
by,

(u1,1, {u1,2, ..., u1,p})(u2,1, {u2,2, ..., u2,p})...(uh−1,1, {uh−1,2, ..., uh−1,p})(uh),

where ui,j ∈ I .

3.3 Bringing the forest on a special normal form

Now here are some nice operations on PU-trees.

Example 3.3.1 Consider the PU-trees

T := (4, {5, 6})(1, {2, 3})(7)
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and
T ′ := (1, {2, 3})(4, {5, 6})(7).

Notice that T and T ′ contain the same branches of length 3. The branch β :=
{{1, 2, 3}, {4, 5, 6}} does not appear in T and T ′. Except for the branch β the tree
T contains the same branches of length ≤ 2 as the tree (4, {5, 6})(1). Also, except
for the branch β the tree T ′ contains the same branches of length ≤ 2 at the tree
(1, {2, 3})(4).

This can be expressed by the equation,

(4, {5, 6})(1, {2, 3})(7) = (1, {2, 3})(4, {5, 6})(7) − (4, {5, 6})(1) + (1, {2, 3})(4).

The equation expresses the fact that both sides of the identity contain 1 tree (counted
with signs). And it expresses the fact that both sides contain exactly the same set of
branches.

Here is another operation.

Example 3.3.2 We have the identity,

(2, {1, 3})(4) = (1, {2, 3})(4) − (1) + (2).

The identities from the examples can be expressed generally.

Lemma 3.3.3 We have the following identities.

(1) (w1, W1)(w2, W2)...(b, B)(a, A)...(wh) =

(w1, W1)(w2, W2)...(a, A)(b, B)...(wh)−(w1, W1)(w2, W2)...(a)+(w1, W1)(w2, W2)...(b).

(2) (w1, W1)(w2, W2)...(a2, {a1, a3, .., ap})...(wh) =

(w1, W1)...(a1, {a2, a3, .., ap})...(wh) − (w1, W1)...(a2) + (w1, W1)...(a1).

It follows immediately from these principles that,

Lemma 3.3.4 Let F ′ := {T ′
1, .., T

′
u′} be a forest where all trees are PU-trees. Then

there exist a forest F ′′ := {T ′′
1 , ...T ′′

u′′} where all trees are of the form

(u1,1, {u1,2, .., , u1,p})...(ui,1, {ui,2, ..., ui,p})...(uh)

where u1,1 < u2,1 < ... < uh−1,1, and where ui,1 < ui,2 < ... < ui,p for i = 1, 2, .., h − 1.
Furthermore,

(i) The forests F ′ and F ′′ contain the same number of trees (modulo q).

(ii) Each (type of) branch appears the same number (modulo q) of times in the
forests F ′ and F ′′.

We will come back to this normal form.
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4 The first main result

Suppose that M is a countable non-standard model of Th(N) over a countable first
order language L, which extends the language of Arithmetic. Suppose that p ≥ 2 and
I := {1, 2, ..., n} ⊆ M for some n ∈ M \ ω. Assume that n is not divisible by p. As
above, let M∗

n := {m ∈M : t(n) > m, for some term t ∈ L}.

Theorem 4.0.5 (Main result) Suppose that all terms t ∈ L have sub-exponential
growth rate. Then for each generic filter ρG (see definition 2.2.5, page 12),

(a) (M)∗
n, ρ̃G) |= ¬ Count(p).

(b) (M∗
n, ρ̃G) satisfies induction for bounded LP -formulas.

(c) (M∗
n, ρ̃G) satisfies (all versions of) the pigeon-hole principle for bounded LP -

formulas.

Furthermore, there exists a sequence sk(x), k = 1, 2, .... of (arithmetical) functions
(which depend on the exact growth rate of the terms in L), such that (under the
harmless extra assumption that the underlying language L might need an extension)
the following are equivalent:
(i) (M∗

n, ρ̃G) satisfies the Count(q) principle.
(ii) Each forest T1, T2, .., Tu of (p, n)-labelled trees in which all trees have hight
≤ sk(n) where each branch appears 0 modulo q times, has u = 0 modulo q.
(iii) As (ii) but for (p, n)-labelled PU-trees.

Suppose that all terms in L have (at most) polynomial growth rate. Then sk(x) := k

gives the required characterisation.

In general sk(x) can be chosen such that (sk(n))l < n for all l ∈ N.

Our overall question is when systems of Bounded Arithmetic extended by an axiom
scheme for the Count(q) principle, are able to prove Count(p). The first main result,
links this to an understanding of the structure of exceptional forests. Furthermore,
it shows that the asymptotic hight of the trees in the minimal exceptional forests is
directly linked to the strength of the underlying axiom system.

I have already proved (a) and (b). I have also showed (iii) ⇒ (ii). To show
(i) ⇒ (iii) assume that there is a forest F which violates (iii). Assume that the
language contains a suitable relation symbol which allows us to define the forest by a
Bounded formula (this is the harmless extra assumption). I claim that the Count(q)
principle fails in (M∗

n, ρ̃G). To see this, notice that there is a Bounded LP -formula
with parameters in M∗

n which defines (by use of ρ̃G a partitioning of the trees in the
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forest F . And this in such a way that each class contains exactly q trees. But by
assumption F contains trees T1, T2, ..., Tu for some u with u 6= 0 modulo q.

The difficult implication is (iii) ⇒ (i). As it turns out our proof of (c) also provides
a first step in showing the implication (i) ⇒ (iii).

Lemma 4.0.6 Suppose that for some a ∈ M∗
n, some bounded LM(P )-formula θ(·, ·)

(with parameters in M∗
n) defines a bijection from a to b. Let ρ0 ∈ ρG be given. Then

there exists an M-definable sequence Hi,j and Bi,j, (i, j) ∈ a × b such that for some
ρ ⊇ ρ0, ρ ∈ P:

(i) for all (i, j) ∈ a × b, Bi,j is a tree-like basis on I \ Set(ρ),

(ii) for all (i, j) ∈ a × b, || Bi,j ||≤ t for some fixed t < n
1
ω ,

(iii) for all (i, j) ∈ a × b, Hi,j ⊆ Bi,j,

(iv) For each i0 ≤ a : B→
i0

:= ∪j≤b Hi0,j is a basis for P,

(v) For each j0 ≤ b : B↓
j0

:= ∪i≤a Hi,j0 is a basis for P.

Proof: Suppose that some Bounded LM(P )-formula θ(·, ·) defines a bijection from
h : {1, 2, .., a} onto {1, 2, .., b} for a 6= b. According to lemma 2.1.5 there exists d ∈ ω

and t ∈ M∗
n and a M-definable sequence of circuits θi,j (i, j) ∈ a × b, such that each

(θi,j)ρ̃G holds exactly when (M∗
n, ρ̃G) |= θ(i, j). Now according to the key lemma

(lemma 2.4.1) there exists ρ ⊇ ρ0, ρ ∈ P , an M-definable sequence Bi,j (i, j) ∈ a × b

where each Bi,j is a tree-like basis, and an M-definable sequence Hi,j ⊆ Bi,j (i, j) ∈
a × b such that for each (i, j) ∈ a × b:

θi,j ≡ρ ∨h∈Hi,j h.

We claim that the sequences Bi,j and Hi,j satisfy (i)-(v). By use of the fact that h

is an injective function it is straightforward to show that the conditions in B→
i must

be pairwise incompatible. The fact that h is a (mono-valued) function ensures that
conditions in B↓

j are pairwise incompatible.
The only problem is to show that each B→

i and each B↓
j are complete for P(I \

Set(ρ)) (i.e. satisfies condition (2) in definition 2.5.3). We can simplify the notation
by assuming that ρ = ∅. This simplification is possible by lemma 2.3.13 because the
lemma allows us to replace I by I \ Set(ρ).

Suppose that ρ′ ∈ P is incompatible with all conditions in B→
i for some fixed

i ≤ a. Let ρG be a generic filter (without the simplification we assume ρG 3 ρ). Now
for each j ≤ b, ρ̃G is incompatible with all conditions in Hi,j, so by use of lemma
2.3.14 θρ̃G

i,j = 0 for all j ≤ b. This is in contradiction with lemma 2.3.4 which ensures
that ∅ (or ρ in the un-simplified case) forces h to take a value j ≤ b.
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The completeness of the conditions in each B↓
j follows by use of the assumption

that h was forced onto. 2

4.1 Using a combinatorial phenomenon

My aim here is to show that (i)-(v) in lemma 4.0.6 can be only satisfied when a = b.
First we show

Lemma 4.1.1 Suppose that for some a, b ∈ M∗
n there exist M definable sequences

Bi,j and Hi,j (i, j) ∈ a × b. If they satisfy condition (i)-(iii) in lemma 4.0.6, together
with:

(iv)′ For each i0 ≤ a : B→
i0

:= ∪j≤b Hi0,j is a tree-like basis.

(v)′ For each j0 ≤ b : B↓
j0

:= ∪i≤a Hi,j0 is a tree-like basis.

Then a = b.

Proof: First, notice that we can assume that all conditions h, h′ ∈ Hi,j have | h |=|
h′ |. Otherwise make suitable tree-like refinements. Second, notice that P (the set
of forcing conditions), has the property that the number N(n, p, c) of conditions in a
tree-like basis where all conditions h have | h |= c, only depends on n, p and c. Now
ac = Σi≤a | B→

i |= Σi≤a,j≤b | Hi,j |= Σj≤b | B↓
j |= bc, so a = b. 2

Suppose that we could replace “is a basis for P” with “is a tree-like basis” in
lemma 4.0.6. Then according to lemma 4.1.1 this would ensure that the pigeon-hole
principle could never be forced false. So if a basis B for P in general would be tree-like,
we would be done. Unfortunately, the reality is more complex.

Example 4.1.2 The converse of lemma 2.7.4 does not hold in general. The following
example (p = 2) is due to Krajicek (personal communication). The collection

B := {{{1, 2}}, {{1, 3}}, {{2, 3}}, {{1, i}, {2, j}, {3, k}}i,j,k≥4∧|{i,j,k}|=3}

is a basis for P. However B is not a tree-like basis (there is no i0 ∈ I such that all
β ∈ B has i0 ∈ Set(ρ)).

Observation 4.1.3 Consider example 4.1.2. Let B′ := (B∪E1({{2, 3}})\{{{2, 3}}},
so B →TR B′. Notice that B′ is a tree-like basis. To see this, notice that B′ can be
obtained from {∅} by the atomic tree-like refinements:

E1(∅),
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E2({1, 4}), E2({1, 5}), ...., E2({1, n}),

E3({{1, 4}, {2, 5}}), E3({{1, 4}, {2, 6}), ..., E3({{1, 4}, {2, n}}),

E3({{1, 5}, {2, 4}}), E3({{1, 5}, {2, 6}}), ...., E3({{1, 5}, {2, n}}),

....

E3({{1, n}, {2, 4}}), E3({{1, n}, {2, 5}}), ...., E3({{1, n}, {2, n − 1}}).

This observation is part of a general phenomenon. It turns out (and this was the
combinatorial discovery which made my general approach possible), that any basis B
for P has a tree-like refinement to a tree-like basis.

Lemma 4.1.4 Assume that B is a basis for P, and that u ∈ I. Then there exists a
tree-like refinement B’ of B such that for all β ′ ∈ B′ u ∈ Set(β ′).

Proof: Let B′ := ∪β∈B Eu(β). Notice that this is actually a tree-like refinement of
B, and that B′ has the required properties. 2

Definition 4.1.5 For U ⊆ I , we let CU denote the tree-like basis
{α : ∀A ∈ α ∃u ∈ U u ∈ A ∧ Set(α) ⊇ U}. We say B is a tree-like basis on U ⊆ I if
for each α ∈ CU , there exists β ∈ B with β ⊇ α. ♣

Lemma 4.1.6 Suppose that B is a basis for P, and U ⊆ I with | U |< n
1
ω . There is

a tree-like refinement B’ of B, such that B’ is a tree-like basis on U .

Proof: Let U = {u1, u2, ..., ur}. According to lemma 4.1.4 there exists a sequence

B = B0 →TR B1 →TR .... →TR Br,

such that for all β ∈ Bj uj ∈ Set(β). Let B′ := Br. We have to show that for each
α ∈ CU there exists β ∈ B’, β ⊇ α. Now by use of a calculation similar to the one
in the proof of lemma 2.3.12, B’ is a basis for P , so each α ∈ CU is compatible with
some β ∈ B’. Now as Set(β) ⊇ U actually β ⊇ α. 2

Lemma 4.1.7 Suppose that || B ||≤ t for some t < n
1
ω . Also suppose that the

conditions in B are pairwise incompatible. Then B is a basis for P iff each condition
ρ ∈ P1 is compatible with some β ∈ B.

Proof: Repeated application of lemma 4.1.6. 2

Lemma 4.1.8 If B is a basis for P, and || B ||≤ t for some t < n
1
ω , then there exists

a tree-like basis B̃ such that || B̃ ||< pt(t + 1) and such that B →TR B̃.
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Proof: First we construct B̃’. Pick a set V ⊆ I such that V := Set(β) for some β ∈ B.
According to lemma 4.1.6 there exists a tree-like refinement B1 of B such that B1 is
tree-like on V . Now fix γ ∈ CV and consider Bγ

1 ⊆ P(I \V ). It is not hard to show Bγ
1

is a basis for P(I \ V ). Now by use of lemma 4.1.7 we notice that we can prove the
lemma by use of induction after t inside M. Let B1(γ) := {β : β ′ ∩ γ = β, β ′ ∈ Bγ

1}.
Notice that B1(γ) is a tree-like refinement of γ. Finally let B̃ := ∪γ B1(γ). By
induction after t we have || B̃ ||≤| Set(γ) | +p(t−1)t. Now | Set(γ) |≤ pt, from which
the required inequality follows. 2

We need a two-dimensional version of lemma 4.1.8.

Lemma 4.1.9 Suppose that there exists an M-definable “generic system”. That is a
sequence Hi,j, (i, j) ∈ a × b such that:

(i) For each i ≤ a B→
i := ∪j≤b Hi,j is a basis for P.

(ii) For each j ≤ b B↓
j := ∪i≤a Hi,j is a basis for P.

(iii) max(i,j)∈a×b || Hi,j ||≤ t for some t < n
1
ω .

Then there exists an M-definable “tree-like generic system”. That is a sequence
H̃i,j (i, j) ∈ a × b such that:

(i)′ For each i ≤ a B̃→
i := ∪j≤b H̃i,j is a tree-like basis.

(ii)′ For each j ≤ b B̃↓
j := ∪i≤a H̃i,j is a tree-like basis.

(iii)′ max(i,j)∈a×b || H̃i,j ||≤ p3(t + 1)4.

Proof: Fix i ≤ a. According to lemma 4.1.8 there exists a tree-like refinement B′→
i

of B→
i , which is a tree-like basis. For each j ≤ b this procedure induces a tree-like

refinement H′
i,j of Hi,j. This way we get an M-definable sequence H′

i,j, (i, j) ∈ a × b,
so (i)’, (ii) and || H′

i,j ||≤ pt(t + 1).
Now fix j ≤ b. Again according to lemma 4.1.8 there exists a tree-like refinement

B̃↓
j of B′↓

j , which is a tree-like basis. For each i ≤ a this procedure induces a tree-like
refinement H̃i,j of H′

i,j. Now notice that B̃→
i remains tree-like basis, and thus the

M-definable sequence H̃i,j, (i, j) ∈ a × b satisfies (i)’, (ii)’. Clearly also (iii)’ holds
because || H̃i,j ||≤ p(pt(t + 1) + 1)(pt(t + 1)) ≤ p3(t + 1)4. 2

This immediately shows (c) in theorem 4.0.5, in the case of the bijective pigeon-
hole principle. The other versions of the pigeon-hole principle are treated with minor
changes.
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4.2 Reducing the Count(q) versus Count(p) problem

The implication (i) ⇒ (iii) follows by the same type of argument.

Lemma 4.2.1 Suppose that θ(x1, x2, ..., xq) is a bounded L(P )-formula with q free
variables, and all its parameters in (M∗

n, ρ̃G). If θ defines a partition of Ia :=
{1, 2, .., a}, a ∈ M∗

n, then there exists an M∗
n-definable map A → HA, which to

each q-subset A of Ia assigns a collection of conditions HA ⊆ P such that for some
t < n

1
ω , maxA(|| HA ||) ≤ t. Furthermore, for each v ∈ Ia, Bv := ∪A⊆Ia ,|A|=q,v∈A HA

is a basis for P.

Proof: Suppose that some bounded L(P )-formula θ(x1, x2.., xq) defines a partition of
{1, 2, ..., a} into disjoint q-subsets, and q does not divide a. According to 2.1.5 there
exists d ∈ ω, t < n

1
ω and an M-definable sequence of circuits θv1,...,vq , v1, ..., vq ∈ Ia,

such that θρ̃G
i1,...,iq exactly when (M∗

n, ρ̃G) |= θ(i1, ..., iq). Now according to the key
lemma (lemma 2.4.1), there exists ρ ⊇ ρ0 (for any given ρ0), and an M-definable
sequence Bv1,..,vq v1, .., vq ∈ Ia where each Bv1,..,vq ⊆ P is a tree-like basis with ||
Bv1,...,vq ||≤ t. Furthermore, there exists a M-definable sequence Hv1,v2,...,vq ⊆ Bv1,..,vq

such that for each v1, ..., vq ∈ Ia,

θv1,v2...,vq ≡ρ ∨h∈Hv1,v2,..,vq
h.

Fix v ∈ Ia and consider Bv := ∪A⊆Ia ,v∈A HA. For α, β ∈ Bv, α 6= β we claim α⊥β.

To see this notice that otherwise there would exist ρ ⊇ α ∪ β, and ρ ∈ P would force
both θv1,...,vq and θv′1,...,v′q true. Now v ∈ {v1, ..., vq}∩{v′

1, ..., v
′
q} so this is only possible

when {v1, ..., vq} = {v′
1, ..., v

′
q}. Thus both α and β belong to Hv1,..,vq ⊆ Bv1,..,vq . As

Bv1,...,vq is a (tree-like) basis, α⊥β.
It remains to show that Bv, v ∈ Ia is complete for P({1, 2, .., n}\Set(ρ0)). Assume

for the simplicity of the notation that ρ0 = ∅. According to lemma 2.3.13, this
assumption is harmless. We have to show that no ρ ∈ P is incompatible with all
the conditions h ∈ Bv. Now using lemma 2.3.14 each generic filter ρG contains some
h ∈ Bv1,...,vq for each v1, v2, .., vq ∈ Ia. But this contradicts the assumption that ρ0 (in
our case ∅) forces θ to define a total partition of Ia into disjoint q subsets. 2

We conjecture that Count(q) is always forced true (when p and q are different
primes. To show that Count(q) is never forced false, it suffices to show that if HA is
an M-definable assignment as in lemma 4.2.1, then q must divide a.

Example 4.2.2 Suppose that a << n. Consider Ia := {1, 2, ..., a}. Pick ρ1 ⊆ ρ2 ⊆
.... ⊆ ρa such that for each v ≤ a there is αv ∈ Bv such that αv ⊆ ρv. This is possible
whenever ρv ∈ P , v = 1, 2, ..., a (which is the case when a << n). Notice that ρa
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induces an M-definable partition of Ia into disjoint q-subsets. As M shares its first
order properties with N, this is only possible when q divides a.

As a major step in solving the Count(q) versus Count(p) problem, I show that we
can strengthen the conclusion by replacing ‘each Bv is a basis for P ’, with ‘each Bv

to be a tree-like basis’.

Lemma 4.2.3 Let t < n
1
ω , a ∈ M. Let P be the set of forcing conditions defined as

on page 11. Suppose that A → HA is an M-definable map which assigns a collection
of conditions HA ⊆ P, to each q-subset A of Ia = {1, 2, .., a} such that

(i) maxA(|| HA ||) ≤ t

(ii) Bv := ∪A⊆Ia ,|A|=q,v∈A HA is a basis for P (v = 1, 2, ..., a).

Then there exists a M-definable map A → H̃A which assigns a tree-like refinement
H̃A of HA, to each q-subset A of Ia := {1, 2, .., a} such that

(i)′ maxA(|| HA ||) ≤ qpt(t + 1)

(ii)′ B̃v := ∪A⊆Ia ,|A|=q,v∈A H̃A is a tree − like basis (v = 1, 2, ..., a).

As a first attempt of a proof consider the following argument. According to lemma
4.1.8 there exists a tree-like basis B(1)

1 which is a tree-like refinement of B1 := ∪1∈A HA.
This refinement induces tree-like refinements HA →TR H(1)

A for each A ⊆ Ia, | A |= q

(when 1 6∈ A, H(1)
A = HA). For each v ∈ Ia let B(1)

v := ∪v∈A H(1)
A .

Again by lemma 4.1.8 there exists a tree-like basis B(2)
2 which is a tree-like refine-

ment of B(1)
2 . This refinement induce a tree-like refinement H(1)

A →TR H(2)
A for each

A ⊆ Ia, | A |= q (when 2 6∈ A, H(2)
A = H(1)

A ). For each v ∈ Ia let B(2)
v := ∪v∈A H(2)

A .
Eventually (again using lemma 4.1.8) there exists a tree-like basis B(a)

2 which
is a tree-like refinement of B(a−1)

a . This refinement induces a tree-like refinement
H(a−1)

A →TR H(a)
A for each A ⊆ Ia, | A |= q (when a 6∈ A, H(a)

A = H(a−1)
A ). For each

v ∈ Ia let B(a)
v := ∪a∈A H(a)

A .
Let H̃A := H(a)

A . We claim that each B̃v := ∪v∈A H̃(a)A is a tree-like basis. To see
this notice B̃v = B(a)

v . By construction each B(v)
v is a tree-like basis. Now

B(v)
v →TR B(v+1)

v →TR ... →TR B(a)
v

so B(a)
v is a tree-like basis.

This argument has to be adjusted. We have to ensure that all conditions h are
small throughout the construction. To this end we need some more lemmas.
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Definition 4.2.4 For H, H′ ⊆ P let H × H′ := {h ∪ h′ : h ∈ H, h′ ∈ H′}. ♣

Lemma 4.2.5 Let A → HA and A → H′
A be two M-definable maps. Suppose that

(i) for each condition in HA is compatible with some condition in H′
A and vice versa.

(ii) for A, B with A 6= B and A ∩ B 6= ∅, all conditions in HA are incompatible with
all conditions in H′

A and vice versa.

Suppose that both the maps A → HA and A → H′
A satisfy conditions (i) and (ii)

in lemma 4.2.3. Then the M-definable map A → HA × H′
A ensures that (i) and (ii)

remain valid with t replaced by 2t.

Proof: Direct verification. 2

Lemma 4.2.6 Suppose that B0 is a basis for P. If both B1 and B2 are tree-like
refinements of B0, then B1 × B2 is a tree-like refinement of both B1 and B2.

Proof: Proved by induction on the number of atomic tree-like refinements needed to
get from B0 to B1 added to the number of atomic tree-like refinements needed to get
from B0 to B2. 2

The following proof simplifies an argument in an earlier and preliminary version of
this paper.
Proof of lemma 4.2.3: For each v ∈ Ia let Hv

A be the tree-like refinement of
HA induced when Bv := ∪A3v HA is refined to a tree-like basis Bv

v. Consider the
M-definable map

A → H̃A := Ha1
A × Ha2

A × .... × Haq

A ,

where A = {a1, a2, ..., aq}. Now Bv
v := ∪A∈v Hv

A is a tree-like basis. Furthermore,
H̃ ≡ Hv

A × (Ha2
A × ... × Haq

A ) where A = {v, a2, a3, ..., aq}. To see this notice that
according to lemma 4.2.6 for fixed a2, .., aq, (∪A3v Hv

A) × (Ba2 × Ba3 × ... × Baq)
is a tree-like refinement of ∪A3v Hv

A. This tree-like refinement induces a tree-like
refinement
Hv

A →TR Hv
A × (Ha2

A × ... × Haq

A ).
Thus for each v ∈ Ia, B̃v := ∪A3v H̃v

A is a tree-like refinement of ∪A3v Hv
A, which

was constructed as a tree-like basis. Thus each B̃v is a tree-like basis. 2

Combining these results it is not hard to show that (i) ⇒ (iii).
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5 The positive part

In this section I develop a method of constructing exceptional forests. And the exis-
tence of these forests immediately gives us the positive part of the classification.

Definition 5.0.7 By [i1, ..., il]p we denote the (p, n)-labelled trees which contain all
the branches α of the form α = {A1, ..., Ar} where Aj ⊆ I, | Aj |= p, j = 1, 2, .., r
and where Aj ∩ Ak = ∅ for j 6= k. Besides that we require that,

(a) Aj ∩ {i1, i2, ..., il} 6= ∅ for j = 1, 2, ..., r,

(b) ∀k ≤ l ∃j ≤ r ik ∈ Aj. ♣.

Definition 5.0.8 Let p, q ≥ 2. The forest FHom
p,r,n (Hom for homogeneous) consists of

all the trees [i1, i2, ..., ir]p where i1 < i2 < ... < ir ≤ n. ♣

Definition 5.0.9 By Ap,l,r we denote the number of ways it is possible to select r

elements from the sets {1, 2, ..., p}, {p+1, p+2, ..., 2p}, ..., {pl−p+1, pl−p+2, ..., pl},
such that at least one element is chosen from each of the p elements sets. ♣

Lemma 5.0.10 The forest FHom
p,r,n of (p, n)-labelled trees, contains

(
n
r

)
trees. Each

branch α with | α |= l appears in Ap,l,r trees.

Proof: Clearly | FHom
p,r,n |=

(
n
r

)
. Suppose that

α = {i11, i
1
2, ..., i

1
p}, {i21, .....i

2
p}, ..., {il1, i

l
2, ..., i

l
p}} where i12 < i21 < .... < il1 and where

ij1 < ij2 < ... < ijp for j = 1, 2, ..., l. Now there is a one to one correspondence between
the r element subset of ∪α, which contains at least one element from each member
in α, and the trees in FHom

p,r,n which contain α. 2

Lemma 5.0.11 Let q be a fixed prime number. Let s be any fixed number. Then for
each v ≥ 1, Count(qv · s) ` Count(qv+1 · s).

Proof: Without loss of generality we can assume that q is not a prime factor in s.
Consider the forest F which contains qv−1 copies of the forest FHom

p,r,n where p := qv+1 ·s,
r := qv. The critical cases (the only non-trivial cases) are when n = qv+1n′ + r · qv,
r = 1, 2, ..., q−1. The forest contains k ·qv−1 modulo qv trees (for k ∈ {1, 2, .., p−1}).
The most critical case is branches of length 1. They appears qv−1 ·

(
qv+1·s

qv

)
= 0 modulo

qv times. Longer branches also appears 0 modulo qv times. 2

This gives the positive part of the classification:

Corollary 5.0.12 If p, q ≥ and all prime factors in p appears in q then, Count(q) `
Count(p).
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5.1 Some examples

Before I show the negative part of the classification I will examine the structure of the
exceptional forests when these are on the PU-form. Each (irreducible) exceptional
forest F of PU-trees I have found can be derived from the forests given in definition
5.0.8.

Example 5.1.1 Let q = 2, p = 4 and n = 4n′ + 2, n′ ≥ 2. Consider the forest
F2,4,n of (4, n)-labelled PU-trees which contains:

All PU-trees of the form (i1, W1)(i2) where i1 < i2 ≤ n and where W1 ⊆ {1, 2, ..., n}
has 3 elements.

The PU-trees (1), (3), (5), ....., (4n′ + 1).

Each branch of length 2 appears 16 times. A branch {j1, j2, j3, j4} of length 1,
appears in mod(j1, 2) + mod(j2, 2) + mod(j3, 2) + mod(j4, 2) trees of hight 1. And
the branch appears in

(
n−2

3

)
− 4n + 6 + j1 + j2 + j3 + j4 trees of hight 2.

The forests F2,4,n contain
(

n
2

)(
n−2

3

)
+ n

2 trees. This is always an odd number. When
n′ = 2 the forests contain 2525 trees.

Example 5.1.2 Let n = 4n′ + 2. For each n′ ≥ 2 there exists a 2-exceptional forest
of (4, n)-labelled trees. The forest contains all trees:

(j1, {j2, j3, j4})(j5) where j1 < j2 < j3 < j4 and where j1 < j5 < j2 or j3 < j5 < j4.

(1), (3), ...., (4n′ + 1).

Each branch of length 2 appears an even number of times.
The branch {{i1, i2, i3, i4}, {i5, i6, i7, i8}} appears a number of times depending on the
number of vertical lines in the following kind of figure:

..........................

.......................... .........
....

.............
..........................

................................................
.... ......................

.... ......................
.... .........

.........
........

......................
.... .........

.........
........

.........
.........

........

4 4 2 0

The branch {{i1, i2, i3, i4}} appears in all trees (of hight 2) except (i2 − i1) + (i4 − i3)
which counted modulo 2 is i1 + i2 + i3 + i4. This is the same number (modulo 2) it
appears in trees of hight 1.

When n′ = 2 this is a forest of 635 trees. I conjecture that for q = 2 this is the
smallest exceptional forest of PU-trees.

The next example is derived from lemma 5.0.10

39



Example 5.1.3 Let q = 3, p = 9 and n = 9n′ + 3, n′ ≥ 3. Consider the forests
F3,9,n which contain the (9, n)-labelled PU-trees:

(1) The trees of the form (i1, W1)(i2, W2)(i3) where i1 < i2 < i3 ≤ n and where
W1, W2 are two disjoint 8-element subsets of {1, 2, ..., n} \ {i1, i2, i3}.
(2) Two copies of each tree of the form (i1, W1)(i2) where i2 = 1 modulo 3 and
i1 < i2 ≤ n.

(3) Each tree of the form (i1, W1)(i2) where i2 = 2 modulo 3 and i1 < i2.

(4) Each tree of the form (i1) where
(

n−i1
2

)
= 1 modulo 3.

(5) Two copies of each tree of the form (i1) where
(

n−i1
2

)
= 2 modulo 3.

A careful checking shows that each branch appears 0 modulo 3 times. The forests
contains 1 modulo 3 trees. In the smallest case (i.e. when n’=3) the forest contains(

30
3

)(
27
8

)(
19
8

)
+ ΣiΣj > i, j =3 1 2 + ΣiΣj>i,j=32 1 + Σi mod(

(
n − i

2

)
, 3)

trees. This is a forest of 681259986982585 trees. It is not the smallest exceptional
forest for q = 3.

There are smaller exceptional forests

Example 5.1.4 Consider the forest F which contains:

t copies of each tree (i1, {i2, i3, ..., i9})(j1, {j2, ...j9})(k) where i1 < i2 < ... < i9, i1 < j1

, j1 < j2 < ... < j9 and if ir < k < ir+1 and js < k < js+1 then r + s = t modulo 3.

t copies of each tree (i1, {i2, ...i9})(j) where i1 < i2 < ... < i9 and if ir < j < ir+1

then t = r modulo 3.

t copies of each tree (i) where t = i modulo 3.

I claim (without proof) that each branch appears 0 modulo 3 times. However for
each n = 9n′ +3 n′ ≥ 3 | F |6= 0 modulo 3. More specifically | F |= 1

3 ·
(

n
9

)(
n−9

9

)
· (n−

18). In the case when n′ = 3 F only contains 16821302548060 PU-trees. I conjecture
that this is the smallest exceptional forest for q = 3.

From the examples we notice a general feature. The trees of maximal hight h are
very homogeneously organised and easy to describe. The Trees of hight h−1 are still
quite regular but each such tree’s frequency 0 ≤ v < q is slightly more complicated to
describe. The collection of trees of hight 1 have the frequencies which are the most
complicated to calculate.

In the next section I show that all exceptional forests asymptotically (when n → ∞
and the hight of all trees is bound by a constant) can be assumed to have the same
feature.
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6 The negative part

The negative part of the classification states that Count(q) does not imply Count(p)
when p contains a prime factor which is not in q. We consider the case where all
terms in the underlying language L have (at most) polynomial growth-rate. By the
first main result theorem 4.0.5 it suffice to show that for each h ∈ N asymptotically
(when n → ∞, and h(F) ≤ h) there are no q-exceptional forests T1, T2, ..., Tu of
(p, n)-labelled trees.

This is shown by considering forests T ′
1, T

′
2, ..., T

′
u of specially labelled trees corre-

sponding to the Count(q) versus PHPqk

Definition 6.0.5 A (D, R)-labelled tree T is a decision tree for constructing a partial
bijection f : D → R. We always assume that D ∩ R = ∅. Each vertex v ∈ T

corresponds to a certain stage fv in the construction of f . At the root vroot we have
fvroot = ∅.

At each vertex v (except the top node) there is a assigned a “question”, i.e. an
element u ∈ D ∪ R \ (dom(fv) ∪ ran(fv)). Each “answer” corresponds to the sons of
v. If u ∈ D, there is an edge to a son, for each r ∈ R \ ran(fv). Each of these edges
lead to a vertex v′ in which fv′ ⊇ fv, and fv′(u) = r (and | fv′ |=| fv | +1). Similarly
if u ∈ R. In this case there is an edge for each d ∈ D \ dom(fv). Each of these edges
lead to a vertex v′ in which fv′ ⊇ fv, and fv′(d) = u (and | fv′ |=| fv | +1).

The type of a branch through T is identified with the partial map fv constructed
at the leafs v. ♣

This labelling is more manageable than the (p, n)-labelling.

Definition 6.0.6 The hight h(F) of the forest F denotes the maximal hight of a
tree T ∈ F . ♣

Definition 6.0.7 A (D, R)-labelled tree T is a PU-labelled tree (= on PU-form) if
at each level all but possible one vertex is a top node. 2

Observation 6.0.8 A (D, R)-labelled tree T on PU-form can be written of the form:

(u1
1, u

1
2)(u

2
1, u

2
2)...(u

l−1
1 , ul−1

2 )(ul)

If ui
1 ∈ D then ui

2 ∈ R and if ui
1 ∈ R then ui

2 ∈ D ( i = 1, 2, ..., l− 1). The element ul

belongs to either D or R. In the first case we say T is of D-type, while we say that
T is on R-type.

As an example consider the following (obvious) proposition:
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Proposition 6.0.9 Suppose that F solely consists of (D, R)-labelled trees of D-type.
Suppose also (as usual) that | D |≤| R |. Suppose that each branch α in F appears 0
modulo q times. Then the forest F contains 0 modulo q trees.

Proof: Let ρ : D → R be an (total) injection. Each tree T ∈ F contains exactly one
branch α with α ⊆ ρ. Thus ρ induces a partitioning of the trees in F into disjoint
classes which each contains 0 modulo q trees. 2

If the forest F contains trees of both D-type and R-type the situation becomes more
complicated.

Example 6.0.10 Let q ∈ N. Consider the following forests F of (D, R)-labelled
trees. For each d ∈ D it contain (q − 1) copies of (d), and for each r ∈ R it contain
the tree (r).

This forests F contains | R | − | D | modulo q trees. Each type of branch appears
0 modulo q times. So trivially if | R |6=| D | modulo q, there exists a forest F in which
all branches appears 0 modulo q times, but | F |6= 0 modulo q.

This type of forest is trivial. It corresponds to the obvious fact that Count(q) implies
PHPp when p 6= 0 modulo q. This type of forests are so simple that we will not
consider them as exceptional.

Definition 6.0.11 A forest F of (D, R)-labelled trees is called (q, l)-exceptional if
(i) Each type branch appears 0 modulo q times.

(ii) | R |=| D | +ql.

(iii) The number of trees in F ′ is not divisible by q. ♣

Example 6.0.12 Suppose | R | − | D |= 4p′ + 2 for some p′ ∈ N. Assume that
| R | is an odd number. Let F denote the (D, R)-labelled forest which contains the
following PU-trees:

(1) All trees of the form (d, r1)(r2) where d ∈ D and r1 > r2 when | r1 − r2 | is odd,
and r1 < r2 when | r1 − r2 | is even.

(2) All trees of the form (d1, r)(d2) where r ∈ R and d1 < d2.

Each branch appears an even number in F . However, the forest F contains

| D |
(
| R |

2

)
+ | R |

(
| D |

2

)

trees which is always an odd number. The smallest example of this form is when
| D |= 5 and | R |= 7. In this case F contains 175 trees. I claim without proof
that this is the smallest (2, 1)-exceptional forest. The forest resemble the fact that
Count(2) implies PHP2.
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There are (q, l)-exceptional forests for each q, l ∈ N, q 6= 1 (we do not need this fact).
This follows by combining:

(1) We have a version of theorem 4.0.5 for the Count(q) versus PHPql problem.

(2) Trivially PHP1 follows from Count(q)

(3) By [24] PHPql follows from PHP1.

It is interesting to notice that this proof is non-constructive. It only shows that
the exceptional forests exists. It does not shows how to constructs them. It turns out
that they can be constructed along the same lines as the constructions in section 4.

6.1 Projecting forests

Let T be a (p, n)-labelled tree. Suppose n = pn′ + ql for q ∈ N \ {1} and l ∈ N. Then
we can transform it to a (D, R)-labelled tree by the following procedure.

First divide I := {1, 2, ..., n} into p disjoint sets D1, D2, ..., Dp−1 and R such that
| D1 |=| D2 |= .... =| Dp−1 |= n′ and | R |= n′+ql. Let D := D1. For j = 1, 2, ..., p−1
chose bijections yj : Dj → D. Let us call a subset {i1, i2, .., ip} ⊆ I for regular if
ip ∈ R, ij ∈ Dj , j = 1, 2, .., p − 1 and y1(i1) = y2(i2) = ... = yp−1(ip−1). A branch
{A1, .., Ar} is regular if each Aj, j = 1, 2, .., r is regular. By use of this definition it
is straight forward to show that,

Lemma 6.1.1 Let T be a (p, n)-labelled tree. Suppose that n = pn′ + ql and let
D1, .., Dp−1 and R be given as above. Then the set of regular branches in T form a
new tree T ′ which is (D, R)-labelled. Furthermore h(T ′) ≤ h(T ).

If T is on PU-form, then T ′ will also be on PU-form.

Instead of projecting a single tree we can project forests. The important point is that
the projection of an q-exceptional forest of (p, n)-labelled trees produces an (q, l)-
exceptional forest of (D, R)-labelled trees.

Lemma 6.1.2 Let F := {T1, T2, .., Tu} be a forest of (p, n)-labelled trees. Suppose F
is an q-exceptional forest. Or more specifically that p does not divide q and each branch
in F appears 0 modulo q times, but u 6= 0 modulo q. Suppose also that n = pn′ + ql.
The projection of the trees T1, ..., Tu gives an (q, l)-exceptional (D, R)-labelled forest
(with | D |= n′ and | R |= n′ + ql). Furthermore h(F ′) ≤ h(F).

Proof: This is left to the reader to verify. 2

The condition that n = pn′ + ql might not in general be satisfied for a given n.
However, usually we do not lose any generality by assuming n is of this form. To see
this consider the following procedure:
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Definition 6.1.3 Suppose that ρ is a partial partition of I := {1, 2, ..., n} into dis-
joint p-element subsets. Consider a (p, n)-labelled tree T . For each branch (=con-
dition) α through T consider the following procedure. If α is incompatible with ρ

remove it. Otherwise replace it by β := α \ ρ.
Suppose that ρ′ is a partial bijection from D to R. Consider a (D, R)-labelled tree

T . For each branch (=condition) α′ through T consider the following procedure. If
α′ is incompatible with ρ′ remove it. Otherwise replace it by β ′ := α′ \ ρ′. ♣

Lemma 6.1.4 (Stability) Suppose that T is a (p, n)-labelled tree. Let ρ be a partial
partition of I = {1, 2, ..., n} into disjoint p-element subsets. Suppose that
p · (h(T )+ | ρ |) < n. Then the collection of all branches β which are produced from
some α ∈ T (as described in definition 6.1.3) can be organised into a (p, n′)-labelled
tree T ρ where n′ = n − p | ρ |.
Suppose that T ′ is a (D, R)-labelled tree. Let ρ′ be a partial bijection from D to R.
Suppose that h(T )+ | ρ′ |< n. Then the collection of all branches β ′ which are produced
from some α′ ∈ T (as described in the second part of definition 6.1.3) can be organised
into a (D′, R′)-labelled tree T ′ρ′ where D′ := D \ dom(ρ′) and R′ := R \ ran(ρ′).

If T (T ′) is a PU-tree then T ρ (T ′ρ′) is a PU-tree.

Proof: It suffice to show the lemma when | ρ |= 1. Suppose that ρ := {{i1, i2, ..., ip}}.
Let V be the set of vertex in T which have assigned v ∈ {i1, .., ip}. Let E⊥ denote
the set of edges in T which has assigned p-subset A ⊆ I with non-trivial intersection
with {i1, .., ip} (i.e. 6= ∅ and 6= A). Let E|| be the set of edges which have assigned
A = {i1, i2, .., ip}.

For each vertex (=question) in V all edges (but exactly one) edge (=answer)
belongs to E⊥. Remove all these edges (and the sub-tree above this). Then contract
the edge in E||. Finally, after having exhausted this procedure, remove all edges in
E⊥ (and the sub-tree above this). The condition that p(h(T )+ | ρ |) < n is exactly
what in general is required to ensure that T ρ actually becomes a properly labelled
tree. The second part of the lemma is showed similarly. The last claim is also straight
forward to check. 2

The lemma is one of many stability results which are important for the overall argu-
ment. In short it shows that trees (PU-trees) remains on this form when they are
“hit” by a restriction ρ.

The main lemma gives us an understanding of the asymptotic behaviour of exceptional
(D, R)-labelled trees.
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Lemma 6.1.5 (Main lemma) Let q be a prime number. Let k, l ∈ N. There exists
d0 ∈ N such that for any (qk, l)-exceptional forest of (D, R)-labelled trees, where
d0 ≤| D |≤| R |, we have h(F ′) ≥ ql−k.

Corollary 6.1.6 Let p be any prime number which does not appear in q = qα1
1 qα2

2 ...qαr
r .

Fix h ∈ N. There exists n0 such that for each n ≥ n0 each forest F := {T1, T2, ..., Tu}
of (p, n)-labelled trees never simultaneously satisfies:
(1) All branches appears 0 modulo q times.
(2) h(F) ≤ h.
(3) u 6= 0 modulo q.

Proof: Suppose that (1) and (3) hold. Choose j ∈ {1, 2, .., r} such that u 6= 0 modulo
q

αj

j . According to the assumptions F is an q
αj

j -exceptional forest of (p, n)-labelled
trees. By lemma 6.1.4 we can assume that n = pn′ + ql

j for any l given in advance
(of course l has to be reasonable i.e. ql << n etc). Choose l such that q

l−αj

j > h.
By lemma 6.1.2 the projected forest F ′ is (qαj

j , l)-exceptional and h(F ′) ≤ h(F).
According to lemma 6.1.5 h(F ′) ≥ ql−αj > h. Now h(F ′) ≤ h(F) so this contradicts
(2). 2

6.2 Creating order among trees of maximal hight h

Lemma 6.2.1 Fix q ∈ N \ {1}, and fix l, h ∈ N. For each d0 ∈ N with d0 ≥ h,
there exists (a very large) d1 ∈ N such that for each forest F = {T1, T2, ..., Tu} of
(D, R)-labelled trees with | R |=| D | +ql and | D |≥ d1 the following is true:

There exists a partial bijection ρ : D → R, such that the forest Fρ := {T ρ
1 , T ρ

2 , .., T ρ
u}

of (D′, R′)-labelled trees, with D′ = D \ dom(ρ) and R′ = R \ ran(ρ), satisfies:

(1) For each h − 1 element subset {d1, d2, .., dh−1} ⊆ D′ with d1 < d2 < ... < dh−1

and for each permutation π : {1, 2, .., h} → {1, 2, .., h} the number (modulo q) of trees
(in the forest Fρ) of the form

(d1, rπ(1))(d2, rπ(2))....(dh−1, rπ(h−1))(rπ(h))

does not depend on the elements r1 < r2 < ... < rh in R′.

(2) For each (h − 1)-element subset {d1, d2, ..., dh−1} ⊆ D′ (where d1 < d2 <

... < dh−1), for each element dh ∈ D′ \ {d1, d2, .., dh−1}, and for each permutation
π : {1, 2, ..., h − 1} → {1, 2, ..., h − 1} the number (modulo q) of trees of the form

(d1, rπ(1))(d2, rπ(2))....(dh−1, rπ(h−1))(dh)

does not depend on the elements r1 < r2 < ... < rh−1 in R′.

(3) | D′ |≥ d0.
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Proof: Let D1 ⊆ D be a subset with | D1 |≥ d′
0 for some number much larger

than d0. The size of d′
0 can be expressed in terms of the estimates arising from the

second part of the argument (where we ensure the validity of property (3)). For each
h − 1 element subset {d1, d2, ..., dh−1} ⊆ D1 with d1 < d2 < ... < dh−1 and for each
permutation π : {1, 2, .., h} → {1, 2, ..., h} we define a map F (d1, d2, ..., dh−1; π) which
maps h-element subsets of R to the set {0, 1, 2, .., q − 1}. It is defined by letting
F (d1, d2, ..., dh−1; π)({r1, r2, ..., rh}) (where r1 < r2 < ... < rh) denote the number
(modulo q) of the PU-trees

(∗) (d1, rπ(1))(d2, rπ(2))....(dh−1, rπ(h−1))(rπ(h))

These maps induce as a map F̃ which to each h element subset {r1, r2, ..., rh} ⊆ R

takes one of q(
|d0|
h−1)h!-values. This value expresses uniquely for each h−1 element subset

of D1 and each permutation π : {1, 2, .., h} → {1, 2, ..., h}, the number (modulo q) of
PU-trees of the form (∗).

Now by Ramseys theorem 7 if d1 is sufficiently large (not depending on F ) there
must be a set R1 ⊆ R which is homogeneous for the “collaring” F̃ . By possible
making R1 slightly smaller we can ensure that | D \D1 |=| R \R1 |. Choose a partial
bijection ρ : D → R such that dom(ρ) = D \ D1 and ran(ρ) = R \ R1. This ensure
that the new restricted forest satisfies property (2).

This procedure is now repeated (with d′
0 replaced by d0) such that property (3)

are satisfied. Notice that application of a new ρ′ does not destroy property (2). 2

Definition 6.2.2 Two tuples < r1, r2, .., rh > and < r′
1, r

′
2, ..., r

′
h > have the same

order structure if for the same permutation π we have that rπ(1) < rπ(2) < ... < rπ(h)

and r′
π(1) < r′

π(2) < ... < r′
π(h). ♣

Lemma 6.2.3 (Stability) Suppose that F := {T1, T2, ..., Tu} is a forest of (D, R)-
labelled PU-trees. Suppose all trees of maximal hight h satisfies (1) and (2) in lemma
6.2.1. For any partial bijection ρ : D → R, with h+ | ρ |<| D |, the forest F ′ :=
{T ρ

1 , T ρ
2 , ..., T ρ

u} of (D′, R′)-labelled trees (D′ := D \ dom(ρ), R′ := R \ ran(ρ)) also
satisfies (1) and (2).

Proof: By the second part of lemma 6.1.4, we only have to check that (1) and (2) in
lemma 6.2.1 will be satisfied. To show (1) we have to prove that the PU-trees

(d1, r1)(d2, r2)...(dh−1, rh−1)(rh)

7The application of Ramseys theorem seems to play a similar role in [6].
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and
(d′

1, r
′
1)(d

′
2, r

′
2)...(d

′
h−1, r

′
h−1)(r

′
h)

appears the same number of times (modulo q) when d1 < d2 < ... < dh−1, when
d′

1 < d′
2 < ... < d′

h−1, and when the order type of < r1, r2, .., rh > and < r′
1, r

′
2, ..., r

′
h >

are the same. This follows from the fact that none of the representations can have
been altered by ρ. 2

6.3 Creating order among trees of hight h′ < h

Let F be a forest of (D, R)-labelled trees of PU-form. Suppose that all trees satisfies
condition (1) and (2) in lemma 6.2.1. Wright F as the union F1 ∪ F2 ∪ ... ∪ Fh,
where the sub-forest Fh′ contains all trees of hight h′. By the same argument as in
lemma 6.2.1 there exists (provided D and R are sufficiently large compared to h(F))
a restriction ρ (i.e. a partial bijection) such that for each h′ ∈ {1, 2, .., h} all trees in
Fρ

h′ satisfies (1) and (2) in lemma 6.2.1 with h replaced by h′.
Consider the trees in Fρ of some hight h′ < h. Clearly there is a flux of trees from

each Fh′′ with h′ < h′′ ≤ h.

Definition 6.3.1 (Strong normal form) A forest F := {T1, T2, ..., Tu} is on strong
normal form if for each h′ ≤ h:

(1) For each d1 < d2 < ... < dh′−1 and for each permutation π : {1, 2, ..., h} →
{1, 2, .., h} the number (modulo q) of trees of the form

(d1, rπ(1))(d2, rπ(2))...(dh−1, rπ(h−1))(rπ(h))

only depends on residue classes modulo qh−h′ of the elements r1 < r2 < ... < rh.

(2) For each d1 < d2 < ... < dh′−1, for each dh′ ∈ D \ {d1, d2, .., dh′−1} and for each
permutation π : {1, 2, ..., h′ − 1} → {1, 2, .., h′ − 1} the number (modulo q) of trees of
the form

(d1, rπ(1))(d2, rπ(2))...(dh′−1, rπ(h′−1))(dh′)

only depends on residue classes modulo qh−h′ of the elements r1 < r2 < ... < rh−1. ♣

Lemma 6.3.2 (Stability) If F is on strong normal form, then Fρ is on strong
normal from (provided that h(F)+ | ρ |<| D |≤| R |).

Proof: There are 3 ways the representation of a PU-tree T

(d1, r1)(d2, r2)....(dl−1, rl−1)(dl, hl)...(dh−1, rh−1)(rh)
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might change. In all cases suppose that the lowest place where it get ‘hit’ is on level
l.

(1) < dl, rl >∈ ρ. The tree T ρ is of the form (d1, r1)...(dl−1, rl−1)(dl+1, rl+1)...(rh). If
this tree get ‘hit’ by ρ again there are 3 ways this can happen...(repeat the reduction).

(2) < dl, r′ >∈ ρ where r′ 6= rl. The tree T ρ has the representation
(d1, r1)(d2, r2)...(dl−1).

(3) < d′, rl >∈ ρ where d′ 6= dl. The tree T ρ has the representation
(d1, r1)(d2, r2)....(dl−1, rl−1)(dl).

From this observation it is not hard to see that the regularity among the trees of
hight l, are inherited (after the restriction) by trees of smaller hight. 2

If we combine this lemma with lemma 6.1.4, 6.2.3 and lemma 6.2.1 we get:

Lemma 6.3.3 (Strong normal form) Fix q ∈ N\{1}. For all h, l ∈ N there exists
d ∈ N such that the following hold:

Suppose that F := {T1, T2, ..., Tu} is a (D, R)-labelled forest where all trees have hight
≤ h and where d ≤| D | and where | R |=| D | +ql. Then there exists a partial
bijection ρ : D → R such that Fρ := {T ρ

1 , T ρ
2 , ..., T ρ

u} is a forest of (D′, R′)-labelled
trees (where D′ := D \ dom(ρ) and R′ := R \ ran(ρ)) on the strong normal form.

Furthermore if F is (q, l)-exceptional, then Fρ is (q, l)-exceptional.

6.4 Proof of the main lemma

Now we are ready to show the main lemma (lemma 6.1.5) in this section.
Proof: According to lemma 6.3.3 we lose no generality by assuming that F is on
strong normal form. For each d ∈ D and r ∈ R we can consider the branch {< d, r >}
of length 1. It appears 0 modulo qk times so we have the identity:

(1) (d, ∗) ; −(d, r) ; +(r) = 0 modulo qk.

Here (d, ∗) ; of course denotes the number of PU-trees of the form

(d, r1)(u2
1, u

2
2)....(u

l−1
1 , ul−1

2 )(ul)

Similarly (d, r) ; denotes the number of PU-trees of the form

(d, r)(u2
1, u

2
2)....(u

l−1
1 , ul−1

2 )(ul),

and (r) denote the number of appearances of the tree (r). The trees in (d) does not
enter the equation because we assume | R |= 0 modulo qk.

The number u of trees in the forest F is given by:
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(2) u = Σd∈D (d, ∗) ; +Σd∈D (d) + Σr∈R (r)

Now for each d ∈ D consider d2, d3, .., dl−1, dl. Consider the set of trees of the
form (d, r1)(d2, r2)...(dl−1, rl−1)(rl) or (d, r1)(d2, r2)...(dl−1, rl−1)(dl) where r1, r2, .., rl

belongs to a certain type (expressed by the relative size of r1, .., rl, but also taking
their residue classes modulo qk into account). The number of such trees is 0 modulo
ql−k provided | R |=| D | +ql. But then:

(3) (d, ∗) ;= 0 modulo qk for each d ∈ D.

But according to (1)

(4) (d, r) ;= (r) modulo qk for all d ∈ D and r ∈ R.

According to (2) and the assumption that u 6= 0 modulo qk, for each d ∈ D

(5) Σd′∈D (d′) + Σr∈R(d, r) ;6= 0 modulo qk.

But in general

(6) Σr∈R (d, r) ;= (d, ∗) ;

so by combining (3) and (5)

(7) Σd∈D (d) 6= 0 modulo qk.

But by the normal form theorem we can assume that D is divided into disjoint
classes D1, D2, ...., Dr which each have 0 modulo ql−h elements. And thus if l −h ≥ k

the sum Σd∈D (d) = Σr
j=1Σd∈Dj (d). By the normal form theorem (d) the number of

trees in (d) is constant on each Dj, j = 1, 2, .., r so the must equal 0 modulo ql−h.
This a is contradiction if l − h ≥ k. 2

6.5 Brief discussion of the general problem

The method in the last subsection only give an asymptotic classification of exceptional
forest. This is good enough for a complete classification of the Count(q) versus
Count(p) problem in the case of polynomial growth rate.

The fact that forests on the strong normal form remains on this form when ‘hit’
by a (randomly chosen?) restriction is very important. And it is very promising for
the full classification (when n is large). The critical question is whether we can create
order fast enough? Is it possible to create sufficiently much regularity before we have
used the elements in I = {1, 2, ..., n}. This seems to be a race between different forces!

In the first version of this paper I tried to bring a hypothetically given exceptional
forests F on a strong normal form. This was done by selecting a suitable collection
G of group actions on F . For each g ∈ G I defined a forest F g containing the same
number of trees as F . Now by a suitable choice of G (so u· | G |6= 0 modulo q)
the forest ∪g∈G F g remains exceptional. By a proper choice of G I was able to show
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that the resulting forest gets efficiently closer to the strong normal form. This idea
does not a priory require any strong assumptions on the hight of the forest. However
the argument depend on the validity of a certain modular identity. At present this
validity is open. Its validity could be important for the full classification in the general
case of sub-exponential growth rate.

7 Some applications

There are various alternative formulations of the classification. It is well known
that complexity theory can be viewed as recursion theory done within a finite set
of unspecified size. The levels in Arithmetical Hierarchy correspond to the levels in
Polynomial Hierarchy [8]. It can be argued that low complexity reasoning is reasoning
which can be formalised within (arbitrarily large) finite structures. Suppose that the
universe is such an unspecified finite set. Although this is almost impossible to picture
it is consistent. Such an “axiomatic finite” universe can be axiomatised in various
ways. Its models (which are highly non-recursive) are of course not really finite.

As an example consider the following axiomatisation over second order logic. Sup-
pose that we have the full Arithmetical comprehension axiom schema,

∀z ∃ X ψ(x, z) ↔ x ∈ X.

Here ψ is any first order formula. We allow ψ to contain set-variables. And assume
that we have the usual induction axiom

0 ∈ X ∧ ∀n (n ∈ X → n + 1 ∈ X) → ∀n n ∈ X.

If the underlying universe was not assumed to be finite this would be the celebrated
and powerful system ACA of analysis. If the underlying universe is axiomatic finite
(e.g. satisfies the pigeon-hole principle) we denote the axiom system by ACAtop. For
this system

Theorem 7.0.1 Count(p) holds in all structures of ACAtop + Count(q) exactly
when all prime divisors in p appear in q.

Proof: Combine the conservation results in [23],[24] with results for Bounded Arith-
metic. By these results the system has the same deductive strength as Bounded
Arithmetic axiomatised without functions symbols. By use of the usual coding meth-
ods the system is able to handle terms of polynomial growth rate. Thus the positive
part of the classification can obtained. 2

It is also possible to link the result to length of proofs in propositional logic. This
type of link was first pointed out in [19].

50



Definition 7.0.2 A Boolean formula is a Boolean circuit where for each disjunction
∨j πj and for each conjunction ∧j πj a particular bracketing is specified. The size
and the depth of a Boolean formula is defined in the obvious way. In the calculation
of the depth, disjunctions ∨jπj and conjunctions ∧jπj are chosen maximally. ♣

Definition 7.0.3 A general propositional proof system P consists of:

(1) A finite number of substitution schemes.

A substitution scheme is a Boolean formula θ which only contains special variables
(substitution variables). A substitution instance of θ is obtained by substituting the
substitution variables y1, ..., yk by Boolean formulas η1, ..., ηk.

(2) A finite number of deduction rules.

A deduction rule θ1,θ2,...,θk

θ
where θ1, ..., θk and θ are substitution schemes. A sub-

stitution instance is obtained by substituting the substitution variables y1, ..., yk by
Boolean formulas η1, ..., ηk.

A P-proof (in Hilbert style) of η is a sequence η1, ..., ηu = η of Boolean formulas, such
that each ηj , j = 1, 2, ...., u is either a substitution instance of a substitution scheme,
or there are i1, ..., ik < j such that ηi1 ,...,ηik

ηj
is a substitution instance of a deduction

rule.

We only consider general propositional proof systems which are consistent and
prove the usual tautologies.

The size s of a propositional proof is s := Σjs(ηj), and the depth d is d :=
maxj d(ηj). ♣

Definition 7.0.4 A Frege proof system (or a textbook proof system) is a general
propositional proof system, where modus ponens y1,¬y1∨y2

y2
is the only deduction rule.

♣

Definition 7.0.5 Let Countn(p) denote the tautology:

(∨i≤n ∨{A:i∈A} ∨{B:i∈B∧A6=B} (pA ∧ pB)) ∨ (∨i≤n ∧{i∈A} ¬pA)

where the sets A and B run through the p subsets of {1, 2, ..., n}. ♣

Theorem 7.0.6 Fix p ∈ N. Let Ap be the collection of all substitution schemes of
the Count(q) principle for q ∈ N which contain all prime factors of p. Let P be any
general proof system to which all the schemes in Ap are added. Then the tautologies
Countn(p), do not have bounded depth polynomial size P-proofs.
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Proof: Suppose that for arbitrarily large n ∈ N, there exists a P-proof of depth ≤ d

and size ≤ exp(nε(n)). Let R be a suitable relation with domain Nr, r ∈ ω, which
codes these proofs. Let M be a countable non-standard model of Th(N) over some
countable language L which extends the language of Arithmetic and contains R. By
overspill there exists a non-standard number n ∈ M which is not divisible by p, and
there exists an M-definable sequence θ1, θ2, ..., θu of formulas, which (within M) is a
general propositional P-proof of Countn(p). Furthermore, we can assume that the
depth of the proof is ≤ d, and that the size of the proof is ≤ exp(nt) for some t < 1

ω

(the map ε : N → Q+ can without loss of generality be assumed to be L-definable,
because otherwise L can be extended with a relation which defines ε).

Now choose a generic truth-table evaluation ρ̃G. Such an evaluation exists accord-
ing to lemma 2.3.2. Consider the sequence θ1, ..., θu (considered as circuits) and notice
that (θu)ρ̃G = (Countn(p))ρ̃ = 0. According to corollary 2.4.2 there exists j0 ≤ u such
that (θj0)ρ̃G = 0 but (θj)ρ̃G = 1 for all j < j0. Now each substitution instance θj of
a substitution scheme has (θj)ρ = 1 for each general truth-table evaluation ρ. If θj

is obtained from a deduction rule then (θj)ρ = 1 provided that all the premises also
have truth-value 1.

Finally I claim that all substitution instances of the Count(q) principle also get
truth-value 1. Now if it got the truth value 0, then by the work in section 3 there
would be a M-definable generic system. By our refinement technique this would
imply the existence of a specially labelled (I, p)-forest in which all branches appear 0
modulo q times. And the forest would contain a number of trees not divisible by q.
According to the combinatorial results in section 6 this (first order) statement fails
in the standard universe. We chose M to be a model of first order arithmetic, so this
is a contradiction. 2

Theorem 7.0.7 LetM be a countable non-standard model of Th(N) over a countable
first order language L (which contains the language of arithmetic). Suppose that
p ∈ N, p ≥ 2 and I := {1, 2, ..., n} ⊆ M (for some n ∈M \ ω not divisible by p). Let

M∗
n := {m ∈M : t(n) > m for some term t ∈ L}.

For any generic filter ρG the partition ρ̃G (see definition 2.2.5 page 12) partitions I

into disjoint classes, each containing exactly p elements. If the terms t ∈ L all have
polynomial growth rate
(a) (M∗

n, ρG) |= ¬Count(p).
(b) (M∗

n, ρG) satisfies induction for bounded L(P )-formulas.
(c) (M∗

n, ρG) |= Count(q) for all q which contains all prime factors in p.
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Proof: It suffices to show that the least number principle is valid for bounded L(P )-
formulas with parameters inM∗

n. Now each instance of the least number principle gets
translated into a Boolean circuit (or Boolean formula if we specify the bracketing) of
the form LNPn(π1, ..., πu) := πu ∨ (∨j≤u(¬πj ∧ (∧k<jπk))). Furthermore, according to
earlier observation, each translated instance gets depth ≤ 4 and size ≤ exp(nt) for
some t < n

1
ω . According to the key lemma (lemma 2.4.1) for any generic filter ρG if

(πu)ρ̃G = 1, there exists j0 ≤ u with (πj0)ρ = 1 and (πj)ρ = 0 for j < j0. A simple
argument shows that LPNn(π1, ...., πu)ρ̃G = 1. Using lemma 2.1.6 (M, ρ̃G) satisfies
induction for bounded L(P )-formulas with parameters in M∗

n.
Again all Count(q) much be forced true when p contains a prime factor not in q.

If not there would exists an M-definable generic system. And thus by the refinement
argument there would be a (I, p) forest with 6= 0 modulo q trees, in which each (type
of) branch appears 0 modulo q times. This is a contradiction when p does not divide
q. 2

Theorem 7.0.8 Suppose that all terms in L have polynomial growth rate, and con-
tains at least one unspecified relation symbol. Then I∆0(L)+ Count(q) prove Count(p)
exactly when all prime factors in p divides q.

Proof: (M∗
n, ρ̃G) |= I∆0(L) + ¬ Count(p) + Count(q). 2

8 Final remarks

The first version of this paper contained the complete reduction of the Count(q) versus
Count(p) problem. This reduced the problem to a purely combinatorial problem. The
revised version solves this problem explicitly (in the case of polynomial growth-rate).
In addition the revised paper develops the underlying theory in more details.

To end, I am happy to learn that the topic is related to Hilberts Nullstellensatz [6],
and by [4] also to representations of symmetrical groups. I hope these very interesting
links will be further clarified and developed in the future.
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