
B
R

IC
S

R
S

-94-14
N

.K
larlund:

T
he

Lim
itV

iew
ofInfinite

C
om

putations

BRICS
Basic Research in Computer Science

The Limit View of
Infinite Computations

Nils Klarlund

BRICS Report Series RS-94-14

ISSN 0909-0878 May 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

The Limit View of Infinite Computations?

Nils Klarlund??

BRICS†, Department of Computer Science,
University of Aarhus

Ny Munkegade, DK-8000 Århus, Denmark
klarlund@daimi.aau.dk

Abstract. We show how to view computations involving very general
liveness properties as limits of finite approximations. This computational
model does not require introduction of infinite nondeterminism as with
most traditional approaches. Our results allow us directly to relate finite
computations in order to infer properties about infinite computations.
Thus we are able to provide a mathematical understanding of what sim-
ulations and bisimulations are when liveness is involved.
In addition, we establish links between verification theory and classical
results in descriptive set theory. Our result on simulations is the essential
contents of the Kleene-Suslin Theorem, and our result on bisimulation
expresses Martin’s Theorem about the determinacy of Borel games.

1 Introduction

It is generally believed that to model general liveness properties of concurrent
systems, such as those expressed by infinitary temporal logics, we must use ma-
chines with infinite (countable) nondeterminism. Such models arise for example
in program verification involving fairness, where transformations of programs
induce nondeterminism.

But it is disturbing that countable nondeterminism, for which no physical im-
plementation seems to exist, is introduced in our model of computation. In con-
trast, any conventional Turing machine can be implemented and we can observe
its finite runs, although not all of them, of course, due to physical constraints.
But how would a physical device carry out a nondeterministic choice among un-
countably many possibilities at each computation step? Instead, it seems more
reasonable to let the machine compute finite information about progress that
somehow gives rise to an acceptance condition on infinite computations.

? This article is a revised and extended version of an earlier technical report
(“Convergence Measures,” TR90-1106, Cornell University), which was
extracted from the author’s Ph.D. thesis. Due to space limitations, all
proofs have been omitted in this article.

?? Partially supported by an Alice & Richard Netter Scholarship of the Thanks to
Scandinavia Foundation, Inc. and NSF grant CCR 88-06979.
† Basic Research in Computer Science, Centre of the Danish National Research

Foundation.

Another foundational problem we would like to address is the lack of general
notions of simulation and bisimulation for programs that incorporate liveness
conditions. Since simulations are local equivalences, we also here need a better
understanding of progress of finite computations towards defining infinite ones.

In this paper, we introduce a limit concept that allows deterministic ma-
chines to calculate progress approximations so that analytic or coanalytic sets5of
computations are defined. Thus nondeterminism is not inherent to models of
computations involving even very general liveness conditions, even those that
are expressed by infinitary temporal logics.

Our concept is a natural generalization of Büchi or Rabin conditions, which
define only sets very low in the Borel6 hierarchy of properties. Our progress
approximations generalize Büchi automata, where states are designated as ac-
cepting or non-accepting and the limit condition is that infinitely many accepting
states are encountered.

Our main goal is to show that reasoning about the infinite behavior of our
machines can be carried out directly in terms of progress approximations without
transformations. Specifically, we turn our attention to two fundamental problems
for programs with liveness conditions:

– finding a progress concept for showing that one program implements another
program so that each step contributing to a live computation of the first
program is mapped to a corresponding step of the second program; and

– finding a progress concept for showing that two programs can simulate each
other so that each step of one corresponds to a step of the other equivalent
with respect to making or not making progress towards a live computation.

Our results for these two problems are essentially the contents of the two per-
haps most celebrated results of descriptive set theory: the Kleene-Suslin Theorem
and Martin’s Theorem about the determinacy of Borel games, respectively.

Previous Work

For certain kinds of specifications, such as those involving bounded nonde-
terminism or fairness, dozens of verification methods have been suggested;

5 The notion of analytic set can be defined in many ways. For example, M is analytic
if there is a nondeterministic automaton (with a countable state space) such that M
is the set of infinite sequences allowing an infinite run, see [28]. The class of analytic
sets is denoted Σ1

1. The dual of an analytic set is said to be coanalytic or Π1
1.

6 The Borel hierarchy is the least class of sets containing the class Σ0
1 of open sets

and closed under countable intersection and union. For example, the Borel hierarchy
contains the class Π0

2 of sets that are countable intersections of open sets. Every
property defined by a Büchi automaton, including usual fairness conditions, is a finite
Boolean combination of Π0

2 sets (and so is at the third level of the Borel hierarchy),
see [27]. Every Borel set is analytic and coanalytic. Vice versa, the Kleene-Suslin
Theorem states that any set that is both analytic and coanalytic is also Borel.

2

see [1, 2, 3, 4, 6, 7, 16, 17, 18, 24]. Yet the general problem has, to the au-
thor’s knowledge, been addressed only in relatively few articles [5, 9, 28]. The
earlier proposals solve the verification problem by transformations that introduce
infinite nondeterminism.

The most general such approach is that of Vardi [28]. Vardi uses a computa-
tional model corresponding to nondeterministic automata with infinite conjunc-
tive branching for defining specifications. The apparent physical unrealizability
of this concept motivated the limit view given in the present paper. Vardi’s
method can easily be reformulated as progress measures [29], i.e. as mappings
from the states of the implementation. These progress measures, however, do not
imply the ones presented here, since we use a different computational model. To-
gether with the Boundedness Theorem for Π1

1 sets, Vardi’s results amount to the
Kleene-Suslin Theorem, although this was not noted in [28].

A few methods have appeared that more directly quantify progress [3, 13,
11, 22], but these methods only apply to sets at low levels of the Borel hierarchy,
namely finite Boolean combinations of Π0

2 sets.
In [10], a simple progress measure based on a condition, called the Liminf

condition, was proposed. This condition, however, can be used only to reason
about specifications that are Σ0

3, i.e. at the third level of the Borel hierarchy.
Other approaches to viewing computations as limits are based on metrics of
mathematical analysis [21]. These approaches also deal with sets at the third
level.

Recursion-theoretic aspects of relating automata with different kinds of ac-
ceptance conditions have been studied in [26].

In this paper we report on the most general measure proposed in [15]. In
addition, we introduce here the new concept of progress bisimulation.

2 Overview

Our results are based on an abstract, graph-theoretic formulation of the verifica-
tion problem. We represent the transitions of a program as a directed, countable
graph G = (V, E), where vertices V and edges E correspond to program states
and transitions. Then the infinite paths in G correspond to all possible infinite
computations.

To define live computations, we introduce progress approximations on V that
assign a finite amount of information to each vertex. In turns out that if we let
this information be a labeled tree, then very general properties can be expressed.
Thus a progress approximation τ associates a finite tree τ(v) to each vertex v.
A computation v0v1 · · · defines an infinite sequence τ(v0), τ(v1), . . . of progress
approximations and a limit tree limτ(vi) that consists of the nodes that from a
point on occur in every progress approximation. The computation is live if the
limit tree has only finite paths, i.e. if it is well-founded (it may still be infinite).
We call this condition the well-foundedness condition of τ and abbreviate it
WF τ .

The WF condition is extraordinarily powerful. We prove that the sets spec-

3

ified by WF conditions constitute the class Π1
1 of coanalytic sets. This class

includes all Borel sets as we show using progress approximations. In fact, we
show that automata combined with temporal logics with infinite conjunctions
and disjunctions express the class of Borel sets and can be coded as WF condi-
tions.

The dual of the WF condition is the condition that requires the limit tree
to contain some infinite path. This condition is called the non-well-foundedness
condition and denoted ¬WF. The sets specified by ¬WF conditions constitute
the class Σ1

1 of analytic sets.
In order to relate two programs with liveness conditions, we first study a

simpler problem. We may view WF τ as a specification that every computation
of G is live. Thus we say that G satisfies WF τ if every infinite path v0v1 · · · of G
satisfies WF τ . Note that this property seems to call for considering uncountably
many infinite computations. Our first result is to show that G satisfies WF τ can
be established by local reasoning about vertices and edges.

2.1 Progress Measures

For proving the property of program termination, we usually resort to mapping
program states to some values, and we then verify that the value decreases with
every transition. These values quantify progress toward the property of termina-
tion. Similarly for a property specified by a WF condition, we seek a relation on
some set of progress values that the states with their progress approximations
can be mapped to. The relation must ensure that the limit tree is well-founded.

To do this, we use tree embeddings as the set of progress values. We fix a
well-founded tree T and a mapping µ such that µ(v) specifies an embedding of
τ(v) in T . We then define the WF progress relation �WF on tree embeddings.
Intuitively, it states that embedded nodes move forward in T according to a
predefined ordering. If in addition µ satisfies the verification condition

(V C) for any transition from v to v′, it is the case that µ(v) �WF µ(v′),

then µ is a WF progress measure. Our first result is:

Graph Result
All infinite paths in G satisfy WF τ

if and only if
there is a progress measure µ for G and τ .

Thus the question of verifying that all infinite computations satisfy the specifi-
cation is equivalent to finding some mapping that is a WF progress measure. In
other words, the existence of a progress measure means that each step of a pro-
gram contributes in a precise mathematical sense to bringing the computation
closer to the specification.

2.2 Progress Simulations

To formulate our results on progress simulations, we turn to a generally accepted
model of infinite computations. There is an alphabet Σ of letters representing

4

actions, and a program P is a nondeterministic transition system or automaton
over Σ. The computations or runs over an infinite word a0a1 · · · are the sequences
of states, beginning with an initial state, that may occur when the word is
processed according to the transition relation. A word is recognized by P if it
allows a run. The set of words recognized by P is called the language of P and
denoted L(P). (Note that in this model we have abstracted away the details of
the machine structure and technical complications such as stuttering.)

Thanks to the countable nondeterminism present in such programs, they
define the class of Σ1

1 of analytic sets7. Now given two programs P and Q,
called the implementation and specification, we say that P implements Q if
every word recognized by P is also recognized by Q, i.e. if L(P) ⊆ L(Q). The
verification problem is to establish L(P) ⊆ L(Q) by relating the states of the
programs without reasoning directly about infinite computations.

It is well-known that if we can find a simulation, also known as a homomor-
phism or refinement map, from the reachable states of P to the states of Q,
then L(P) ⊆ L(Q). (This method is not complete, however, since L(P) ⊆ L(Q)
might hold while no simulation exists [1, 14, 24].)

The preceding discussion has ignored liveness, including common concepts
such as starvation and fairness. So assume that P also defines a set LiveP of
state sequences said to be live. For example, the set LiveP may be specified by
a formula in temporal logic or by a WF condition. The live language L◦(P) of
P is the set of words that allow a live computation. We say that P satisfies Q if
the words allowing a live computation of P also allow a live computation of Q,
i.e. if L◦(P) ⊆ L◦(Q). The verification problem is now to show that P satisfies
Q without considering infinite computations.

To simplify matters, we assume that a simulation already exists from P to
Q and that the set LiveQ is expressed as a WF condition of a progress approx-
imation τQ on Q’s state space. The set LiveP cannot be expressed as a WF
condition if the verification problem is to be reduced to only a well-foundedness
problem [25]. Thus we instead specify LiveP by a ¬WF condition of a progress
approximation τP on P’s state space.

We show that there is an operation merge∨ that merge progress approxi-
mations so as to express the condition LiveP ⇒ LiveQ, i.e. ¬WF τP ⇒ WF τQ
or, equivalently, WF τP ∨WF τQ. Thus we formulate a progress simulation from
P to Q as a simulation h together with a progress measure for the progress
approximation merge∨(τP (p), τS(h(p)), which is defined on P’s reachable states.

We use the Graph Result to derive

7 If in addition the program P can be effectively or recursively represented (that is, the
transition relation can calculated by a Turing machine, which on input (s, a, s′) halts
with the answer to whether (s, a, s′) is in the transition relation), then the language
recognized is said to be analytical. The class of such languages is denoted Σ1

1. In
general, the effective class corresponding to a class denoted by a boldface letter is
denoted by the lightface letter.

5

General Progress Simulation Theorem
If there is a simulation from P to Q, then
P satisfies Q

if and only if
there is a progress simulation from P to Q.

The General Progress Simulation Theorem in particular solves the verification
problem for programs and specifications that are expressed using formulas in
infinitary temporal logic (under the assumption that a simulation exists).

The theorem has an effective version, which we call the Finite Argument
Theorem. It shows that there is a uniform way of obtaining a progress simulation.
Thus there is an algorithm that calculates a Turing machine for calculating
a progress simulation given as input Turing machines defining P, Q, and a
simulation h with L◦(P) ⊆ L◦(S). This is not a decidability result, but an
explicit reduction of the Π1

1-complete problem of establishing L◦(P) ⊆ L◦(S) to
the classic Π1

1-complete problem of whether a recursive tree is well-founded.
There is a strong connection to descriptive set theory. In fact, we show that

the Finite Argument Theorem expresses the Kleene-Suslin Theorem as a state-
ment about the feasibility of program verification.

2.3 Progress Bisimulations

Consider a program P with state space P and transition relation →P and a
program Q with state space Q and transition relation →Q.

The notion of bisimulation stipulates that the programs are equivalent if
there is a relation R ⊆ P ×Q containing the pair of initial states such that:

– if R(p, q) and p a→P p′, then there is q′ such that q a→Q q′ and R(p′, q′), and
– vice versa, if R(p, q) and q

a→Q q′, then there is p′ such that p a→Q p′ and
R(p′, q′).

This definition is central to the algebraic treatment of concurrency. The es-
sential result is that the existence of the bisimulation relation is equivalent to
the impossibility of observing a difference in behavior of the two systems with
respect to ability of carrying out actions.

Assuming now that P and Q are bisimilar in this traditional sense, can we
then compare them also regarding liveness? That is, we would like to relate
program states also with respect to how close they are to satisfying the liveness
conditions so as to formalize the intuition: for any transition of one program
there is a transition for the other program which is equivalent with respect to
progress or non-progress towards the liveness condition.

To get an understanding of what observing liveness means, we formulate the
process as an infinite game between an observer and a responder . The game is the
same as the one that characterizes bisimilarity, although the winning conditions
are different: bisimilar programs P and Q are live equivalent if no observer can
devise bisimilar computations of P and Q so that one is live and the other is
not.

6

More precisely, the observer is allowed to pick actions and transitions accord-
ing to the following rules in order to produce corresponding computations.

First, the observer chooses an action and a transition on this action for one
of the programs from its initial state. Then the responder lets the other program
make a corresponding transition on the same action from its initial state. The
new pair of states must belong to the bisimulation relation (the responder can
always find a new state by definition of bisimulation relation).

Next, the observer chooses a second action and a transition for one of the
programs. This transition is again matched by the responder who lets the other
program make a corresponding step.

This process continues ad infinitum and produces an infinite word and com-
putations of P and Q over this word. If it is not the case that some observer
can choose actions and transitions so that however the responder matches the
observer’s moves, a live and a non-live computation are produced, then P and
Q are said to be live equivalent .

The way an observer chooses actions and transitions is called a testing strat-
egy . Generally, a strategy is a function of all previous choices made by the other
player. In case a choice is solely dependent on a current pair of states, the strat-
egy is said to be memoryless. Similarly, the responder’s answers are described by
a response strategy , which is also a function of the previous choices. The response
strategy is memoryless if it is dependent only of the current pair of states and
the name and action of the process picked by the observer.

For usual bisimulation, it can be shown for both players that having a win-
ning strategy is equivalent to having a winning memoryless strategy. Also, a
bisimulation relation encodes a class of memoryless response strategies.

Unfortunately, the two programs below show informally that even for simple
liveness conditions, it may happen that neither player has a winning memoryless
strategy.

P
p

r

q
a

a

a

a

i.o.

p

r

q
a

a

a

aQ

a.a.

a.a.

Here P and Q are the same program over a one letter alphabet except for
the liveness condition: the program P accepts if the Büchi condition {q} is
satisfied, i.e. if the state q occurs infinitely often, and the program Q accepts if
the states p and q occur almost always, i.e. if from some point on the state r
is not encountered. It can be seen that neither the observer nor the responder
has a winning memoryless strategy. In fact, the observer does have a winning
strategy, namely “at p, pick the choice (q or r) that is the opposite of what the

7

responder last did,” but this is not a memoryless strategy.8 Thus P and Q are
not live equivalent.

For general systems that are live equivalent, we shall show that a natural
notion of progress bisimilarity can be formalized for their finite computations
if the liveness conditions are Borel. If finite computations u and v of P and Q
are progress bisimilar, we must express by a progress value ρ how close they
are to being either both live or both non-live. Since we assumed that LiveP is
Borel, it is both analytic and coanalytic. Thus there is a pair τP = (τ ′P , τ

′′
P) of

progress approximations such that LiveP is the set of infinite state sequences
that satisfy WF τ ′P and also the set of sequences that satisfy ¬WF τ ′′P . For no-
tational simplicity, we assume that these approximations are defined on finite
computations. We then define an operation merge⇔ on progress approximations
such that merge⇔(τP , τQ) specifies the joint state sequences that are both live
or both non-live.

A progress bisimulation R∗(u, v, ρ) is now a relation that for some fixed well-
founded T relates a finite computation u of P, a finite computation v of Q, and
an embedding ρ of merge⇔(τP (u), τQ(v)) in T such that:

– if R∗(u, v, ρ) and u →P u′, then there is v′ and ρ′ such that v →Q v′,
R∗(u′, v′, ρ′), and ρ �WF ρ

′, and
– vice versa, if R∗(u, v, ρ) and v →Q v′, then there is u′ and ρ′ such that
u→Q u′, R∗(u′, v′, ρ′), and ρ �WF ρ

′.

Our second main result is :

General Progress Bisimulation Theorem
If Borel programs P and Q are bisimilar, then
P and Q are live equivalent

if and only if
P and Q allow a progress bisimulation.

This result follows from a very deep result in descriptive set theory by Martin [19]
that all infinite games with Borel winning conditions are determined, i.e. it is
always the case that one player has a winning strategy. Since determinacy of
games with arbitrary winning conditions contradicts the Axiom of Choice [20],
the General Progress Bisimulation Theory is hard to generalize. In fact, the
study of the Determinacy Axiom is an important part of mathematical logic.

8 Note however that only bounded memory about the past is necessary to specify
the observer’s moves. This is a general phenomenon: as shown in [8], games based
on Boolean combinations of Büchi conditions have bounded-memory strategies, also
known as forgetful strategies. For Rabin conditions, which are special disjunctive
normal forms, memoryless strategies do exist [12].

8

3 Definitions

Programs and Simulations Assume a finite or countable alphabet Σ of ac-
tions. A program P = (P,→, p0,Live) over Σ consists of a state space P , a
transition relation →⊆ P × Σ × P , an initial state p0, and a liveness specifi-
cation Live, which specifies a set of infinite state sequences. The program P is
deterministic if for all p and a there is at most one p′ such that p a→ p′. A
computation over an infinite word a0a1 · · · is an infinite state sequence p0p1 · · ·
such that p0 = p0 and pi

a→ pi+1, for all i. A computation is live if it satisfies
Live. A finite computation u ∈ P ∗ is a prefix of some infinite computation. The
transition relation is extended to finite computations in the natural way: u a→ v
if for some ũ, p, and p′, u = ũ · p, v = u · p′, and p

a→ p′. The set of all words
allowing some computation is denoted L(P) and is called the language of P.
The subset of words in L(P) that allow a live computation is denoted L◦(P)
and called the live language of P.

A simulation h : P ↪→ Q is a partial function that maps the initial state of
P to that of Q and respects the transition relation:

– h(p0) = s0, and
– p ∈ dom(h) and p

a→P p′ implies p′ ∈ dom(h) and s
a→Q s′.

Note that if P and Q are deterministic with L(P) ⊆ L(Q), then a progress
simulation exists (provided that P has no reachable state that has no successor).
Also, h can be uniformly computed from effective representations of P and Q.

Pointer Trees A pointer tree (or simply tree) T is a prefix-closed countable
subset of ω∗, where ω is the set of natural numbers 0, 1, . . . Each sequence t =
t1 · · · t` in T represents a node, which has children t · d∈T . Here d∈ω is the
pointer to t · d from t. If t′ is a prefix of t∈T , then t′ is called an ancestor of t.
We visualize pointer trees as growing upwards as in

〈1, 2〉

〈1〉

2

2 0

1

〈1, 0, 2〉

〈1, 0〉

〈〉

level 1

level 0

level 2

level 3

where children are depicted from left to right in descending order. Any sequence
of pointers t1, t2, . . . (finite or infinite) denotes a path— ε, t1, t1 · t2, . . . (finite or
infinite) in T , provided each t1 · · · t` ∈T . The level |t| of a node t = t1 · · · t` is

9

the number `; the level of ε is 0. T is finite-path or or well-founded if there are
no infinite paths in T . This is also denoted WF T .

A well-founded tree T is ν-rankable if there is an assignment of ordinals to
the nodes of T such that the root has rank ν and if a node t has rank γ then
every child of t has rank less than γ.

4 WF Limit Representations

In this section we show how to represent analytic and coanalytic sets by limits.
For a sequence τ0, τ1, . . . of pointer trees, we define limi τi as:

t∈ lim
i
τi if and only if for almost all i, t∈ τi.

It is not hard to see that limi τi is a tree, which we call the limit tree. To
characterize finite computations, we use a progress approximation τ that assigns
a finite pointer tree τ(u) to each finite word u∈Σ∗. Thus we assume here that the
underlying program is the transition system that has Σ∗ as its state space and
where the transition relation is defined so that the current state is the sequence
of actions encountered. With this representation, the live languages lim¬WFτ
and limWF τ are defined by: for a word α = a0a1 · · ·,

α∈ lim¬WF τ if and only if ¬WF lim
u→α

τ(u), and

α∈ limWF τ if and only if WF lim
u→α

τ(u),

where u→ α denotes that u takes the values ε, a0, a0a1, . . .
The class Σ1

1 of analytic sets and the class Π1
1 of coanalytic sets can be

described by limits:

Theorem 1. (Representation Theorem) The limit operators lim¬WF and
limWF define the classes Σ1

1 and Π1
1, i.e. S ∈Σ1

1 ⇔ ∃τ : S = lim¬WF τ and
S ∈Π1

1 ⇔ ∃τ : S = limWF τ .

Proof The proof uses the classic representation involving projections of trees [20,
p.77]. 2

As with the usual representations (see [20]), we have:

Theorem 2. (Boundedness Theorem for Π1
1 sets) Let C = limWF τ be a co-

analytic set. If there is a countable ordinal ν such that for all α∈C, limu→α τ(u)
is ν-rankable, then C is Borel.

We postpone the proof of Theorem 2 to Section 7.
In the following, we say that an analytic program P is of the form (P,→

, p0,¬WF τ) and that a coanalytic program is of the form (P,→, p0,WF τ), where
τ is a progress approximation that assigns a pointer tree to each state in P .

10

5 WF Relation and Measure

We use tree embeddings to measure progress of computations towards defining
a finite-path tree in the limit. Let T be a fixed tree. An embedding of a tree τ in
T is an injective mapping ρ : τ → T such that ρ(ε) = ε and for all t · d∈ τ there
is d′ with ρ(t · d) = ρ(t) · d′. Note that |ρ(t)| = |t|; in fact, ρ is just a structure-
preserving relabeling of τ . Also note that dom(ρ) is the tree τ and that rng(ρ)
is the image in T of τ .

We can now define the WF relation, which we denote by �WF :

Definition3. (WF Relation) ρ �WF ρ
′ if for all s∈ dom(ρ) ∩ dom(ρ′), ρ(s) �

ρ′(s), where “�” is defined by: d0 · · ·dn � e0 · · ·en if either d0 · · ·dn = e0 · · · en
or there is a level λ ≤ n such that dλ > eλ and for all ` < λ, d` = e`.

Intuitively, ρ �WF ρ
′ holds if for any node s in both dom(ρ) and dom(ρ′), the

image in T of s under ρ′ is the same as or to the right of the image under ρ
(assuming that pointer trees are depicted as explained earlier). Although �WF

is not a well-founded relation, it ensures well-foundedness in the limit provided
T is well-founded.

Lemma 4. (WF Relation Lemma) If WF T and ρ0 �WF ρ1 �WF · · ·, then
WF limi dom(ρi).

This lemma is an immediate consequence of:

Proposition5. Let T be a fixed tree and let ρ0 �WF ρ1 �WF · · · be an infi-
nite �WF -related sequence of embeddings in T. Then there is an embedding ρ of
limi dom(ρi) in limi rng(ρi).

Hence if T is well-founded, �WF measures progress of pointer trees towards
defining a well-founded tree. To state this more forcefully, we need some defini-
tions.

Definition6. Let G = (V, E) be a countable, directed graph and let τ be a
progress approximation on V . We say that an infinite path v0v1 · · · satisfies
the WF condition of τ , and write v0v1 · · · |= WFτ , if WF limi τ(vi). A graph G
satisfies the WF condition of τ , and we write G |= WF τ , if every infinite path in
G satisfies the WF condition.

Definition7. A WF progress measure (µ, T) for (G, τ) is a finite-path tree T
and a mapping µ : v ∈V → (τ(v) → T) such that

– µ(v) is an embedding of τ(v) in T ; and
– µ respects the edge relation of G, i.e. (u, v)∈E implies µ(u) �WF µ(v).

Theorem8. (Graph Result) G |= WF τ if and only if (G, τ) has a WF progress
measure.

Proof “⇐” This follows from the WF Relation Lemma.
“⇒” The proof consists of a transfinite construction of µ and T . 2

11

6 Progress Simulations

In this section, we present the General Progress Simulation Theorem. Let
P = (P,→P, p0,¬WF τP) be an analytic implementation and Q = (Q,→Q
, q0,WF τQ) a coanalytic specification. To prove that L◦(P) ⊆ L◦(Q), we need
to combine the progress approximations.

Definition9. Given finite trees τ and τ ′, the set merge∨(τ, τ ′) consisting
of nodes d0e0 · · ·dnen and d0e0 · · ·en−1dn, where n ≥ −1, d0 · · ·dn ∈ τ , and
e0 · · · en ∈ τ ′, is called the or-merge of τ and τ ′.

It is not hard to see that merge∨(τ, τ ′) is a tree. The or-merge has the following
properties:

Proposition10. Let τi and τ ′i be infinite sequences of trees.

(a) WF limi merge∨(τi, τ ′i) if and only if WF limi τi or WF limi τ
′
i .

(b) If lim merge∨(τi, τ ′i) is ν-rankable and ¬WF limi τi, then limi τ
′
i is ν-rankable.

Given a simulation h : P → Q, we measure progress towards LiveP ⇒ LiveQ
as follows.

Definition11. A progress simulation (h, µ, T) from P to Q relative to h is a
WF progress measure for ((V, E), p 7→ merge∨(τP (p), τS(h(p))), where V ⊆ P
are the states of P reachable by some finite computation and (p, p′) ∈ E if and
only if p a→ p′ for some a.

Theorem 12. (Progress Simulation Theorem) Assume we have analytic
P = (P,→P, p0,¬WF τP), coanalytic Q = (Q,→Q, q0,WF τQ), and simulation
h : P → Q. Then L◦(P) ⊆ L◦(Q) if and only if there is a progress simulation
from P to Q relative to h.

Proof The proof follows from the WF Relation Lemma, Proposition 10, and
Theorem 8. 2

6.1 Suslin’s Theorem

Corollary 13. (Suslin’s Theorem) Let L be a set of infinite sequences over
ω that is both analytic and coanalytic. Then L is Borel.

6.2 Finite Argument Theorem

A progress simulation can be viewed as an argument for why a program sat-
isfies a specification. We show that for effective descriptions of program, spec-
ification, and simulation, there is an effective description of the progress mea-
sure. More precisely, let a WF semi-measure (µ, T) be a WF progress measure
except that there is no requirement that T be well-founded. Then there is a

12

total recursive function calculating an index of a WF semi-measure (µ, T) for
merge∨(τP (p), τS(h(p))) given indices for P, Q, and h; moreover, (h, µ, T) is a
progress simulation, i.e. T is well-founded, if and only if P satisfies Q.

Theorem 12′ (Finite Argument Theorem) A progress simulation can be
obtained uniformly from indices of P, Q, and h.

Proof By analyzing the proof of Theorem 12 for computational contents, one
can obtain an explicit algorithm for calculating µ and T . 2

Intuitively, the Finite Argument Theorem shows that there is a systematic (in
fact computable) way of getting a finite argument of correctness about finite
computations from the program and the specification (if a simulation exists, for
example by assuming that program and specification are deterministic).

The verification method based on WF progress measures is optimal in the
following sense. For specifications that are Σ1

1, it is Π1
2-complete to determine

whether a Σ1
1 program satisfies the specification. For example, determining

whether L(P) ⊆ L(Q), where P and Q are recursively represented nondeter-
ministic transition systems is Π1

2-complete [25]. It is hardly imaginable that a
reasonable verification method would not be in Σ1

2, which allows one to guess
relations and verify that they are well-founded. But even a Σ1

2 method cannot
possible solve the Π1

2-complete verification problem for Σ1
1 sets. In this sense the

preceding results are optimal.
Finally, we observe that, just as Suslin’s Theorem is a consequence of Theo-

rem 12, the Finite Argument Theorem implies Kleene’s Theorem, which states
that there is a uniform way of obtaining an index in the hyperarithmetical hier-
archy of a set L from a Π1

1 and a Σ1
1 index of L [23].

7 Borel Programs

To describe Borel sets in terms that are useful for verification of programs, we
introduce a class of programs whose acceptance conditions are infinitary tem-
poral logic formulas. This will also allow us to prove the Boundedness Theorem
for Π1

1 sets.

Definition14. By transfinite induction, we define a ranked formula φγ , where
γ is a countable ordinal, to be either a temporal predicate 23Φ (“infinitely often
Φ”) or 32Φ (“almost always Φ”), where Φ is a predicate on V , or a disjunction∨
γ′<γ φγ′ or a conjunction

∧
γ′<γ φγ′ , where φγ′ are ranked formulas.

A sequence v0v1 · · · satisfies φγ , written v0v1 · · · |=φγ , according to:

v0v1 · · · |= 32Φ if and only if ∃H : ∀h > H : vh |= Φ
v0v1 · · · |= 23Φ if and only if ∀H : ∃h > H : vh |= Φ
v0v1 · · · |=

∧
γ′<γ

φγ′ if and only if ∀γ′ < γ : v0v1 · · · |=φγ′

v0v1 · · · |=
∨
γ′<γ

φγ′ if and only if ∃γ′ < γ : v0v1 · · · |=φγ′

13

Definition15. A Borel program P = (P,→, p0, φν) consists of a countable set
of states P , a deterministic transition relation →⊆ P × Σ× P , an initial state
p0, and a ranked formula φν.

Proposition16. The class of live languages accepted by Borel programs is the
class of Borel sets.

7.1 Proof of the Boundedness Theorem of Section 4

7.2 Borel Sets Are Analytic and Coanalytic

We show how to translate the temporal logic acceptance condition of a Borel
program into a WF or ¬WF condition of a progress approximation defined on
Σ∗. By this translation, program verification with temporal logic can take place
by measuring progress using Theorem 8 or Theorem 12. The translation also
proves that all Borel sets are analytic and coanalytic.

Theorem 17. Let P be a Borel program. Then there exist progress approxima-
tions τ and τ ′ on Σ∗ such that

limWF τ = L◦(P)

lim¬WF τ
′ = L◦(P)

It is usually not possible to define τ as a function of the current state. Instead
the whole history of states or actions must be used. In particular, a finite-state
Borel program becomes infinite-state. (In contrast, note that Büchi conditions
allow certain restricted third level properties to be expressed without going to
infinite-state systems.)

In order to prove this theorem we need two lemmas. They show how to merge
countably many sequences of finite trees into one such sequence that satisfies the
WF condition if and only if all (respectively, one) of the original sequences satisfy
the WF condition.

Lemma 18. There is an operation merge∀ that merges any list of finite trees
into a finite tree such that for any collection (τ ji)i, j ∈ω, of sequences of finite
trees:

WF limi→ω merge∀(τ i0, . . . , τ
i
i)

if and only if
∀j : WF limi→ω τ

j
i

Lemma 19. There is an operation merge∃ that merges any list of finite trees
into a finite tree such that for any collection (τ ji)i, j ∈ω, of sequences of finite
trees:

WF limi→ω merge∃(τ i0, . . . , τ
i
i)

if and only if
∃j : WF limi→ω τ

j
i

By Proposition 16, we have:

Corollary 20. Borel sets are analytic and coanalytic.

14

8 Progress Bisimulations

The full paper contains a formalization of the game outlined in Section 2.3. By
Martin’s result [19], one of the players has a winning strategy. If the respon-
der has a winning strategy, then it can be described by a relation over finite
computations and a progress measure for LiveP ⇔ LiveQ. This progress mea-
sure is formulated for the progress approximation merge⇔(τP(u), τQ(v)), which
is defined as merge∧(merge∨(τ ′P(u), τ ′′Q(u)),merge∨(τ ′′P(u), τ ′Q(u))).

9 Conclusion

We have used a limit view of finite computations to show that concepts of sim-
ulation and bisimulation can be be generalized to account also for very general
liveness properties. The two generalized concepts establish a strong connection
to two major theorems in descriptive set theory. The limit conditions presented
here probably have only theoretical interest, however.

In practice, the mathematical challenge needed to establish even simple
bisimulations for transitions systems with Büchi acceptance conditions seems
quite difficult. Further investigation may reveal whether the concepts presented
in this article may be sufficiently simplified for finite-state systems to be of use
in practice.

Acknowledgements

Thanks to Dexter Kozen and Moshe Vardi for valuable comments on an earlier
version of this article.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, 1991.

2. B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2:117–126, 1987.

3. B. Alpern and F.B. Schneider. Verifying temporal properties without temporal
logic. ACM Transactions on Programming Languages and Systems, 11(1):147–167,
January 1989.

4. K.R. Apt and E.-R. Olderog. Proof rules and transformations dealing with fairness.
Science of Computer Programming, 3:65–100, 1983.

5. I. Dayan and D. Harel. Fair termination with cruel schedulers. Fundamenta In-
formatica, 9:1–12, 1986.

6. N. Francez and D. Kozen. Generalized fair termination. In Proc. 11th POPL, Salt
Lake City. ACM, January 1984.

7. O. Grumberg, N. Francez, J.A. Makowsky, and W.P. de Roever. A proof rule for
fair termination of guarded commands. Information and Control, 66(1/2):83–102,
1985.

15

8. Y. Gurevich and L. Harrington. Trees, automata, and games. In Proceedings 14th
Symp. on Theory of Computing. ACM, 1982.

9. D. Harel. Effective transformations on infinite trees with applications to high
undecidability, dominos, and fairness. Journal of the ACM, 33(1):224–248, 1986.

10. N. Klarlund. Liminf progress measures. In Proc. of Mathematical Foundations of
Programming Semantics 1991. LNCS.

11. N. Klarlund. Progress measures and stack assertions for fair termination. In Proc.
Eleventh Symp. on Princ. of Distributed Computing, pages 229–240. IEEE, 1992.

12. N. Klarlund. Progress measures, immediate determinacy, and a subset construc-
tion for tree automata. In Proc. Seventh Symp. on Logic in Computer Science,
1992.

13. N. Klarlund and D. Kozen. Rabin measures and their applications to fairness and
automata theory. In Proc. Sixth Symp. on Logic in Computer Science. IEEE, 1991.

14. N. Klarlund and F.B. Schneider. Proving nondeterministically specified safety
properties using progress measures. Information and Computation, 107(1):151–
170, 1993.

15. Nils Klarlund. Progress Measures and Finite Arguments for Infinite Computations.
PhD thesis, TR-1153, Cornell University, August 1990.

16. D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: the ethics
of concurrent termination. In Proc. 8th ICALP. LNCS 115, Springer-Verlag, 1981.

17. Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness
properties of concurrent programs. Science of Computer Programming, 4(3):257–
290, 1984.

18. Z. Manna and A. Pnueli. Specification and verification of concurrent programs
by ∀-automata. In Proc. Fourteenth Symp. on the Principles of Programming
Languages, pages 1–12. ACM, 1987.

19. D.A. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.
20. Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Log.

and the Found. of Math. North-Holland, 1980.
21. L. Priese. Fairness. EATCS Bulletin, 50, 1993.
22. R. Rinat, N. Francez, and O. Grumberg. Infinite trees, markings and well-

foundedness. Information and Computation, 79:131–154, 1988.
23. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.

McGraw-Hill Book Company, 1967.
24. A.P. Sistla. A complete proof system for proving correctness of nondeterministic

safety specifications. Technical report, Computer and Intelligent Systems Labora-
tory, GTE Laboratories Inc., 1989.

25. A.P. Sistla. On verifying that a concurrent program satisfies a nondeterministic
specification. Information Processing Letters, 32(1):17–24, July 1989.

26. L. Staiger. Recursive automata on infinite words. In P. Enjalbert, A. Finkel, and
K.W. Wagner, editors, Proc. 10th Annual Symp. on Theoretical Computer Science
(STACS), LNCS 665. Springer Verlag, 1993.

27. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 133–191. MIT Press/Elsevier,
1990.

28. M. Vardi. Verification of concurrent programs: The automata-theoretic framework.
Annals of Pure and Applied Logic, 51:79–98, 1991.

29. M. Vardi. Private communication, 1992.

16

Recent Publications in the BRICS Report Series

RS-94-5 Peter D. Mosses.Unified Algebras and Abstract Syntax.
March 1994, 21 pp. To appear in:Recent Trends in Data
Type Specification(ed. F. Orejas), LNCS 785, 1994.

RS-94-6 Mogens Nielsen and Christian Clausen.Bisimulations,
Games and Logic. April 1994, 37 pp. Full version of
paper appearing in: New Results and Trends in Computer
Science, pages 289–305, LNCS 812, 1994.

RS-94-7 Andŕe Joyal, Mogens Nielsen, and Glynn Winskel.
Bisimulation from Open Maps. May 1994, 42 pp. Journal
version of LICS '93 paper.

RS-94-8 Javier Esparza and Mogens Nielsen.DecidabilityIssues
for Petri Nets. May 1994, 23 pp. Appears in EATCS
Bulletin 52, pages 245–262, 1994.

RS-94-9 Gordon Plotkin and Glynn Winskel. Bistructures, Bido-
mains and Linear Logic. May 1994, 16 pp. To appear in
the proceedings of ICALP '94, LNCS, 1994.

RS-94-10 Jakob Jensen, Michael Jørgensen, and Nils Klarlund.
Monadic Second-order Logic for Parameterized Verifica-
tion. May 1994, 14 pp.

RS-94-11 Nils Klarlund. A Homomorphism Concept forω-Regu-
larity. May 1994, 16 pp.

RS-94-12 Glynn Winskel and Mogens Nielsen.Models for Con-
currency. May 1994, 144 pp. To appear as a chapter in
the Handbook of Logic and the Foundations of Computer
Science, Oxford University Press.

RS-94-13 Glynn Winskel. Stable Bistructure Models of PCF.
May 1994, 26 pp.Preliminary draft. Invited lecture for
MFCS '94. To appear in the proceedings of MFCS '94,
LNCS, 1994.

RS-94-14 Nils Klarlund. The Limit View of Infinite Computations.
May 1994, 16 pp. To appear in the LNCS proceedings of
Concur '94, LNCS, 1994.

