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Towards Compatible and Interderivable Semantic Specifications
for the Scheme Programming Language, Part I:

Denotational Semantics, Natural Semantics, and Abstract Machines

Olivier Danvy

Department of Computer Science
University of Aarhus∗
danvy@brics.dk

Abstract
We derive two big-step abstract machines, a natural seman-
tics, and the valuation function of a denotational semantics
based on the small-step abstract machine for Core Scheme
presented by Clinger at PLDI’98. Starting from a functional
implementation of this small-step abstract machine, (1) we
fuse its transition function with its driver loop, obtaining the
functional implementation of a big-step abstract machine;
(2) we adjust this big-step abstract machine so that it is in
defunctionalized form, obtaining the functional implemen-
tation of a second big-step abstract machine; (3) we refunc-
tionalize this adjusted abstract machine, obtaining the func-
tional implementation of a natural semantics in continuation
style; and (4) we closure-unconvert this natural semantics,
obtaining a compositional continuation-passing evaluation
function which we identify as the functional implementa-
tion of a denotational semantics in continuation style. We
then compare this valuation function with that of Clinger’s
original denotational semantics of Scheme.

1. Introduction
Motivation: Somewhat facetiously, in an earlier work [7],
Biernacka and the author concluded:

Call/cc was introduced in Scheme [11] as a Church
encoding of Reynolds’s escape operator [48]. A typed
version of it is available in Standard ML of New Jer-
sey [29] and Griffin has identified its logical con-
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tent [28]. It is endowed with a variety of specifi-
cations: a CPS transformation [18], a CPS inter-
preter [30, 48], a denotational semantics [33], a com-
putational monad [55], a big-step operational seman-
tics [29], the CEK machine [26], calculi in the form
of reduction semantics [25], and a number of imple-
mentation techniques [12, 15, 31]—not to mention its
call-by-name variant in the archival version of Kriv-
ine’s machine [34].

Question: How do we know that all the artifacts1

in this semantic jungle define the same call/cc?

In some sense, the same can be said of the Scheme pro-
gramming language today: it is independently specified with
a denotational semantics [46], a structural operational se-
mantics [45] and a reduction semantics [37], and its tail-
recursion property is accounted for with a small-step abstract
machine [14]. Which one specifies Scheme? The newest
one? Or does one supersede a previous one of the same
kind, just as the revisedn+1 report supersedes the revisednre-
port [13,33,46,50,52,53]? Or perhaps each semantics spec-
ifies one particular facet, however large that facet may be, of
Scheme, irrespective of others? In that case, is the reference
semantics the most complete one at any point of time?

Background: It is the author’s thesis2 that functional
representations of small-step operational semantics (i.e.,
structured operational semantics), reduction semantics (i.e.,
small-step operational semantics with an explicit representa-
tion of the reduction context), small-step abstract machines,
big-step abstract machines, big-step operational semantics
(i.e., natural semantics), and denotational semantics are
inter-derivable using elementary program transformations
such as CPS transformation [18,44,47,51], defunctionaliza-
tion [21,47], fixed-point fusion [19,43], and refocusing [22].

1 “Artifact” means “man-made construct.”
2 A real one, actually [17], together with several others [1,5,9,32,38,39,41,
42], as a matter of fact.



This work: As a proof of concept, we derive the functional
representation of the denotational semantics correspond-
ing to Clinger’s abstract machine as presented at PLDI’98
to specify the meaning of proper tail recursion [14]. We
then compare it with Clinger’s denotational semantics in the
R3RS [46]. Each of these semantics is significant: the de-
notational one was profoundly influential in that it revealed
formal semantics in action to a whole generation of com-
puter scientists, and the operational one was instrumental
to substantiate the precise meaning of what it means for an
implementation to be properly tail-recursive. They are also
unique because of their use of permutation/unpermutation
functions to account for the undetermined sequencing order
of sub-expressions in an application.

Our starting point is that, as pioneered by Reynolds in
“Definitional Interpreters” [47] and pursued by the author
and his students [2–4,6,16], closure-converting and defunc-
tionalizing a continuation-passing evaluation function yields
a big-step abstract machine. Here, we restate Clinger’s ma-
chine to operate with big steps, we adjust it so that it is
in defunctionalized form, and we refunctionalize and then
closure-unconvert the functional implementation of this ad-
justed machine, obtaining an evaluation function which is
compositional and in continuation-passing style.

Prerequisites: Naturally, we assume the reader to be aware
of Clinger’s denotational semantics of Scheme in the R3RS
[46] and of his abstract machine for Core Scheme as pre-
sented at PLDI’98 [14]. In addition, we also expect a basic
knowledge of Standard ML [40], a pure subset of which we
use as a functional meta-language,3 and a passing familiarity
with defunctionalization [21,47] and its left inverse, refunc-
tionalization [19] as well as with closure conversion [35] and
its left inverse, closure unconversion. As for the technique
of fusing the transition function of a small-step abstract ma-
chine with its driver loop, it is described in a recent note by
Millikin and the author [20].

Overview: We first review the domain of discourse (Sec-
tion 2): stores, environments, and the permutation/unpermu-
tation functions that are idiosyncratic to Clinger’s semantic
specifications of Scheme. We then specify the syntax (Sec-
tion 3) and the semantics (Section 4) of Core Scheme, and
a garbage-collection rule (Section 5). Thus equipped, we
present Clinger’s small-step abstract machine (Section 6)
and then its big-step counterpart (Section 7). We put this
big-step counterpart in defunctionalized form (Section 8),
we present its refunctionalized counterpart (Section 9), and
we closure-unconvert it (Section 10). We then compare the
resulting compositional evaluation function in continuation-
passing style to the valuation function of Clinger’s deno-
tational semantics (Section 11) and then conclude (Sec-
tion 12).

3 In that we keep in mind that the full name of the Scheme workshop is
“Schemeand Functional Programming.” (The emphasis is ours.)

Pictorially:
Clinger’s small-step abstract machine

(Figures 1 and 2 in Section 6)

lightweight fusion
��

big-step abstract machine
(Figures 3 and 4 in Section 7)

adjustment
��

big-step abstract machine in defunctionalized form
(Figures 5 and 6 in Section 8)

refunctionalization
��

natural semantics in continuation style
(Figures 7 and 8 in Section 9)

defunctionalization

OO

closure unconversion
��

denotational semantics
(Figure 9 in Section 10)

closure conversion
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2. Domain of discourse
In the interest of brevity and abstractness, we only present
ML signatures for the store (Section 2.1) and the environ-
ment (Section 2.2). We also explicitly treat Clinger’s permu-
tations and unpermutations (Section 2.3).

2.1 Store

A store is a mapping from locations to storable values. We
specify it as a polymorphic abstract data type with the usual
algebraic operators to allocate fresh locations and initialize
them with given storable values, dereference a given location
in a given store, and update a given store at a given location
with a given storable value.

signature STO = sig
type ’a sto
type loc

val empty : ’a sto

val new : ’a sto ∗ ’a −> loc ∗ ’a sto
val news : ’a sto ∗ ’a list −> loc list ∗ ’a sto

val fetch : loc ∗ ’a sto −> ’ a option
val update : loc ∗ ’a ∗ ’a sto −> ’ a sto

end

structure Sto : STO = struct
( ∗ deliberately omitted ∗)

end

At the price of modularity, we could define the allocation
operators to also be given an environment and a context so
that the fresh location(s) they return can be more precisely
characterized as not occurring in the environment and in the
context. This less modular definition would let us implement
Clinger’s small-step abstract machine even more faithfully.



2.2 Environment

An environment is a mapping from identifiers to denotable
values. We specify it as a polymorphic abstract data type
with the usual algebraic operators to extend a given envi-
ronment with new bindings and to look up identifiers in a
given environment. We also need a predicate testing whether
a given environment is empty.

signature ENV = sig
type ’a env

val empty : ’a env
val emptyp : ’a env −> bool
val extend : ide ∗ ’a ∗ ’a env

−> ’ a env
val extends : ide list ∗ ’a list ∗ ’a env

−> ’ a env
val lookup : ide ∗ ’a env −> ’ a option

end

structure Env : ENV = struct
( ∗ deliberately omitted ∗)

end

In the present study, the denotable values are locations in a
store.

2.3 Permutations and unpermutations

Both in his denotational semantics and his small-step ab-
stract machine, Clinger non-deterministically uses a pair of
permutation functions: one over the sub-terms in an appli-
cation, and the inverse one over the resulting values (see
Note #1 in Section 6.1). We implement this non-determinism
by threading a stream of pairs of permutations through
Clinger’s semantic specifications. We materialize this stream
with the following polymorphic abstract data type.

signature PERMUTATION =sig
type ’a permutation = ’a ∗ ’a list

−> ’ a ∗ ’a list
type (’v, ’t) permutations

val new : (’v, ’t) permutations
−> (’ v permutation ∗ ’t permutation)

∗ (’v, ’t) permutations
val init : (’v, ’t) permutations

end

structure Permutation : PERMUTATION = struct
( ∗ deliberately omitted ∗)

end

3. Syntax
The following module implements the internal syntax of
Core Scheme [14, Figure 1].

structure Syn = struct
datatype quotation = QBOOL of bool

| QNUMBof int
| QSYMBof ide
| QPAIR of Sto.loc ∗ Sto.loc

( ∗ | QVECT of ... ∗)
( ∗ | ... ∗)

datatype term = QUOTATION of quotation
| VAR of ide
| LAM of ide list ∗ term
| APP of term ∗ term list
| CND of term ∗ term ∗ term
| SET of ide ∗ term

end

4. Semantics
The following module implements the expressible values
and evaluation contexts [14, Figure 4]. Like Clinger, we fo-
cus on Core Scheme and do not consider primitive proce-
dures and first-class continuations here. (These are unprob-
lematic to add [4,7].)

structure Sem = struct
( ∗datatype primop = ... ∗)

datatype value = QUOTED of Syn.quotation
| UNSPECIFIED
| UNDEFINED

( ∗ | PRIMOP of primop ∗)
( ∗ | ESCAPE of Sto.loc ∗ cont ∗)

| CLOSUREof Sto.loc ∗
(ide list ∗ Syn.term) ∗

Sto.loc Env.env
and cont = HALT

| SELECT of Syn.term ∗
Syn.term ∗
Sto.loc Env.env ∗
cont

| ASSIGN of ide ∗
Sto.loc Env.env ∗
cont

| PUSH of Syn.term list ∗
value list ∗

value Permutation.permutation ∗
Sto.loc Env.env ∗
cont

| CALL of value list ∗ cont
end

Note: Compared to the original [14, Figure 4], we fixed
one typo in the declaration of the evaluation-context con-
structor for calls, which holds a list of semantic values,
not a list of syntactic terms.

5. Garbage collection
The following module is used to implement the garbage-
collection rule [14, Figure 5].

signature GC = sig
val gc : Sem.value ∗

Sto.loc Env.env ∗
Sem.cont ∗
Sem.value Sto.sto
−> Sem.value Sto.sto

end

structure Gc : GC = struct
( ∗ deliberately omitted ∗)

end



structure M small step = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

datatype halting state = RESULT of Sem.value ∗ Sem.value Sto.sto | STUCK of string

datatype state = FINAL of halting state | INTER of configuration
withtype configuration = term or value ∗ Sto.loc Env.env ∗ Sem.cont ∗ Sem.value Sto.sto

∗ (Sem.value, Syn.term) Permutation.permutations

fun move ...
= ...

fun drive (FINAL answer)
= answer

| drive (INTER configuration)
= drive (move configuration)

fun evaluate t
= drive (INTER (TERM t, r init, Sem.HALT, Sto.empty, Permutation.init))

end

Figure 1. Clinger’s small-step abstract machine without the GC rule, part 1/2: configurations, driver loop and initialization

6. Clinger’s small-step abstract machine
We first present the machine without the GC rule (Sec-
tion 6.1) and then with a GC rule (Section 6.2).

6.1 Without the GC rule

The abstract machine is displayed in Figures 1 and 2. It oper-
ates on a quintuple: a term or a value, an environment map-
ping variables to store locations, a context, a store mapping
locations to values, and a stream of permutations. When the
first component is a term, this term is dispatched upon. When
the first component is a value, the third component (i.e., the
context) is dispatched upon.

Note #1: A new pair of permutations is explicitly allocated
every time an application is evaluated. The second one
operates over terms and is used immediately over the
sub-terms of the application. The first one operates over
values and it will be subsequently used over the results of
evaluating each of these sub-terms.

Clinger’s formulation uses an infinite set of rules gen-
erated by a rule schema that is parameterized by a per-
mutation and its inverse. We model his non-deterministic
choice of permutation with an oracle that picks in the cur-
rent stream of permutations.

Note #2: Compared to the original [14, Figure 5] and to
Clinger’s denotational semantics, this semantics embod-
ies the official specification of Scheme about assign-
ments:

When evaluating an assignment, the expression is
evaluated, and the resulting value is stored in the
location to which the variable is bound. This vari-

able must be bound either in some region enclos-
ing the assignment or at the top level.

Accordingly, in Figure 2, the expression is evaluated, and
then the variable is checked to be bound.

For the rest, Figures 1 and 2 display a scrupulously faith-
ful implementation of Clinger’s small-step abstract machine.

6.2 With a GC rule

The following implementation deterministically applies the
GC rule every time a value is returned to the evaluation
context, i.e., at every reduction step. Compared to Figure 1,
only the driver loop is changed.

structure M small step with gc rule = struct
...
fun drive (FINAL answer)

= answer
| drive (INTER (TERM t, r, c, s, p))

= drive (move (TERM t, r, c, s, p))
| drive (INTER (VALUE v, r, c, s, p))

= let val s’ = Gc.gc (v, r, c, s)
in drive (move (VALUE v, r, c, s’, p))

end
...

end

In contrast, Clinger’s formulation of the GC rule is non-
deterministic.



structure M small step = struct
...
fun move (TERM (Syn.QUOTATION q), r, c, s, p)

= INTER (VALUE (Sem.QUOTED q), r, c, s, p)
| move (TERM (Syn.VAR i), r, c, s, p)

= ( case Env.lookup (i, r)
of (SOME l)

=> ( case Sto.fetch (l, s)
of (SOME v)

=> ( case v
of Sem.UNDEFINED

=> FINAL (STUCK "attempt to reference undefined variable")
|

=> INTER (VALUE v, r, c, s, p))
| NONE

=> FINAL (STUCK "attempt to read an invalid location"))
| NONE

=> FINAL (STUCK "attempt to reference an undeclared variable"))
| move (TERM (Syn.LAM (is, t)), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in INTER (VALUE (Sem.CLOSURE (l, (is, t), r)), r, c, s’, p) end

| move (TERM (Syn.CND (t0, t1, t2)), r, c, s, p)
= INTER (TERM t0, r, Sem.SELECT (t1, t2, r, c), s, p)

| move (TERM (Syn.SET (i, t)), r, c, s, p)
= INTER (TERM t, r, Sem.ASSIGN (i, r, c), s, p)

| move (TERM (Syn.APP (t0, ts)), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in INTER (TERM t0’, r, Sem.PUSH (ts’, nil, pi, r, c), s, p’) end

| move (VALUE v, r’, Sem.HALT, s, p)
= if Env.emptyp r’

then FINAL (RESULT (v, s))
else INTER (VALUE v, Env.empty, Sem.HALT, s, p)

| move (VALUE (Sem.QUOTED (Syn.QBOOL false)), r’, Sem.SELECT (t1, t2, r, c), s, p)
= INTER (TERM t2, r, c, s, p)

| move (VALUE , r’, Sem.SELECT (t1, t2, r, c), s, p)
= INTER (TERM t1, r, c, s, p)

| move (VALUE v, r’, Sem.ASSIGN (i, r, c), s, p)
= ( case Env.lookup (i, r)

of (SOME l)
=> ( case Sto.fetch (l, s)

of (SOME v)
=> ( case v

of Sem.UNDEFINED
=> FINAL (STUCK "attempt to assign undefined variable")

|
=> INTER (VALUE Sem.UNSPECIFIED, r, c, Sto.update (l, v, s), p))

| NONE
=> FINAL (STUCK "attempt to write an invalid location"))

| NONE
=> FINAL (STUCK "attempt to assign an undeclared variable"))

| move (VALUE v0’, r’, Sem.PUSH (nil, vs’, pi, r, c), s, p)
= let val (v0, vs) = pi (v0’, vs’)

in INTER (VALUE v0, r, Sem.CALL (vs, c), s, p) end
| move (VALUE v0’, r’, Sem.PUSH (t1’ :: ts’, vs’, pi, r, c), s, p)

= INTER (TERM t1’, r, Sem.PUSH (ts’, v0’ :: vs’, pi, r, c), s, p)
| move (VALUE (Sem.CLOSURE (l, (is, t), r)), r’, Sem.CALL (vs, c), s, p)

= let val (ls, s’) = Sto.news (s, vs)
in INTER (TERM t, Env.extends (is, ls, r), c, s’, p) end

| move (VALUE v, r’, Sem.CALL (vs, c), s, p)
= FINAL (STUCK "attempt to apply a non −procedure")

...
end

Figure 2. Clinger’s small-step abstract machine without the GC rule, part 2/2: transition function



structure M big step = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

datatype answer = RESULT of Sem.value ∗ Sem.value Sto.sto | STUCK of string

fun iterate ...
= ...

fun evaluate t
= iterate (TERM t, r init, Sem.HALT, Sto.empty, Permutation.init)

end

Figure 3. Big-step counterpart of Figure 1, part 1/2: configurations and initialization

7. Big-step version of Clinger’s abstract
machine

We first present the big-step version of the machine without
any GC rule (Section 7.1) and then with a GC rule (Sec-
tion 7.2).

7.1 Without the GC rule

In Figure 1, the ‘drive’ function iteratively calls the ‘move’
function until a final answer is obtained, if any. As pointed
out by Millikin and the author [20], such small-step abstract
machines are candidates for lightweight fusion by fixed-
point promotion [43]: the composition of ‘drive’ and ‘move’
can be fused into an ‘iterate’ function where the outer re-
cursive call to ‘drive’ has been distributed to all the return
points in the definition of ‘move.’ The result is the big-step
abstract machine displayed in Figures 3 and 4. Since Ohori
and Sasano’s fixed-point promotion is fully correct, this big-
step abstract machine is also correct, by construction.

7.2 With a GC rule

The following implementation deterministically applies the
GC rule every time a function is about to be applied. Com-
pared to Figure 4, only one clause is changed.

structure M big step with gc rule = struct
( ∗ ... ∗)

| iterate (VALUE v0’,
r’,
Sem.PUSH (nil, vs’, pi, r, c),
s,
p)

= let val (v0, vs) = pi (v0’, vs’)
val s’ = Gc.gc (v0,

r,
Sem.CALL (vs, c),
s)

in iterate (VALUE v0,
r,
Sem.CALL (vs, c),
s’,
p) end

( ∗ ... ∗)
end



structure M big step = struct
...
fun iterate (TERM (Syn.QUOTATION q), r, c, s, p)

= iterate (VALUE (Sem.QUOTED q), r, c, s, p)
| iterate (TERM (Syn.VAR i), r, c, s, p)

= ( case Env.lookup (i, r)
of (SOME l)

=> ( case Sto.fetch (l, s)
of (SOME v)

=> ( case v
of Sem.UNDEFINED

=> STUCK "attempt to reference undefined variable"
|

=> iterate (VALUE v, r, c, s, p))
| NONE

=> STUCK "attempt to read an invalid location")
| NONE

=> STUCK "attempt to reference an undeclared variable")
| iterate (TERM (Syn.LAM (is, t)), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in iterate (VALUE (Sem.CLOSURE (l, (is, t), r)), r, c, s’, p) end

| iterate (TERM (Syn.CND (t0, t1, t2)), r, c, s, p)
= iterate (TERM t0, r, Sem.SELECT (t1, t2, r, c), s, p)

| iterate (TERM (Syn.SET (i, t)), r, c, s, p)
= iterate (TERM t, r, Sem.ASSIGN (i, r, c), s, p)

| iterate (TERM (Syn.APP (t0, ts)), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in iterate (TERM t0’, r, Sem.PUSH (ts’, nil, pi, r, c), s, p’) end

| iterate (VALUE v, r’, Sem.HALT, s, p)
= if Env.emptyp r’

then RESULT (v, s)
else iterate (VALUE v, Env.empty, Sem.HALT, s, p)

| iterate (VALUE (Sem.QUOTED (Syn.QBOOL false)), r’, Sem.SELECT (t1, t2, r, c), s, p)
= iterate (TERM t2, r, c, s, p)

| iterate (VALUE , r’, Sem.SELECT (t1, t2, r, c), s, p)
= iterate (TERM t1, r, c, s, p)

| iterate (VALUE v, r’, Sem.ASSIGN (i, r, c), s, p)
= ( case Env.lookup (i, r)

of (SOME l)
=> ( case Sto.fetch (l, s)

of (SOME v)
=> ( case v

of Sem.UNDEFINED
=> STUCK "attempt to assign undefined variable"

|
=> iterate (VALUE Sem.UNSPECIFIED, r, c, Sto.update (l, v, s), p))

| NONE
=> STUCK "attempt to write an invalid location")

| NONE
=> STUCK "attempt to assign an undeclared variable")

| iterate (VALUE v0’, r’, Sem.PUSH (nil, vs’, pi, r, c), s, p)
= let val (v0, vs) = pi (v0’, vs’)

in iterate (VALUE v0, r, Sem.CALL (vs, c), s, p) end
| iterate (VALUE v0’, r’, Sem.PUSH (t1’ :: ts’, vs’, pi, r, c), s, p)

= iterate (TERM t1’, r, Sem.PUSH (ts’, v0’ :: vs’, pi, r, c), s, p)
| iterate (VALUE (Sem.CLOSURE (l, (is, t), r)), r’, Sem.CALL (vs, c), s, p)

= let val (ls, s’) = Sto.news (s, vs)
in iterate (TERM t, Env.extends (is, ls, r), c, s’, p) end

| iterate (VALUE v, r’, Sem.CALL (vs, c), s, p)
= STUCK "attempt to apply a non −procedure"

...
end

Figure 4. Big-step counterpart of Figure 2, part 2/2: transition function



structure M big step defunct = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

datatype answer = RESULT of Sem.value ∗ Sem.value Sto.sto | STUCK of string

fun eval ...
= ...

and continue ...
= ...

fun evaluate t
= eval (TERM t, r init, Sem .HALT, Sto.empty, Permutation.init)

end

Figure 5. Version of Figure 3 in defunctionalized form, part 1/2: configurations and initialization

8. Big-step version of Clinger’s abstract
machine in defunctionalized form

8.1 Without the GC rule

Like the SECD machine [16, 35], the big-step version of
Clinger’s abstract machine is not in defunctionalized form.
Fortunately, it can easily made to be so [19], by using the
type isomorphism between the transition function

iterate : term or value ∗ ... −> answer

and two mutually recursive transition functions

eval : term ∗ ... −> answer
continue : value ∗ ... −> answer.

The reformulated version is displayed in Figures 5 and 6,
and can readily be recognized as an ‘eval/apply’ abstract
machine [36]:4 the ‘eval’ transition function dispatches on
terms and the ‘apply’ transition function (or more accu-
rately, the ‘continue’ transition function) dispatches on (the
top constructor of) the context. This abstract machine is in
defunctionalized form in that the evaluation context and the
second transition function are the defunctionalized counter-
part of a function. As shown in the next section, this function
is a continuation since the refunctionalized abstract machine
is in CPS.5

4 A more accurate term than ‘eval/apply’, though, would be ‘eval/continue.’
5 Hence the point about terminology in Footnote 4.

8.2 With a GC rule

As in Section 7.2, it is simple to deterministically apply the
GC rule, e.g., every time a function is about to be applied.



structure M big step defunct = struct
...
fun eval (Syn.QUOTATION q, r, c, s, p)

= continue (Sem.QUOTED q, r, c, s, p)
| eval (Syn.VAR i, r, c, s, p)

= ( case Env.lookup (i, r)
of (SOME l)

=> ( case Sto.fetch (l, s)
of (SOME v)

=> ( case v
of Sem.UNDEFINED

=> STUCK "attempt to reference undefined variable"
|

=> continue (v, r, c, s, p))
| NONE

=> STUCK "attempt to read an invalid location")
| NONE

=> STUCK "attempt to reference an undeclared variable")
| eval (Syn.LAM (is, t), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in continue (Sem.CLOSURE (l, (is, t), r), r, c, s’, p) end

| eval (Syn.CND (t0, t1, t2), r, c, s, p)
= eval (t0, r, Sem.SELECT (t1, t2, r, c), s, p)

| eval (Syn.SET (i, t), r, c, s, p)
= eval (t, r, Sem.ASSIGN (i, r, c), s, p)

| eval (Syn.APP (t0, ts), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in eval (t0’, r, Sem.PUSH (ts’, nil, pi, r, c), s, p’) end

and continue (v, r’, Sem.HALT, s, p)
= if Env.emptyp r’

then RESULT (v, s)
else continue (v, Env.empty, Sem.HALT, s, p)

| continue (Sem.QUOTED (Syn.QBOOL false), r’, Sem.SELECT (t1, t2, r, c), s, p)
= eval (t2, r, c, s, p)

| continue ( , r’, Sem.SELECT (t1, t2, r, c), s, p)
= eval (t1, r, c, s, p)

| continue (v, r’, Sem.ASSIGN (i, r, c), s, p)
= ( case Env.lookup (i, r)

of (SOME l)
=> ( case Sto.fetch (l, s)

of (SOME v)
=> ( case v

of Sem.UNDEFINED
=> STUCK "attempt to assign undefined variable"

|
=> continue (Sem.UNSPECIFIED, r, c, Sto.update (l, v, s), p))

| NONE
=> STUCK "attempt to write an invalid location")

| NONE
=> STUCK "attempt to assign an undeclared variable")

| continue (v0’, r’, Sem.PUSH (nil, vs’, pi, r, c), s, p)
= let val (v0, vs) = pi (v0’, vs’)

in continue (v0, r, Sem.CALL (vs, c), s, p) end
| continue (v0’, r’, Sem.PUSH (t1’ :: ts’, vs’, pi, r, c), s, p)

= eval (t1’, r, Sem.PUSH (ts’, v0’ :: vs’, pi, r, c), s, p)
| continue (Sem.CLOSURE (l, (is, t), r), r’, Sem.CALL (vs, c), s, p)

= let val (ls, s’) = Sto.news (s, vs)
in eval (t, Env.extends (is, ls, r), c, s’, p) end

| continue (v, r’, Sem.CALL (vs, c), s, p)
= STUCK "attempt to apply a non −procedure"

...
end

Figure 6. Version of Figure 4 in defunctionalized form, part 2/2: transition functions



structure Sem = struct
datatype value = QUOTED of Syn.quotation

| UNSPECIFIED
| UNDEFINED
| CLOSUREof Sto.loc ∗ (ide list ∗ Syn.term) ∗ Sto.loc Env.env

and answer = RESULT of value ∗ value Sto.sto
| STUCK of string

withtype cont = value ∗ Sto.loc Env.env ∗ value Sto.sto ∗ value Permutation.permutation −> answer
end

structure M big step refunct = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

fun eval ...
= ...

fun evaluate t
= eval (t, r init, fn (v, , s, p) = > Sem.RESULT (v, s), Sto.empty, Permutation.init)

end

Figure 7. Refunctionalized version of Figure 5, part 1/2: configurations and initialization

9. Big-step version of Clinger’s abstract
machine, refunctionalized

9.1 Without the GC rule

The refunctionalized version is displayed in Figures 7 and 8:
defunctionalizing it yields back Figures 5 and 6. It is the
evaluation function in continuation-passing style of a natural
semantics [23, 29]. As exploited in Section 10, it is also in
the range of closure conversion.

9.2 With a GC rule

Refunctionalization has made us cross a line: continuations
are now higher-order, which prevents us to implement the
GC rule as directly as in Section 7.2.



structure M big step refunct = struct
...
fun eval (Syn.QUOTATION q, r, c, s, p)

= c (Sem.QUOTED q, r, s, p)
| eval (Syn.VAR i, r, c, s, p)

= ( case Env.lookup (i, r)
of (SOME l)

=> ( case Sto.fetch (l, s)
of (SOME v)

=> ( case v
of Sem.UNDEFINED

=> Sem.STUCK "attempt to reference undefined variable"
|

=> c (v, r, s, p))
| NONE

=> Sem.STUCK "attempt to read an invalid location")
| NONE

=> Sem.STUCK "attempt to reference an undeclared variable")
| eval (Syn.LAM (is, t), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in c (Sem.CLOSURE (l, (is, t), r), r, s’, p) end

| eval (Syn.CND (t0, t1, t2), r, c, s, p)
= eval (t0, r, fn (Sem.QUOTED (Syn.QBOOL false), r’, s, p)

=> eval (t2, r, c, s, p)
| ( , r’, s, p)

=> eval (t1, r, c, s, p),
s, p)

| eval (Syn.SET (i, t), r, c, s, p)
= eval (t, r, fn (v, r’, s, p)

=> ( case Env.lookup (i, r)
of (SOME l)

=> ( case Sto.fetch (l, s)
of (SOME v)

=> ( case v
of Sem.UNDEFINED

=> Sem.STUCK "attempt to assign undefined variable"
|

=> c (Sem.UNSPECIFIED, r, Sto.update (l, v, s), p))
| NONE

=> Sem.STUCK "attempt to write an invalid location")
| NONE

=> Sem.STUCK "attempt to assign an undeclared variable"),
s, p)

| eval (Syn.APP (t0, ts), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in eval (t0’, r, fn (v0’, r’, s, p) = > evlis (ts’, v0’, nil, pi, r, c, s, p), s, p’) end

and evlis (nil, v0’, vs’, pi, r, c, s, p)
= let val (v0, vs) = pi (v0’, vs’)

in case v0
of (Sem.CLOSURE (l, (is, t), r))

=> let val (ls, s’) = Sto.news (s, vs)
in eval (t, Env.extends (is, ls, r), c, s’, p)
end

|
=> Sem.STUCK "attempt to apply a non −procedure" end

| evlis (t1’ :: ts’, v0’, vs’, pi, r, c, s, p)
= eval (t1’, r, fn (v1’, r’, s, p) = > evlis (ts’, v1’, v0’ :: vs’, pi, r’, c, s, p), s, p)

...
end

Figure 8. Refunctionalized version of Figure 6, part 2/2: evaluation functions



structure Sem = struct
datatype value = ...

| CLOSUREof Sto.loc ∗ (value list ∗ cont ∗ value Sto.sto ∗ ( ∗ << ∗)
(value, Syn.term) Permutation.permutations −> answer) ( ∗ << ∗)

and answer = RESULT of value ∗ value Sto.sto
| STUCK of string

withtype cont = value ∗ Sto.loc Env.env ∗ value Sto.sto ∗ (value, Syn.term) Permutation.permutations
−> answer

end

structure M big step refunct higher order = struct
( ∗ ... ∗)

| eval (Syn.LAM (is, t), r, c, s, p)
= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)

in c (Sem.CLOSURE (l, fn (vs, c, s, p) ( ∗ << ∗)
=> let val (ls, s’) = Sto.news (s, vs) ( ∗ << ∗)

in eval (t, Env.extends (is, ls, r), c, s’, p) ( ∗ << ∗)
end ), ( ∗ << ∗)

r, s’, p) end
( ∗ ... ∗)
and evlis (nil, v0’, vs’, pi, r, c, s, p)

= let val (v0, vs) = pi (v0’, vs’)
in case v0

of (Sem.CLOSURE (l, f))
=> f (vs, c, s, p) ( ∗ << ∗)

|
=> Sem.STUCK "attempt to apply a non −procedure" end

( ∗ ... ∗)
end

Figure 9. Closure-unconverted version of Figures 7 and 8 (the modified parts are marked on the right)

10. Big-step version of Clinger’s abstract
machine, refunctionalized and
closure-unconverted

10.1 Without the GC rule

Figure 9 displays the higher-order counterpart of Figures 7
and 8: closure-converting it yields back these two figures.
It is a compositional evaluation function in continuation-
passing style.

10.2 With a GC rule

Closure unconversion has made us cross another line: the
higher-order functions in the domain of values further pre-
vent us to implement the GC rule as directly as in Sec-
tion 7.2.

11. Analysis
11.1 From abstract machine to denotational semantics

The evaluation function of Figure 9 differs from the one in
Clinger’s denotational semantics in two ways:

• the continuation domains are not the same: the opera-
tional continuations are passed an environment whereas
the denotational ones are not;

• the operational treatment of evlis tail-recursion differs
from the denotational one: in the operational one, the
sub-terms of an application are not only permuted but
the result of this permutation is reversed, so that the
resulting values can be iteratively accumulated in the
‘evlis’ function.

11.2 From denotational semantics to abstract machine

Conversely, defunctionalizing Clinger’s denotational seman-
tics yields a big-step abstract machine that also differs from
the one presented at PLDI’98: it is a traditional eval/continue
abstract machine where the ‘continue’ transition function is
not passed any environment. In particular, the permuted sub-
terms are not reversed prior to be evaluated and the corre-
sponding list of values is not accumulated as in Figure 2.



11.3 Related work

Earlier on, Biernacki and the author carried out the same ex-
periment for Propositional Prolog with cut [10]. Comparing
de Bruin and de Vink’s operational and denotational seman-
tics [24], we found mismatches that are similar to the ones
reported in this section.

For the rest, the literature is rich with connections and
derivations between semantic artifacts. To the best of our
knowledge, none are as simple and as effective as the ones
pioneered by Reynolds and used here.

12. Conclusion and perspectives
We have presented new semantic specifications for Core
Scheme as specified by Clinger in his PLDI’98 article. These
semantic specifications are compatible and inter-derived. It
is our analysis that structurally, they differ from similar se-
mantics that have independently been published.

There are two next logical steps to this preliminary work,
an analytical one and a constructive one:

• Redo this experiment on a larger scale with the other se-
mantic specifications of Scheme. We will then be in po-
sition to compare all the small-step semantics, all the ab-
stract machines, and all the big-step semantics of Scheme
with respect to each other, and verify whether Scheme is
uniformly and uniquely specified.

• Specify Scheme in part or in toto with inter-derivable
specifications so that the compatibility of these specifi-
cations is a corollary of the correctness of the deriva-
tions. This corollary would let us flesh out, for example,
Gasbichler, Knauel, and Sperber’s conjecture of equiva-
lence for their operational and denotational semantics of
Scheme with multiple threads [27, Section 6.4].

The author does not have any opinion about the particu-
lar goodness of one or another semantic specification of
Scheme. He however feels strongly that Scheme’s semantic
artifacts should be compatible with each other. PhD students
are thus invited to apply for six-months visits to the BRICS
PhD School at the University of Aarhus to help carrying out
the experiments above together with the author. Any other
input or collaboration is also cordially welcome.
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