
BRICS
Basic Research in Computer Science

Refunctionalization at Work

Olivier Danvy
Kevin Millikin

BRICS Report Series RS-07-7

ISSN 0909-0878 March 2007

B
R

IC
S

R
S

-07-7
D

anvy
&

M
illikin:

R
efunctionalization

atW
ork

Copyright c© 2007, Olivier Danvy & Kevin Millikin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/07/7/

Refunctionalization at Work∗

Olivier Danvy and Kevin Millikin
BRICS

Department of Computer Science
University of Aarhus†

March 21, 2007

Abstract

We present the left inverse of Reynolds’s defunctionalization and we show its rel-
evance to programming and to programming languages. We present two meth-
ods to put a program that is almost in defunctionalized form into one that is
actually in defunctionalized form, and we illustrate them with a recognizer for
Dyck words and with Dijkstra’s shunting-yard algorithm.

∗This article documents an invited talk at MPC ’06 [20].
†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: <danvy@brics.dk>, <kmillikin@brics.dk>

i

Contents

1 Introduction 1
1.1 Defunctionalization: origin, motivation, and applications 1
1.2 Refunctionalization . 1
1.3 Overview . 2

2 Refunctionalization: the left inverse of defunctionalization 2
2.1 Defunctionalization . 2
2.2 Refunctionalization . 3

3 Towards putting programs in refunctionalized form 4
3.1 Disentangling . 4
3.2 Merging apply functions . 4

4 A worked-out example: recognizing Dyck words 5

5 A worked-out example: Dijkstra’s shunting-yard algorithm 8

6 Other applications 11

7 Conclusion 12

List of Figures

1 Dyck-words recognizer: disentangled version 7
2 Dyck-words recognizer: merged version . 7
3 Dyck-words recognizer: refunctionalized version 7
4 Dijkstra’s shunting-yard algorithm in ML . 10
5 The shunting-yard algorithm in defunctionalized form 10
6 The shunting-yard algorithm, refunctionalized and expressed in direct style . 11

ii

1 Introduction

This article is a continuation of Danvy and Nielsen’s earlier article “Defunctionalization at
Work” [25], that outlined the extent to which Reynolds’s defunctionalization [41] is perva-
sive in writing and transforming programs, and in specifying and implementing program-
ming languages. Our goal here is to show that the left inverse of defunctionalization, i.e.,
refunctionalization, is also relevant to programming and to programming languages.

1.1 Defunctionalization: origin, motivation, and applications

Reynolds introduced defunctionalization to specify higher-order definitional interpreters us-
ing first-order means [41]. He presented it as a mere programming technique, and, except for
deriving a first-order semantics in his textbook on programming languages [44, Section 12.4],
he never used it again [43]. Since then, defunctionalization has been chiefly used in com-
pilers [12, 14], program transformers [47], and partial evaluators [11, 15]. It has also been
independently discovered in the context of logic programming [49], and subsequently it has
been formalized in a typed setting [5, 6, 38, 40].

Over the last few years [1,8,19,36,37], Danvy and his students have retraced Reynolds’s
steps from higher-order to first-order interpreter by closure conversion (to make the data
flow first order), transformation into Continuation-Passing Style (to sequentialize the control
flow), and defunctionalization (to make the control flow first order). They have identified
not only that a defunctionalized, CPS-transformed, and closure-converted interpreter has
the structure of an abstract machine, but also that a large number of independently designed
abstract machines for variants of the λ-calculus are the defunctionalized, CPS-transformed,
and closure-converted counterpart of a compositional interpreter [2–4, 7, 9, 18, 24], includ-
ing Felleisen et al.’s CEK machine, which was actually designed as such [27, page 196]. A
practical byproduct of this observation is that evaluation contexts—which are notoriously
non-trivial to get right—can be obtained mechanically by defunctionalizing the continua-
tions of a compositional interpreter.

1.2 Refunctionalization

Not all abstract machines, however, are in defunctionalized form. It is our thesis here that a
number of them can be restated to be so. The goal of this article is to present two techniques
for restating programs that are “almost” in defunctionalized form to make them be in defunc-
tionalized form: disentangling and merging apply functions (see Section 3). These programs
can then be refunctionalized into a higher-order—and more often than not, continuation-
based—counterpart.

Of course, not all defunctionalized programs and not all refunctionalized programs are
interesting independently of each other, but some of them are. We mentioned above the
case of abstract machines for the λ-calculus. Another example is the samefringe problem:
McCarthy’s famous simple solution [35] and, e.g., Henderson and Morris’s iterative solu-
tion based on lazy lists [31] are the defunctionalized / refunctionalized counterparts of each
other [10, Section 5]. Another example is the reverse function: Hughes’s efficient reverse
function based on curried list constructors [32] and the usual accumulator-based fast reverse
function are the defunctionalized / refunctionalized counterparts of each other [25]. More
examples are available elsewhere [19, 25, 28, 36, 37] as well as in Sections 4 and 5, but let us
mention a last one that pertains to refunctionalization. On the basis that continuations are

1

a functional representation of control in a continuation-passing evaluation function, Landin
is not listed among the co-discoverers of continuations [42]. Yet his SECD machine is in de-
functionalized form and the defunctionalized counterpart of a compositional continuation-
passing evaluation function [18]. Furthermore, the J operator captures the current dump,
i.e., in refunctionalized form, the continuation of the caller [24]. This observation has led us
to suggest that Landin’s name be added to the list of co-discoverers of continuations [24].

1.3 Overview

We first review defunctionalization and its left inverse, refunctionalization (Section 2). We
then present two techniques for restating programs from being almost in defunctionalized
form to being in defunctionalized form: disentangling and merging apply functions (Sec-
tion 3), and we illustrate these techniques with two examples: recognizing Dyck words
(Section 4) and Dijkstra’s shunting-yard algorithm (Section 5). After reviewing other ap-
plications (Section 6), we conclude (Section 7).

Prerequisites: We expect a basic familiarity with Standard ML,1 with continuation-passing
style (CPS) [21, 39, 46], and with the left inverse of the CPS transformation [23]. The presen-
tation of defunctionalization below should be self-contained, but the reader should not deny
himself the pleasure of re-reading “Definitional Interpreters” [41].

2 Refunctionalization: the left inverse of defunctionalization

In his study of definitional interpreters for programming languages [41], Reynolds drew a
distinction between those that use higher-order functions, and thus possibly depend on the
scoping rules of their metalanguage, and those that use only first-order data structures, and
thus are independent of the scoping rules of their metalanguage. He introduced defunction-
alization to transform programs that use higher-order functions into ones that use first-order
data structures. Refunctionalization is the inverse transformation. It transforms programs
that use first-order data structures into ones that use higher-order functions.

2.1 Defunctionalization

Intuitively, defunctionalization replaces a function type with a polynomial (sum of products)
data type, and introduces an apply function that interprets the data type given the argument
values of the original function type. It replaces abstractions creating elements of the function
type with applications of the data-type constructors. It replaces applications of values of the
function type to arguments with an application of the apply function to a value of the first-
order type and the same arguments. The defunctionalization algorithm can be informally
sketched as follows.

The algorithm assumes that one has identified a target set of function abstractions. In a
typed language, these abstractions minimally all have the same type. Reynolds identified
sets of abstractions by their “types” according to the semantic domains of a definitional
interpreter. Later work [5, 6, 25, 38, 40] considered all functions of a given type, or sets of
functions determined by a control-flow analysis [45]. In any case, the set has to be closed

1And with the option data type: datatype ’a option = NONE | SOME of ’a.

2

under data flow to call sites: if a function in the set can be called from a call site in the
program, then all functions that can be called from that call site are in the set.

We assume the identification of a set of n abstractions {λx.Mi | 1 ≤ i ≤ n} all of type
τ → τ ′, and closed under data flow to call sites.2 Each abstraction has a (possibly empty) set
of mi typed free variables {xi

j : τi
j | 1 ≤ j ≤ mi}, not including variables that are bound in

the top-level environment. Defunctionalization consists of performing all of the following
steps:

1. Introduce a first-order data type: There are n data-type constructors Ci for 1 ≤ i ≤ n.
The constructors uniquely identify the abstractions being defunctionalized, and
each variant of the data type represents the abstractions. There are thus n variants
and variant i represents the values of the variables occurring free in abstraction i:

datatype τ arrow τ′ = C1 of τ1
1× . . .× τ1

m1

| . . .

| Cn of τn
1 × . . .× τn

mn

Introduce an apply function: The apply function dispatches on the data-type construc-
tor to determine which abstraction is being applied and to bind its free variables:

fun apply(f, x) = case f of
C1(x

1
1, . . . , x

1
m1

) ⇒ M1

| . . .

| Cn(xn
1 , . . . , xn

mn
) ⇒ Mn

2. Replace abstractions: An abstraction λx.Mi with free variables {xi
j : τi

j | 1 ≤ j ≤ mi} is
replaced with an application of the data-type constructor, Ci(x

i
1, . . . , x

i
mi

).

Replace applications: Any call site f x that may be an application of one of the ab-
stractions is replaced with a call to the apply function, apply(f, x).

2.2 Refunctionalization

Refunctionalization is the left inverse of defunctionalization, mapping data types and apply
functions in the image of defunctionalization back to higher-order functions. A program
with a first-order data structure and an apply function dispatching on it is in the image of
Reynolds’s defunctionalization algorithm if this apply function is the only one dispatching
on the data type. More generally, if there is syntactically only a single case dispatch on the
data type, then the dispatch can be abstracted into an apply function whose arguments are
the free variables of the entire case expression and whose return type is the type of the case
expression, as described in Section 3.1.

Once a data type and an apply function are recognized as being in defunctionalized form,
refunctionalization proceeds by reversing the steps of defunctionalization. A data type δ

with an apply function of type δ × τ → τ ′ can be refunctionalized into the functional type
τ → τ ′. Refunctionalization consists of performing all of the following steps:

1. Replace applications of the apply function: A call to the apply function, apply(f, x),
is replaced with the call to the applied function, f x.

2For simplicity we consider single-argument functions. Without loss of generality, defunctionalization and
refunctionalization can be applied to programs with multiple-argument, curried or uncurried, functions as well.

3

Replace data-type constructor applications: Data-type constructor applications are re-
placed with abstractions based on the apply function. We assume an apply func-
tion:

fun apply(f, x) = case f of
C1(x

1
1, . . . , x

1
m1

) ⇒ M1

| . . .

| Cn(xn
1 , . . . , xn

mn
) ⇒ Mn

Each constructor application Ci(v1, . . . , vmi
) of Ci applied to values vj for 1 ≤ j ≤

mi is replaced by (λx.M){v1/xi
1, . . . , vmi

/xi
mi

}, the capture-avoiding substitution
of the constructor arguments for the free variables in the abstraction represented
by the apply function. If a constructor is applied to non-values, we insert let-
bindings for the non-value arguments before performing this step.

2. Remove the apply function: Because the apply function is never called, its definition
is no longer needed.

Remove the data-type definition: Because the constructors of the data type are never
used, and the only case dispatch on them (the apply function) has been removed,
the data-type definition is no longer needed.

Refunctionalization is akin to the Scott-encoding [48] of a data type, i.e., the functional
representation of a data type as its case-dispatch function.

3 Towards putting programs in refunctionalized form

The hallmark of a defunctionalized data type and an apply function is that the apply func-
tion is the single point of consumption for the data type. Disentangling (Section 3.1) abstracts
data-type consumptions into functions, and merging (Section 3.2) combines multiple candi-
date apply functions for the same data type when possible. Both are illustrated in Sections 4
and 5.

3.1 Disentangling

A program can fail to be in the image of defunctionalization if there are multiple points of
consumption for elements of a data type3 or if the single point of consumption is not in a
separate function.

‘Disentangling’ consists of abstracting each case expression dispatching on a data type
into a separate function. The arguments of the function are the free variables of the case
expression and their types are the types of the free variables. The return type is the type of
the case expression.

In the case of abstract machines, disentangling the transition function consists of split-
ting single transitions that dispatch simultaneously on multiple components of the state into
multiple serial transitions that dispatch separately on single components of the state.

3.2 Merging apply functions

After disentangling, every case dispatch on a data type is abstracted into a function which
is a candidate apply function. If there is a single apply function, then the program can be

3This can occur, for example, when a program is defunctionalized and then the apply function is inlined.

4

refunctionalized. If there are multiple apply functions, then they can be merged under some
conditions.

A technique that frequently works for abstract machines is to merge the apply functions
using the universal property of sum types. Specifically, two functions apply1 : δ × τ1 → τ ′

and apply2 : δ × τ2 → τ ′ can be merged into a single function apply : δ × (τ1 + τ2) → τ ′

that performs a case dispatch on its second argument. To reflect this merging, calls to apply1

and apply2 are adjusted to call apply with their second argument injected into the appropriate
summand.

This technique works when the return types of the possible apply functions are all the
same. In abstract machines this is usually the case, because the transition functions are all
tail-recursive and so they share the same return type.

4 A worked-out example: recognizing Dyck words

Dyck words are well-balanced strings of left and right parentheses, which we represent in
ML as follows:

datatype parenthesis = L | R

type word = parenthesis list

For example, the list [L, L, R, L, R, R] forms a Dyck word whereas the list [R, L] does
not.

Dyck words are classically recognized with an abstract machine implementing a push-
down automaton. This state-transition system operates iteratively over a given list and a
counter reflecting the number of open parentheses seen so far in the list:

datatype nat = ZERO | SUCC of nat

The machine starts with a given word and a zero counter. At each iteration, one of the
following transitions takes place:

• if the list of parentheses is empty and the counter is zero, a final, accepting state is
reached;

• if the list of parentheses is empty and the counter is positive, a final, non-accepting
state is reached;

• if the first parenthesis is a left one, the tail of the list is taken and the counter is incre-
mented;

• if the first parenthesis is a right one and if the counter is zero, a final, non-accepting
state is reached;

• if the first parenthesis is a right one and if the counter is positive, the tail of the list is
taken and the counter is decremented.

The following ML program implements this transition system:

5

(* recognize : word -> bool *)
fun recognize ps

= let (* run : word * nat -> bool *)
fun run ([], ZERO)

= true
| run ([], SUCC c)
= false

| run (L :: ps, c)
= run (ps, SUCC c)

| run (R :: ps, ZERO)
= false

| run (R :: ps, SUCC c)
= run (ps, c)

in run (ps, ZERO)
end

The goal of this section is to refunctionalize this program with respect to the counter.
In the program above, both parameters of run serve as induction variables: rundispatches

both over the list of parentheses and over the counter. We therefore disentangle run by in-
troducing two specialized, mutually recursive versions: one with respect to an empty word
(run nil) and the other with respect to a right parenthesis (run par). The resulting disentan-
gled program is displayed in Figure 1: run solely dispatches over the list of parentheses, and
run nil and run par solely dispatch over the counter.

The transition system displayed in Figure 1 operates in lockstep with the original transi-
tion system,4 but it is not in defunctionalized form with respect to the counter: the counter
is dispatched upon both in run nil : nat -> bool and in run par : nat * word -> bool. We
therefore merge run nil and run par into a function run aux : nat * word option -> bool.
The resulting merged program is displayed in Figure 2. It is in defunctionalized form.

The refunctionalized counterpart of the merged program in Figure 2 is displayed in Fig-
ure 3. Its function word option -> bool is the refunctionalized counterpart of the data type
nat and the apply function run aux. This program is in CPS, and except for errors, it uses
its continuations linearly and in order. Its direct-style counterpart is below. It is a recursive
program where not all calls are in tail position. As an aid to the eye, we have shaded the
non-tail calls in grey. Errors are handled with callcc and throw [23]:

fun recognize_in_direct_style ps
= callcc (fn exit => let (* run : word -> word option *)

fun run []
= NONE

| run (L :: ps)
= (case run ps

of NONE => throw exit false
| SOME ps => run ps)

| run (R :: ps)
= SOME ps

in case run ps
of NONE => true
| SOME ps => false

end)

4The new machine takes one or two steps for each step in the original one.

6

fun recognize_disentangled ps

= let (* run : word * nat -> bool *)

fun run ([], c)

= run_nil c

| run (L :: ps, c)

= run (ps, SUCC c)

| run (R :: ps, c)

= run_par (c, ps)

(* run_nil : nat -> bool *)

and run_nil ZERO

= true

| run_nil (SUCC n)

= false

(* run_par : nat * word -> bool *)

and run_par (ZERO, ps)

= false

| run_par (SUCC c, ps)

= run (ps, c)

in run (ps, ZERO)

end

Figure 1: Dyck-words recognizer: disentangled version

fun recognize_merged ps

= let (* run : word * nat -> bool *)

fun run ([], c)

= run_aux (c, NONE)

| run (L :: ps, c)

= run (ps, SUCC c)

| run (R :: ps, c)

= run_aux (c, SOME ps)

(* run_aux : word * word option -> bool *)

and run_aux (ZERO, NONE)

= true

| run_aux (ZERO, SOME ps)

= false

| run_aux (SUCC c, NONE)

= false

| run_aux (SUCC c, SOME ps)

= run (ps, c)

in run (ps, ZERO)

end

Figure 2: Dyck-words recognizer: merged version

fun recognize_refunctionalized ps

= let (* run : word * (word option -> bool) -> bool *)

fun run ([], c)

= c NONE

| run (L :: ps, c)

= run (ps, fn NONE => false | SOME ps => run (ps, c))

| run (R :: ps, c)

= c (SOME ps)

in run (ps, fn NONE => true | SOME ps => false)

end

Figure 3: Dyck-words recognizer: refunctionalized version

7

The counter that was explicit in the original specification above, the disentangled one (Fig-
ure 1), the merged one (Figure 2), and the refunctionalized one (Figure 3) is now implicit in
this direct-style program. In other words, the original recognizer was implemented by a tail-
recursive push-down automaton that managed an explicit data stack—namely the counter.
This explicit data stack is now implicit in the control stack of the language processor for this
recursive program in direct style.

5 A worked-out example: Dijkstra’s shunting-yard algorithm

The shunting-yard algorithm is used to parse an arithmetic expression from infix form (as
a stream of tokens: literals, operators with precedence, and parentheses) to postfix form
(again, as a stream of tokens) or to an abstract-syntax tree. We consider the latter here:

datatype token = LIT of int | ADD | MUL | L_P | R_P

datatype expression = INT of int
| PLUS of expression * expression
| TIMES of expression * expression

For example, the ML program implementing the algorithm maps the list of tokens

[LIT 10, MUL, LIT 20, ADD, LIT 30, MUL, L_P, LIT 40, ADD, LIT 50, R_P]

into the abstract-syntax tree

PLUS (TIMES (INT 10, INT 20), TIMES (INT 30, PLUS (INT 40, INT 50)))

that represents 10 × 20 + 30 × (40 + 50). Using ++ and ** as ML infix notation for PLUS and
TIMES, the result reads ((INT 10) ** (INT 20)) ++ ((INT 30) ** ((INT 40) ++ (INT 50))).
We make use of this infix notation in Figures 4, 5, and 6 to construct lists of expressions.

The algorithm is defined with an abstract machine implementing a pushdown automa-
ton with two stacks. This state-transition system operates iteratively over a stack of subtrees
and a stack of operators and parenthetical separators:

datatype operator = XADD | XMUL | XPAR

The machine starts with a given list of tokens, an empty stack of subtrees, and an empty
stack of operators. At each iteration, one of the following transitions takes place:

• if the first token of the input list is a literal (LIT n), the tail of the list is taken and the
corresponding expression (INT n) is pushed on the stack of subtrees;

• if the first token of the input list is an operator x (ADD or MUL), then

– if the stack of operators is empty, the operator on top of this stack is a parenthesis
(XPAR), or its precedence is strictly lower than that of x, the tail of the input list is
taken and the operator corresponding to x (XADD or XMUL) is pushed on the stack of
operators;

– otherwise, the precedence of the operator on top of the stack is higher than or
the same as that of x; this operator is popped off the stack, two expressions are
popped off the stack of subtrees, the corresponding expression combining the
popped operator and the popped expressions is pushed back, and the operator
corresponding to x is pushed on the stack;

8

• if the first token is a left parenthesis (L P), the tail of the input list is taken and the
corresponding operator (XPAR) is pushed on the stack;

• if the first token is a right parenthesis (R P), operators are popped off the stack (and for
each of them, two expressions are popped off the stack of subtrees and the correspond-
ing expression combining the popped operator and the popped expressions is pushed
back) until a parenthesis is met on the stack of operators; the tail of the input list is
taken and the parenthesis is popped from the stack of operators;

• otherwise, a final, non-accepting state is reached.

When the list of tokens is exhausted, the stack of operators is iteratively emptied in concert
with the stack of subtrees as described above. The final result is the expression on top of the
stack of subtrees.

Figure 4 displays a program written in Standard ML that implements the shunting-yard
algorithm. The goal of this section is to refunctionalize this program with respect to its stack
of operators.

As an ML program, the transition system in Figure 4 is difficult to read because several of
the parameters of run serve as induction variables: run dispatches both over the list of tokens
and over the stack of operators. (In contrast, the stack of subtrees is only threaded passively
and, except for errors in the input list of tokens, it does not influence the control flow of the
program.)

We therefore disentangle run into several specialized, mutually recursive versions: one
with respect to an empty stack of operators (run nil), three with respect to each of the possi-
ble operators on top of the stack (run add, run mul, and run par), and one to dispatch on the
stack of operators (run aux). The resulting disentangled program is displayed in Figure 5: all
of run nil, run add, run mul, and run par solely dispatch over the list of tokens, and run aux

solely dispatches over the stack of operators.
In addition to operating in lockstep with the original transition system implemented in

Figure 4,5 the transition system implemented in Figure 5 is also in defunctionalized form:
the stack of operators and run aux respectively form a data type and an apply function that
are in the image of defunctionalization.

As for all transition systems in defunctionalized form, the refunctionalized counterpart
of the program in Figure 5 is in CPS. Furthermore—again save for errors in the input list
of tokens—it uses its continuations linearly and in order, and can therefore be expressed
in direct style. We spare the reader with this CPS program, and display the corresponding
direct-style program in Figure 6: it is a recursive program where not all calls are in tail
position. As an aid to the eye, we have shaded the non-tail calls in grey. Errors are handled
with callcc and throw [23]

The stack of operators that was explicit in Figures 4 and 5 is now implicit in the direct-
style program of Figure 6. In other words, the original algorithm was implemented by a tail-
recursive automaton with two stacks. The stack of operators is now implicit in the control
stack of the language processor for this recursive program in direct style.

The refunctionalized shunting-yard algorithm clearly exhibits the standard features of
a bottom-up parser: a return corresponds to a reduce action, a simple tail call with trivial
arguments corresponds to a shift action, and a non-tail call corresponds to a state transition
where the control-flow at return time implements the goto transition associated to a reduce
action.

5The new machine takes one or two steps for each step in the original one.

9

fun parse ts = let

(* run : token list * expression list * operator list -> expression option *)

fun run (ts as [], e :: [], []) = SOME e

| run (ts as [], e2 :: e1 :: es, XADD :: xs) = run (ts, e1 ++ e2 :: es, xs)

| run (ts as [], e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run (LIT n :: ts, es, xs) = run (ts, INT n :: es, xs)

| run (ADD :: ts, es, []) = run (ts, es, XADD :: [])

| run (ADD :: ts, es, xs as XPAR :: _) = run (ts, es, XADD :: xs)

| run (ts as ADD :: _, e2 :: e1 :: es, XADD :: xs) = run (ts, e1 ++ e2 :: es, xs)

| run (ts as ADD :: _, e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run (MUL :: ts, es, []) = run (ts, es, XMUL :: [])

| run (MUL :: ts, es, xs as XPAR :: _) = run (ts, es, XMUL :: xs)

| run (MUL :: ts, es, xs as XADD :: _) = run (ts, es, XMUL :: xs)

| run (ts as MUL :: _, e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run (L_P :: ts, es, xs) = run (ts, es, XPAR :: xs)

| run (R_P :: ts, es, XPAR :: xs) = run (ts, es, xs)

| run (ts as R_P :: _, e2 :: e1 :: es, XADD :: xs) = run (ts, e1 ++ e2 :: es, xs)

| run (ts as R_P :: _, e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run (ts, es, xs) = NONE

in run (ts, [], [])

end

Figure 4: Dijkstra’s shunting-yard algorithm in ML

fun parse ts = let

fun run_nil ([], e :: []) = SOME e

| run_nil (LIT n :: ts, es) = run_nil (ts, INT n :: es)

| run_nil (ADD :: ts, es) = run_add (ts, es, [])

| run_nil (MUL :: ts, es) = run_mul (ts, es, [])

| run_nil (L_P :: ts, es) = run_par (ts, es, [])

| run_nil (ts, es) = NONE

and run_add (ts as [], e2 :: e1 :: es, xs) = run_aux (ts, e1 ++ e2 :: es, xs)

| run_add (LIT n :: ts, es, xs) = run_add (ts, INT n :: es, xs)

| run_add (ts as ADD :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ++ e2 :: es, xs)

| run_add (MUL :: ts, es, xs) = run_mul (ts, es, XADD :: xs)

| run_add (L_P :: ts, es, xs) = run_par (ts, es, XADD :: xs)

| run_add (ts as R_P :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ++ e2 :: es, xs)

| run_add (ts, es, xs) = NONE

and run_mul (ts as [], e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul (LIT n :: ts, es, xs) = run_mul (ts, INT n :: es, xs)

| run_mul (ts as ADD :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul (ts as MUL :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul (L_P :: ts, es, xs) = run_par (ts, es, XMUL :: xs)

| run_mul (ts as R_P :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul (ts, es, xs) = NONE

and run_par (LIT n :: ts, es, xs) = run_par (ts, INT n :: es, xs)

| run_par (ADD :: ts, es, xs) = run_add (ts, es, XPAR :: xs)

| run_par (MUL :: ts, es, xs) = run_mul (ts, es, XPAR :: xs)

| run_par (L_P :: ts, es, xs) = run_par (ts, es, XPAR :: xs)

| run_par (R_P :: ts, es, xs) = run_aux (ts, es, xs)

| run_par (ts, es, xs) = NONE

and run_aux (ts, es, []) = run_nil (ts, es)

| run_aux (ts, es, XADD :: xs) = run_add (ts, es, xs)

| run_aux (ts, es, XMUL :: xs) = run_mul (ts, es, xs)

| run_aux (ts, es, XPAR :: xs) = run_par (ts, es, xs)

in run (ts, [], [])

end

Figure 5: The shunting-yard algorithm in defunctionalized form

10

fun parse ts =

callcc (fn exit => let fun run_nil ([], e :: []) = SOME e

| run_nil (LIT n :: ts, es) = run_nil (ts, INT n :: es)

| run_nil (ADD :: ts, es) = run_nil (run_add (ts, es))

| run_nil (MUL :: ts, es) = run_nil (run_mul (ts, es))

| run_nil (L_P :: ts, es) = run_nil (run_par (ts, es))

| run_nil (ts, es) = NONE

and run_add (ts as [], e2 :: e1 :: es) = (ts, e1 ++ e2 :: es)

| run_add (LIT n :: ts, es) = run_add (ts, INT n :: es)

| run_add (ts as ADD :: _, e2 :: e1 :: es) = (ts, e1 ++ e2 :: es)

| run_add (MUL :: ts, es) = run_add (run_mul (ts, es))

| run_add (L_P :: ts, es) = run_add (run_par (ts, es))

| run_add (ts as R_P :: _, e2 :: e1 :: es) = (ts, e1 ++ e2 :: es)

| run_add (ts, es) = throw exit NONE

and run_mul (ts as [], e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul (LIT n :: ts, es) = run_mul (ts, INT n :: es)

| run_mul (ts as ADD :: _, e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul (ts as MUL :: _, e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul (L_P :: ts, es) = run_mul (run_par (ts, es))

| run_mul (ts as R_P :: _, e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul (ts, es) = throw exit NONE

and run_par (LIT n :: ts, es) = run_par (ts, INT n :: es)

| run_par (ADD :: ts, es) = run_par (run_add (ts, es))

| run_par (MUL :: ts, es) = run_par (run_mul (ts, es))

| run_par (L_P :: ts, es) = run_par (run_par (ts, es))

| run_par (R_P :: ts, es) = (ts, es)

| run_par (ts, es) = throw exit NONE

in run_nil (ts, [])

end)

Figure 6: The shunting-yard algorithm, refunctionalized and expressed in direct style

6 Other applications

In three situations we had to intervene to put an abstract machine into defunctionalized
form:

The SECD machine: The SECD machine only needed to be disentangled to be put in de-
functionalized form [18].

The SECD machine with the J operator: Two versions of the SECD machine with the J
operator exist—the original one by Landin and Burge [13] and a version due to Felleisen [26].
Disentangling Felleisen’s version yields a machine that is in defunctionalized form, but this
is not so for Landin and Burge’s version. We have put it in defunctionalized form by merging
its apply functions [24].

Strong-reduction strategies: In our ongoing work on strongly reducing abstract machines
[37], we use both disentangling and merging to refunctionalize a number of abstract ma-
chines [16, 17, 29, 33, 34] into compositional normalization functions.

11

7 Conclusion

We have outlined the extent to which the left inverse of Reynolds’s defunctionalization is rel-
evant to transforming programs and to implementing programming languages. Elsewhere,
we have illustrated its relevance to programming [10,22,25] and to specifying programming
languages [2–4, 7, 9, 18, 24].

In some sense, our work on defunctionalization and refunctionalization provides a con-
crete illustration for the paragraph that follows the definition of the quicksort algorithm, in
Section 2.3.3 of Niklaus Wirth’s textbook ”Algorithms and Data Structures” from 1985:

Procedure sort activates itself recursively. Such use of recursion in algorithms is a very
powerful tool and will be discussed further in Chapter 3. In some programming lan-
guages of older provenience, recursion is disallowed for certain technical reasons. We
will now show how this same algorithm can be expressed as a non-recursive procedure.
Obviously, the solution is to express recursion as an iteration, whereby a certain amount
of additional bookkeeping operations become necessary.

Dijkstra’s shunting-yard algorithm and Landin’s SECD machine were directly written for
programming languages of ‘old provenience.’ In Section 5 and in our earlier work [18, 24],
we have shown how each is the defunctionalized and CPS-transformed counterpart of a
recursive program in direct style. Incidentally, the same can be said of the quicksort al-
gorithm in Wirth’s book: CPS-transforming and defunctionalizing the recursive definition
that precedes the paragraph above in the book yields the iterative definition that immedi-
ately follows in the book. So the ‘certain amount of additional bookkeeping operations’
mentioned above can be mechanized using the CPS transformation and defunctionalization.
The same could be said for their respective correctness proofs: instead of developing them
separately [30, 50], these proofs could be considered in the light of defunctionalization and
refunctionalization [25, Section 5]—a future work.

Acknowledgments: The first author is grateful to Tarmo Uustalu for his invitation to MPC
’06. Thanks are also due to Dariusz Biernacki and Kristian Støvring for comments. This work
is partly supported by the Danish Natural Science Research Council, Grant no. 272-06-0530.

References

[1] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Abstract Machines.
PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, January 2006.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor, Pro-
ceedings of the Fifth ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden, August 2003. ACM
Press.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween call-by-need evaluators and lazy abstract machines. Information Processing Letters,
90(5):223–232, 2004. Extended version available as the technical report BRICS RS-04-3.

12

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween monadic evaluators and abstract machines for languages with computational
effects. Theoretical Computer Science, 342(1):149–172, 2005. Extended version available as
the technical report BRICS RS-04-28.

[5] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and correctness of pro-
gram transformations based on control-flow analysis. In Naoki Kobayashi and Ben-
jamin C. Pierce, editors, Theoretical Aspects of Computer Software, 4th International Sympo-
sium, TACS 2001, number 2215 in Lecture Notes in Computer Science, pages 420–447,
Sendai, Japan, October 2001. Springer-Verlag.

[6] Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunctionalization.
In Mads Tofte, editor, Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming, pages 25–37, Amsterdam, The Netherlands, June 1997. ACM
Press.

[7] Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational founda-
tion for delimited continuations in the CPS hierarchy. Logical Methods in Computer Sci-
ence, 1(2:5):1–39, November 2005. A preliminary version was presented at the Fourth
ACM SIGPLAN Workshop on Continuations (CW’04).

[8] Dariusz Biernacki. The Theory and Practice of Programming Languages with Delimited Con-
tinuations. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark,
December 2005.

[9] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by defunction-
alization. In Maurice Bruynooghe, editor, Logic Based Program Synthesis and Transfor-
mation, 13th International Symposium, LOPSTR 2003, number 3018 in Lecture Notes in
Computer Science, pages 143–159, Uppsala, Sweden, August 2003. Springer-Verlag.

[10] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static and dynamic
extents of delimited continuations. Science of Computer Programming, 60(3):274–297,
2006.

[11] Anders Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU, Computer Science
Department, University of Copenhagen, Copenhagen, Denmark, 1990. DIKU Rapport
90/17.

[12] Urban Boquist. Code Optimization Techniques for Lazy Functional Languages. PhD the-
sis, Department of Computing Science, Chalmers University of Technology, Göteborg
University, Göteborg, Sweden, April 1999.

[13] William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[14] Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure conver-
sion for typed languages. In Gert Smolka, editor, Proceedings of the Ninth European Sym-
posium on Programming, number 1782 in Lecture Notes in Computer Science, pages 56–
71, Berlin, Germany, March 2000. Springer-Verlag.

[15] Charles Consel. A tour of Schism: A partial evaluation system for higher-order applica-
tive languages. In David A. Schmidt, editor, Proceedings of the Second ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 145–
154, Copenhagen, Denmark, June 1993. ACM Press.

13

[16] Pierre Crégut. Strongly reducing variants of the Krivine abstract machine. Higher-Order
and Symbolic Computation, 2007. To appear. A preliminary version was presented at the
1990 ACM Conference on Lisp and Functional Programming.

[17] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming. Progress in Theoretical Computer Science. Birkhaüser, 1993.

[18] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder, editors, Implementation and
Application of Functional Languages, 16th International Workshop, IFL’04, number 3474 in
Lecture Notes in Computer Science, pages 52–71, Lübeck, Germany, September 2004.
Springer-Verlag. Recipient of the 2004 Peter Landin prize. Extended version available
as the technical report BRICS RS-03-33.

[19] Olivier Danvy. An Analytical Approach to Program as Data Objects. DSc thesis, Depart-
ment of Computer Science, University of Aarhus, Aarhus, Denmark, October 2006.

[20] Olivier Danvy. Refunctionalization at work. In Preliminary proceedings of the 8th Interna-
tional Conference on Mathematics of Program Construction (MPC ’06), Kuressaare, Estonia,
July 2006. Invited talk.

[21] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[22] Olivier Danvy and Mayer Goldberg. There and back again. Fundamenta Informaticae,
66(4):397–413, 2005. A preliminary version was presented at the 2002 ACM SIGPLAN
International Conference on Functional Programming (ICFP 2002).

[23] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In
William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco, California,
June 1992. ACM Press.

[24] Olivier Danvy and Kevin Millikin. A rational deconstruction of Landin’s J operator.
In Andrew Butterfield, Clemens Grelck, and Frank Huch, editors, Implementation and
Application of Functional Languages, 17th International Workshop, IFL’05, number 4015 in
Lecture Notes in Computer Science, pages 55–73, Dublin, Ireland, September 2005.
Springer-Verlag. Extended version available as the technical report BRICS RS-06-17
(December 2006).

[25] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP’01), pages 162–174, Firenze,
Italy, September 2001. ACM Press. Extended version available as the technical report
BRICS RS-01-23.

[26] Matthias Felleisen. Reflections on Landin’s J operator: a partly historical note. Computer
Languages, 12(3/4):197–207, 1987.

[27] Matthias Felleisen and Matthew Flatt. Programming languages and lambda calculi.
Unpublished lecture notes. <http://www.ccs.neu.edu/home/matthias/3810-w02/
readings.html>, 1989-2003.

14

[28] Jean-Christophe Filliâtre and François Pottier. Producing all ideals of a forest, function-
ally. Journal of Functional Programming, 13(5):945–956, 2003.

[29] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction.
In Simon Peyton Jones, editor, Proceedings of the 2002 ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’02), SIGPLAN Notices, Vol. 37, No. 9, pages
235–246, Pittsburgh, Pennsylvania, September 2002. ACM Press.

[30] Robert Harper. Proof-directed debugging. Journal of Functional Programming, 9(4):463–
469, July 1999.

[31] Peter Henderson and James H. Morris Jr. A lazy evaluator. In Susan L. Graham, editor,
Proceedings of the Third Annual ACM Symposium on Principles of Programming Languages,
pages 95–103. ACM Press, January 1976.

[32] John Hughes. A novel representation of lists and its application to the function “re-
verse”. Information Processing Letters, 22(3):141–144, 1986.

[33] Werner E. Kluge. Abstract Computing Machines: A Lambda Calculus Perspective. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2005.

[34] Pierre Lescanne. From λσ to λv a journey through calculi of explicit substitutions. In
Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 60–69, Portland, Oregon, January 1994. ACM
Press.

[35] John McCarthy. Another samefringe. SIGART Newsletter, 61, February 1977.

[36] Jan Midtgaard. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Den-
mark, June 2007. Forthcoming.

[37] Kevin Millikin. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Den-
mark, May 2007. Forthcoming.

[38] Lasse R. Nielsen. A denotational investigation of defunctionalization. Research Re-
port BRICS RS-00-47, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, December 2000.

[39] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

[40] François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and con-
cretization. Higher-Order and Symbolic Computation, 19(1):125–162, 2006. A preliminary
version was presented at the Thirty-First Annual ACM Symposium on Principles of
Programming Languages (POPL 2004).

[41] John C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of 25th ACM National Conference, pages 717–740, Boston, Massachusetts,
1972. Reprinted in Higher-Order and Symbolic Computation 11(4):363–397, 1998, with
a foreword [43].

[42] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation,
6(3/4):233–247, 1993.

15

[43] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Compu-
tation, 11(4):355–361, 1998.

[44] John C. Reynolds. Theories of Programming Languages. Cambridge University Press,
1998.

[45] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, May 1991. Technical Report CMU-CS-91-145.

[46] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial Intelli-
gence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1978. Technical report AI-TR-474.

[47] Andrew P. Tolmach and Dino P. Oliva. From ML to Ada: strongly-typed language
interoperability via source translation. Journal of Functional Programming, 8(4):367–412,
1998.

[48] Christopher P. Wadsworth. Some unusual λ-calculus numeral schemes. In To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 215–230. Aca-
demic Press, 1980.

[49] David H. D. Warren. Higher-order extensions to PROLOG: are they needed? In J. E.
Hayes, Donald Michie, and Y.-H. Pao, editors, Machine Intelligence, volume 10, pages
441–454. Ellis Horwood, 1982.

[50] Kwangkeun Yi. “Proof-directed debugging” revisited for a first-order version. Journal
of Functional Programming, 16(6):663–670, 2006.

16

Recent BRICS Report Series Publications

RS-07-7 Olivier Danvy and Kevin Millikin. Refunctionalization at Work.
March 2007. ii+16 pp. Invited talk at the 8th International
Conference on Mathematics of Program Construction, MPC
’06.

RS-07-6 Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen.On One-
Pass CPS Transformations. March 2007. ii+19 pp. Theoretical
Pearl to appear in theJournal of Functional Programming. Re-
vised version of BRICS RS-02-3.

RS-07-5 Luca Aceto, Silvio Capobianco, and Anna Inǵolfsdóttir. On the
Existence of a Finite Base for Complete Trace Equivalence over
BPA with Interrupt. February 2007. 26 pp.

RS-07-4 Kristian Støvring and Søren B. Lassen. A Complete, Co-
Inductive Syntactic Theory of Sequential Control and State.
February 2007. 36 pp. Appears in the proceedings of POPL
2007, p. 161–172.

RS-07-3 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir.
Ready To Preorder: Get Your BCCSP Axiomatization for Free!
February 2007. 37 pp.

RS-07-2 Luca Aceto and Anna Inǵolfsdóttir. Characteristic Formulae:
From Automata to Logic. January 2007. 18 pp.

RS-07-1 Daniel Andersson. HIROIMONO is NP-complete. January
2007. 8 pp.

RS-06-19 Michael David Pedersen.Logics for The Appliedπ Calculus.
December 2006. viii+111 pp.

RS-06-18 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. dec 2006. iii+39 pp. Extended version of an article to
appear in TCS. Revised version of BRICS RS-05-22.

RS-06-17 Olivier Danvy and Kevin Millikin. A Rational Deconstruction
of Landin’s J Operator. December 2006. ii+37 pp. Revised ver-
sion of BRICS RS-06-4. A preliminary version appears in the
proceedings of IFL 2005, LNCS 4015:55–73.

RS-06-16 Anders Møller. Static Analysis for Event-Based XML Process-
ing. October 2006. 16 pp.

