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Abstract

We bridge two distinct approaches to one-pass CPS transformations, i.e., CPS
transformations that reduce administrative redexes at transformation time in-
stead of in a post-processing phase. One approach is compositional and higher-
order, and is independently due to Appel, Danvy and Filinski, and Wand, build-
ing on Plotkin’s seminal work. The other is non-compositional and based on a
reduction semantics for the λ-calculus, and is due to Sabry and Felleisen. To re-
late the two approaches, we use three tools: Reynolds’s defunctionalization and
its left inverse, refunctionalization; a special case of fold-unfold fusion due to
Ohori and Sasano, fixed-point promotion; and an implementation technique for
reduction semantics due to Danvy and Nielsen, refocusing.

This work is directly applicable to transforming programs into monadic normal
form.
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Theoretical Pearl to appear in the Journal of Functional Programming.
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1 Introduction

Transforming functional programs into continuation-passing style (CPS) is a classical topic,
with a long publication history [3,5,9,11–13,17,18,20,22,24–26,28,29,31,34–36,39–45,47,51,54–
56, 58–62, 64–69, 71, 73],1 including chapters in programming-languages textbooks [2, 32, 53],
and many applications. Yet no standard CPS-transformation algorithm has emerged, and
this missing piece contributes to maintaining continuations, CPS, and CPS transformations
as mystifying artifacts (i.e., man-made constructs) in the land of programming and program-
ming languages.

In this article, we bridge the two methodologically distinct CPS transformations de-
scribed in the textbooks mentioned above. The first one, presented by Appel [2] and by
Queinnec [53], is higher-order, and proceeds by recursive descent over the source program
in a compositional way. The other one, presented by Friedman, Wand, and Haynes [32], is
context-based, and rewrites the source program incrementally in a non-compositional way.
Both transformations yield compact results, i.e., CPS programs without administrative re-
dexes [17, 51, 60, 66]. The transformations reduce administrative redexes at transformation
time and thus operate in one pass.

In the following sections, we inter-derive the higher-order transformation and the context-
based transformation. The higher-order transformation is inspired by denotational seman-
tics. It is compositional and uses a functional accumulator. The context-based transfor-
mation is inspired by reduction semantics, a variant of Plotkin’s structural operational se-
mantics [52] introduced in Felleisen’s PhD thesis [26] and based on the notion of reduction
contexts.

In a reduction semantics with applicative order for the λ-calculus, one defines terms,
values, potential redexes, and contexts as follows:

x, k,w ∈ Variables
t ∈ Terms t ::= v | t t

v ∈ Values v ::= x | λx.t

r ∈ PotRedexes r ::= v v

C ∈ Contexts C ::= [ ] | C[v [ ]] | C[[ ] t]

In this semantics, the unique-decomposition property holds, i.e., any non-value term can be
uniquely decomposed into a context and a potential redex (here: the application of a value
to another value). One can therefore define a total functionD that maps a value term to itself
and a non-value term to a decomposition. There are many ways to define the D function,
which is usually not shown in the literature. We use the following one here:

D : Terms → Values + Contexts × PotRedexes
D t = D ′(t, [ ])

D ′ : Terms× Contexts → Values + Contexts × PotRedexes
D ′(v, C) = D ′

aux(C, v)

D ′(t0 t1, C) = D ′(t0, C[[ ] t1])

D ′
aux : Contexts ×Values → Values + Contexts × PotRedexes

D ′
aux([ ], v) = v

D ′
aux(C[[ ] t1], v0) = D ′(t1, C[v0 [ ]])

D ′
aux(C[v0 [ ]], v1) = (C, v0 v1)

1Among many others.
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This definition uses two auxiliary functions that are defined over the structure of their first
argument: D ′ accumulates the spine context of an application, and D ′

aux dispatches over the
top constructor of the context. D ′

aux could easily be inlined, giving

D ′(v, [ ]) = v

D ′(v0, C[[ ] t1]) = D ′(t1, C[v0 [ ]])

D ′(v1, C[v0 [ ]]) = (C, v0 v1)

D ′(t0 t1, C) = D ′(t0, C[[ ] t1])

but we prefer to keep it since as stated above, this definition is in defunctionalized form [14]:
the contexts form the data type of a defunctionalized function andD ′

aux forms its apply func-
tion [19, 55]. We will exploit this property in Section 2.2.

Conversely, one can also define a total function P that plugs a term into a context (or
again, as occasionally worded in the literature, that fills the hole of a context with a term,
yielding another term). This P function is straighforwardly defined by structural induction
over its first argument:

P : Contexts × Terms → Terms
P([ ], t) = t

P(C[v0 [ ]], t1) = P(C, v0 t1)

P(C[[ ] t1], t0) = P(C, t0 t1)

In essence, and as envisioned by Sabry and Felleisen [60], the context-based CPS trans-
formation decomposes a source term into a context and a potential redex, CPS transforms
the potential redex, plugs a fresh variable into the context, and iterates. It forms our starting
point in Section 2.1. We then massage this context-based transformation until we obtain the
usual higher-order one-pass CPS transformation. In Section 2.2, we start from this higher-
order one-pass CPS transformation and we walk back to the context-based CPS transforma-
tion.

The rest of the article builds on Section 2. In Section 3, we refine the CPS transforma-
tion to make it tail-conscious, to avoid spurious administrative η-redexes in the CPS coun-
terpart of source tail calls. Section 4 compares and contrasts the two standard variants of
continuation-passing style, i.e., with continuations first or last. We review the administra-
tive η-reductions enabled by each variant. Section 5 addresses generalized reduction and
how to integrate it in both the context-based and the higher-order one-pass CPS transforma-
tions. Finally, in Section 6, we put everything together and assemble a tail-conscious CPS
transformation with administrative η-reductions and that integrates generalized reduction.
The continuations-first variant of the result is the CPS transformation designed by Sabry and
Felleisen for reasoning about programs in continuation-passing style [60].

Prerequisites: We assume a basic familiarity with the λ-calculus [4], with reduction seman-
tics [21,26,27,72], and with the notion of one-pass CPS transformation [17,60]. We also make
use of Reynolds’s defunctionalization, i.e., the data-structure representation of higher-order
functions [19, 55] and of its left inverse, refunctionalization [15].

2 Standard CPS transformation

2.1 From context-based to higher-order

The following left-to-right, call-by-value CPS transformation repeatedly decomposes a source
term into a context and the application of a pair of values, CPS transforms the application,
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and plugs a fresh variable into the context. This process continues until the source term is a
value.

Definition 1 (Implicit context-based CPS transformation)

T : Terms × Variables → Terms
T (v, k) = k (V v)

T (C[v0 v1], k) = (V v0) (V v1) (C (C, k))

V : Values → Values
V x = x

V λx.t = λx.λk.T (t, k)

where k is fresh

C : Contexts × Variables → Values
C (C, k) = λw.T (C[w], k)

where w is fresh

The CPS transformation of a program t is λk.T (t, k), where k is fresh. �

Implicit in Definition 1 are the decomposition of a non-value source expression into a con-
text and a potential redex (on the left-hand side of the second clause of the definition of T )
and the plugging of an expression into a context (on the right-hand side of the definition of
C). Here is an explicit version of this definition, using D and P as defined in Section 1:

Definition 2 (Explicit context-based CPS transformation)

T : (Values + Contexts × PotRedexes)×Variables → Terms
T (v, k) = k (V v)

T ((C, v0 v1), k) = (V v0) (V v1) (C (C, k))

V : Values → Values
V x = x

V λx.t = λx.λk.T (D t, k)

where k is fresh

C : Contexts ×Variables → Values
C (C, k) = λw.T (D (P(C, w)), k)

where w is fresh

The CPS transformation of a program t is λk.T (D t, k), where k is fresh. �

If they are implemented literally, decomposition and plugging entail a time factor that
is linear in the size of the source program, in the worst case. Overall, the worst-case time
complexity of the CPS transformation is then quadratic in the size of the source program [21],
which is an overkill since D is always applied to the result of P. (We write ‘always’ since
D t = D (P([ ], t)).)

Danvy and Nielsen [21, 48] have shown that the composition of plugging and decompo-
sition can be fused into a ‘refocus’ function R that makes the resulting CPS transformation
operate in time linear in the size of the source program—or more precisely, in one pass. The
essence of refocusing for a reduction semantics satisfying the unique decomposition prop-
erty is captured in the following proposition:

3



Proposition 1 (Danvy & Nielsen [14, 21]) For any term t and context C,D (P(C, t)) = D′(t, C).

�

In words: refocusing amounts to continuing the decomposition of the given term in the
given context. Intuitively, R maps a term and a context into the next context and potential
redex, if there is any.

The definition of R is therefore a clone of that ofD ′. In particular, it involves an auxiliary
function R ′ and takes the form of two state-transition functions:

R : Terms× Contexts → Values + Contexts × PotRedexes
R(v, C) = R ′(C, v)

R(t0 t1, C) = R(t0, C[[ ] t1])

R ′ : Contexts × Values → Values + Contexts × PotRedexes
R ′([ ], v) = v

R ′(C[[ ] t1], v0) = R(t1, C[v0 [ ]])

R ′(C[v0 [ ]], v1) = (C, v0 v1)

(Again, R ′ could be inlined.)
We take this one-pass CPS transformation as the starting point of our derivation:

Definition 3 (Context-based CPS transformation, refocused)

T1 : (Values + Contexts × PotRedexes)× Variables → Terms
T1 (v, k) = k (V1 v)

T1 ((C, v0 v1), k) = (V1 v0) (V1 v1) (C1 (C, k))

V1 : Values → Values
V1 x = x

V1 λx.t = λx.λk.T1 (R(t, [ ]), k)

where k is fresh

C1 : Contexts × Variables → Values
C1 (C, k) = λw.T1 (R(w, C), k)

where w is fresh

The CPS transformation of a program t is λk.T1 (R(t, [ ]), k), where k is fresh. �

In Definition 2, D was always applied to the result of P. Similarly, in Definition 3, T1 is
always applied to the result of R. Ohori and Sasano [49] have shown that the composition
of functions such as T1 and R can be fused by ‘fixed-point promotion’ into a function RT2

in
such a way that for any term t, context C, and continuation identifier k,

T1 (R(t, C), k) =RT2
(t, C, k).

We detail this fusion in Appendices A and B. The resulting fused CPS transformation reads
as follows:
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Definition 4 (Context-based CPS transformation, fused)

RT2
: Terms× Contexts × Variables → Terms

RT2
(v, C, k) = R ′

T2
(C, v, k)

RT2
(t0 t1, C, k) = RT2

(t0, C[[ ] t1], k)

R ′
T2

: Contexts × Values × Variables → Terms
R ′

T2
([ ], v, k) = k (V2 v)

R ′
T2

(C[[ ] t1], v0, k) = RT2
(t1, C[v0 [ ]], k)

R ′
T2

(C[v0 [ ]], v1, k) = (V2 v0) (V2 v1) (C2 (C, k))

V2 : Values → Values
V2 x = x

V2 λx.t = λx.λk.RT2
(t, [ ], k)

where k is fresh

C2 : Contexts × Variables → Values
C2 (C, k) = λw.RT2

(w, C, k)

where w is fresh

The CPS transformation of a program t is λk.RT2
(t, [ ], k), where k is fresh. �

Because the contexts are solely consumed by the rules defining R ′
T2

, this CPS transfor-
mation is in the image of Reynolds’s defunctionalization. The contexts are a first-order rep-
resentation of the function type Values × Variables → Terms with R ′

T2
as the apply function.

As the last step of the derivation, let us therefore refunctionalize this CPS transformation.
Under the assumption that C is refunctionalized as Ĉ, and for any t and k, we define

RT3
(Ĉ, t, k) to equal RT2

(C, t, k), and we write V3 and C3 to denote the counterparts of V2

and C2 over refunctionalized contexts. We introduce the infix operator @ for applications,
and we overline λ and @ for the static abstractions and applications introduced by refunc-
tionalization; we also write u for the corresponding static variables. Symmetrically, we un-
derline λ and @ for the dynamic abstractions and applications constructing the residual CPS
program, and we write w for the corresponding dynamic variables.

• [ ] is refunctionalized as
λu.λk.k @ (V3 u),

corresponding to the first rule of R ′
T2

;

• if C is refunctionalized as Ĉ then C[v0 [ ]] is refunctionalized as

λu1.λk.(V3 v0) @ (V3 u1) @ (C3(Ĉ, k)),

corresponding to the third rule of R ′
T2

; and

• if C is refunctionalized as Ĉ then C[[ ] t1] is refunctionalized as

λu0.λk.RT3
(t1, λu1.λk.(V3 u0) @ (V3 u1) @ (C3(Ĉ, k)), k),

corresponding to the second rule of R ′
T2

.
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The interpretation of contexts previously performed by R ′
T2

is now performed by static ap-
plication.

An improvement: instead of RT3
that operates on t, Ĉ, and k, we can instead apply the

refunctionalized context Ĉ to the continuation identifier k as soon as it is available. To this
end, we define a function T3 operating on t and on λu.Ĉ @ u @ k, so that RT3

(t, Ĉ, k) =

T3(t, λu.Ĉ @ u @ k). The result is the following higher-order CPS transformation:

Definition 5 (Context-based CPS transformation, refunctionalized)

T3 : Terms × (Values → Terms) → Terms
T3(v, κ) = κ @ v

T3(t0 t1, κ) = T3(t0, λu0.T3(t1, λu1.(V3 u0) @ (V3 u1) @ (C3 κ)))

V3 : Values → Values
V3 x = x

V3 λx.t = λx.λk.T3(t, λu.k @ (V3 u))

where k is fresh

C3 : (Values → Terms) → Values
C3 κ = λw.κ @ w

where w is fresh

The CPS transformation of a program t is λk.T3(t, λu.k @ (V3 u)), where k is fresh. �

This CPS transformation is very close to the usual higher-order one-pass CPS transforma-
tion. It is manifestly not compositional, witness the applications of V3 to the static variables
u0, u1, and u. This non-compositionality is directly inherited from the initial context-based
CPS transformation, which is also non-compositional.

The non-compositionality can be read off the types if we write DTerms and DValues for
the syntactic domains of source direct-style expressions and values and CTerms and CValues
for the syntactic domains of target CPS expressions and values. The types of T3, V3, and C3

are then as follows:

T3 : DTerms → (DValues → CTerms) → CTerms
V3 : DValues → CValues

C3 : (DValues → CTerms) → CValues

We can easily make this CPS transformation compositional by applying V prior to ap-
plying κ instead of afterwards. The types of the resulting compositional functions T4 and C4

then read as follows:

T4 : DTerms → (CValues → CTerms) → CTerms
C4 : (CValues → CTerms) → CValues

The result is then the usual higher-order one-pass CPS transformation, which is our starting
point in Section 2.2.

2.2 From higher-order to context-based

Appel [2], Danvy and Filinski [16, 17], and Wand [71] each discovered the following higher-
order one-pass CPS transformation:
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Definition 6 (Higher-order CPS transformation)

T4 : DTerms× (CValues → CTerms) → CTerms
T4(v, κ) = κ @V4 v

T4(t0 t1, κ) = T4(t0, λu0.T4(t1, λu1.u0 @ u1 @ (C4 κ)))

V4 : DValues → CValues
V4 x = x

V4 λx.t = λx.λk.T4(t, λu.k @ u)

where k is fresh

C4 : (CValues → CTerms) → CValues
C4 κ = λw.κ @ w

where w is fresh

The CPS transformation of a program t is λk.T4(t, λu.k @ u), where k is fresh. �

Let us defunctionalize this higher-order transformation. The type CValues → CTerms is
inhabited by instances of three λ-abstractions (the overlined ones in Definition 6). It therefore
gives rise to a data type with three constructors (written below as in ML) and its associated
apply function interpreting these constructors.

The corresponding defunctionalized CPS transformation reads as follows:

Definition 7 (Higher-order CPS transformation, defunctionalized)

datatype Fun = F0 of Variables
| F1 of Fun×DTerms
| F2 of Fun× CValues

apply5 : Fun× CValues → CTerms
apply5(F0 k, u) = k @ u

apply5(F1 (f, t1), u0) = T5(t1, F2 (f, u0))

apply5(F2 (f, u0), u1) = u0 @ u1 @ (C5 f)

T5 : DTerms → Fun → CTerms
T5(v, f) = apply5(f, V5 v)

T5(t0 t1, f) = T5(t0, F1 (f, t1))

V5 : DValues → CValues
V5 x = x

V5 λx.t = λx.λk.T5(t, F0 k)

where k is fresh

C5 : Fun → CValues
C5 f = λw.apply5(f, w)

where w is fresh

The CPS transformation of a program t is λk.T5(t, F0 k), where k is fresh. �

We recognize the result as a refocused context-based CPS transformation where the con-
texts hold elements of CValues instead of elements of DValues. The data type Fun plays the
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role of the contexts (indexing each empty context with a continuation identifier), apply5 plays
the role of R ′

T2
, and T5 plays the role of RT2

.
Alternatively, we can defunctionalize the CPS transformation of Definition 6 so that the

data type and the type of its apply function read as follows:2

datatype Fun = F0 of Variables
| F1 of Fun×DTerms
| F2 of Fun×DValues

apply : Fun×DValues → CTerms

We then obtain the CPS transformation of Definition 4.

2.3 Summary and conclusion

We have bridged two approaches to one-pass CPS transformations, one that is context-based
and non-compositional, and the other that is higher-order and compositional. This bridge
is significant because even though they share the same goal, the two approaches have been
developed independently and have always been reported separately in the literature.

We have used three tools to bridge the two CPS transformations: refocusing, fixed-point
promotion, and defunctionalization. Refocusing short-cuts plugging and decomposition,
and made it possible for the context-based CPS transformation to operate in one pass. Fixed-
point promotion is a special case of fold/unfold fusion, and made it possible to fuse the
resulting CPS transformation with its refocus function.3 Defunctionalization and its left in-
verse, refunctionalization, are changes of representation between the higher-order world and
the first-order world, and they made it possible to relate higher-order and context-based CPS
transformations.

3 Tail-conscious CPS transformation

The CPS transformations of Section 2 generate one η-redex for each source tail-call. For
example, they map a term such as λx.f (g x) into the following one:

λk.k (λx.λk.g x (λw.f w (λw ′.k w ′)))

In this CPS term, the continuation of the (tail) call to f is λw ′.k w ′.
In contrast, a tail-conscious CPS transformation would yield the following η-reduced

term:
λk.k (λx.λk.g x (λw.f w k))

Tail-consciousness matters for readability and in CPS-based compilers.

3.1 Making a context-based CPS transformation tail-conscious

The specification of C in Definition 2 can be refined as follows to make it tail-conscious:

C : Contexts × Variables → Values
C ([ ], k) = k

C (C, k) = λw.T (C[w], k) if C 6= [ ]

where w is fresh
2This choice in defining a data type is similar to the choice between minimally free expressions and maximally

free expressions in super-combinator conversion [50, pages 245–247].
3In another context [7,8,14,21], fixed-point promotion makes it possible to transform a ‘pre-abstract machine’

into a ‘staged abstract machine’.
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One can then take the same steps as in Section 2.1 to obtain a tail-conscious higher-order CPS
transformation similar to Danvy and Filinski’s [17].

3.2 Making a higher-order CPS transformation tail-conscious

The specification in Definition 6 can be refined to make it tail-conscious. The idea is to make
the second parameter of T4 a sum, i.e., either the continuation identifier (in case of source tail
call), or a function.

T4 : DTerms × (Variables + CValues → CTerms) → CTerms
C4 : Variables + CValues → CTerms → CValues

(Alternatively, the definition of T4 can be split into two, one for each summand.) One can
then take the same steps as in Section 2.2 to obtain a tail-conscious context-based CPS trans-
formation similar to the one of Section 3.1.

4 Continuations first or continuations last?

When writing a continuation-passing λ-abstraction, should one write λx.λk.t or λk.λx.t?
Since Plotkin [51] and Steele [66], tradition has it to do the former, but the latter makes
curried continuation-passing functions continuation transformers [1, 33]. Because this order
was first promoted in Fischer’s work [29],4 putting continuations first is said to be “à la
Fischer” and is used, e.g., by Fradet and Le Métayer [31], by Sabry and Felleisen [60], and
by Reppy [54]. Conversely, putting continuations last is said to be “à la Plotkin” and is used
more frequently.

Sections 2 and 3 are concerned with CPS à la Plotkin, but their content can be adapted
mutatis mutandis to CPS à la Fischer. On the other hand, each flavor of CPS enables new and
distinct opportunities for administrative η-reductions, which are a source of compactness in
CPS programs.

Tail-conscious CPS à la Plotkin: In a λ-abstraction, a tail call where sub-terms are values
such as in λy.f x is transformed into λk.k (λy.λk.f x k), where the inner continuation can be
η-reduced.

Tail-conscious CPS à la Fischer: A term containing nested applications such as λx.f (g (h x))

is transformed into λk.k (λk.λx.h (λw1.g (λw2.f k w2) w1) x). In this CPS term, the param-
eter of each continuation can be administratively η-reduced, producing the following term,
where indeed even x can be η-reduced:

λk.k (λk.λx.h (g (f k)) x)

As the two examples illustrate, a curried CPS à la Plotkin makes it possible to η-reduce
continuation identifiers for some source λ-abstractions, whereas a curried CPS à la Fischer
makes it possible to η-reduce parameters of continuations for some source applications.
Since, on the average, there are many more applications than abstractions in a λ-term, by
construction, the Fischer curried flavor offers more opportunities than the Plotkin curried
flavor for obtaining compact CPS programs through administrative η-reductions.

Furthermore, it is possible to perform administrative η-reductions at transformation time,
i.e., in one pass. One is, however, left with the task of proving that administrative η-reductions

4On pragmatic grounds—using cons rather than append over lists of parameters in uncurried CPS.
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are value η-reductions, i.e., that they do not alter the properties of CPS-transformed pro-
grams, namely simulation, indifference, and translation [38, 51] as well as termination.

At any rate, the current agreement in the continuation community is that administrative
η-reductions bring more trouble than benefits. In fact, for uncurried CPS, neither flavor
provides any extra opportunity for administrative η-reduction beyond tail consciousness. In
short, only tail-consciousness matters, and it works both for Plotkin and Fischer, uniformly.

5 CPS transformation with generalized reduction

5.1 Generalized reduction

In his PhD thesis [58, 60], Sabry considered βlift, a generalized reduction that is most easily
described using reduction contexts [10]:

C[(λx.t0) t1] −→βlift (λx.C[t0]) t1

A βlift-reduction in the direct-style world corresponds to an administrative (i.e., over-
lined) β-reduction in the corresponding CPS program à la Fischer:

((λk.λx.t ′
0) @ c) @ v ′

1 −→adm (λx.t ′
0[c/k]) @ v ′

1

(t ′
0 is the CPS counterpart of t0, v ′

1 is the CPS counterpart of t1, and c represents C.)
Similarly, a βlift-reduction in the direct-style world corresponds to an administrative gen-

eralized β-reduction in the corresponding CPS program à la Plotkin:

((λx.λk.t ′
0) @ v ′

1) @ c −→adm (λx.t ′
0[c/k]) @ v ′

1

5.2 Administrative generalized reduction

Integrating βlift into the CPS transformation is achieved by refining the following rule in
Definition 2:

T (C[v0 v1], k) = (V v0) (V v1) (C (C, k))

The idea is to enumerate the possible instances of v0, i.e., whether it denotes a variable or a
λ-abstraction:

T (C[x v1], k) = x (V v1) (C (C, k))

T (C[(λx.t0) v1], k) = (λx.T (C[t0], k)) (V v1)

renaming x if it occurs free in C

As in Section 2, the refined context-based CPS transformation can be refocused to oper-
ate in one-pass and refunctionalized to be higher-order. Making it compositional, however,
makes the CPS transformation dependently typed [22]. The steps are reversible, turning a
one-pass higher-order CPS transformation with generalized reduction into a one-pass refo-
cused context-based CPS transformation.

6 Tail-conscious CPS transformation à la Fischer with administra-
tive η-reductions and generalized reduction

Putting everything together, Definition 2 can be made tail-conscious and extended with ad-
ministrative η-reductions and generalized reduction. The result, if it is à la Fischer, coincides
with Sabry and Felleisen’s compacting CPS transformation (Sabry & Felleisen, 1993, Defini-
tion 5). It can be refocused to operate in one-pass and refunctionalized to be higher-order.
But as in Section 5, making it compositional makes the CPS transformation dependently
typed [22]. The derivation steps are reversible.
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7 Conclusions and issues

We have connected two distinct approaches to a one-pass CPS transformation that have been
reported separately in the literature. One is higher-order and compositional, stems from
denotational semantics, and can be expressed directly as a functional program. The other
is rewriting-based and non-compositional, stems from reduction semantics, and requires
an adaptation such as refocusing to operate in one pass. The connection between the two
approaches reduces their choice to a matter of convenience.

While all textbook descriptions of the one-pass CPS transformation [2, 32, 53] account
for tail-consciousness, none pays a particular attention to administrative η-reductions and
to generalized reduction. For example, the context-based CPS transformation of the second
edition of Essentials of Programming Languages [32] produces uncurried CPS programs à la
Plotkin and corresponds to the content of Section 3.

The derivation steps presented in the present article can be used for richer languages, i.e.,
languages with literals, primitive operations, conditional expressions, block structure, and
computational effects (state, control, etc.). They also directly apply to transforming programs
into monadic normal form [6, 30, 37, 46].

Acknowledgments: Thanks are due to Julia L. Lawall for comments and to an anonymous
reviewer for pressing us to spell out how T1 andR are fused; Ohori and Sasano’s fixed-point
promotion provides a particularly concise explanation for this fusion.

This work is partly supported by the Danish Natural Science Research Council, Grant
no. 21-03-0545.

A Fixed-point promotion

We outline Ohori and Sasano’s fixed-point promotion algorithm [49] and illustrate it with a
simple example.

Fixed-point promotion fuses the composition f ◦ g of a strict function f and a recursive
function g. As a simple example, consider a function computing the run-length encoding of a
list. Given a list of elements, this function segments it into a list of pairs of elements and non-
negative integers, replacing each longest sequence s of consecutive identical elements x in
the given list with a pair (x, n) where n is the length of s. For example, it maps [W,W,B,B, B]

into [(W,2), (B, 3)].
We make use of an auxiliary tail-recursive function next that traverses a segment and

computes its length. Additionally, if the rest of the list is nonempty, it also returns its head
and tail:

next : α× List(α)×Nat → α×Nat× (Unit + α× List(α))

next (x, nil, n) = (x, n, ())

next (x, x ′ :: xs, n) = if x = x ′ then next (x, xs, n + 1) else (x, n, (x′, xs))

A second auxiliary function continue dispatches on the return value of next and continues
encoding the tail of the list if necessary:

continue : α×Nat × (Unit + α× List(α) → List(α×Nat)
continue (x, n, ()) = (x, n) :: nil

continue (x, n, (x ′, xs)) = (x, n) :: continue (next (x ′, xs, 1))

11



The run-length encoding of a list is then the composition of continue and next:

encode : List(α) → List(α×Nat)
encode nil = nil

encode (x :: xs) = continue (next (x, xs, 1))

To fuse this composition, we will use fixed-point promotion and proceed accordingly in four
steps.

The first step is to inline the application of next in the composition to expose its body to
continue:

λ(x, xs, n).continue (next (x, xs, n))

= {inline next}
λ(x, xs, n).continue (case (x, xs, n)

of (x, nil, n) ⇒ (x, n, ())

| (x, x ′ :: xs, n) ⇒ if x = x ′

then next (x, xs, n + 1)

else (x, n, (x ′, xs)))

The second step is to distribute the application of continue to the inner tail positions in
the body of next. There are three such inner expressions in tail position—the first arm of the
case expression and both arms of the if expression:

= {distribute continue to inner tail positions}
λ(x, xs, n).case (x, xs, n)

of (x, nil, n) ⇒ continue (x, n, ())

| (x, x ′ :: xs, n) ⇒ if x = x ′

then continue (next (x, xs, n + 1))

else continue (x, n, (x ′, xs))

The third step is to simplify by, e.g., inlining applications of continue to known argu-
ments:

= {inline applications of continue}
λ(x, xs, n).case (x, xs, n)

of (x, nil, n) ⇒ (x, n) :: nil
| (x, x ′ :: xs, n) ⇒ if x = x ′

then continue (next (x, xs, n + 1))

else (x, n) :: continue (next (x′, xs, 1))

The fourth and final step is to use this abstraction to define a new recursive function
nextc equal to continue◦next, and to use it to replace remaining occurrences of continue◦next.
The auxiliary functions next and continue are no longer needed, and the fused run-length
encoding function reads as follows:

nextc : α× List(α)×Nat → List(α×Nat)
nextc (x, nil, n) = (x, n) :: nil

nextc (x, x ′ :: xs, n) = if x = x ′

then nextc (x, xs, n + 1)

else (x, n) :: nextc (x ′, xs, 1)

encode : List(α) → List(α×Nat)
encode nil = nil

encode (x :: xs) = nextc (x, xs, 1)

12



In an actual implementation, the first parameter of next and of nextc would be lambda-
dropped [23].

B Fusion of refocus and the context-based CPS transformation

We now calculate the definition of RT2
, which is the fusion of the refocus function R and the

context-based CPS transformation T1 from Section 2.1. We work with a version of R where
the auxiliary function R ′ is inlined:

R : Terms × Contexts → Values + Contexts × PotRedexes
R(v, [ ]) = v

R(v0, C[[ ] t1]) = R(t1, C[v0 [ ]])

R(v1, C[v0 [ ]]) = (C, v0 v1)

R(t0 t1, C) = R(t0, C[[ ] t1])

We follow the same steps as in Appendix A (as specified for multiargument uncurried func-
tions [49]), starting with the composition of T1 and R:

λ(t, C, k).T1 (R(t, C), k)

= {inline R}
λ(t, C, k).T1(case (t, C)

of (v, [ ]) ⇒ v

| (v0, C[[ ] t1]) ⇒ R(t1, C[v0 [ ]])

| (v1, C[v0 [ ]]) ⇒ (C, v0 v1)

| (t0 t1, C) ⇒ R(t0, C[[ ] t1]), k)

= {distribute T1 (−, k) to inner tail positions}
λ(t, C, k).case (t, C)

of (v, [ ]) ⇒ T1 (v, k)

| (v0, C[[ ] t1]) ⇒ T1 (R(t1, C[v0 [ ]]), k)

| (v1, C[v0 [ ]]) ⇒ T1 ((C, v0 v1), k)

| (t0 t1, C) ⇒ T1 (R(t0, C[[ ] t1]), k)

= {inline two applications of T1}
λ(t, C, k).case (t, C)

of (v, [ ]) ⇒ k (V1 v)

| (v0, C[[ ] t1]) ⇒ T1 (R(t1, C[v0 [ ]]), k)

| (v1, C[v0 [ ]]) ⇒ (V1 v0) (V1 v1) (C1 (C, k))

| (t0 t1, C) ⇒ T1 (R(t0, C[[ ] t1]), k)

We then create a new recursive function RT2
to use in place of the composition of T1 and R

(we rename V1 to V2 and C1 to C2, just as in Section 2.1):

RT2
: Terms × Contexts × Variables → Terms

RT2
(v, [ ], k) = k (V2 v)

RT2
(v0, C[[ ] t1], k) = RT2

(t1, C[v0 [ ]], k)

RT2
(v1, C[v0 [ ]], k) = (V2 v0) (V2 v1) (C2 (C, k))

RT2
(t0 t1, C, k) = RT2

(t0, C[[ ] t1], k)

Inlining the auxiliary function R ′
T2

in the definition of RT2
from Section 2.1 yields this defi-

nition.
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