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Abstract

Over forty years ago, David Barron and Christopher Strachey
published a startlingly elegant program for the Cartesian prod-
uct of a list of lists, expressing it with a three nested occurrences
of the function we now call foldr . This program is remark-
able for its time because of its masterful display of higher-order
functions and lexical scope, and we put it forward as possibly
the first ever functional pearl. We first characterize it as the re-
sult of a sequence of program transformations, and then apply
similar transformations to a program for the classical power set
example. We also show that using a higher-order representa-
tion of lists allows a definition of the Cartesian product function
where foldr is nested only twice.

∗To appear in the proceedings of ICFP’07.
†E-mail: danvy@brics.dk
‡E-mail: mike@comlab.ox.ac.uk
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1 Introduction

In 1966, David Barron and Christopher Strachey contributed a chapter on
‘Programming’ to a book entitled Advances in Programming and Non-numer-
ical Computation edited by Leslie Fox, then Professor of Numerical Analysis
at Oxford (Barron and Strachey 1966). The volume was assembled from lec-
ture notes used at a summer school held in Oxford in 1963, and Barron and
Strachey’s chapter was put together by David Barron with the help of tape
recordings of Strachey’s lectures (Barron 1975). Although ostensibly an in-
troduction to (then) modern ideas in programming, the chapter could more
accurately be described as a shop window for the features of the authors’
new programming language CPL.

CPL was far ahead of its time, in the sense that it was too ambitious
ever to be fully implemented with contemporary machines and software
(Hartley 2000). Partly through its simpler variant BCPL (Richards 2000),
introduced as a language in which the CPL compiler could be written, CPL
did have a wide influence, however. BCPL in turn gave rise to the lan-
guages B and C in which the UNIX system was written, and so its indirect
influence remains widespread even today.

Barron and Strachey’s chapter contains several examples of CPL pro-
grams in different styles, and among them is a purely functional program
for computing the list of all factors of a given number. In the best functional
style, this program is a composition of simpler parts:

1. Use repeated division to find a list of prime factors of the given num-
ber in ascending order.

2. Group equal factors and multiply them together to get lists of the
prime powers that divide the given number.

3. Use a Cartesian product function to choose one of the powers of each
prime in each possible way.

4. Multiply together the prime powers to give all the factors of the num-
ber.

What interests us here is the Cartesian product function, which Barron
and Strachey introduce with the example that Product applied to the list
[[a, b], [p, q, r], [x, y]] yields

[[a, p, x], [a, p, y], [a, q, x], [a, q, y], [a, r, x], [a, r, y],
[b, p, x], [b, p, y], [b, q, x], [b, q, y], [b, r, x], [b, r, y]],
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with each list in the result containing one element from each of the lists in
the input, and in the same order. Later, they provide the following startling
definition of this function:

let Product [L] = Lit [f,List1[NIL], L]
where f [k, z] = Lit [g,NIL, k]

where g[x, y] = Lit [h, y, z]
where h[p, q] = Cons [Cons [x, p], q].

Here, Lit is the higher-order function that present-day functional program-
mers call foldr :

foldr :: (α→ β → β)→ β → [α]→ β
foldr f a xs = visit xs

where
visit [ ] = a
visit (x : xs) = f x (visit xs)

Using some more notation from Haskell together with the ‘xs ’ convention
for list variables, the program can be rewritten as follows:

product :: [[α]]→ [[α]] (P )
product xss = foldr f [[ ]] xss

where f xs yss = foldr g [ ] xs
where g x zss = foldr h zss yss

where h ys qss = (x : ys) : qss.

(We have compressed the layout a little to save space.)
This definition of Product is astounding in several ways, and (although

it is a subjective point) we put it forward as possibly the first ever functional
pearl, in the sense of a presentation of a purely functional computer pro-
gram that is remarkable for its succinct elegance. It makes accomplished
use of higher-order functions (the three nested occurrences of foldr ), and of
lexical scoping (the occurrence of x in the last line is bound by the enclosing
definition “where g x zss = . . .”, and the occurrence of yss in the third line
is similarly bound by “where f xs yss = . . .”).

Though higher-order functions such as map were known in Lisp, which
had a clear influence on Strachey’s work of the period, Lisp at the time
lacked any equivalent for the function foldr , had dynamic scope by default,
and did not readily support local function definitions. The archive of Stra-
chey’s working papers at the Bodleian Library in Oxford (Strachey 1961)
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contains many versions of the Cartesian product function, beginning in late
1961; it was evidently one of Strachey’s favourite examples. A number of
listings show him testing various versions by translating them into Lisp.

However, in a handwritten note dated 2 November 1961, Strachey goes
beyond the Lisp style of the time and investigates the properties of two
“recursive operators” R1 and R2 that correspond to foldr and foldl . Stra-
chey first notes that R1 applied to cons has the effect of append and R2

applied to cons has the effect of reverse . He then shows that the Cartesian
product function can also be expressed in terms of R1 using nested lambda-
expressions where free variables of the inner expression are bound by the
outer lambda, giving in essence the program shown above. Though this
program could have been translated into Lisp using the FUNARG mecha-
nism, there is no evidence that Strachey did so.

In this article, we reconstruct a sequence of steps that might have led to
Barron and Strachey’s program, relate these to a more ‘modern’ derivation
that starts with a list comprehension, and treat another example – power
set – in a similar way, before finally showing how a program of still higher
order can compute product using only two applications of foldr .

As for the authors of the present article, Danvy first came across this ar-
restingly beautiful definition of the Cartesian product in Patrick Greussay’s
VLISP 16 manual (1978, page 3–3), and Spivey in Fox’s book (Barron and
Strachey 1966). Naturally, we were not the first to marvel at the program-
ming achievements described in Barron and Strachey’s chapter and epit-
omized by the definition of product shown above. Michael Gordon (1973;
1979; 2000) showed that any function that is defined using Lit but no other
recursion does an amount of work that is bounded as a function of the
length of the longest list in the input. This allowed him to show that Lit
cannot be used to define many familiar functions on trees (represented as
nested lists), where the input may be deeply nested but contains only lists
of bounded length.

2 Cartesian product explained

Barron and Strachey do not quite pull out of a hat the definition of Product
from Section 1. Noting that the problem of defining Product is “quite diffi-
cult”, they begin with the following definition, which we have re-expressed
using pattern matching for clarity.

product [ ] = [[ ]] (P0)
product ([ ] : ) = [ ]

3



product ((x : xs) : xss) =
map f (product xss) ++ product (xs : xss)

where f ys = x : ys.

The authors show a trace of the execution of the program and note, “Al-
though this program is ingenious, this is a very inefficient process,” before
proposing the following “more efficient” version.1

product [ ] = [[ ]] (P1)
product (xs : xss) = f1 xs (product xss)

where
f1 [ ] yss = [ ]
f1 (x : xs) yss = f2 x (f1 xs yss) yss

where
f2 x zss [ ] = zss
f2 x zss (ys : yss) = (x : ys) : f2 x zss yss .

Then they write, “This process can be expressed more elegantly” in the
form shown in Section 1 of the present article, leaving the reader with no
more than an elliptic explanation of this tour de force.

3 Cartesian product reconstructed

In this section, we present a sequence of transformation steps that leads
from the “ingenious but inefficient” version P0 to the “more efficient” step-
ping stone P1 and on to the definition in terms of foldr .

Introducing an auxiliary function

The function product in program P0 uses recursion on both the list of lists
and on the list that is its first element. Let us introduce an auxiliary function
h to separate the two recursions, specifying it by

h xs xss = product (xs : xss).

Disentangling the program in this way leads to the following version of
product :

1In transcribing the definition of f1, we have replaced the expression f2 x zss (f1 xs zss),
an equivalent of which appeared in the original paper, with the corrected expression
f2 x (f1 xs zss) zss .
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product [ ] = [[ ]] (P ′
0)

product (xs : xss) = h xs xss
where

h [ ] xss = [ ]
h (x : xs) xss = map f (product xss) ++ h xs xss

where f ys = x : ys.

Computing the main recursive call just once

In program P ′
0, the recursive call product xss is computed repeatedly, since

xss is an unchanging argument of h. It is better to compute this call just
once, and we arrange for this by replacing h with a new function h′, speci-
fied by

h′ xs (product xss) = h xs xss .

This replacement leads to the following rearrangement of the program:

product [ ] = [[ ]] (P ′′
0 )

product (xs : xss) = h′ xs (product xss)
where

h′ [ ] yss = [ ]
h′ (x : xs) yss = map f yss ++ h′ xs yss

where f ys = x : ys.

Since the value of product (xs : xss) depends on the value of product xss , we
can view the result of product in this program as a synthesized attribute
(Johnsson 1987).

This form of product is easily reached also by beginning with a defini-
tion that uses generators in the form of a list comprehension:

product [ ] = [[ ]]
product (xs : xss) = [x : ys | x← xs , ys ← product xss ].

If we define h′ xs yss = [x : ys | x ← xs , ys ← yss ], then we immediately
get the equation

product (xs : xss) = h′ xs (product xss).

Applying the laws

[E | p← [ ], q ← ys ] = [ ]
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and

[E | p← x : xs , y ← ys ]
= [E[x/p] | y ← ys ] ++ [E | p← xs , q ← ys ]

then gives the recursive definition of h′.

Eliminating append

The definition of h′ includes the equation,

h′ (x : xs) yss = map f yss ++ h′ xs yss .

We can eliminate the use of ++ by introducing a function p, specified by

p x zss yss = map f yss ++ zss where f ys = x : ys

Now we can replace the expression map f yss++h′ xs yss with p x (h′ xs yss) yss .
We can also derive a recursive definition of p:

p x zss [ ] = zss ,

p x zss (ys : yss)
= f ys : map f yss ++ zss
= (x : ys) : p x zss yss .

Putting these definitions together, and renaming h ′ as f1 and p as f2, gives
the program P1 that appears in Section 2.2

Introducing foldr

The next step is to observe that in program P1,

product [ ] = [[ ]] (P1)
product (xs : xss) = f1 xs (product xss)

where
f1 [ ] yss = [ ]
f1 (x : xs) yss = f2 x (f1 xs yss) yss

where
f2 x zss [ ] = zss

2The idea of introducing an extra parameter in order to eliminate ++ is a recurring
theme in Strachey’s working papers, often expressed in terms of a ‘deforested’ function
mapa f xs ys that computes map f xs ++ ys .
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f2 x zss (ys : yss) = (x : ys) : f2 x zss yss ,

each of product , f1 and f2 can be rewritten using foldr . First,

product xss = foldr f1 [[ ]] xss ,

and second,

f1 xs yss = foldr (g yss) [ ] xs ,

where g yss x zss = f2 x zss yss . Third, we see that

g yss x zss = foldr (hx) zss yss
where hx ys qss = (x : ys) : qss .

Exploiting nested scopes

The final step is to note that the argument yss of f1 is passed on unchanged
as an argument of g, and the argument x of g is passed on as an argument
of h. There is no need to make these arguments explicit, and they can be
‘lambda-dropped’ (Danvy and Schultz 2000) and left as free variables of g
and h respectively. Renaming f1 as f then gives the form of the program P
that was shown in Section 1.

4 Application to the power set function

A similar sequence of transformation steps can be applied to other func-
tions. For example, let us consider the power set function defined by

powerset :: [α]→ [[α]] (Q0)
powerset [ ] = [[ ]]
powerset (x : xs) = map (x:) yss ++ yss

where yss = powerset xs.

Applying it to the list [a, b, c] yields

[[a, b, c], [a, b], [a, c], [a], [b, c], [b], [c], [ ]].

As with the version P ′
0 of the Cartesian product function, this definition

contains a use of ++ that can be eliminated by introducing a new function,
in this case specified by
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f x yss zss = map (x:) yss ++ zss .

The second equation in Q0 then becomes

powerset (x : xs) = f x yss yss
where yss = powerset xs,

and we can derive the recursive definition,

f x [ ] zss = zss
f x (ys : yss) zss = (x : ys) : f x yss zss .

The program can now be expressed in terms of foldr : giving

powerset xs = foldr g [[ ]] xs

where g x yss = f x yss yss , and

f x yss zss = foldr (hx) zss yss

where hx ys qss = (x : ys) : qss .
When we put the results of these calculations together, x can be lambda-

dropped, and we obtain a program in the style of Barron and Strachey:

powerset xs = foldr g [[ ]] xs (Q1)
where g x yss = foldr h yss yss

where h ys qss = (x : ys) : qss.

Of course, we could also have used mapa here to start with (see Footnote 2).
In any case, this program is essentially the same as one attributed by Gor-
don (1973; 1979) to his colleague Dave du Feu.

5 Cartesian product revisited

Consider for a moment a function that computes the Cartesian product of
just four lists:

product of four :: [a]→ [a]→ [a]→ [a]→ [[a]]
product of four xs ys zs ws =

concat (map f xs)
where f x = concat (map g ys)

where g y = concat (map h zs)
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where h z = concat (map k ws)
where k w = [[x, y, z, w]].

This program is exactly the result of translating the list comprehension

[ [x, y, z, w] | x← xs , y ← ys , z ← zs , w ← ws ].

Let us think about the purpose of the local function g that comes in the
middle of the nest of five functions. For fixed values of x and y, it computes
the list of all lists [x, y, z, w] where z and w are respectively drawn from the
lists zs and ws : in other words,

map ([x, y]++) (product of two zs ws),

where ([x, y]++) is the function that maps any list ps to the list [x, y] ++ ps .
This observation suggests that it might be fruitful to consider a recur-

sive definition of a function that, given xss and us , computes

map (us++) (product xss).

Even better, we can exploit an idea of Hughes (1986), and represent the list
us by the function h = (us++). Thus, we make the specification,

prod :: [[α]]→ ([α]→ [α])→ [[α]]
prod xss h = map h (product xss),

and calculate a recursive definition of prod as follows:

prod [ ]h
= map h (product [ ])
= [h [ ]],

prod (xs : xss)h
= map h (product (xs : xss))
= f xs (prod xss)h,

where

f :: [α]→ (([α]→ [α])→ [[α]])→ ([α]→ [α])→ [[α]]

is a function such that if c = prod xss then

f xs c h = map h (product (xs : xss)).
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We can immediately calculate a clause that defines f when xs = [ ]:

f [ ] c h
= map h (product ([ ] : xss))
= map h [ ]
= [ ].

To derive the second clause in a definition of f , we must use the equation

product ((x : xs) : xss) =
map (x:) (product xs) ++ product (xs : xss),

together with the laws map h (ps ++ qs) = map h ps ++ map h qs and
map h (map g) zss = map (h · g) zss :

f (x : xs) c h
= map h (product ((x : xs) : xss))
= map h (map (x:) (product xss)) ++ map h (product (xs : xss))
= prod xss (h · (x:)) ++ f xs c h
= c (h · (x:)) ++ f xs c h.

Here, h · (x:) denotes the composition of h with the function (x:) that adds
the element x at the front of a list. Thus h · (x:) is the function h′ such that
h′ xs = h (x : xs). In contrast to the synthesized attributes that were present
in the successive versions of product in Section 3, the function h plays the
role of an inherited attribute here.

In summary, we have derived the program,

product xss = prod xss id
where

prod [ ]h = [h [ ]]
prod (xs : xss)h = f xs (prod xss)h

where
f [ ] c h = [ ]
f (x : xs) c h = c (h · (x:)) ++ f xs c h,

which gives exactly the same result as Barron and Strachey’s program (P )
in Section 1. If we were to use a first-order representation of lists here, we
would naturally define a version of the product function where the individ-
ual sublists of the result appeared in reverse:

product xss = prod xss [ ]
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where
prod [ ]h′ = [reverse h′]
prod (xs : xss)h′ = f xs (prod xss)h′

where
f [ ] c h′ = [ ]
f (x : xs) c h′ = c (x : h′) ++ f xs c h′,

And indeed, and Danvy and Nielsen point out (2001), defunctionalising
Hughes’ representation gives this first-order representation, including an
application of reverse in the right place.

Once again, we would like to play the trick of eliminating ++ from this
program, but this is made a little more difficult by the presence of the func-
tional argument c :: ([α]→ [α])→ [[α]]. To deal with this, suppose that

c′ :: ([α]→ [α])→ [[α]]→ [[α]]

is related to c by the equation

c′ h zss = c h ++ zss

which holds for all zss ; we specify a new pair of functions prod ′ and f ′ by
the equations,

prod ′ :: [[α]]→ ([α]→ [α])→ [[α]]→ [[α]]
prod ′ xss h zss = prod xss h ++ zss

f ′ :: [α]→ (([α]→ [α])→ [[α]]) →
([α]→ [α])→ [[α]]→ [[α]]

f ′ xs c′ h zss = f xs c h ++ zss

Now we can calculate,

prod ′ [ ]h zss = h [ ] : zss

prod ′ (xs : xss)h zss
= f xs (prod xss)h ++ zss
= f ′ xs (prod ′ xss)h zss

f ′ [ ] c′ h zss = zss

f ′(x : xs) c′ h zss
= c (h · (x:)) ++ f xs c h ++ zss
= c′ (h · (x:)) (f ′ xs c′ h zss).
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In the end, this apparently circular derivation is justified by induction on
the list structure of the input. We have thus derived the recursive definition,

prod ′ [ ]h zss = h [ ] : zss
prod ′ (xs : xss)h zss = f ′ xs (prod ′ xss)h zss

where
f ′ [ ] c′ h zss = zss
f ′ (x : xs) c′ h zss = c′ (h · (x:)) (f ′ xs c′ h zss).

This version is ready to be expressed in terms of foldr . By writing prod ′ =
foldr f ′ u for a suitable function u, then putting product xss = prod ′ xss id [ ],
we obtain

product xss = foldr f ′ u xss id [ ] (P2)
where

uh zss = h [ ] : zss
f ′ xs c′ h zss = foldr g zss xs

where g x qss = c′ (h · (x:)) qss .

This version of product gives exactly the same result as Barron and Stra-
chey’s program (P ), but contains only two occurrences of foldr , correspond-
ing to the two levels of list structure in the argument, and uses only inher-
ited attributes. The extra mileage comes from our more extensive use of
higher-order functions.

6 In conclusion

Was Barron and Strachey’s Cartesian product function really the first ever
functional pearl? There are, admittedly, still earlier pearls of insight by oth-
ers that deserve to be celebrated: notably the work of Church on lambda-
definability, of Curry on Combinatory Logic, and of McCarthy on Lisp.
Nevertheless, the work we have explored in this article is distinctive in its
own right, for Barron and Strachey were writing explicitly about computer
programs as objects of study. They exploited the expressive possibilities of
a higher-order, purely functional style, both in writing the Cartesian prod-
uct function itself, and in using it as part of a larger program for finding
factors. The lectures at that 1963 summer school must have been bewil-
dering to some members of Barron and Strachey’s audience, many of them
perhaps brought up on a diet of Autocode, and only dimly aware of the
new ideas in Lisp and Algol 60. Yet the lessons that were taught then are
still worth learning today, over forty years later.
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