
BRICS
Basic Research in Computer Science

The Saga of the Axiomatization of
Parallel Composition

Luca Aceto
Anna Ingólfsdóttir

BRICS Report Series RS-07-11

ISSN 0909-0878 June 2007

B
R

IC
S

R
S

-07-11
A

ceto
&

Inǵolfsdóttir:
T

he
S

aga
ofthe

A
xiom

atization
ofP

arallelC
om

position

Copyright c© 2007, Luca Aceto & Anna Ingólfsdóttir.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/07/11/

The Saga of the Axiomatization of Parallel

Composition?

Luca Aceto and Anna Ingolfsdottir

Department of Computer Science, Reykjav́ık University
Kringlan 1, 103 Reykjav́ık, Iceland

luca@ru.is, annai@ru.is

Abstract. This paper surveys some classic and recent results on the
finite axiomatizability of bisimilarity over CCS-like languages. It focuses,
in particular, on non-finite axiomatizability results stemming from the
semantic interplay between parallel composition and nondeterministic
choice. The paper also highlights the role that auxiliary operators, such
as Bergstra and Klop’s left and communication merge and Hennessy’s
merge operator, play in the search for a finite, equational axiomatization
of parallel composition both for classic process algebras and for their
real-time extensions.

1 The Problem and its History

Process algebras are prototype description languages for reactive systems that
arose from the pioneering work of figures like Bergstra, Hoare, Klop and Milner.
Well-known examples of such languages are ACP [18], CCS [44], CSP [40] and
Meije [13]. These algebraic description languages for processes differ in the basic
collection of operators that they offer for building new process descriptions from
existing ones. However, since they are designed to allow for the description and
analysis of systems of interacting processes, all these languages contain some
form of parallel composition (also known as merge) operator allowing one to put
two process terms in parallel with one another. These operators usually interleave
the behaviours of their arguments, and support some form of synchronization
between them.

For example, Milner’s CCS offers the binary operator ||, whose intended
semantics is described by the following classic rules in the style of Plotkin [49].

x
µ→ x′

x || y µ→ x′ || y
y

µ→ y′

x || y µ→ x || y′
x

α→ x′, y
ᾱ→ y′

x || y τ→ x′ || y′ (1)

(In the above rules, the symbol µ stands for an action that a process may perform,
α and ᾱ are two observable actions that may synchronize, and τ is a symbol
denoting the result of their synchronization.)
? This paper is based on joint work with Wan Fokkink, Bas Luttik and Moham-

madReza Mousavi. The authors were partly supported by the project “The Equa-
tional Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

Although the above rules describe the behaviour of the parallel composition
operator in very intuitive fashion, the equational characterization of this operator
is not straightforward. In their seminal paper [39], Hennessy and Milner offered,
amongst a wealth of other classic results, a complete equational axiomatization
of bisimulation equivalence [48] over the recursion-free fragment of CCS. (See the
paper [14] for a more detailed historical account highlighting, e.g., Hans Bekić’s
early contributions to this field of research.) The axiomatization proposed by
Hennessy and Milner in [39] dealt with parallel composition using the so-called
expansion law—a law that, intuitively, allows one to obtain a term describing
explicitly the initial transitions of the parallel composition of two terms whose
initial transitions are known. This law can be expressed as the following equation
schema

(∑
i∈I

µixi

)
||

(∑
j∈J

γjyj

)
=

∑
i∈I

µi(xi || y)+
∑
j∈J

γj(x || yj)+
∑

i∈I,j∈J

µi=γj

τ(xi || yj) (2)

(where I and J are two finite index sets, and the µi and γj are actions), and
is nothing but an equational formulation of the aforementioned rules describing
the operational semantics of parallel composition.

Despite its natural and simple formulation, the expansion law, however, is an
equation schema with a countably infinite number of instances. This raised the
question of whether the parallel composition operator could be axiomatized in
bisimulation semantics by means of a finite collection of equations. This question
was answered positively by Bergstra and Klop, who gave in [20] a finite equa-
tional axiomatization of the merge operator in terms of the auxiliary left merge
and communication merge operators. Moller showed in [46, 47] that bisimula-
tion equivalence is not finitely based over CCS and PA without the left merge
operator. (The process algebra PA [20] contains a parallel composition operator
based on pure interleaving without communication—viz. an operator described
by the first two rules in (1)—and the left merge operator.) These results, which
we survey in Section 2, indicate that auxiliary operators are necessary to obtain
a finite axiomatization of parallel composition.

Moller’s results clarified the role played by the expansion law in the equa-
tional axiomatization of parallel composition over CCS and, to the best of our
knowledge, were the first negative results on the existence of finite equational
axiomatizations for algebras of processes that were presented in the literature.
To our mind, the negative results achieved by Moller in his doctoral dissertation
removed a psychological barrier by showing that non-finite axiomatizability re-
sults could indeed be achieved also in the study of process algebras, and paved
the way to the further developments we describe henceforth in this paper.

The contributions our collaborators and we have offered so far to the saga
of the axiomatization of parallel composition have been mostly motivated by an
attempt to answer the following questions.

2

1. Are there other “natural” auxiliary operators that can be used, in lieu of
Bergstra and Klop’s left and communication merge, to achieve a finite equa-
tional axiomatization of parallel composition?

2. Do the aforementioned results hold true also for extensions of classic process
algebras like CCS with features such as real-time?

As far as the former motivating question is concerned, the literature on process
algebra offers at least one alternative proposal to the use of the left and com-
munication merge operators. In the paper [38], which we believe is not so well
known as it deserves to be, Hennessy proposed an axiomatization of observation
congruence [39] and split-2 congruence over a CCS-like recursion-free process
language. (It is worth noting for the sake of historical accuracy that the results
reported in [38] were actually obtained in 1981; see the preprint [36].) Those
axiomatizations used an auxiliary operator, denoted |/ by Hennessy, that is es-
sentially a combination of the left and communication merge operators as its
behaviour is described by the first and the last rule in (1). Apart from having
soundness problems (see the reference [2] for a general discussion of this prob-
lem, and corrected proofs of Hennessy’s results), the proposed axiomatization
of observation congruence offered in [38] is infinite, as it uses a variant of the
expansion law from [39]. This led Bergstra and Klop to write in [20, page 118]
that:

“It seems that γ does not have a finite equational axiomatization.”

(In [20] Bergstra and Klop used γ to denote Hennessy’s merge.) In Section 3,
we will present an answer to this conjecture of Bergstra and Klop’s by showing
that, in the presence of two distinct complementary actions, it is impossible to
provide a finite axiomatization of the recursion-free fragment of CCS modulo
bisimulation equivalence using Hennessy’s merge operator |/. We believe that
this result, which was originally proved in [6], further reinforces the status of
the left merge and the communication merge operators as auxiliary operators
in the finite equational characterization of parallel composition in bisimulation
semantics. Interestingly, as shown in [8], in sharp contrast to the situation in
standard bisimulation semantics, CCS with Hennessy’s merge can be finitely
axiomatized modulo split-2 bisimulation equivalence [33, 38]. (Split-2 bisimilar-
ity is defined like standard bisimilarity, but is based on the assumption that
action occurrences have a beginning and an ending, and that these events may
be observed.) This shows that, in sharp contrast to the results offered in [45,
46], “reasonable congruences” finer than standard bisimulation equivalence can
be finitely axiomatized over CCS using Hennessy’s merge as the single auxil-
iary operation—compare with the non-finite axiomatizability results for these
congruences offered in [45, 46].

It is also natural to ask oneself whether the aforementioned non-finite ax-
iomatizability results hold true also for extensions of the basic CCS calculus
with features such as real-time. In Section 4, we review some negative results,
originally shown in [12], on the finite axiomatizability of timed bisimilarity over
Yi’s timed CCS [52, 53]. In particular, we prove that timed bisimilarity is not

3

finitely based both for single-sorted and two-sorted presentations of timed CCS.
We further strengthen this result by showing that, unlike in the setting of CCS,
adding the untimed or the timed left merge operator to the syntax and seman-
tics of timed CCS does not solve the axiomatizability problem. To our mind,
these results indicate that the expressive power that is gained by adding to
CCS linguistic features suitable for the description of timing-based behaviours
substantially complicates the equational theory of the resulting algebras of pro-
cesses.

We feel that there are still many chapters to be written in the saga of the
study of the equational logic of parallel composition, and we list a few open
problems and directions of ongoing research throughout this paper.

Related Work in Concurrency and Formal Language Theory The equational
characterization of different versions of the parallel composition operator is a
classic topic in the theory of computation. In particular, the process algebraic
literature abounds with results on equational axiomatizations of various notions
of behavioural equivalence or preorder over languages incorporating some notion
of parallel composition—see, e.g., the textbooks [18, 30, 37, 44] and the classic
papers [20, 39, 43] for general references. Early ω-complete axiomatizations are
offered in [35, 45]. More recently, Fokkink and Luttik have shown in [31] that
the process algebra PA [20] affords an ω-complete axiomatization that is finite
if so is the underlying set of actions. As shown in [9], the same holds true for the
fragment of CCS without recursion, relabelling and restriction extended with
the left and communication merge operators. The readers will find a survey of
recent results on the equational logic of processes in [7], and further non-finite
axiomatizability results for rather basic process algebras in, e.g., [4, 10].

An analysis of the reasons why operators like the left merge and the commu-
nication merge are equationally well behaved in bisimulation semantics has led
to general algorithms for the generation of (finite) equational axiomatizations for
behavioural equivalences from various types of transition system specifications—
see, e.g., [1, 3, 15] and the references in [11] for further details.

Parallel composition appears as the shuffle operator in the time-honoured
theory of formal languages. Not surprisingly, the equational theory of shuffle
has received considerable attention in the literature. Here we limit ourselves to
mentioning some results that have a close relationship with process theory.

In [51], Tschantz offered a finite equational axiomatization of the theory of
languages over concatenation and shuffle, solving an open problem raised by
Pratt. In proving this result he essentially rediscovered the concept of pomset
[34, 50]—a model of concurrency based on partial orders whose algebraic aspects
have been investigated by Gischer in [32]—, and proved that the equational the-
ory of series-parallel pomsets coincides with that of languages over concatenation
and shuffle. The argument adopted by Tschantz in his proof was based on the
observation that series-parallel pomsets may be coded by a suitable homomor-
phism into languages, where the series and parallel composition operators on
pomsets are modelled by the concatenation and shuffle operators on languages,
respectively. Tschantz’s technique of coding pomsets with languages homomor-

4

phically was further extended in the papers [22, 24, 25] to deal with several other
operators, infinite pomsets and infinitary languages, as well as sets of pomsets.
The axiomatizations by Gischer and Tschantz have later been extended in [25,
29] to a two-sorted language with ω-powers of the concatenation and parallel
composition operators. The axiomatization of the algebra of pomsets resulting
from the addition of these iteration operators is, however, necessarily infinite
because, as shown in [29], no finite collection of equations can capture all the
sound equalities involving them.

The results of Moller’s on the non-finite axiomatizability of bisimulation
equivalence over the recursion-free fragment of CCS and PA without the left
merge operator given in [46, 47] are paralleled in the world of formal language
theory by those offered in [21, 23, 28]. In the first of those references, Bloom and
Ésik proved that the valid inequations in the algebra of languages equipped with
concatenation and shuffle have no finite basis. Ésik and Bertol showed in [28] that
the equational theory of union, concatenation and shuffle over languages has no
finite first-order axiomatization relative to the collection of all valid inequations
that hold for concatenation and shuffle. Hence the combination of some form of
parallel composition, sequencing and choice is hard to characterize equationally
both in the theory of languages and in that of processes. Moreover, Bloom and
Ésik have shown in [23] that the variety of all languages over a finite alphabet
ordered by inclusion with the operators of concatenation and shuffle, and a con-
stant denoting the singleton language containing only the empty word, is not
finitely axiomatizable by first-order sentences that are valid in the equational
theory of languages over concatenation, union and shuffle.

2 Background

The core process algebra that we shall consider henceforth in this paper is a
fragment of Milner’s CCS. This language, which will be referred to simply as
CCS, is given by the following grammar:

t ::= x | 0 | at | āt | τt | t + t | t || t ,

where x is a variable drawn from a countably infinite set V , a is an action, and
ā is its complement. We assume that the actions a and ā are distinct. Following
Milner [44], the action symbol τ will result from the synchronized occurrence of
the complementary actions a and ā. We let µ ∈ {a, ā, τ} and α ∈ {a, ā}. (We
remark, in passing, that this small collection of actions suffices to prove all the
negative results we survey in this study. All the positive results we shall present
in what follows hold for arbitrary finite sets of actions.) As usual, we postulate
that ¯̄a = a. We shall use the meta-variables t, u to range over process terms. The
size of a term is the number of operator symbols in it. A process term is closed
if it does not contain any variables. Closed terms will be typically denoted by
p, q.

In the remainder of this paper, we let a0 denote 0, and am+1 denote a(am).
We sometimes simply write a in lieu of a1.

5

µx
µ→ x

x
µ→ x′

x + y
µ→ x′

y
µ→ y′

x + y
µ→ y′

x
µ→ x′

x || y µ→ x′ || y
y

µ→ y′

x || y µ→ x || y′
x

α→ x′, y
ᾱ→ y′

x || y τ→ x′ || y′

Table 1. SOS Rules for the CCS Operators (µ ∈ {a, ā, τ} and α ∈ {a, ā})

The SOS rules for the above language are standard, and may be found in
Table 1. These transition rules give rise to transitions between closed terms. The
operational semantics for our language, and for all its extensions that we shall
introduce in the remainder of this paper, is thus given by a labelled transition
system [42] whose states are closed terms, and whose labelled transitions are
those that are provable using the rules that are relevant for the language under
consideration.

In this paper, we shall consider our core language and all its extensions
modulo bisimulation equivalence [44, 48].

Definition 1. Bisimulation equivalence (also sometimes referred to as bisimi-
larity), denoted by ↔, is the largest symmetric relation over closed terms such
that whenever p ↔ q and p

µ→ p′, then there is a transition q
µ→ q′ with p′ ↔ q′.

If p ↔ q, then we say that p and q are bisimilar.

It is well known that, as its name suggests, bisimulation equivalence is indeed
an equivalence relation (see, e.g., the references [44, 48]). Since the SOS rules in
Table 1 (and all of the other rules we shall introduce in the remainder of this
paper) are in de Simone’s format [27], bisimulation equivalence is a congruence.

Bisimulation equivalence is extended to arbitrary terms in the standard way.

2.1 Classic Results on Equational Axiomatizations

An axiom system is a collection of equations t ≈ u, where t and u are terms. An
equation t ≈ u is derivable from an axiom system E if it can be proved from
the axioms in E using the rules of equational logic (viz. reflexivity, symmetry,
transitivity, substitution and closure under contexts). An equation t ≈ u is sound
with respect to ↔ iff t ↔ u. An axiom system is sound with respect to ↔ iff
so is each of its equations. For example, the axiom system in Table 2 is sound.
In what follows, we use a summation

∑
i∈{1,...,k} ti to denote t1 + · · ·+ tk, where

the empty sum represents 0.
An axiom system E is a complete axiomatization of ↔ over (some extension

of) CCS if E is sound with respect to ↔, and proves all of the equations over
the language that are sound with respect to ↔. If E is sound with respect to
↔, and proves all of the closed equations over the language that are sound with
respect to ↔, then we say that E is ground complete.

The study of equational axiomatizations of bisimilarity over process algebras
was initiated by Hennessy and Milner, who proved the following classic result.

6

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

Table 2. Some Axioms for Bisimilarity

Theorem 1 (Hennessy and Milner [39]). The axiom system consisting of
equations A1–A4 and all of the instances of (2) is ground complete for bisimi-
larity over CCS.

Since the equation schema (2) has infinitely many instances, the above theorem
raised the question of whether the parallel composition operator could be ax-
iomatized in bisimulation semantics by means of a finite collection of equations.
This question was answered positively by Bergstra and Klop, who gave in [20]
a finite ground-complete axiomatization of the merge operator in terms of the
auxiliary left merge and communication merge operators. The operational rules
for these operators are

x
µ→ x′

x‖ y
µ→ x′ || y

x
α→ x′, y

ᾱ→ y′

x | y τ→ x′ || y′

where‖ and | stand for the left and communication merge operators, respectively.
But, are auxiliary operators necessary to obtain a finite equational axioma-

tization of bisimilarity over the language CCS? This question remained unan-
swered for about a decade until Moller proved the following seminal result in his
doctoral dissertation.

Theorem 2 (Moller [45, 47]). Bisimilarity has no finite, (ground-)complete
equational axiomatization over CCS.

Thus auxiliary operators are indeed necessary to obtain a finite axiomatization
of parallel composition, and the expansion law cannot be replaced by a finite
collection of sound equations.

Moller’s proof of the theorem above is based on the observation that, since
|| does not distribute over +, no finite, sound axiom system over CCS can be
powerful enough to “expand” the initial behaviour of a term of the form a || p
when p has a sufficiently large number of initial transitions leading to non-
bisimilar terms. It follows that no finite collection of sound axioms is as powerful
as the expansion law (2). Technically, Moller showed that, when n is greater than
the size of the largest term in a finite, sound axiom system E over the language
CCS, E cannot prove the sound equation

a ||
n∑

i=1

ai ≈ a(
n∑

i=1

ai) +
n+1∑
i=2

ai .

7

Note that, up to bisimilarity, the right-hand side of the above equation expresses
“syntactically” the collection of initial transitions of the term on the left-hand
side.

Remark 1. Theorem 2 holds true for each “reasonable congruence” over CCS. A
congruence is “reasonable” in the sense of Moller if it is included in bisimilarity
and satisfies the family of equations Redn presented in [45, page 111].

3 The Role of Hennessy’s Merge

Theorem 2 shows that one cannot hope to achieve a finite (ground-)complete
axiomatization for bisimilarity over CCS without recourse to auxiliary opera-
tors. Moreover, the work by Bergstra and Klop presented in [20] tells us that
a finite ground-complete axiomatization can be obtained at the price of adding
the left and communication merge operators to the language. (In fact, as shown
in [9], for any finite set of actions the resulting language also affords a finite
complete axiomatization modulo bisimilarity.) A natural question to ask at this
point is whether one can obtain a finite equational axiomatization of bisimilarity
over CCS extended with some auxiliary binary operator other than those pro-
posed by Bergstra and Klop. An independent proposal, put forward by Hennessy
in [36, 38], is to add the auxiliary operator |/ with the following SOS rules to the
signature for CCS.

x
µ→ x′

x |/ y
µ→ x′ || y

x
α→ x′, y

ᾱ→ y′

x |/ y
τ→ x′ || y′

Note that the above operator is essentially a combination of the left and com-
munication merge operators. We denote the resulting language by CCSH .

Does bisimilarity afford a finite equational axiomatization over CCSH? In [20,
page 118], Bergstra and Klop conjectured a negative answer to the above ques-
tion. Their conjecture was finally confirmed about twenty years later by the
following theorem.

Theorem 3 (Aceto, Fokkink, Ingolfsdottir and Luttik [6]). Bisimulation
equivalence admits no finite (ground-)complete equational axiomatization over
the language CCSH .

The aforementioned negative result holds in a very strong form. Indeed, we prove
that no finite collection of equations over CCSH that are sound with respect to
bisimulation equivalence can prove all of the sound closed equalities of the form

en : a |/ pn ≈ apn +
n∑

i=0

τai (n ≥ 0) ,

where the terms pn are defined thus:

pn =
n∑

i=0

āai (n ≥ 0) .

8

The proof of Theorem 3 is given along proof-theoretic lines that have their roots
in Moller’s proof of Theorem 2. However, the presence of possible synchroniza-
tions in the terms used in the family of equations en is necessary for our result,
and requires careful attention in our proof. (Indeed, in the absence of synchro-
nization, Hennessy’s merge reduces to Bergstra and Klop’s left merge operator,
and thus affords a finite equational axiomatization.) In particular, the infinite
family of equations en and our arguments based upon it exploit the inability of
any finite axiom system E that is sound with respect to bisimulation equivalence
to “expand” the synchronization behaviour of terms of the form p |/ q, for terms
q that, like the terms pn above eventually do, have a number of inequivalent
“summands” that is larger than the maximum size of the terms mentioned in
equations in E. As in the original arguments of Moller’s, the root of this prob-
lem can be traced back to the fact that, since |/ distributes with respect to the
choice operator + in the first argument but not in the second, no finite collection
of equations can express the interplay between interleaving and communication
that underlies the semantics of Hennessy’s merge.

Our Theorem 3 is the counterpart of Moller’s Theorem 2 over the language
CCSH . As we recalled in Remark 1, Moller’s non-finite axiomatizability result
for CCS holds for each “reasonable” congruence. It is therefore natural to ask
ourselves whether each “reasonable” congruence is not finitely based over CCSH

too. The following result shows that, in sharp contrast to the situation in stan-
dard bisimulation semantics, the language CCSH can be finitely axiomatized
modulo split-2 bisimulation equivalence [36, 38], and therefore that, modulo this
non-interleaving equivalence, the use of Hennessy’s merge suffices to yield a finite
axiomatization of the parallel composition operation.

Theorem 4 (Aceto, Fokkink, Ingolfsdottir and Luttik [8]). Split-2 bisim-
ilarity affords a finite ground-complete equational axiomatization over the lan-
guage CCSH .

The above result hints at the possibility that non-interleaving equivalences like
split-2 bisimilarity may be finitely axiomatizable using a single binary auxiliary
operator. Whether a similar result holds true for standard bisimilarity remains
open. We conjecture that the use of two binary auxiliary operators is necessary
to achieve a finite axiomatization of parallel composition in bisimulation seman-
tics. This result would offer the definitive justification we seek for the canonical
standing of the auxiliary operators proposed by Bergstra and Klop. Preliminary
work on the confirmation of some form of this conjecture is under way [5].

4 The Influence of Time

So far in this paper we have presented, mostly negative, results on the finite
axiomatizability of notions of bisimilarity over variations on Milner’s CCS. Over
the years, several extensions of CCS with, e.g., time, probabilities and priority
have been presented in the literature. However, to the best of our knowledge,
the question whether the aforementioned negative results hold true also for these

9

extensions of classic process algebras like CCS has not received much attention
in the research literature. In what follows, we discuss some impossibility results
in the equational logic of timed bisimilarity over a fragment of Yi’s timed CCS
(TCCS) [52, 53], which is one of the best-known timed extension of Milner’s
CCS.

One of the first design decisions to be taken when developing a language for
the description of timing-based behaviours is what structure to use to model
time. Since we are interested in studying the equational theory of TCCS modulo
bisimilarity, rather than selecting a single mathematical structure, such as the
natural numbers or the non-negative rationals or reals, to represent time, we
feel that it is more satisfying to adopt an axiomatic approach. We will therefore
axiomatize a class of mathematical models of time for which our negative re-
sults hold. The non-negative rationals and the non-negative reals will be specific
instances of our axiomatic framework, amongst others.

Following [41], we define a monoid (X, +, 0) to be:

– left-cancellative iff (x + y = x + z) ⇒ (y = z), and
– anti-symmetric iff (x + y = 0)⇒ (x = y = 0).

We define a partial order on X as x ≤ y iff x + z = y for some z ∈ X . A time
domain is a left-cancellative anti-symmetric monoid (D, +, 0) such that ≤ is a
total order. A time domain is non-trivial if D contains at least two elements.
Note that every non-trivial time domain does not have a largest element, and
is therefore infinite. A time domain has 0 as cluster point iff for each d ∈ D
such that d 6= 0 there is a d′ ∈ D such that 0 < d′ < d. In what follows, we
assume that our time domain, denoted henceforth by D, is non-trivial and has
0 as cluster point.

Syntactically, we consider the language TCCS that is obtained by adding to
the signature of CCS delay prefixing operators of the form ε(d). , where d is a
non-zero element of a time domain D. In what follows, we only consider action
prefixing operators of the form at and parallel composition without synchroniza-
tion.

The operational semantics for closed TCCS terms is based on two types of
transition relations: a→ for action transitions and d→, where d ∈ D, for time-delay
transitions. Action transitions are defined by the rules in Table 1, whereas the
Plotkin-style rules defining delay transitions are given below.

0 d→ 0 ax
d→ ax

ε(d).x d→ x ε(d + e).x d→ ε(e).x
x

e→ y

ε(d).x d+e→ y

x0
d→ y0 x1

d→ y1

x0 + x1
ε(d)→ y0 + y1

x0
d→ y0 x1

d→ y1

x0 ||x1
d→ y0 || y1

10

The notion of equivalence over TCCS that we are interested in is timed bisim-
ilarity. This is defined exactly as in Definition 1, with the proviso that the
meta-variable µ now ranges over time delays as well as actions. For example, 0
and ε(d).0 are timed bisimilar for each d, and so are a and a + ε(d).a. On the
other hand, a and ε(d).a are not timed bisimilar because the former term affords
an a-labelled transition whereas the latter does not. (Intuitively, the latter term
has to wait for d units of time before being able to perform the action a.)

It is natural to wonder whether TCCS affords a finite (ground-)complete
axiomatization modulo timed bisimilarity. Before addressing this question, let
us remark that one can take two different approaches to formalizing the syntax
of TCCS in a term algebra.

1. The first approach is to use a single-sorted algebra with the only available
sort representing processes. Then ε(d). is a set of unary operators, one for
each d ∈ D.

2. The other approach is to take two different sorts, one for time and one for
processes, denoted by T and P, respectively. Then, ε() is a single function
symbol with arity T× P → P.

If we decide to follow the first approach then, since our time domain is infinite,
we are immediately led to observe that no finite collection of sound equations
can prove all of the valid equalities of the form 0 ≈ ε(d).0. As a corollary of this
observation, we obtain the following result.

Theorem 5 (Aceto, Ingolfsdottir and Mousavi [12]). Timed bisimilarity
over single-sorted TCCS has no finite (ground-)complete axiomatization.

The lesson to be drawn from the above result is that, in the presence of an
infinite time domain, when studying the equational theory of TCCS, it is much
more natural to consider a two-sorted presentation of the calculus. However,
even in a two-sorted setting, we are still faced with the inability of any finite
sound axiom system to capture the interplay between interleaving and non-
determinism, which underlies Theorem 2. Therefore, by carefully adapting the
proof of Moller’s result, we obtain the following theorem.

Theorem 6 (Aceto, Ingolfsdottir and Mousavi [12]). Timed bisimilarity
over two-sorted TCCS has no finite (ground-)complete axiomatization.

As shown by Bergstra and Klop in [19], in the setting of classic CCS and in the
absence of synchronization one can finitely axiomatize bisimilarity by adding the
left merge operator to the syntax for CCS. It is therefore natural to ask ourselves
whether a finite axiomatization of timed bisimilarity over the fragment of TCCS
we consider in this study can be obtained by adding some version of the left merge
operator to the syntax for TCCS. Our order of business will now be to show that,
unlike in the setting of Milner’s CCS, even adding two variations on the left merge
operator does not improve the situation with respect to axiomatizability.

We begin by noting that adding the classic left merge operator proposed by
Bergstra and Klop to the syntax of TCCS does not lead to a finitely axiomatiz-
able theory.

11

Theorem 7 (Aceto, Ingolfsdottir and Mousavi [12]). Timed bisimilarity
over two-sorted TCCS extended with Bergstra and Klop’s left merge operator has
no finite (ground-)complete axiomatization.

Following the tradition of Bergstra and Klop, the left merge operator was given
a timed semantics in [17] as follows.

x0
a→ y0

x0‖ x1
a→ y0 ||x1

x0
d→ y0 x1

d→ y1

x0‖ x1
d→ y0‖ y1

This timed left merge operator enjoys most of the axioms for the classic left merge
operator. However, this operator does not help in obtaining a finite ground-
complete axiomatization for TCCS modulo bisimilarity either.

Theorem 8 (Aceto, Ingolfsdottir and Mousavi [12]). Two-sorted TCCS
extended with the timed left merge operator affords no finite (ground-)complete
axiomatization modulo timed bisimilarity.

Intuitively, the reason for the above-mentioned negative result is that the axiom

(ax)‖ y ≈ a(x || y) ,

which is sound in the untimed setting, is in general unsound over TCCS. For
example, consider the process a‖ ε(d).a; after making a time delay of length d,
it results in a‖ a, which is capable of performing two consecutive a-transitions.
On the other hand, a(0 || ε(d).a) after a time delay of length d remains the same
process and can only perform one a-transition, since the second a-transition still
has to wait for d time units before becoming enabled.

However, the above axiom is sound for a class of TCCS processes whose
behaviour, modulo timed bisimilarity, does not change by delaying. For instance,
we have that

a‖
(n∑

i=1

a

(i∑
j=1

aj

))
↔ a

(n∑
i=1

a

(i∑
j=1

aj

))

for each n ≥ 0. However, no finite sound axiom system can prove all of the above
equalities, and therefore cannot be complete.

Remark 2. All of the impossibility results presented in this section also hold for
conditional equations of the form P ⇒ t ≈ u, where P is an arbitrary predicate
over the time domain, and t, u are TCCS terms.

In the case of two-sorted TCCS, our proofs make use of the fact that the time do-
main has 0 as a cluster point. However, we conjecture that discrete-time TCCS,
or its extension with (timed) left merge, is not finitely axiomatizable modulo
timed bisimilarity either. Work on a proof of this conjecture is ongoing.

12

References

1. L. Aceto. Deriving complete inference systems for a class of GSOS languages
generating regular behaviours. In B. Jonsson and J. Parrow, editors, Proceedings
CONCUR 94, Uppsala, Sweden, volume 836 of Lecture Notes in Computer Science,
pages 449–464. Springer-Verlag, 1994.

2. L. Aceto. On “Axiomatising finite concurrent processes”. SIAM J. Comput.,
23(4):852–863, 1994.

3. L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations. Infor-
mation and Computation, 111(1):1–52, 1994.

4. L. Aceto, T. Chen, W. Fokkink, and A. Ingolfsdottir. On the axiomatizability of
priority. In Bugliesi et al. [26], pages 480–491.

5. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. Are two binary operators
necessary to finitely axiomatize parallel composition? In preparation.

6. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. CCS with Hennessy’s merge
has no finite equational axiomatization. Theoretical Comput. Sci., 330(3):377–405,
2005.

7. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. Finite equational bases in
process algebra: Results and open questions. In A. Middeldorp, V. van Oostrom,
F. van Raamsdonk, and R. C. de Vrijer, editors, Processes, Terms and Cycles: Steps
on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion
of His 60th Birthday, volume 3838 of Lecture Notes in Computer Science, pages
338–367. Springer-Verlag, 2005.

8. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. Split-2 bisimilarity has
a finite axiomatization over CCS with Hennessy’s merge. Logical Methods in
Computer Science, 1(1):1–12, 2005.

9. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. A finite equational base
for CCS with left merge and communication merge. In Bugliesi et al. [26], pages
492–503.

10. L. Aceto, W. Fokkink, A. Ingolfsdottir, and S. Nain. Bisimilarity is not finitely
based over BPA with interrupt. Theoretical Comput. Sci., 366(1–2):60–81, 2006.

11. L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics. In Hand-
book of Process Algebra, pages 197–292. North-Holland, 2001.

12. L. Aceto, A. Ingolfsdottir, and M. Mousavi. Impossibility results for the equational
theory of timed CCS. In Proceedings of the 2nd Conference on Algebra and Coal-
gebra in Computer Science, Lecture Notes in Computer Science, Bergen, Norway,
2007. Springer-Verlag.

13. D. Austry and G. Boudol. Algèbre de processus et synchronisations. Theoretical
Comput. Sci., 30(1):91–131, 1984.

14. J. Baeten. A brief history of process algebra. Theoretical Comput. Sci., 335(2–
3):131–146, 2005.

15. J. Baeten and E. de Vink. Axiomatizing GSOS with termination. In H. Alt
and A. Ferreira, editors, Proceedings of STACS 2002, 19th Annual Symposium on
Theoretical Aspects of Computer Science, Antibes-Juan les Pins, France, March
14–16, 2002, volume 2285 of Lecture Notes in Computer Science, pages 583–595.
Springer-Verlag, 2002.

16. J. Baeten and J. W. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume
458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

17. J. Baeten and C. A. Middelburg. Process Algebra with Timing. Monographs in
Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2002.

13

18. J. Baeten and P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

19. J. Bergstra and J. W. Klop. Fixed point semantics in process algebras. Report
IW 206, Mathematisch Centrum, Amsterdam, 1982.

20. J. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109–137, 1984.

21. S. L. Bloom and Z. Ésik. Nonfinite axiomatizability of shuffle inequalities. In P. D.
Mosses, M. Nielsen, and M. I. Schwartzbach, editors, Proceedings of TAPSOFT’95:
Theory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, Aarhus, Denmark, May 22–26, 1995, volume 915 of Lecture Notes
in Computer Science, pages 318–333. Springer-Verlag, 1995.

22. S. L. Bloom and Z. Ésik. Free shuffle algebras in language varieties. Theoret.
Comput. Sci., 163(1-2):55–98, 1996.

23. S. L. Bloom and Z. Ésik. Axiomatizing shuffle and concatenation in languages.
Inform. and Comput., 139(1):62–91, 1997.

24. S. L. Bloom and Z. Ésik. Varieties generated by languages with poset operations.
Math. Structures Comput. Sci., 7(6):701–713, 1997.

25. S. L. Bloom and Z. Ésik. Shuffle binoids. RAIRO Inform. Théor. Appl., 32(4-
6):175–198, 1998.

26. M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors. Automata, Languages
and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part II, volume 4052 of Lecture Notes in Computer
Science. Springer-Verlag, 2006.

27. R. de Simone. Higher-level synchronising devices in Meije–SCCS. Theoretical
Comput. Sci., 37:245–267, 1985.

28. Z. Ésik and M. Bertol. Nonfinite axiomatizability of the equational theory of
shuffle. Acta Inform., 35(6):505–539, 1998.

29. Z. Ésik and S. Okawa. Series and parallel operations on pomsets. In Proceedings of
Foundations of Software Technology and Theoretical Computer Science (Chennai,
1999), volume 1738 of Lecture Notes in Comput. Sci., pages 316–328. Springer-
Verlag, Berlin, 1999.

30. W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 2000.

31. W. Fokkink and B. Luttik. An omega-complete equational specification of in-
terleaving. In U. Montanari, J. Rolinn, and E. Welzl, editors, Proceedings 27th
Colloquium on Automata, Languages and Programming—ICALP’00, Geneva, vol-
ume 1853 of Lecture Notes in Computer Science, pages 729–743. Springer-Verlag,
July 2000.

32. J. L. Gischer. The equational theory of pomsets. Theoretical Comput. Sci., 61:199–
224, 1988.

33. R. van Glabbeek and F. Vaandrager. Petri net models for algebraic theories of
concurrency. In J. de Bakker, A. Nijman, and P. Treleaven, editors, Proceedings
PARLE conference, Eindhoven, Vol. II (Parallel Languages), volume 259 of Lecture
Notes in Computer Science, pages 224–242. Springer-Verlag, 1987.

34. J. Grabowski. On partial languages. Fundamenta Informaticae, IV(2):427–498,
1981.

35. J. F. Groote. A new strategy for proving ω–completeness with applications in
process algebra. In Baeten and Klop [16], pages 314–331.

36. M. Hennessy. On the relationship between time and interleaving. Preprint, CMA,
Centre de Mathématiques Appliquées, Ecole des Mines de Paris, 1981.

14

37. M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Mas-
sachusetts, 1988.

38. M. Hennessy. Axiomatising finite concurrent processes. SIAM J. Comput.,
17(5):997–1017, 1988.

39. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
J. ACM, 32(1):137–161, 1985.

40. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, 1985.

41. A. Jeffrey, S. Schneider, and F. Vaandrager. A comparison of additivity axioms in
timed transition systems. Report CS-R9366, CWI, Amsterdam, 1993.

42. R. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976.

43. R. Milner. Flowgraphs and flow algebras. J. ACM, 26(4):794–818, 1979.
44. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-

wood Cliffs, 1989.
45. F. Moller. Axioms for Concurrency. PhD thesis, Department of Computer Science,

University of Edinburgh, July 1989. Report CST-59-89. Also published as ECS-
LFCS-89-84.

46. F. Moller. The importance of the left merge operator in process algebras. In
M. Paterson, editor, Proceedings 17th ICALP, Warwick, volume 443 of Lecture
Notes in Computer Science, pages 752–764. Springer-Verlag, July 1990.

47. F. Moller. The nonexistence of finite axiomatisations for CCS congruences. In
Proceedings 5th Annual Symposium on Logic in Computer Science, Philadelphia,
USA, pages 142–153. IEEE Computer Society Press, 1990.

48. D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,
5th GI Conference, Karlsruhe, Germany, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, 1981.

49. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, 2004.

50. V. Pratt. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33–71, 1986.

51. S. T. Tschantz. Languages under concatenation and shuffling. Mathematical Struc-
tures in Computer Science, 4(4):505–511, 1994.

52. W. Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [16],
pages 502–520.

53. W. Yi. A Calculus of Real Time Systems. PhD thesis, Chalmers University of
Technology, Göteborg, Sweden, 1991.

15

Recent BRICS Report Series Publications

RS-07-11 Luca Aceto and Anna Inǵolfsdóttir. The Saga of the Axiom-
atization of Parallel Composition. June 2007. 15 pp. To ap-
pear in the Proceedings of CONCUR 2007, the 18th Interna-
tional Conference on Concurrency Theory (Lisbon, Portugal,
September 4–7, 2007), Lecture Notes in Computer Science,
Springer-Verlag, 2007.

RS-07-10 Claus Brabrand, Robert Giegerich, and Anders Møller.Ana-
lyzing Ambiguity of Context-Free Grammars. May 2007. 17 pp.
Full version of paper presented at CIAA ’07.

RS-07-9 Janus Dam Nielsen and Michael I. Schwartzbach.The SMCL
Language Specification. March 2007.

RS-07-8 Olivier Danvy and Kevin Millikin. A Simple Application of
Lightweight Fusion to Proving the Equivalence of Abstract Ma-
chines. March 2007. ii+6 pp.

RS-07-7 Olivier Danvy and Kevin Millikin. Refunctionalization at Work.
March 2007. ii+16 pp. Invited talk at the 8th International
Conference on Mathematics of Program Construction, MPC
’06.

RS-07-6 Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen.On One-
Pass CPS Transformations. March 2007. ii+19 pp. Theoretical
Pearl to appear in theJournal of Functional Programming. Re-
vised version of BRICS RS-02-3.

RS-07-5 Luca Aceto, Silvio Capobianco, and Anna Inǵolfsdóttir. On the
Existence of a Finite Base for Complete Trace Equivalence over
BPA with Interrupt. February 2007. 26 pp.

RS-07-4 Kristian Støvring and Søren B. Lassen. A Complete, Co-
Inductive Syntactic Theory of Sequential Control and State.
February 2007. 36 pp. Appears in the proceedings of POPL
2007, p. 161–172.

RS-07-3 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir.
Ready To Preorder: Get Your BCCSP Axiomatization for Free!
February 2007. 37 pp.

RS-07-2 Luca Aceto and Anna Inǵolfsdóttir. Characteristic Formulae:
From Automata to Logic. January 2007. 18 pp.

RS-07-1 Daniel Andersson. HIROIMONO is NP-complete. January
2007. 8 pp.

