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Conawa: A Formal Model for Context
Awareness

Mikkel Baun Kjærgaard Jonathan Bunde-Pedersen

February 2, 2006

Abstract

There is a definite lack of formal support for modeling real-
istic context-awareness in pervasive computing applications. The
Conawa calculus presented in this paper provides mechanisms
for modeling complex and interwoven sets of context-information
by extending ambient calculus with new constructs and capabil-
ities. In connection with the calculus we present four scenarios
which are used to evaluate Conawa. The calculus is a step in
the direction of making formal methods applicable in the area of
pervasive computing.

1 Introduction

In the area of pervasive computing the great vision is moving computa-
tion from the desktop computer to a number of devices embedded in the
environment of the user. The applications put forward for these devices
depend heavily on the notion of context awareness.

However, previous research in this field has failed to consider the true
nature of context by only incorporating very simple notions of it. It
would thus be of interest to define a calculus which captures the context
as described in [10, 5]. Earlier attempts as [2, 9] have only dealt with
very limited notions of context.

The modeling of context is both an issue when working with a prac-
tical approach to pervasive computing as well as the more theoretical
approach labeled among other things as ‘Global Computing´. This re-
port describes a context-model based on ‘Ambient Calculus´ [3] which
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is more realistic and capable of describing the scenarios given as part of
the case in section 1.1.

Ambient calculus situates an ambient in a tree and permits it only to
interact with nearby1 ambients. If context-information should be made
available to an ambient it must be positioned near the ambient in the tree
– but this is not necessarily a good idea. The problem is the very nature
of context which can be anything from the actual physical location of the
ambient to logical information completely independent of anything else.
These two independent pieces of context is therefore hard to model in a
single tree. Modeling context in a flat structure is possible (see [2, 9])
but this approach suffers from the simple structure, which means that it
is difficult to express and navigate the contextual information.

The main contribution of this report is to define the Conawa calcu-
lus which incorporates a rich notion of context. In addition it is shown
how this calculus can be applied to applications in the area of pervasive
healthcare. The structure of this report is as follows: Firstly, require-
ments for a rich notion of context are outlined and related work is pre-
sented. Secondly, the Conawa Calculus is defined first by presenting the
conceptual elements, afterwards by defining syntax and semantics of the
calculus. Thirdly, it will be shown how the calculus can be applied to
applications in the area of pervasive healthcare. Finally, design choices,
discussion and a conclusion will be given.

1.1 Evaluation

To evaluate the applicability of a calculus for modeling Context-aware
computing applications we want to outline some basic requirements for
it. These requirements are based on the four kinds of Context-Aware
Computing Applications presented in [10]. We want to express these
four requirements in four concrete scenarios. This makes it easier to
evaluate if a calculus can be used to model context appropriately. The
four categories in [10] are the product of two points along two orthogonal
dimensions. One of the dimensions describes if a task at hand is getting
information or is carrying out a command; the other dimension describes
if it is effected manually or automatically (see figure 2). The four concrete
scenarios are inspired from the idea of an Aware-Phone described in
[1]. The Aware-Phone is an application implemented on a mobile phone
which supports context-mediated social awareness.

1Parents or siblings
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1.1.1 Context information

This requirement represents the category of getting information which
is manually effected. The idea is that when a query is executed the
answer is adapted based on the current context. This is summarized in
the following scenario in terms of the Aware-Phone application.

A young doctor or a nurse needs to contact a more experienced doctor
to consult him on some issue. So the Aware-Phone is queried for where
the nearest doctor which is not occupied by some other work task is lo-
cated. The application then returns the best suited doctor in the current
context of the location and activities of the doctors on duty.

1.1.2 Context Commands

This requirement represents the category of carrying out a command
which is manually effected. The idea is that when some command is exe-
cuted the execution depends on the current context. This is summarized
in the following scenario:

A doctor using the Aware-Phone application receives a message con-
taining an X-ray image which is to large to be shown on the mobile-
phone’s small display. The doctor then commands the application to
show the image at the nearest available wall-sized display.

1.1.3 Automatic Contextual Reconfiguration

This requirement represents the category of getting information which
are automatically effected. The idea is that a system automatically re-
configures its structure or behavior based on the context. In practice
reconfiguration can be done by adding new components, removing exist-
ing components, or altering the connections between components. This
is summarized in the following scenario:

A doctor has approached a wall-sized display and carried out some
login procedure. Based on the current context the system have been recon-
figured to show information based on his current activities. For example it
could show an X-ray which the doctor have indicated in the Aware-Phone
application that he wants to examine.

1.1.4 Context-Triggered Actions

This requirement represents the category of carrying out a command
which is automatically effected. The idea is that when the context en-
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ters a certain state some special command is to be executed. This is
summarized in the following scenario:

A doctor approaches a wall-sized display where he is automatically
confronted with some login step. After using the display the doctor walks
away from the display whereby he is automatically logged out.

1.2 Ambients in multiple trees

With this calculus it is our idea to model context using several ambient
like trees. There will be one context-tree for each category of context-
information, for instance one tree for location-information, one for ac-
tivities and one for types of printers. An ambient which represents an
entity or an application will have a presence in one or more trees, for in-
stance a printer is both present in the location tree and the printer-types
tree as shown in figure 1. We realize that an entity cannot physically be
part of more than one tree, but propose to use a solution inspired from
bi-graphs [6] where links (a la pointers) are used to indicate presence in
a context tree. An ambient which were to utilize the context information
would then navigate the relevant trees in order to specify preferences and
indicate which context it was interested in. An example could be moving
in both the location and printer-type tree which would give the ambient
a new physically closest printer but also a new preference in printer-type.
We propose to extend existing ambient-constructs such as in and out to
enable navigating in several contexts at once and also extending the basic
tree-structure to use bi-graph-like (tree)structures.

2 Related work

2.1 On Context and Context-awareness

The term context-awareness was first introduced by the researchers in
Xerox Parc laboratories [10] in 1994. They categorize context-awareness
along two axis as seen in figure 2.

They furthermore describe context-aware systems as adaptable, dis-
tributed and pervasive. This definition is used to present a system which
is context-aware in the sense that it is location-aware. We have used the
concepts in figure 2 to provide scenarios that encompass their idea of
context. We in contrast have not limited ourselves to location, as it was,
and is, our goal to provide a richer notion of context-awareness.
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Figure 1: Illustration of one printer (entity) and the contexts which it is
part of

Figure 2: Context

The conviction that context is more than location was fueled by sev-
eral surveys on context and context-awareness [11, 4, 8]. The modeling
and use of context is the focus of these surveys. Location is an important
part of context, but models should allow for more elaborate constructions
in which the term of “proximity” is determined by the context to which
it refers. We have focused on modeling context in this way, providing a
very expressive model.

The AWARE-architecture [1] is a framework for context-mediated so-
cial awareness. Basically, this concept allows a device (an AwarePhone)
to consider context and internal configuration to mediate communica-
tion between itself and other devices. For instance, sending an instant
message to a doctor is only allowed if the context state is right (ie. the
doctor is not operating) and the configuration allows it (ie. the doctor
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has set his status to ‘free’). We have used the AwarePhone concept as
a foundation for our mobile ambients and also as an inspiration for our
scenarios.

2.2 On Calculi

A formal model based on the UNITY model which incorporates a notion
of context is described in [7]. The paper presents an enhancement of
Mobile UNITY called Context UNITY. The model describes ’programs’
which can obtain context information through variables whose values
react to and thereby depend on the context in which the program is
executing. Their work results in a framework which enables programmers
to write applications which have a ‘sense of context’. Furthermore it
is firmly grounded in the formalisms of UNITY which allows certain
properties of applications to be formally investigated.

Bi-graphs [6] are graph-based structures which have similarities with
our structuring technique for context. Two kinds of structures are present
in a single graph, hence the name bi-graphs. Firstly, nodes can be nested
inside each other providing depth and representing locality. Secondly,
nodes may have ports which are connected to other ports by links. This
represents the linked structure of the bi-graph. Furthermore, reaction
rules are used to express dynamic properties. Our ambient type which
represents entities or applications represents a similar overlay structure
on graphs (in our case trees) but we use this secondary structure to
express complex context constellations.

Furthermore, we have based our syntax and semantics heavily on the
“Ambient Calculus” [3] and inspiration on calculi and context from “On
Calculi for Context-Aware Coordination” [2].

3 Concepts

In this section the fundamental concepts of our calculus is motivated.
The calculus can be seen as a generalization of the ambient calculus[3].
In the ambient calculus computation is situated into a hierarchy of am-
bients which can be used to represent virtual or physical barriers. But
from a modeling perspective this is not enough to model the applications
considered in the area of context-aware computing. Here computation is
seen as embedded in a number of contexts at the same time. In our cal-
culus the notion of ambients found in the original calculus is used as the
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fundamental building block, but it is extended to be situated in contexts.

3.1 Contexts

As motivated above the ambients in this calculus are situated in one or
more contexts. The contexts are used to capture virtual and physical bar-
riers as in the original calculus, but also for context-modeling. In figure
3 an example is shown which illustrates the use of ambients embedded
in two contexts. To denote that an ambient is part of multiple context
the # character is used followed by the name of the ambient which itself
is listed below the contexts. When an ambient is situated in a context it
is capable, as in the original calculus, of interacting with other ambients
in this specific context. In each of the contexts which an ambient is part
of, it forms a subtree of that context. To ensure consistency we restrict
ambients only to be present in one place in all contexts.

So communication between ambients is as in the original calculus
constrained by how the ambient is situated. The context is built as a
hierarchy based on ambients which are used to model different type of
information. In this calculus we have restricted the contexts to be trees
because most relevant context information can in some form be modeled
as trees.

Two contexts are used in the example; one to represent the virtual
barriers of a network and one to represent physical location. Two ambi-
ents are used to model two devices which are situated in the network and
at some location. The example illustrates the ideas but is very simple –
more complete examples will be given later on.

1 Contexts:
2 Network:[subA[#Device1] | subB[#Device2]]
3 Location:[BuildingA[#Device1 | #Device2] BuildingB[]]
4

5 Ambients:
6 Device1:[]
7 Device2:[]

Figure 3: Context example
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3.2 Actions and capabilities

When ambients are situated in multiple trees the actions and capabilities
of ambients as defined in the original calculus need to be reformulated.
This reformulation is in our calculus based on adding restrictions to ac-
tions and capabilities. The restrictions are simple boolean expressions
over contexts. By using these restrictions it is possible to model that
an in capability should only be done in some specific context and not in
others. Another example is that it is possible to output a new ambient
only in a specific context.

4 Syntax

In developing our syntax we have focused on constructs which make it
possible to describe and navigate context information. Therefore we have
limited the syntax in areas such as scope of names and general output
paths. The syntax is described formally in table 1 where c denotes a
name of a context and n a name.

A description in this calculus consist of two parts. The first part
describes a number of contexts which are placeholders for context infor-
mation. They are ambient structures and represent context information
as hierarchical and independent sets of information. The ambient struc-
tures of the contexts are restricted in their capabilities as well as structure
compared to original ambients in [3]. These restricted ambients called
context ambients are static in the sense that they do not have capabili-
ties to move, but only to be created or opened. The second part consist
of a number of reference ambients which can be used to denote entities
which are embedded in certain contexts. These ambients can be present
in contexts by a reference which is only a “pointer”. This means that a
reference ambient can be represented in multiple contexts2. The reference
ambients have capabilities which allows them to move in and out of the
different contexts whereby they can navigate the context information.

We have kept the context and reference ambients consistent with
those of Cardellis on the syntactic level. The only exception is reference
ambients which can be positioned in several contexts. To make this
possible a reference is used to position a reference ambient n in a context
which is denoted by #n in the context structure.

2But only one representation per context for consistency reasons
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A ::= C; R separation of contexts and reference ambients
C ::= c : [CP ]|C context have unique names
R ::= n : [RP ]|R reference ambients have unique names
CP ::= n[CP ] context ambient

CP |CP parallel
0 inactivity
CM.CP exercise capability
#n reference to reference ambient

CM ::= coenter N may enter if N matches
coexit N may exit if N matches
open n open ambient named n

RP ::= n[RP ] reference ambient
RP |RP parallel
!RP replication
0 inactivity
(n).RP input locally, bind to n
〈n〉 output locally (asynchronous)
RM.RP exercise capability

RM ::= in {B} N enter if B and N matches
out {B} exit where B matches
enter {B} N observable enter if B and N matches
exit {B} observable exit where B matches
coenter {B} N may enter if N and B matches
coexit {B} N may exit if N and B matches
open {B} n open any n where B matches

B ::= ∗|c|¬c|c ∧B boolean expression, matches one or more contexts
N ::= n|? names of ambients

Table 1: Syntax
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C1 : [#n| . . .]
n : [. . .]

Figure 4: n is referenced in C1

The syntax for the reference ambient’s capabilities in, out, and open
have been extended with braces { and } to indicate in which context
or contexts the capability should be exercised. The context will not
be aware of any ambients entering or leaving it this way. The context
ambient can use the cocapabilities coenter and coexit to be able to detect
the coming and going of referenced ambients, if they do so by using enter
and exit. The expression between the braces can be a boolean expression
of the form given as B. An example is given in figure 5. The example will
match all ambients which are present in the same context in the Location
and Activity contexts but is a different type of device. By not explicitly
naming the ambient on which to perform the capabilities and using the
wildcard-charater ‘?’, we can model a simple matching mechanism.

. . . in{Location ∧ Activity ∧ ¬DeviceType} ?

Figure 5: Simple matching mechanism

This section has focused on extending the standard ambient syntax
with constructs and capabilities which lets ambients navigate in complex
context information. For a more thorough explanation of the standard
ambient syntax the reader is referred to [3].

5 Semantics

In this section the semantics of the Conawa calculus will be defined.
The calculus has two kinds of ambients for which the semantic has to
be defined. There is context ambients which behave as a restricted form
of ambients and reference ambients which extend the ambient semantic.
Only reduction rules will be defined in this section. Structural congruence
will not be defined or discussed in this report but we believe it is straight
forward to extend the original definition to our calculus.

The context ambients are restricted mainly in terms of their capabili-
ties. Context ambients have the same semantic as ambients in connection
with the following constructs; parallel, inactivity, exercise capability and
open. The semantic of the last two capabilities coenter and coexit is
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defined below by the rules for the enter and exit capability of reference
ambients.

The semantics of reference ambients extends the ambient semantics
of several capabilities. The extended semantic of in, out, enter, exit,
coenter and coexit are defined below. The semantic of the constructs
will have small variations depending on whether a reference ambient is
placed in another reference ambient or in a number of contexts by ref-
erences. In connection with the following constructs, reference ambients
have the same semantics as ambients: parallel, replication, inactivity,
input, output, exercise capability and open.

5.1 in capability of reference ambients

The semantics of in will be presented in two rules. These rules do not
handle all cases but give the idea of how the full semantic could be
defined.

The first rule handles the simple case of one reference ambient which
performs and in in one context. The ellipsis character “. . . ” is used to
indicate that the ambient and references can be arbitrary deeply nested
within the context. The rule is shown in figure 6. Generally this rule
would need to be extended to handle more contexts and the ? which
makes it possible to make a move into a arbitrary ambient.

C : [...#ra|ca[P ]...]
;
ra : [in{C}ca.Q|R]
−→
C : [...ca[#ra|P ]...]
;
ra : [Q|R]

Figure 6: The rule for in in one context

The rule in figure 7 defines the semantic for the move of reference
ambient into another reference ambient. In the rule the two reference
ambient are parallel in contexts C1 to Cr and not in contexts D1 to
Ds. Some subset of these contexts are used to limit the move where
the ambients should be siblings in Ci to Cj and not in Dk to Dl. The
rule also reflects that the moving reference ambients references will be
removed from the contexts when the in is preformed.
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C1 : [...#ra1|#ra2|PC1...]
...
Cr : [...#ra1|#ra2|PCr...]
D1 : [...#ra1|PD1...]
...
Ds : [...#ra1|PDs...]
;
ra1 : [in{Ci ∧ ... ∧ Cj ∧ ¬Dk ∧ ... ∧ ¬Dl}ra2.Q|R]
ra2 : [S]
−→
C1 : [...#ra2|PC1...]
...
Cr : [...#ra2|PCr...]
D1 : [...PD1...] ... Ds : [...PDs...]
;
ra2 : [ra1[Q|R]|S]

Figure 7: The rule for in with multiple contexts and reference ambients

If you replace ra2 with ? in the first line you have the rule for the
in{B}? case. When a reference ambients is embedded in another refer-
ence ambient, the original ambient rule can be used with the constraint
that the condition have to contain a asterisk (*). If * is used for B then
a move in all contexts needs to be made. If a reference ambient is not
present in a context and an in is made, it will be placed in the top-level
of the context.

5.2 out capability of reference ambients

In order to define the semantics of the out capability, two rules will be
given. One considers the case of a reference ambient performing an out in
a number of contexts. The other handles the case of a reference ambient
making an out of another reference ambient. In figure 8 the first rule
is shown. It defines how a reference ambient ra1 can make an out in
context C1 to Cr.

The second rule defines the semantic when a reference ambient em-
bedded in another reference ambient performs an out in a number of
contexts. The rule is shown in figure 9. There are two things worth
noticing. The first is that negation in the condition on the out has no
effect, because it just means the same as not including the condition
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C1 : [...ca1[#ra1|PC1]|QC1...]
...
Cr : [...car[#ra1|PCr]|QCr...]
;
ra1 : [out{Ci ∧ ... ∧ Cj}.R|S]
−→
C1 : [...#ra1|ca1[PC1]|QC1...]
...
Cr : [...#ra1|car[PCr]|QCr...]
;
ra1 : [R|S]

Figure 8: The rule for out in multiple contexts

on that specified context. The second thing is, that an out cannot be
performed on a context with a reference located at the root of the spec-
ified context. Therefore a reference ambient cannot remove itself from a
context in other ways than doing and in on another reference ambient.

5.3 Observable capabilities

The rules for in and out have been defined above but in the calculus
we have also included capabilities which adds observability to the two
types of capabilities. This is done with the enter, coenter, exit and coexit
capabilities. In this section a rule for enter and coenter will be defined
in terms of an extension of the above rule for in which is shown in figure
10. For the other capabilities rules need to be extended in the same way
as for enter and coenter.

6 Scenarios

In this section the scenarios in section 1.1 will be formaly described using
the proposed Conawa calculus.

6.1 Context information

The scenario described in section 1.1.1 is in figure 11 shown formalized
in the Conawa calculus. The formalized scenario is in figure 12 also
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C1 : [...#ra1|PC1...]
...
Cr : [...#ra1|PCr...]
D1 : [...#ra1|PD1...]
...
Ds : [...#ra1|PDs...]
;
ra1 : [ra2 : [out{C1 ∧ ... ∧ Cr∧}.Q|R]S]
−→
C1 : [...#ra1|#ra2|PC1...]
...
Cr : [...#ra1|#ra2|PCr...]
D1 : [...#ra1|PD1...]
...
Ds : [...#ra1|PDs...]
;
ra1[S]
ra2 : [Q|R]

Figure 9: The rule for out in multiple contexts with reference ambients

shown in a graphical depiction. The interpretation of the formalized
scenario is as follows:

1. The subambient of AP2 performs an out{*} which places it in all
contexts of AP2 (as a sibling)

2. out{Person ∨ Status ∨ Entity} moves FNDAP2 upwards in the
given contexts

3. Then the in{Person} Doctor moves it into the ‘Doctor’ branch of
the context ‘Person’

4. Similarly, in{Status} Busy makes FNDAP2 a child of ‘NotBusy’

5. Then the “agent” enters the ambient which matches Person ∨
Status ∨ Location ∨ ¬Entity which happens to be AP1

The scenario goes on a bit further and the result is that FNDAP2
returns to AP2 with the ambient name ‘Hans’ as the nearest and available
doctor. We have not depicted this, because the main motivation for the
scenario is finding the doctor.
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C : [...#ra|ca[coenter.P |Q]...]
;
ra : [enter{C}ca.R|S]
−→
C : [...ca[#ra|P |Q]...]
;
ra : [R|S]

Figure 10: The rule for enter and coenter in a single context

6.2 Context commands

The scenario described in section 1.1.2 is in figure 13 shown formalized
in the Conawa calculus. The object of the scenario is to use the nearest
and largest screen to display an image. We have used an inner ambient
(SONS) which act as an ‘agent’ wrapping the image.

1. SONS moves out of AP2.

2. It shifts Status-context into Free. Afterwards in context Screens
into Large.

3. Then we match any ambient in all contexts except Entity, which
will be Large1.

4. Large1 lets SONS in and opens it.

5. The image is outputted (by SONS ) and caught by Large1, which
finally displays it.

6.3 Contextual reconfiguration

The scenario described in section 1.1.3 is in figure 14 shown formalized
in the Conawa calculus. The scenario differs from the previous in that
the screen responds to changes in its context, ie. the entering of the
AwarePhone. The screen is augmented with the ability to display X-
Rays by moving code (display-process) from the AwarePhone.

1. AwarePhone AP1 logs into Screen Large1 (use of the enter and
coenter capabilities respectively)
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1 Entity:[ Awarephones[#AP1 | #AP2] ]
2 Person:[ Doctor[#AP1] | Nurse[#AP2] ]
3 Status:[ Busy[#AP2] | NotBusy[#AP1] ]
4 Location:[ Hospital[ Ward1[#AP1 | #AP2] | Ward2[] ] ]
5 ;
6 AP1:[!<Hans>]
7 AP2:
8 [
9 //Find Nearest Doctor

10 FNDAP2
11 [
12 out{*}.out{Person&Status&Entity}.in{Person} Doctor.in{Status} NotBusy
13 .in{Person&Status&Location&~Entity} ?
14 .GetMsg[out{*}.(name).enter FNDAP2.<name>]
15 .coenter{*} GetMsg.open GetMsg.in {Entity} Awarephones.enter {Entity} AP2]
16 |
17 coenter{*} FNDAP2.open FNDAP2
18 |
19 !<Grethe>
20 ]
21 ]

Figure 11: Example based on 1.1.1

2. We have described in the previous scenarios how agents are dis-
patched to locate other ambients, therefore we omit the details for
“goto AP1” (and similarly for “return ...”)

3. Having arrived in AP1 the TransportAgent loads a passenger: Dis-
playAgent

4. The transport returns and opens the passenger

5. The display-process runs displaying on the large screen

6.4 Context-Triggered actions

The scenario described in section 1.1.4 is in figure 15 shown formalized
in the Conawa calculus. The scenario shows how certain capabilities can
be set to trigger by events in the context of the ambient, ie. when another
ambient enters.

1. The enter in AP1 is executed alongside with the coenter in Are-
aLarge1 ; this places AP1 inside AreaLarge1
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Figure 12: Illustration of scenario 1
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1 Entity:[ Awarephones[#AP1 | #AP2] ]
2 Screens:[ Small[#Small1] | Medium[] | Large[#Large1 | #Large2 ] ]
3 Status:[ InUse[#Small1] | Free[#Large1 | #Large2] ]
4 Location:[ Hospital[ Ward1[#AP1 | #AP2 | #Large1 | #Small1] | Ward2[#Large2] ] ]
5 ;
6 Small1:[]
7 Large1:
8 [
9 coenter{*} SONS.open SONS.(picture).show(picture)

10 ]
11 Large2:[]
12 AP1:[]
13 AP2:
14 [
15 //Show On Nearest Screen
16 SONS
17 [
18 out{*} .in{Status} Free.in{Screens} Large
19 .enter{Screens&Status&Location&~Entity} ?
20 | <"X-RayPicture">
21 ]
22 ]

Figure 13: Example based on 1.1.2

1 Awarephones:[ Awarephones[#AP1 | #AP2] ]
2 Screens :[ Small[#Small1] | Medium[] | Large[#Large1 | #API1 ] ]
3 Location:[ AreaLarge1[#Large1 | #AP1] | AreaLarge2[] ]
4 ;
5 AP1:
6 [
7 enter {Location&Screens} ?
8 |
9 DisplayAgent[<"displaying process"> | enter{*} TransportAgent]

10 ]
11 Large1:
12 [
13 coenter{*} LoginAP1.TransportAgent[ "go to ap1".coin{*} Passenger."return from ap1" ]
14 coenter{*} TransportAgent.open TransportAgent
15 (screenbuf).show
16 ]

Figure 14: Example based on 1.1.3
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1 Awarephones:[ Awarephones[#AP1 | #AP2] ]
2 Location:[ #AP1 | #AP2 | AreaLarge1[#Large1] | #AreaLarge2[] ]
3 ;
4 //Large1 outputs co-cabilities in AreaLarge1. These enables AreaLarge1
5 //to detect the entering and leaving of awarephones
6 AreaLarge1:
7 [
8 coenter ?.ShowLogin[in{Location} Large1.<showLogin>] |
9 coexit.DoLogout[in{Location} Large1.<doLogOut>]

10 ]
11 AP1:
12 [
13 enter{Location} AreaLarge1."Do Some Stuff".exit{Location}
14 ]

Figure 15: Example based on 1.1.4

2. The ShowLogin ambient moves into AP1 and performs showLogin

3. Some stuff is performed in AP1

4. When AP1 leaves AreaLarge1 the DoLogOut is injected into it and
doLogOut is performed

7 Design choices

In this section we will discuss central restrictions made in the design of
our formal model.

Context information is represented in trees which imposes a hi-
erarchical view on the context information. This might make it
harder to model certain types of context information such as e.g.
real-life network structures. The choice of using trees was made
to ensure consistency with the structure of ambients and to sim-
plify the model. We believe that this restriction does not severely
hamper the usability of our model.

Only one reference to an ambient must be present in a context tree
at any time. It is incongruous to have multiple references in the
same tree, for instance you cannot be in two locations at the same
time. Instead the context should be modeled in such a manner that
multiple references are not necessary.
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Referenced ambients must not contain references to other ambi-
ents. This restriction is related to the one above. A referenced
ambient could move out of its parent and encounter a copy of itself
in the same context if it were not for this requirement. Basically,
these two restrictions enforce uniqueness of a reference in a given
context.

Referenced ambients are unique in the sense that all references to
ambient n must point to the same n. This means that by any
interaction with any #n is reflected in all #n’s (since they all point
to the same ambient). An example: If you move into ambient n in
context c then this is a move into n in all the contexts in which n
is present.

Names of context trees are unmutable. You cannot change the name
of a context tree, these must be specified in advance. This restric-
tion ensures that any hard-coded names in any ambients are always
valid (if they were valid to begin with).

Context ambients have limited capabilities, they cannot move from
their original position. This means that they cannot perform in or
out capabilities. However, they can restrict and monitor access to
themselves by using the coenter and coexit capability.

Reference ambients cannot remove themselves directly from a context,
they can only be removed by performing an in on another reference
ambient. This means that the contexts will allways be consistent.
If a reference ambient have a relation to a context it will keep hav-
ing some relation to the context. For instance a device will in a
location context allways have some location.

8 Discussion

We have designed the Conawa calculus to be expressive enough to allow
us to describe and enact the four scenarios given in section 1.1. The
scenarios were derived by the definition of context and context-awareness
given by Schilit [10]. We have shown how to use our calculus to describe
complex interaction with – and awareness of – context. We have not
proven any properties of our calculus but as stated in the introduction
we will evaluate the calculus by examples of its expressiveness.
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An assumption, we have made, is that all ambient- and context-names
are unique. We have not considered scope of generation of unique names,
but we believe it to be rather straight-forward to adapt the ambient
mechanism [3] for doing so.

In the formalized scenarios we have not considered how context infor-
mation is updated. For this we envision that certain reference ambients
will have the role as contexts sensors updating the contexts as appropri-
ate. To give an example of this in figure 16 a location sensor has been
added to update the location of a AwarePhone.

1 Location:[ #LS | Hospital[ Ward1[#AP1 | #AP2] | Ward2[] ] ]
2 ;
3 //Location sensor
4 LS:
5 [
6 UpdateContext[out{Location}.in {Location} Hospital.in {Location} Ward1.
7 in {Location} AP1.<out {Location}.in {Location} Ward2>]
8 ]
9 AP1:[open UpdateContext.(n).n]

10 AP2:[]

Figure 16: Example showing a location sensor which creates context

Since there are no restrictions on what you actually put in your
context-model, it is possible to create quite unrealistic constructions.
For instance it is possible for a reference ambient A to move into another
reference ambient B which is in context PrinterType: “color” and Loca-
tion: “Scotland” and sending it a message, while the ambient A are in
a completely different context like PrinterType: “color” and Location:
“Hawaii”. If the ambients portray real processes then it seems unrealistic
that they can physically interact just because they are close in one con-
text (here PrinterType). However, we could not see any simple way to
ensure these situations from arising and therefore it is up to the designer
of the model to make it behave realistically.

As stated above we have not addressed the formal properties of the
proposed calculus such as expressiveness, soundness and completeness.
To prove that the calculus retains the expressiveness of the ambient calcu-
lus, an encoding of the ambient calculus in our calculus would be needed.
The construction of such an encoding should however be straight-forward
as our reference ambients have the same capabilities as the original am-
bients. With respect to soundness and completeness this is left as an
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open question.

9 Conclusion

As stated in the introduction we chose to evaluate the proposed calculus
on its expressiveness, that is, its ability to express the four scenarios.
We have managed to accomplish this task. The descriptions and models
given in section 6 was developed alongside our formal model, and by now
we believe that they and the calculus are well conceived. The learning
curve is rather steep compared to the unmodified ambient calculus, since
you have to consider the state of the entire system to formulate single
ambients. This is not necessarily a negative property, but increases the
complexity of the systems formalized description. Also, if you were to
express the same scenarios using standard ambient calculus, you would
probably be much worse of. Conclusively, we must say that we have
formulated a model that enables us to express and evaluate complex
scenarios including context and context awareness in relatively simple
terms.
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