
BRICS
Basic Research in Computer Science

On the Axiomatizability of Priority

Luca Aceto
Taolue Chen
Willem Jan Fokkink
Anna Ingólfsdóttir

BRICS Report Series RS-06-1

ISSN 0909-0878 January 2006

B
R

IC
S

R
S

-06-1
A

ceto
etal.:

O
n

the
A

xiom
atizability

ofP
riority

Copyright c© 2006, Luca Aceto & Taolue Chen & Willem Jan
Fokkink & Anna Ing ólfsdóttir.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/06/1/

On the Axiomatizability of Priority

Luca Aceto1,2, Taolue Chen3, Wan Fokkink3,4, and Anna Ingolfsdottir1,2

1 Reykjav́ık University, School of Science and Engineering, Ofanleiti 2,
103 Reykjav́ık, Iceland

2 BRICS, Aalborg University, Department of Computer Science, Fr. Bajersvej 7E,
9220 Aalborg Ø, Denmark

3 CWI, Embedded Systems Group, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands

4 Vrije Universiteit, Section Theoretical Computer Science, Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

luca@ru.is,chen@cwi.nl,wanf@cs.vu.nl,annai@ru.is

Abstract. This paper studies the equational theory of bisimulation
equivalence over the process algebra BCCSP extended with the priority
operator of Baeten, Bergstra and Klop. It is proven that, in the pres-
ence of an infinite set of actions, bisimulation equivalence has no finite,
sound, ground-complete equational axiomatization over that language.
This negative result applies even if the syntax is extended with an arbi-
trary collection of auxiliary operators, and motivates the study of axiom-
atizations using conditional equations. In the presence of an infinite set
of actions, it is shown that, in general, bisimulation equivalence has no
finite, sound, ground-complete axiomatization consisting of conditional
equations over the language studied in this paper. Finally, sufficient con-
ditions on the priority structure over actions are identified that lead to a
finite, ground-complete axiomatization of bisimulation equivalence using
conditional equations.
Keywords and Phrases: Bisimulation equivalence, priority, equational
logic, conditional equational logic, complete axiomatizations, non-finitely
based algebras.

1 Introduction

Programming and specification languages often include constructs to specify
mode switches (see, e.g., [19, 21]). Indeed, some form of mode transfer in compu-
tation appears in operating systems in the guise of interrupts, in programming
languages as exceptions, and in the behaviour of control programs and embedded
systems as discrete “mode switches” triggered by changes in the state of their
environment. Such mode changes are often used to encode different levels of ur-
gency amongst the actions that can be performed by a system as it computes,
and implement variations on the notion of pre-emption.

In light of the ubiquitous nature of mode changes in computation, it is not
surprising that classic process description languages include primitive opera-
tors to describe mode changes—for example, LOTOS [8, 18] offers the so-called

2

disruption operator—or have been extended with variations on mode transfer
operators. Examples of such operators that may be added to the process alge-
bra CCS are discussed by Milner in [20, pp. 192–193], and Dsouza and Bloom
offer in [13] some discussion on the benefits of adding one of those, viz. the
checkpointing operator, to CCS.

One of the most widely studied, and natural, notions used to implement
different levels of urgency between system actions is priority. (A thorough and
clear discussion of the different approaches to the study of priority in process
description languages may be found in [11].) In this paper, we consider the
well-known priority operator Θ studied by Baeten, Bergstra and Klop [3] in the
context of process algebra. (See [9–12] for later accounts of this operator in the
setting of process description languages.) The priority operator Θ gives certain
actions priority over others based on an irreflexive partial ordering relation <
over the set of actions. Intuitively, a < b is interpreted as “b has priority over
a”. This means that, in the context of the priority operator Θ, action a is pre-
empted by action b. For example, if p is some process that can initially perform
both a and b, then Θ(p) will initially only be able to execute the action b.

In their classic paper [3], Baeten, Bergstra and Klop provided a sound and
ground-complete axiomatization for this operator modulo bisimulation equiv-
alence. Their axiomatization uses predicates on actions (to express priorities
between actions) and one extra auxiliary operator. Bergstra showed in the ear-
lier paper [5] that, in case of a finite alphabet of actions, there exists a finite
equational axiomatization for Θ, without action predicates and help operators.
So, if the set of actions is finite, neither conditional equations nor auxiliary op-
erators, as used in [3], are actually necessary to obtain a finite axiomatization of
bisimulation equivalence over basic process description languages enriched with
the priority operator. But, can Bergstra’s positive result be extended to a setting
with a countably infinite collection of actions? Or are conditional equations and
auxiliary operators necessary to obtain a finite axiomatization of bisimulation
equivalence in the presence of an infinite collection of actions? (Note that infi-
nite sets of actions are common in process calculi, and arise, for instance, in the
setting of value- or name-passing calculi.) The aim of this paper is to provide a
thorough answer to these questions in the setting of the process algebra BCCSP
enriched with the priority operator Θ. In case of an infinite alphabet, we permit
the occurrence of action variables in axioms.

The process algebra BCCSP contains only basic process algebraic operators
from CCS and CSP, but is sufficiently powerful to express all finite synchro-
nization trees. This paper considers the equational theory of BCCSP with the
priority operator Θ from [3] modulo bisimulation equivalence. Our first main
result is a theorem indicating that the use of conditional equations is indeed
inevitable in order to offer a finite axiomatization of bisimulation equivalence
over the basic process language we consider in this study. To this end, we prove
that, in case of an infinite alphabet and in the presence of at least one priority
relation a < b between a pair of actions, there is no finite equational axiomati-
zation for BCCSP enriched with the priority operator (Theorem 2). This result

3

even applies if one is allowed to add an arbitrary collection of help operators to
the syntax. Theorem 2 offers a very strong indication that the use of conditional
equations, where the conditions consist of action predicates, is essential for ax-
iomatizing Θ, and cannot be circumvented by introducing auxiliary operators.
(This is in contrast to the classic positive and negative results on the existence of
finite equational axiomatizations for parallel composition offered in [6, 22, 23].)

The idea underlying the proof of Theorem 2 is that for each finite sound
equational axiomatization E there is a pair of actions c, d that does not occur
in E. If c and d are incomparable, then

Θ(c.0 + d.0) ≈ c.0 + d.0

is sound modulo bisimulation equivalence. However, using a simple renaming
argument, we show that a derivation of this equation from E would give rise to
a derivation of the unsound equation Θ(a.0+b.0) ≈ a.0+b.0. Likewise, if c < d,
then

Θ(c.0 + d.0) ≈ d.0

is sound modulo bisimulation equivalence. But we prove that a derivation of
this equation from E would give rise to a derivation of the unsound equation
Θ(d.0 + c.0) ≈ c.0.

Having established that conditional equations are necessary in order to obtain
a finite, ground-complete equational axiomatization of bisimulation equivalence,
we then proceed to investigate whether, in the presence of an infinite set of
actions, this equivalence can be finitely axiomatized using conditional equations,
but without auxiliary operators like the unless operator used in [3]. We show that,
in general, the answer to this question is negative. This we do by exhibiting a
priority structure with respect to which bisimulation equivalence affords no finite,
sound and ground-complete axiomatization in terms of conditional equations
(Theorem 3). This shows that, in general, the use of auxiliary operators is indeed
necessary to axiomatize bisimulation equivalence finitely, even using conditional
equations and over the simple language considered in this study. The priority
structure used in the proof of Theorem 3 consists of actions ai and bi for i ≥ 1
together with an action c, where ai < bi < c for each i ≥ 1. We prove that given
a finite sound conditional axiomatization E, the sound equation

Θ(b1.0 + · · ·+ bn.0) ≈ b1.0 + · · ·+ bn.0

cannot be derived from E, for a sufficiently large n.
In contrast to the aforementioned negative results, we exhibit a countably in-

finite, ground-complete axiomatization for bisimulation equivalence over BCCSP
with the priority operator in terms of conditional equations (Theorem 4). This
axiomatization suggests that infinite collections of pairwise incomparable ac-
tions with respect to the priority relation < are the source of our negative result
presented in Theorem 3. It is therefore natural to ask ourselves whether there
are conditions that can be imposed on the poset of actions that are sufficient
to guarantee that bisimulation equivalence be finitely axiomatizable using con-
ditional equations, but without auxiliary operators. We conclude the technical

4

developments in this paper by proposing some such sufficient conditions. The
most general of these applies to all priority structures such that

1. the collection of the sizes of the finite, maximal anti-chains is finite,
2. there are only finitely many infinite, maximal anti-chains, and
3. for each infinite, maximal anti-chain A each element of A is above the same

set of actions—that is, for each a, b ∈ A and action c, we have that c < a iff
c < b.

Our results add the priority operator to the list of operators whose addition to
a process algebra spoils finite axiomatizability modulo bisimulation equivalence;
see, e.g., [1, 2, 22–24] for other examples of non-finite axiomatizability results
over process algebras. Notably, in [2] two mode transfer operators from [4] are
studied in the setting of the basic process algebra BPA. It is shown that, even
in the presence of just one action, the interrupt operator does not have a finite
equational axiomatization, while the disrupt operator does. In the interrupt op-
erator, a process p can be interrupted by another process q; upon termination
of q, process p resumes its computation. In the disrupt operator, a process p can
be pre-empted by another process q, after which the execution of p is aborted.

This paper is organized as follows. Section 2 contains the preliminaries. In
Section 3, the finite axiomatization for the priority operator Θ from [5] is pre-
sented. Section 4 contains a proof of a result to the effect that, in case of an
infinite alphabet, there is no finite equational axiomatization for the priority
operator modulo bisimulation equivalence, even in the presence of auxiliary op-
erators. Finally, we show that, in the presence of an infinite set of actions, in
general bisimulation equivalence does not afford a finite axiomatization in terms
of conditional equations without the use of auxiliary operators (Section 5.1), and
we identify sufficient conditions on the priority structure over actions that lead
to the existence of a finite conditional axiomatization (Section 5.2).

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 The Language BCCSPΘ

Act denotes a non-empty alphabet of atomic actions, with typical elements
a, b, c, d, e. Over Act we assume an irreflexive, transitive partial ordering < to
express priorities between actions. Intuitively, a < b expresses that the action b
has priority over the action a. We say that actions a1, . . . , an are incomparable
if they are distinct and ai < aj does not hold for all 1 ≤ i, j ≤ n.

The language of processes we shall consider in this paper, henceforth referred
to as BCCSPΘ, is obtained by adding the unary priority operator Θ from [3] to
the basic process algebra BCCSP [14, 15]. The language is given by the following
grammar:

t ::= 0 | a.t | t + t | Θ(t) | x | α.t ,

5

where a ranges over Act , x is a process variable and α is an action variable.
Process and action variables range over given, disjoint countably infinite sets.
We use x, y, z to range over the collection of process variables, and α, β as typical
action variables.

We use t, u, v to range over the collection of open process terms T(BCCSPΘ).
A process term is closed if it does not contain any variables, and p, q, r, range
over the set of closed terms T(BCCSPΘ). The size of a term is its length in
function symbols.

Remark 1. The reader familiar with [14, 15] might have already noticed that we
consider a slightly extended syntax for BCCSP, in that we allow for the use of
prefixing operators of the form α. , where α is an action variable. The use of
action variables is natural in the presence of infinite sets of actions, and will
allow us to formulate stronger versions of the negative results to follow.

A substitution maps each process variable to a process term, and each action
variable to an action or action variable. A substitution is closed if it maps process
variables to closed process terms and action variables to actions. For every term
t and substitution σ, the term obtained by replacing occurrences of process
variables x and action variables α in t with σ(x) and σ(α), respectively, is written
σ(t). Note that σ(t) is closed if so is σ. For example, σ(α.x) = a.0 if σ(α) = a
and σ(x) = 0.

In general, for each signature Σ—that is, a collection of function symbols
together with their arity—, T(Σ) denotes the collection of open terms over Σ,
and T(Σ) stands for the collection of closed terms over Σ. In Section 4, we shall
consider signatures extending that for the language BCCSPΘ.

The semantics of the operators is captured by the transition rules below,
which give rise to Act-labelled transitions between closed terms. An Act-labelled
transition between closed terms is a triple (p, a, p′), where p, p′ are closed terms
and a ∈ Act . Henceforth, as usual, we shall use the suggestive notation p

a→ p′ in
lieu of (p, a, p′). A transition relation is a collection of Act-labelled transitions.

The operational semantics for the language BCCSPΘ is given by the labelled
transition system

(T(BCCSPΘ),→) ,

where the transition relation → is the unique supported model of the following
rules in the sense of [7]:

a.x
a→ x

x1
a→ y

x1 + x2
a→ y

x2
a→ y

x1 + x2
a→ y

x
a→ y x

b
9 for a < b

Θ(x) a→ Θ(y)

where a ranges over Act . It is well-known that the transition relation → is the
one defined by structural induction over closed terms using the above rules.

Intuitively, closed terms in the language BCCSPΘ represent finite process
behaviours, where 0 does not exhibit any behaviour, p+q is the nondeterministic
choice between the behaviours of p and q, and a.p executes action a to transform

6

into p. Furthermore, the process graph of Θ(p) is obtained by eliminating all
transitions q

a→ q′ from the process graph of p for which there is a transition
q

b→ q′′ with a < b.
We consider the language BCCSPΘ modulo bisimulation equivalence.

Definition 1. A binary symmetric relation R over T(BCCSPΘ) is a bisimula-
tion if p R q together with p

a→ p′ imply q
a→ q′ for some q′ with p′ R q′. We

write p ↔ q if there is a bisimulation relating p and q. The relation ↔ will be
referred to as bisimulation equivalence or bisimilarity.

It is well-known that ↔ is an equivalence relation. Moreover, the transition rules
are in the GSOS format of [7]. Hence, bisimulation equivalence is a congruence
with respect to all the operators in the signature of BCCSPΘ, meaning that
p ↔ q implies C[p] ↔ C[q] for each BCCSPΘ-context C[].

We can therefore consider the algebra of the closed terms in T(BCCSPΘ)
modulo ↔. In Section 4, we shall offer results that apply to any signature Σ that
extends that for BCCSPΘ. To this end, we shall tacitly assume that all of the
new operators in Σ also preserve bisimulation equivalence, and are semantically
interpreted as operations over finite synchronization trees [20].

2.2 Equational Logic

An axiom system is a collection of equations t ≈ u over the language BCCSPΘ.
An equation t ≈ u is derivable from an axiom system E, notation E ` t ≈ u,
if it can be proven from the axioms in E using the rules of equational logic
(viz. reflexivity, symmetry, transitivity, substitution and closure under BCCSPΘ

contexts):

t ≈ t

t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u

a.t ≈ a.u

t ≈ u

α.t ≈ α.u

t ≈ u

Θ(t) ≈ Θ(u)

Without loss of generality one may assume that substitutions happen first in
equational proofs, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when t ≈ u ∈ E. Moreover, by postulating that for each axiom
in E also its symmetric counterpart is present in E, we can disregard applications
of symmetry in equational proofs. In the remainder of this paper, we shall tacitly
assume that our equational axiom systems are closed with respect to symmetry.
Furthermore, it is well-known (cf., e.g., Section 2 in [16]) that if an equation
relating two closed terms can be proven from an axiom system E, then there
is a closed proof for it. (A proof is closed if it only mentions closed terms.) We

7

shall only consider questions related to the provability of closed equations from
an axiom system. Therefore, in light of the previous observation, we can restrict
ourselves to considering closed proofs.

Definition 2. An equation t ≈ u is sound with respect to ↔ if σ(t) ↔ σ(u)
holds for each closed substitution σ. An axiom system E is called sound over
some language modulo ↔ if E ` t ≈ u implies t ↔ u, for all terms t, u in the
language. Conversely, E is called ground-complete if p ↔ q implies E ` p ≈ q,
for all closed terms p, q in the language.

Our order of business in the remainder of this paper will be to offer a thorough
study of the equational theory of the language BCCSPΘ modulo bisimulation
equivalence. We begin our investigation by considering the case in which the set
of actions Act is finite in the following section. We then move on to investigate
the equational properties of bisimulation equivalence over BCCSPΘ when the
set of actions is infinite (Sections 4 and 5).

3 |Act | < ∞
In this section, we assume that the action set is finite. The axiom system in
Table 1 was put forward by Jan Bergstra in [5]. Note that in the case of a finite
action set, this axiom system is finite, since then the axiom schemas PR2–4 give
rise to finitely many equations.

A1 x + y ≈ y + x

A2 x + (y + z) ≈ (x + y) + z

A3 x + x ≈ x

A4 x + 0 ≈ x

PR1 Θ(0) ≈ 0

PR2 Θ(a.x + a.y + z) ≈ Θ(a.x + z) + Θ(a.y + z)

PR3 Θ(a.x + b.y + z) ≈ Θ(b.y + z) (a < b)

PR4 Θ(a1.x1 + · · ·+ an.xn) ≈ a1.Θ(x1) + · · ·+ an.Θ(xn)
(a1, . . . , an incomparable)

Table 1. Axiomatization in case of |Act | < ∞

Theorem 1 (Bergstra [5]). The axiom system consisting of the equations
(A1)–(A4) and (PR1)–(PR4) is sound and ground-complete for BCCSPΘ mod-
ulo ↔.

8

Proof. (Sketch) Since ↔ is a congruence with respect to BCCSPΘ, soundness
can be checked for each axiom separately. This is an easy exercise.

Next observe that, using (PR1)–(PR4), one can remove all occurrences of
Θ from closed terms. Then ground-completeness follows from the well-known
ground-completeness of (A1)–(A4) for BCCSP modulo ↔ (see, e.g., [17]). ut
In the remainder of this paper, process terms are considered modulo associativity
and commutativity of +. In other words, we do not distinguish t+u and u+t, nor
(t + u) + v and t + (u + v). We use a summation

∑n
i=1 ti to denote t1 + · · ·+ tn,

where the empty sum represents 0. Such a summation is said to be in head
normal form if each term ti is of the form ai.t

′
i or αi.t

′
i for some action ai or

action variable αi, and term t′i.
It is easy to see that modulo the axioms (A1) and (A2), every term t in the

language BCCSPΘ has the form
∑

i∈I ti, for some finite index set I, and terms
ti (i ∈ I) that are do not have the form t′ + t′′. The terms ti (i ∈ I) will be
referred to as the summands of t. For example, the term Θ(a.0 + b.0) has only
itself as summand.

Remark 2. Note that the axiom system in Table 1 is not strong enough to prove
all of the sound equations over the language BCCSPΘ modulo bisimulation
equivalence. For instance, as our readers can check, the equation

Θ(Θ(x) + y) ≈ Θ(x + y)

is sound modulo bisimulation equivalence irrespective of the cardinality of the
set of actions Act and of the ordering relation <. That equation, however, cannot
be proven from those in Table 1.

4 |Act | = ∞
In this section, we deal with the case that the action set is infinite. Our main
result is that bisimulation equivalence does not afford a finite equational axiom-
atization over the language BCCSPΘ, provided that Act contains at least two
actions a, b with a < b. (Otherwise, the equation Θ(x) ≈ x would be sound,
and the priority operator could be eliminated from all terms.) This negative
result even applies if BCCSPΘ is extended with an arbitrary collection of oper-
ators (over finite synchronization trees) for which bisimulation equivalence is a
congruence.

The idea behind the proof of our main result of this section is that a finite
axiom system E can mention only finitely many action names. So, since Act is
infinite, we can find a pair c, d of distinct actions that do not occur in E. If c
and d are incomparable, then the equation Θ(c.0 + d.0) ≈ c.0 + d.0 is sound;
if c < d, then Θ(c.0 + d.0) ≈ d.0 is sound. In the first case, we show that an
equational proof of Θ(c.0 + d.0) ≈ c.0 + d.0 from E would give rise to a proof
of the unsound equation Θ(a.0 + b.0) ≈ a.0 + b.0 from E. This follows by a
simple renaming argument, using that c and d do not occur in E. Likewise, in

9

the second case, a proof of Θ(c.0 + d.0) ≈ d.0 from E would give rise to a proof
of the unsound equation Θ(d.0 + c.0) ≈ c.0 from E.

To present the formal proof of the aforementioned negative result, first we
introduce the action renaming mentioned in the proof idea sketched above.

Definition 3. Let A ⊆ Act, and let Σ be a signature that includes the set of
operators in BCCSPΘ. We extend each renaming function ρ : A → Act to a
function ρ : T(Σ) → T(Σ) as follows, where f is any operator that is not of the
form a. .

ρ(0) def= 0

ρ(a.t) def=

{
ρ(a).ρ(t) if a ∈ A

a.ρ(t) if a 6∈ A

ρ(f(t1, . . . , tn)) def= f(ρ(t1), . . . , ρ(tn))

ρ(x) def= x

ρ(α.t) def= α.ρ(t)

For each substitution σ, the substitution ρ(σ) is defined by ρ(σ)(x) def= ρ(σ(x))
and

ρ(σ)(α) def=

{
ρ(σ(α)) if σ(α) ∈ A

σ(α) otherwise .

The following lemma states that renaming of actions that are not mentioned in
an axiom system E preserves provability.

Lemma 1. Let A ⊆ Act and ρ : A → Act. Let Σ be a signature that includes
the set of operators in BCCSPΘ. Let E be a collection of equations over Σ, and
assume that all of the actions a ∈ A do not occur in E. Then E ` p ≈ q implies
E ` ρ(p) ≈ ρ(q).

Proof. The proof is by induction on the depth of a closed proof of the equation
p ≈ q from E. We proceed by a case analysis on the last rule used in the proof
of p ≈ q from E. The case of reflexivity is trivial, and that of transitivity follows
immediately by using the induction hypothesis. Below we only consider the other
cases, namely the instantiation of an axiom and closure under contexts. (Since
we are dealing with closed proofs, closure with respect to prefixing by action
variables need not be considered.)

– Case E ` p ≈ q because σ(t) = p and σ(u) = q for some equation t ≈ u ∈ E
and closed substitution σ. Then ρ(p) = ρ(σ(t)) = ρ(σ)(ρ(t)). According to
the proviso of the lemma, no action a ∈ A occurs in t, so clearly ρ(t) = t.
Similarly, ρ(q) = ρ(σ(u)) = ρ(σ)(ρ(u)) = ρ(σ)(u). Since t ≈ u ∈ E, by
substitution instance, E ` ρ(σ)(t) ≈ ρ(σ)(u). In other words, E ` ρ(p) ≈
ρ(q), which was to be shown.

10

– Case E ` p ≈ q because p = a.p′ and q = a.q′ where E ` p′ ≈ q′. If a ∈ A,
then ρ(p) = ρ(a).ρ(p′) and ρ(q) = ρ(a).ρ(q′); otherwise, ρ(p) = a.ρ(p′) and
ρ(q) = a.ρ(q′). In either case, by induction, E ` ρ(p′) ≈ ρ(q′). By context
closure, E ` ρ(p) ≈ ρ(q).

– Case E ` p ≈ q because p = f(p1, . . . , pn) and q = f(q1, . . . , qn), for some
operator f in the signature that is not of the form a. , where E ` pi ≈
qi for i = 1, . . . , n. By definition, ρ(p) = f(ρ(p1), . . . , ρ(pn)) and ρ(q) =
f(ρ(q1), . . . , ρ(qn)). By induction, E ` ρ(pi) ≈ ρ(qi) for i = 1, . . . , n. By
context closure, E ` ρ(p) ≈ ρ(q). ut

We are now in a position to show the first main result of this paper.

Theorem 2. Let |Act | = ∞, and a < b for some a, b ∈ Act. Let Σ be a signature
consisting of the operators in BCCSPΘ, together with auxiliary operators for
which bisimulation equivalence is a congruence. Then bisimulation equivalence
has no finite, sound and ground-complete axiomatization over T(Σ).

Proof. We need to show that no finite axiom system is both sound and ground-
complete for T(Σ) modulo ↔. Let E be a finite axiom system over T(Σ) that
is sound modulo ↔. Fix a pair of distinct actions c, d ∈ Act that do not occur
in E. We can select c, d such that either they are incomparable, or c < d. In the
first case, the following equation is sound modulo ↔:

Θ(c.0 + d.0) ≈ c.0 + d.0 .

Assume, towards a contradiction, that this equation can be derived from E.
Consider the renaming function ρ defined as: ρ(c) = a and ρ(d) = b. Since c, d
do not occur in E, Lemma 1 yields that E ` ρ(Θ(c.0+d.0)) ≈ ρ(c.0+d.0). That
is, E ` Θ(a.0 + b.0) ≈ a.0 + b.0, which is not sound modulo ↔, since a < b.
This contradicts the soundness of E.

In the second case, the following equation is sound modulo ↔:

Θ(c.0 + d.0) ≈ d.0 .

Again, assume, towards a contradiction, that this equation can be derived from
E. Consider the renaming function ρ defined as: ρ(c) = d and ρ(d) = c. Since
c, d do not occur in E, Lemma 1 yields that E ` ρ(Θ(c.0 + d.0)) ≈ ρ(d.0). That
is, E ` Θ(d.0 + c.0) ≈ c.0, which is not sound modulo ↔. Once more, this
contradicts the soundness of E.

In either case, we can conclude that the axiom system E is not ground-
complete. ut

5 Axiomatizing Priority over an Infinite Action Set,
Conditionally

Theorem 2 offers very strong evidence that, in the presence of an infinite set
of actions, equational logic is inherently not sufficiently powerful to achieve a

11

finite axiomatization of bisimilarity over closed terms in the language BCCSPΘ.
Indeed, that result holds true even in the presence of an arbitrary number of
auxiliary operators.

In the presence of action variables, it is natural to view our language as
consisting of two sorts: one for actions and the other for processes. This is all
the more true because the set of actions has the structure of a partial order, and
we should like to express axioms over processes that reflect the influence that
this poset structure on actions has on the behaviour of processes. In case our set
of actions is finite, this can be done by means of a finite number of equations
that are instances of (PR3) and (PR4) in Table 1.

In the presence of an infinite action set, however, the axiom schemas (PR3)
and (PR4), as well as (PR2), have infinitely many instances. One way to capture
their effects finitely is to take seriously the idea that, in the presence of action
variables, the equation schemas (PR3) and (PR4) can be phrased as conditional
equations thus:

(CPR3) (α < β) ⇒
Θ(α.x + β.y + z) ≈ Θ(β.y + z)

(CPR4)n (
∧

1≤i,j≤n

¬(αi < αj)) ⇒

Θ(α1.x1 + · · ·+ αn.xn) ≈ α1.Θ(x1) + · · ·+ αn.Θ(xn) (n ≥ 0) .

In both of the above conditional equations, we use predicates over actions to
restrict the applicability of the equation on the right-hand side of the implication.
In general, henceforth in this study we shall consider conditional equations of
the form

P ⇒ t ≈ u ,

where P is a predicate over actions, and t ≈ u is an equation over the language
BCCSPΘ. In what follows, we shall assume that predicates over actions are
expressed using formulae in first-order logic with equality and the binary relation
symbol <.

The semantics of a predicate P is given by the collection of closed substitu-
tions that satisfy it. The definition of the collection of closed substitutions that
satisfy a predicate P is entirely standard, and we omit the details. For example,
a closed substitution σ satisfies the predicate α < β if, and only if, σ(α) < σ(β)
holds in the poset (Act , <). We sometimes write σ(P) = true if the closed sub-
stitution σ satisfies the predicate P . We say that a predicate is satisfiable if some
closed substitution satisfies it. If P is a tautology, then we simply write t ≈ u.
For instance, a version of of equation (PR2) with action variables will be written
thus:

(CPR2) Θ(α.x + α.y + z) ≈ Θ(α.x + z) + Θ(α.y + z) .

Note that equation (PR1) in Table 1 is just (CPR4)0. Moreover, since < is
irreflexive, the conditional equation (CPR4)1 reduces to

Θ(α.x) ≈ α.Θ(x) . (1)

12

(Note that the above equation can be derived from each of the (CPR4)n with
n ≥ 1 and axiom (A3) in Table 1.)

A conditional equation P ⇒ t ≈ u is sound with respect to bisimilarity, if
σ(t) ↔ σ(u) holds for each closed substitution σ that satisfies the predicate P .
It is not hard to see that:

Lemma 2. For each partial order of actions (Act , <), the conditional equations
(CPR2), (CPR3) and (CPR4)n (n ≥ 0) are sound modulo bisimilarity over the
language BCCSPΘ.

A proof of an equation from a set of conditional axioms E in conditional equa-
tional logic uses the same rules presented in Section 2.2. However, the rule for
substitution instance now reads

P ⇒ t ≈ u

σ(t) ≈ σ(u)
(σ(P) = true) ,

where P ⇒ t ≈ u is one of the conditional equations in the set E. Again, by
postulating that for each conditional equation P ⇒ t ≈ u in E also its symmetric
counterpart P ⇒ (u ≈ t) is present in E, we can disregard applications of
symmetry in conditional equational proofs.

A natural question to ask at this point, and one that we shall address in
the remainder of this study, is whether, unlike standard equational logic, con-
ditional equations suffice to obtain a finite, ground-complete axiomatization of
bisimulation equivalence over the language BCCSPΘ.

In their classic paper [3], Baeten, Bergstra and Klop offered a finite, condi-
tional, ground-complete axiomatization of bisimilarity over the language BPAδ

with the priority operator. Their axiomatization, however, relied upon the in-
troduction of a binary auxiliary operator, the so-called unless operator /. Oper-
ationally, the behaviour of the unless operator is specified by the rules

x
a→ x′ y

b
9 for a < b

x / y
a→ x′

,

where a ∈ Act .
In the setting of BCCSPΘ, and using action variables in lieu of concrete ac-

tion names, the relation between the priority operator and the unless operator is
expressed by the conditional equations in Table 2. It is not too hard to see that
those conditional equations, together with (A1)–(A4) in Table 1, yield a ground-
complete, finite, conditional equational axiomatization of bisimulation equiva-
lence. Therefore, even in the presence of an infinite set of actions, bisimulation
equivalence affords a finite, ground-complete axiomatization using conditional
equations at the price of introducing a single auxiliary operator. But, if the set
of actions is infinite, is the use of an auxiliary operator like the unless operator
necessary to obtain a finite axiomatizability result for bisimulation equivalence
over BCCSPΘ using conditional equations? We address this question in what fol-
lows. In particular, we first show that, in general, the use of auxiliary operators

13

Θ(α.x) ≈ α.x
Θ(0) ≈ 0

Θ(x + y) ≈ (Θ(x) / y) + (Θ(y) / x)
¬(α < β) ⇒ (α.x) / (β.y) ≈ α.x
(α < β) ⇒ (α.x) / (β.y) ≈ 0

(α.x) / 0 ≈ α.x
0 / (α.x) ≈ 0

(x + y) / z ≈ (x / z) + (y / z)
x / (y + z) ≈ (x / y) / z

Table 2. Axioms for Θ in the presence of /

is indeed necessary to obtain a finite, ground-complete axiomatization of bisim-
ulation equivalence using conditional equations. This we do in Section 5.1 by ex-
hibiting a poset of actions for which no finite set of sound conditional equations
is ground-complete with respect to bisimulation equivalence over BCCSPΘ. This
negative result, however, does not entail that, in the presence of an infinite set of
actions, auxiliary operators are always needed to give a finite, ground-complete
axiomatization of bisimulation equivalence over the language BCCSPΘ. In fact,
we then isolate sufficient conditions on the priority structure over actions that
guarantee the finite axiomatizability of bisimulation equivalence over the lan-
guage BCCSPΘ using conditional equations (Section 5.2).

5.1 A Negative Result

Our order of business will now be to prove that, in the presence of an infinite set
of actions, in general auxiliary operators are indeed necessary in order to obtain
a finite ground-complete axiomatization of bisimulation equivalence over the
language BCCSPΘ. In this section, Act = {ai, bi | i ≥ 1}∪{c}, where ai < bi < c
for each i ≥ 1, and these are the only inequalities. Moreover, for convenience,
we consider terms not only modulo associativity and commutativity of +, but
also modulo the sound equations x + 0 ≈ x and Θ(Θ(x) + y) ≈ Θ(x + y)—
see Remark 2. So we can assume, without loss of generality, that terms contain
neither redundant 0 summands nor nested occurrences of Θ.

We will prove the following claim, which will be used to argue that bisimula-
tion equivalence has no finite, ground-complete axiomatization over the language
BCCSPΘ consisting of conditional equations (Theorem 3 to follow).

Claim. Let E be a finite collection of conditional equations that is sound modulo
↔. Let n ≥ 2 be larger than the size of any term in the equations of E. Then
from E we cannot derive the equation

Θ(Φn) ≈ Φn ,

where Φn denotes
∑n

i=1 bi.0.

14

Note that the equation above is sound modulo ↔, because the actions bi (i ≥ 1)
are pairwise incomparable.

First we establish a technical lemma.

Lemma 3. Let P ⇒ t ≈ u be a conditional equation that is sound modulo ↔,
where P is satisfiable. If some process variable x occurs as a summand in t, then
x also occurs as a summand in u.

Proof. Since P is satisfiable, there exists a closed substitution σ such that σ(P) =
true. Take some action d ∈ Act that does not occur in σ(u); such an action
exists because Act is infinite. Consider the closed substitution σ′ that maps x
to d.(b1.0 + c.0), each other process variable to 0, and agrees with σ on action
variables. As P ⇒ t ≈ u is sound modulo ↔ and σ′(P) = σ(P) = true, we have
that σ′(t) ↔ σ′(u). Since x is a summand of t and σ′(t) d→ b1.0 + c.0, it follows
that σ′(u) d→ q ↔ b1.0 + c.0 for some q. Since d does not occur in σ(u) and
b1 < c, it is not hard to see that x must be a summand of u. ut
The following lemma is the crux in the proof of our claim. It states a property of
closed terms that holds for all of the closed instantiations of axioms in any finite,
sound collection of conditional equations. As we shall see later on, this property
is also preserved by arbitrary conditional equational proofs from a finite, sound
collection of conditional equations (Proposition 1).

Lemma 4. Let P ⇒ t ≈ u be a conditional equation that is sound modulo ↔.
Let σ be a closed substitution with σ(P) = true. Assume that:

– n is larger than the size of t, where n ≥ 2; and
– the summands of σ(t) are all bisimilar to either Φn or 0.

Then the summands of σ(u) are all bisimilar to either Φn or 0.

Proof. First, suppose that all summands of σ(t) are bisimilar to 0. Then σ(t) ↔
0, so the soundness of P ⇒ t ≈ u together with σ(P) = true yields σ(u) ↔ 0.
This means that all summands of σ(u) are bisimilar to 0, and we are done.

So we can assume that some summand of σ(t) is bisimilar to Φn. Then
σ(t) ↔ σ(u) ↔ Φn, by the proviso of the lemma and the soundness of P ⇒ t ≈ u.

We know that we can write t =
∑

i∈I ti and u =
∑

j∈J uj for some non-
empty, finite index sets I and J , where the terms ti and uj are of the form x,
a.v, α.v or Θ(v). By the proviso of the lemma, for each i ∈ I, the summands of
σ(ti) are all bisimilar to Φn or 0. Since n ≥ 2, for each i ∈ I, the term ti is not
of the form a.v or α.v. Hence either it is a process variable x, or it is of the form

Θ(
∑
`∈Li

di`.t
′
i` +

∑
m∈Mi

αm.t′′im +
∑

k∈Ki

zik)

(modulo the equations x+0 ≈ x and Θ(Θ(x)+y) ≈ Θ(x+y)). Let I ′ ⊆ I be the
set of indices of summands of t that have the above form. Observe that Ki 6= ∅
for each i ∈ I ′ such that σ(ti) is bisimilar to Φn (because n is larger than the

15

size of t). Note moreover that summands ti of t having the above form such that
σ(ti) ↔ 0 must have Li = Mi = ∅, and for such summands σ(zik) ↔ 0 for each
k ∈ Ki.

Let us assume, towards a contradiction, that there is an index j ∈ J such
that σ(uj) has a summand that is bisimilar neither to Φn nor to 0. We proceed
by a case analysis on the form of uj.

1. Case uj = x. By assumption, σ(x) has a summand that is bisimilar neither
to Φn nor to 0. Since P ⇒ t ≈ u is sound modulo ↔ and P is satisfiable
(because σ(P) = true by the proviso of the lemma), by Lemma 3, t also has
x as a summand. Consequently σ(t) has a summand that is bisimilar neither
to Φn nor to 0. This contradicts one the assumptions of the lemma.

2. Case uj = a.u′j or uj = α.u′j . Since σ(u) ↔ Φn, we have that a = bh or
σ(α) = bh for some 1 ≤ h ≤ n. Define the substitution σ′ as

σ′(y) =
{

c.0 if y = zik for some i ∈ I ′ and k ∈ Ki

0 otherwise

for process variables y, and let σ′ agree with σ on action variables. Then
σ′(t) bh

9, because
– c > bh,
– Ki 6= ∅ for every i ∈ I ′ with σ(ti) ↔ Φn,
– Li = Mi = ∅ for every i ∈ I ′ with σ(ti) ↔ 0 and
– t does not contain summands of the form bh.v or α.v.

On the other hand, as σ and σ′ agree on action variables, σ′(uj)
bh→ σ′(u′j). It

follows that σ′(u) bh→ σ′(u′j), and thus σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) =
true, this contradicts the soundness of P ⇒ t ≈ u modulo ↔.

3. Case uj = Θ(u′). Then uj consists of a single summand, so by assumption,
σ(uj) ↔/ Φn and σ(uj) ↔/ 0.
Since σ(u) ↔ Φn, and terms are considered modulo the equations x + 0 ≈ x
and Θ(Θ(x) + y) ≈ Θ(x + y), we can take u′ to be of the form∑

`∈L

e`.u
′
` +

∑
m∈M

βm.u′′m +
∑
k∈K

yk ,

for some finite index sets L, M, K. We distinguish two cases.
(a) For each i ∈ I ′ with σ(ti) ↔/ 0 there is a ki ∈ Ki such that ziki is not a

summand of u′.
Define the substitution σ′ as

σ′(y) =

c.0 if y = ziki for some i ∈ I ′ with σ(ti) ↔/ 0, or
if y is a summand of t with σ(y) ↔/ 0

σ(y) otherwise

for process variables y, and let σ′ agree with σ on action variables. It is
not hard to see that σ′(t) bi

9 for i = 1, . . . , n (because c > bi and t has no
summand of the form a.v or α.v). On the other hand, since σ(uj) ↔/ 0

16

and σ(u) ↔ Φn, there is an h with 1 ≤ h ≤ n such that σ(u′) bh→.
Furthermore, σ(u′) c

9. By assumption, ziki is not a summand of u′ for
each i ∈ I ′ with σ(ti) ↔/ 0. Moreover, for any variable summand y of t
with σ(y) ↔/ 0, y is not a summand of u′, because by assumption σ(y) ↔
Φn while σ(u′) ↔/ Φn. So σ(u′) bh→ and σ(u′) c

9 imply σ′(u′) bh→ and

σ′(u′) c
9. It follows that σ′(uj)

bh→, and so σ′(u) bh→. Hence σ′(t) ↔/ σ′(u).
Since σ′(P) = σ(P) = true, this contradicts the fact that P ⇒ t ≈ u is
sound modulo ↔.

(b) {zi0k | k ∈ Ki0} ⊆ {yk | k ∈ K}, for some i0 ∈ I ′ with σ(ti0) ↔/ 0.
In this case, K is non-empty since, as previously observed, Ki0 is non-
empty. By the proviso of the lemma, σ(ti0) ↔ Φn, so (since n is larger
than the size of ti0) there is a k0 ∈ Ki0 with σ(zi0k0) ↔/ 0. Furthermore,
by the assumption for case 3 of the proof, σ(uj) ↔/ 0 and σ(uj) ↔/ Φn.

Therefore, there is an h with 1 ≤ h ≤ n such that σ(Θ(u′)) bh
9. Define

the substitution σ′ as

σ′(y) =
{

ah.0 if y = zi0k0

σ(y) otherwise

for process variables y, and let σ′ agree with σ on action variables. We ar-
gue that σ′(t) ah

9. To this end, observe, first of all, that, since σ(Θ(u′)) bh
9,

we have σ(
∑

k∈K yk) bh
9, and so σ(zi0k0)

bh
9. We are now ready to show

that no summand of σ′(t) affords an ah-labelled transition. We consider
three exhaustive possibilities:
i. Let i ∈ I ′ with zi0k0 6∈ {zik | k ∈ Ki}. Then clearly σ′(ti)

ah
9.

ii. Let i ∈ I ′ with zi0k0 ∈ {zik | k ∈ Ki}. Then σ(ti) ↔/ 0 because
σ(zi0k0) ↔/ 0, so by assumption σ(ti) ↔ Φn. This implies σ(ti)

bh→,

so since σ(zi0k0)
bh
9, it follows that σ′(ti)

bh→. Since the outermost
function symbol of ti is Θ, we can conclude that σ′(ti)

ah
9.

iii. Finally, since σ(zi0k0) ↔/ 0 and σ(zi0k0)
bh
9, the proviso of the lemma

yields that zi0k0 cannot be a summand of t.
Since t has no other types of summands, from the three cases above
we can conclude that σ′(t) ah

9. On the other hand, σ′(Θ(u′)) ah→, be-
cause σ(Θ(u′)) bh

9 and zi0k0 ∈ {yk | k ∈ K}. Hence σ′(u) ah→, and so
σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) = true, this contradicts the fact that
P ⇒ t ≈ u is sound modulo ↔.

In summary, the assumption that, for some j ∈ J , the term σ(uj) has a summand
that is bisimilar neither to Φn nor to 0, leads to a contradiction. This completes
the proof. ut
The following proposition states that the property of closed instantiations of
sound conditional equations mentioned in the above lemma is preserved under
equational derivations from a finite collection of sound equations. This is the key
to the promised proof of our claim.

17

Proposition 1. Let E be a finite collection of conditional equations that is
sound modulo ↔. Let n ≥ 2 be larger than the size of any term in the equa-
tions of E. Assume, furthermore, that

– E ` p ≈ q; and
– the summands of p are all bisimilar to Φn or 0.

Then the summands of q are all bisimilar to Φn or 0.

Proof. By induction on the depth of the closed proof of the equation p ≈ q from
E. We proceed by a case analysis on the last rule used in the proof of p ≈ q from
E.

– E ` p ≈ q because σ(t) = p and σ(u) = q for some conditional equation
P ⇒ t ≈ u ∈ E and closed substitution σ with σ(P) = true. The claim
follows immediately from Lemma 4.

– E ` p ≈ q because p = p′ + p′′ and q = q′ + q′′ for some p′, q′, p′′, q′′ such
that E ` p′ ≈ q′ and E ` p′′ ≈ q′′. Since the summands of p are all bisimilar
to Φn or 0, the same holds for p′ and p′′. By induction, the summands of
q′ and q′′ are all bisimilar to Φn or 0. The claim now follows because the
summands of q are those of q′ and q′′.

– E ` p ≈ q because p = a.p′ and q = a.q′ for some p′, q′ such that E ` p′ ≈ q′.
This case is vacuous, because n ≥ 2 and p ↔ Φn.

– E ` p ≈ q because p = α.p′ and q = α.q′ for some p′, q′ such that E ` p′ ≈ q′.
This case is vacuous, because p and q are closed.

– E ` p ≈ q because p = Θ(p′) and q = Θ(q′) for some p′, q′ such that
E ` p′ ≈ q′. The claim is immediate, because both p and q consist of a single
summand, and p ↔ q by the soundness of E. ut

Theorem 3. Let Act = {ai, bi | i ≥ 1} ∪ {c}, where ai < bi < c for each
i ≥ 1, and these are the only inequalities. Then bisimulation equivalence has no
ground-complete axiomatization over BCCSPΘ consisting of a finite set of sound
conditional equations.

Proof. Let E be a finite collection of conditional equations that is sound modulo
↔. Let n ≥ 2 be larger than the size of any term in the equations of E. According
to Proposition 1, from E we cannot derive Θ(Φn) ≈ Φn. This equation is sound
modulo ↔, and therefore E is not ground-complete. ut
Remark 3. Note that Theorem 3 applies to conditional equations of the form
P ⇒ t ≈ u where P is an “arbitrary” predicate—that is any subset of the
collection of closed substitutions. It is therefore not limited to predicates that
can be expressed in a given language.

5.2 Positive Results

In the previous section, we have offered an example of a priority structure
(Act , <) with respect to which it is impossible to give a finite, ground-complete

18

axiomatization of bisimulation equivalence over BCCSPΘ in terms of condi-
tional equations without recourse to auxiliary operators. That result, however,
does not imply that auxiliary operators are always necessary to achieve a fi-
nite basis of conditional equations for bisimulation equivalence. Our aim in this
section is to substantiate this claim by providing some general conditions over
the priority structure (Act , <) that are sufficient to guarantee the existence of
a finite, ground-complete conditional axiomatization of bisimulation equivalence
over BCCSPΘ.

Definition 4. An anti-chain in a poset (Act , <) is a subset of Act consisting of
pairwise incomparable actions. The width of a poset (Act , <) is the least upper
bound of the cardinalities of its anti-chains. A poset (Act , <) has finite width if
its width is finite.

Example 1. The poset of actions we considered in Section 5.1 has uncountably
many infinite, maximal anti-chains. (Each such anti-chain can, in fact, be ob-
tained by picking exactly one of ai and bi for each i ≥ 1.) The width of that
poset is therefore infinite.

We now offer a countably infinite, ground-complete, conditional axiomatization
of bisimulation equivalence over BCCSPΘ. Such an axiomatization reduces to a
finite one if the poset of actions has finite width.

Theorem 4. Let (Act , <) be an infinite poset of actions. Then the following
statements hold.

1. The axiom system consisting of the conditional equations (CPR2), (CPR3)
and (CPR4)n (n ≥ 0), together with equations (A1)–(A4) in Table 1 is
ground-complete for bisimilarity over the language BCCSPΘ.

2. Assume that the width of (Act , <) is k. Then the axiom system consisting
of the conditional equations (CPR2), (CPR3), and (CPR4)k, together with
equations (A1)–(A4) and (PR1) in Table 1, is ground-complete for bisimilar-
ity over the language BCCSPΘ. Therefore bisimilarity has a finite, ground-
complete axiomatization using conditional equations if (Act , <) has finite
width.

Proof. We only present a sketch of the proof for statement 2. (That for state-
ment 1 follows similar lines.)

First of all, observe that it suffices only to show that, if the cardinality of each
anti-chain in (Act , <) is at most k, the conditional equations (CPR2), (CPR3),
(CPR4)k and (PR1) can be used to remove all occurrences of Θ from closed
terms. Indeed, if we can do so, then ground-completeness follows from the well-
known ground-completeness of (A1)–(A4) for BCCSP modulo ↔ (see, e.g., [17]).

To prove that all occurrences of Θ can be removed from closed terms, assume
that we have a closed term p that does not contain occurrences of Θ. We show
that Θ(p) can be proven equal to a term q that does not contain occurrences
of Θ by induction on the size of p. To this end, note that, modulo associativity

19

and commutativity of +, the term p can be written
∑n

i=1 ai.pi for some n ≥ 0,
actions ai and closed terms pi that do not contain occurrences of Θ.

If n = 0, then equation (PR1) yields that Θ(0) ≈ 0, and we are done. If
n = 1, then the claim follows using (1) and the induction hypothesis. (Recall
that, since k ≥ 1, equation (1) is derivable from (CPR4)k.) Consider now the
case when n ≥ 2. We proceed by examining the following three sub-cases:

– there are i, j such that 1 ≤ i < j ≤ n and ai = aj ,
– there are i, j such that 1 ≤ i, j ≤ n and ai < aj , and
– the collection of actions {a1, . . . , an} is an anti-chain in the poset (Act , <).

The first two sub-cases are handled using the inductive hypothesis, and the
conditional equations (CPR2) and (CPR3), respectively.

If the proviso for the third sub-case applies, then we know that n ≤ k. Using
equation (A3) if n < k, we can therefore reason as follows:

Θ(
n∑

i=1

ai.pi) ≈ Θ(
n∑

i=1

ai.pi + an.pn + · · ·+ an.pn︸ ︷︷ ︸
(k − n) times

)

≈
n∑

i=1

ai.Θ(pi) (By (CPR4)k and possibly (A3))

≈
n∑

i=1

ai.qi (By the inductive hypothesis)

for some closed terms q1, . . . , qn that do not contain occurrences of Θ.
Using this result, a simple argument by structural induction over closed terms

shows that each closed term in the language BCCSPΘ is provably equal to one
that does not contain occurrences of the Θ operator, and we are done. ut

So bisimilarity affords a finite, ground-complete axiomatization that uses condi-
tional equations if the poset (Act , <) has finite width. (Moreover, the conditional
equations making up the axiom systems used in Theorem 4 only involve pred-
icates over actions that can be expressed as conjunctions of, possibly negated,
atomic formulae of the form α < β.) A natural question to ask at this point is
whether this result holds for more general priority structures. We now proceed
to address this question in some detail.

Let us begin by observing that there are priority structures with infinite anti-
chains that do allow for a finite equational axiomatization of bisimilarity over
the language BCCSPΘ. Consider, by way of example, the flat priority structure
({⊥, a0, a1, . . .}, <), where the only ordering relations are given by ⊥ < ai for
each i ≥ 0. Membership of the countably infinite anti-chain {a0, a1, . . .} can be
characterized syntactically by the predicate

P (α) = ∀β. ¬(α < β) .

20

(Alternatively, if we consider actions as constant symbols, we could write P (α) =
⊥ < α5.) We can therefore write the following conditional equation that allows
us to reduce the number of summands within the scope of a Θ operator:

P (α) ∧ P (β) ⇒ Θ(α.x + β.y + z) ≈ Θ(α.x + z) + Θ(β.y + z) . (2)

It is not hard to see that the above equation is sound. (In fact, the soundness of
this equation will follow from the more general result in Lemma 5.) Moreover,
following the lines of the proof sketch for Theorem 4(2), one can argue that,
together with (PR1), (CPR2), (CPR3) and (1), this equation can be used to
remove all occurrences of Θ from closed terms. It follows that:

Proposition 2. Consider the priority poset ({⊥, a0, a1, . . .}, <), where the only
ordering relations are given by ⊥ < ai for each i ≥ 0. Then the axiom system
consisting of the conditional equations (2), (CPR2), (CPR3) and (1), together
with equations (A1)–(A4) and (PR1) in Table 1, is ground-complete for bisimi-
larity over the language BCCSPΘ.

As another example, consider the priority structure

A = ({a0, a1, . . .} ∪ {b0, b1, c}, <) ,

where the relation < is the least transitive relation satisfying

bi < aj for all i ∈ {0, 1}, j ≥ 0 and
aj < c for each j ≥ 0 .

This poset has one non-trivial maximal finite anti-chain, namely {b0, b1}, and
one maximal countably infinite anti-chain, namely

A = {a0, a1, . . .} .

Membership of A is characterized by the predicate PA defined thus:

PA(α) = ∃β1, β2. β1 < α < β2 .

(Alternatively, using actions as constant symbols, we could write PA(α) = (b0 <
α) ∧ (α < c).) As the reader can check, the instance of the conditional equation
(2) associated with this predicate is sound. (Again, the soundness of this equation
will follow from the more general result in Lemma 5.) Moreover, following the
lines of the proof sketch for Theorem 4(2), one can argue that, together with
(PR1), (CPR2), (CPR3) and (CPR4)2 (to handle the finite anti-chain {b0, b1}),
this equation can be used to remove all occurrences of Θ from closed terms. It
follows that:
5 If one only considers predicates that can be written as boolean combinations of

atomic formulae of the form α < β or α = β, then all predicates of the form P (α)
are either tautologies or contradictions, and thus no non-trivial subsets of the set of
actions can be expressed.

21

Proposition 3. Consider the priority poset A. Then the axiom system con-
sisting of the conditional equation (2) for predicate PA, (CPR2), (CPR3) and
(CPR4)2, together with equations (A1)–(A4) and (PR1) in Table 1, is ground-
complete for bisimilarity over the language BCCSPΘ.

In both of the examples we have just presented, the conditional equation (2) plays
a key role in that it allows us to reduce the size of terms in “head normal form”
having summands of the form a.p and b.q with a, b contained in an infinite anti-
chain within the scope of a Θ operator. The following lemma states a necessary
and sufficient condition on the infinite anti-chain that guarantees that axiom (2)
be sound modulo bisimilarity.

Lemma 5. Let A be an anti-chain in the poset (Act , <) whose membership is
described by predicate PA. Then the conditional equation (2) for predicate PA

is sound modulo bisimilarity iff each element of A is above the same set of
actions—that is, for each a, b ∈ A and c ∈ Act, we have that c < a iff c < b.

Proof. We first prove the “if implication”. To this end, assume that a, b ∈ A and
p, q, r are closed terms in the language BCCSPΘ. We claim that

Θ(a.p + b.q + r) ↔ Θ(a.p + r) + Θ(b.q + r) .

To see that this claim does hold, it suffices only to observe that the following
statements hold for each closed term p′:

1. Θ(a.p + b.q + r) a→ p′ iff Θ(a.p + r) + Θ(b.q + r) a→ p′,
2. Θ(a.p + b.q + r) b→ p′ iff Θ(a.p + r) + Θ(b.q + r) b→ p′, and
3. Θ(a.p + b.q + r) c→ p′ iff Θ(a.p + r) + Θ(b.q + r) c→ p′, for each action c

different from a, b.

We only offer a proof for the last of these statements. To this end, assume, first
of all, that Θ(a.p + b.q + r) c→ p′ for some action c different from a, b and closed
term p′. Since c is different from a, b, there is a closed term r′ such that

– p′ = Θ(r′),
– r

c→ r′,
– r

d
9 for each action d such that c < d and

– neither c < a nor c < b holds.

It is now a simple matter to see that, for instance, Θ(a.p + r) c→ p′. This yields
that Θ(a.p + r) + Θ(b.q + r) c→ p′, which was to be shown.

Conversely, suppose that Θ(a.p + r) + Θ(b.q + r) c→ p′ for some action c
different from a, b and closed term p′. Without loss of generality, we may assume
that this is because Θ(a.p + r) c→ p′. Since c is different from a, b, there is a
closed term r′ such that

– p′ = Θ(r′),
– r

c→ r′,

22

– r
d
9 for each action d such that c < d and

– c < a does not hold.

Observe now that c < b does not hold either, because a and b are above the
same actions by the proviso of the lemma. It follows that Θ(a.p + b.q + r) c→ p′,
which was to be shown.

To establish the “only if implication”, assume that A contains two distinct
incomparable actions a and b that are not above the same set of actions. Suppose,
without loss of generality, that c < a, but c < b does not hold, for some action
c. Then

Θ(a.0+ b.0+ c.0) ↔ a.0+ b.0 ↔/ a.0+ b.0+ c.0 ↔ Θ(a.0+ c.0)+Θ(b.0+ c.0) .

(The last equivalence holds true because b and c must be incomparable, as c < a
and a and b are incomparable.) Therefore equation (2) for predicate PA is not
sound modulo bisimilarity. ut
Remark 4. Let A, B be different, maximal anti-chains in the poset (Act , <).
Assume that each element of A is above the same set of actions—that is, for
each a, b ∈ A and c ∈ Act , we have that c < a iff c < b—, and so is each element
of B. Then A and B are disjoint.

To see this, assume, towards a contradiction, that a ∈ A ∩ B. Since A and
B are maximal anti-chains, neither one is a subset of the other. Therefore, since
A 6= B, there are actions b, c such that b ∈ A−B and c ∈ B−A. It follows that
a, b, c are above the same set of actions in Act . However, b 6∈ B. Therefore, since
B is maximal, there must be some action d ∈ B with b < d or d < b. If b < d,
we have that b < a because a, d ∈ B and each element of B is above the same
actions. This contradicts the assumption that A is an anti-chain. If d < b then
reasoning as above we can reach a contradiction to the assumption that B is an
anti-chain. Therefore, A and B must be disjoint.

Suppose that p is a closed term in head normal form whose set of initial actions
is included in an infinite anti-chain satisfying the constraint in the statement of
Lemma 5. Then the sound conditional equation (2) offers a way of “simplifying”
the term Θ(p). The use of this axiom is the key to the proof of the following
generalization of Theorem 4(2), and of Propositions 2 and 3.

Theorem 5. Let (Act , <) be an infinite poset of actions. Assume that

1. the collection of the sizes of the finite, maximal anti-chains in (Act , <) is
finite,

2. (Act , <) has finitely many infinite, maximal anti-chains, and
3. for each infinite, maximal anti-chain A in (Act , <)

(a) membership of A can be characterized by a predicate PA in first-order
logic and

(b) each element of A is above the same set of actions—that is, for each
a, b ∈ A and c ∈ Act, we have that c < a iff c < b.

23

Let k be the size of the largest finite, maximal anti-chain in (Act , <), or 1 if
all maximal anti-chains are infinite. Then the axiom system consisting of one
instance of the conditional equation (2) for predicate PA for each infinite anti-
chain A in (Act , <), (CPR2), (CPR3) and (CPR4)k, together with equations
(A1)–(A4) and (PR1) in Table 1, is ground-complete for bisimilarity over the
language BCCSPΘ.

Proof. The soundness of the axiom system is easily established, using Lemma 5
for the instances of axiom (2). The completeness of the axiom system can be
shown along the lines of the proof of Theorem 4. The key of the argument is again
to prove that each term Θ(

∑n
i=1 ai.pi), where the pi do not contain occurrences

of Θ, can be proven equal to a term q that does not contain occurrences of Θ by
induction on the size of

∑n
i=1 ai.pi. This we do by considering several sub-cases

depending on the number n of summands in
∑n

i=1 ai.pi.
If n = 0, then the claim follows using (PR1). If n = 1, then it suffices only to

use (1) and the inductive hypothesis. (Recall that (1) is derivable from (CPR4)k.)
If n ≥ 2, then we distinguish the following sub-cases:

– there are i, j such that 1 ≤ i < j ≤ n and ai = aj ,
– there are i, j such that 1 ≤ i, j ≤ n and ai < aj ,
– the collection of actions {a1, . . . , an} is an anti-chain in the poset (Act , <).

The first two sub-cases are handled using the inductive hypothesis, and the
conditional equations (CPR2) and (CPR3), respectively.

The last sub-case is handled using (CPR4)k as in the proof of Theorem 4
if {a1, . . . , an} is included in a finite maximal anti-chain. Assume now that
{a1, . . . , an} is only included in an infinite maximal anti-chain, say A. (In fact,
Remark 4 ensures that such an anti-chain A is unique.) Using the instance of
the conditional equation (2) for predicate PA and induction, the claim follows.

The rest of the proof follows the lines of that of Theorem 4, and is therefore
omitted. ut
Remark 5. The priority structure we employed in our proof of Theorem 3 satis-
fies neither condition 2 nor condition 3 in the proviso of the above theorem.

In light of the above result, bisimilarity has a finite, ground-complete axioma-
tization using conditional equations over the language BCCSPΘ if the poset of
actions satisfies the proviso of the above theorem.

We have not yet attempted a complete classification of the priority structures
for which bisimulation equivalence affords a finite axiomatization in terms of
conditional equations over the language BCCSPΘ. This is most likely a hard
problem which we leave for future research.

References

1. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. CCS with Hennessy’s merge
has no finite equational axiomatization. Theoretical Computer Science, 330(3):377–
405, 2005.

24

2. L. Aceto, W. Fokkink, A. Ingolfsdottir, and S. Nain. Bisimilarity is not finitely
based over BPA with interrupt. In J. Fiadeiro, N. Harman, M. Roggenbach, and J.
Rutten, eds., Proc. 1st Conference on Algebra and Coalgebra in Computer Science
(CALCO’05), LNCS 3629, pp. 52–66. Springer, 2005.

3. J. Baeten, J. Bergstra, and J.W. Klop. Syntax and defining equations for an in-
terrupt mechanism in process algebra. Fundamenta Informaticae, IX(2):127–168,
1986.

4. J. Baeten and J. Bergstra. Mode Transfer in Process Algebra. Report CSR00–01,
Eindhoven University of Technology, 2000.

5. J. Bergstra. Put and Get, Primitives for Synchronous Unreliable Message Passing.
Logic Group Preprint Series 3, Utrecht University, Department of Philosophy, 1985.

6. J. Bergstra and J.W. Klop. Process algebra for synchronous communication. In-
formation & Control, 60(1/3):109–137, 1984.

7. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42(1):232–268, 1995.

8. E. Brinksma. A tutorial on LOTOS. In M. Diaz, ed., Proc. 5th IFIP Workshop on
Protocol Specification, Testing and Verification (PSTV’85), pp. 171–194. North-
Holland, 1985.

9. J. Camilleri and G. Winskel. CCS with priority choice. Information and Compu-
tation, 116(1):26–37, 1995.

10. R. Cleaveland and M. Hennessy. Priorities in process algebras. Information and
Computation, 87(1-2):58–77, 1990.

11. R. Cleaveland, G. Lüttgen, and V. Natarajan. Priorities in process algebra. In
J. Bergstra, A. Ponse, and S. Smolka, eds., Handbook of Process Algebra, pp. 711–
765. Elsevier, 2001.

12. R. Cleaveland, G. Lüttgen, V. Natarajan, and S. Sims. Priorities for modeling
and verifying distributed systems. In T. Margaria and B. Steffen, eds., Proc. 2nd
Workshop on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’96), LNCS 1055, pp. 278–297. Springer, 1996.

13. A. Dsouza and B. Bloom. On the expressive power of CCS. In P.S. Thiagarajan,
ed., Proc. 15th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’95), LNCS 1026, pp. 309–323.
Springer, 1995.

14. R. van Glabbeek. The linear time-branching time spectrum. In J. Baeten and
J.W. Klop, eds., Proc. 1st Conference on Concurrency Theory: Unification and
Extension (CONCUR’90), LNCS 458, pp. 278–297. Springer, 1990.

15. R. van Glabbeek. The linear time-branching time spectrum I. The semantics of
concrete, sequential processes. In J. Bergstra, A. Ponse and S. Smolka, eds., Hand-
book of Process Algebra, pp. 3–99. Elsevier, 2001.

16. J.F. Groote. A new strategy for proving ω-completeness with applications in pro-
cess algebra. In J. Baeten and J.W. Klop, eds., Proc. 1st Conference on Concur-
rency Theory (CONCUR’90), LNCS 458, pp. 314–331. Springer, 1990.

17. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

18. ISO. Information processing systems – open systems interconnection – LOTOS –
a formal description technique based on the temporal ordering of observational
behaviour, ISO/TC97/SC21/N DIS8807, 1987.

19. S. Mauw, PSF – A Process Specification Formalism, Ph.D. thesis, University of
Amsterdam (Dec. 1991).

20. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

25

21. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997.

22. F. Moller. The importance of the left merge operator in process algebras. In M. Pa-
terson, ed., Proc. 17th Colloquium on Automata and Languages (ICALP’90), LNCS
443, pp. 752–764. Springer, 1990.

23. F. Moller. The nonexistence of finite axiomatisations for CCS congruences. In
Proc. 5th Symposium on Logic in Computer Science (LICS’90), pp. 142–153. IEEE
Computer Society Press, 1990.

24. P. Sewell. Nonaxiomatisability of equivalences over finite state processes. Annals
of Pure and Applied Logic, 90(1–3), 163–191, 1997.

Recent BRICS Report Series Publications

RS-06-1 Luca Aceto, Taolue Chen, Willem Jan Fokkink, and Anna
Ingólfsdóttir. On the Axiomatizability of Priority. January 2006.
25 pp.

RS-05-38 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. December 2005. iii+39 pp. Revised version of BRICS
RS-05-22.

RS-05-37 Gerth Stølting Brodal, Kanela Kaligosi, Irit Katriel, and Mar-
tin Kutz. Faster Algorithms for Computing Longest Common
Increasing Subsequences. December 2005. 16 pp.

RS-05-36 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan.On
the Static and Dynamic Extents of Delimited Continuations. De-
cember 2005. ii+33 pp. To appear in the journalScience of
Computer Programming. Supersedes BRICS RS-05-13.

RS-05-35 Kristian Støvring.Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. November 2005. 19 pp.

RS-05-34 Henning Korsholm Rohde.Formal Aspects of Polyvariant Spe-
cialization. November 2005. 27 pp.

RS-05-33 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2005. 33 pp. This paper supersedes BRICS
Report RS-04-24. An extended abstract of this paper appeared
in Algebra and Coalgebra in Computer Science, 1st Conference,
CALCO 2005, Swansea, Wales, 3–6 September 2005, Lecture
Notes in Computer Science 3629, pp. 54–68, Springer-Verlag,
2005.

RS-05-32 Anders Møller, Mads Østerby Olesen, and Michael I.
Schwartzbach. Static Validation of XSL Transformations. Oc-
tober 2005. 50 pp.

RS-05-31 Christian Kirkegaard and Anders Møller. Type Checking with
XML Schema inXACT. September 2005. 20 pp.

RS-05-30 Karl Krukow. An Operational Semantics for Trust Policies.
September 2005. 38 pp.

