1OV X Ul ewayos X yum bunjosyd adAL :1sjjg N 7 preebaxiy TE-G0-SH SOIdd

BRICS

Basic Research in Computer Science

Type Checking with XML Schema in XACT

Christian Kirkegaard
Anders Mgller

BRICS Report Series RS-05-31
ISSN 0909-0878 September 2005

Copyright (© 2005, Christian Kirkegaard & Anders Mgller.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/31/

Type Checking with XML Schema in XACT
Christian Kirkegaard and Anders Mgller*

BRICS! Department of Computer Science
University of Aarhus, Denmark
{ck,amoeller}@brics.dk

September 2005

Abstract

We show how to extend the program analysis technique used in the
XACT system to support XML Schema as type formalism. Moreover, we
introduce optional type annotations to improve modularity of the type
checking. The resulting system supports a flexible style of programming
XML transformations and provides static guarantees of validity of the
generated XML data.

1 Introduction

The overall goal of the XACT project is to integrate XML into general-purpose
programming languages, in particular Java, such that programming of XML
transformations can become easier and safer than with the existing approaches.
Specifically, we aim for a system that supports a high-level and flexible program-
ming style, permits an efficient runtime model, and has the ability to statically
guarantee validity of generated XML data.

In previous papers, see [14, 13], we have presented the first steps of our
proposal for a system that fulfills these requirements. Our language, XACT, is
an extension of Java where XML fragments can be manipulated through a notion
of XML templates using XPath for navigation. Static guarantees of validity are
provided by a special data-flow analysis that builds on a lattice structure of
summary graphs.

The existing XACT system has two significant weaknesses: first, it only
supports DTD as schema language, and it is generally agreed that this language
has insufficient expressiveness for modern XML applications; second, the data-
flow analysis is a whole-program analysis that has poor modularity properties

*Supported by the Carlsberg Foundation contract number 04-0080.
fBasic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

and hence does not scale well to larger programs. In this paper, we present an
approach for attacking these issues.

Contributions

We have previously shown a connection between summary graphs and regu-
lar expression types [4, 10]. Also, it is known how regular expression types
are related to RELAX NG schemas [7] and how schemas written in XML
Schema [19, 2] can be translated into equivalent RELAX NG schemas [12].
We exploit these connections in this paper. Our main contributions are the
following:

e We present a translation from XML Schema to summary graphs and an
algorithm for validating summary graphs relative to schemas written in
XML Schema, all via RELAX NG. This provides the foundation for using
XML Schema as type formalism in XACT.

e We introduce optional typing in XACT so that XML template variables can
be optionally typed with schema constructs (element names and simple or
complex types). We show how this can lead to a validity analysis which is
more modular, in the sense that it avoids iterating over the whole program.

Together, these improvements effectively remedy the weaknesses mentioned ear-
lier. Furthermore, the results can be seen as an indication of the strength of
summary graphs and the use of data-flow analysis for validating XML transfor-
mations.

As an additional contribution, we identify a subset of RELAX NG that
is sufficient for translation from XML Schema and where language inclusion
checking is tractable.

Example

The resulting XACT language can be illustrated by a small toy program that
uses the new features. This program converts a list of business cards represented
in a special XML language into XHTML, considering only the cards where a
phone number is present:

import dk.brics.xact.x*;
import java.io.x;

public class PhonelList {
static {
String[] ns =
{"b", "http://businesscard.org",
"h", "http://www.w3.org/1999/xhtml",
"s", "http://www.w3.org/2001/XMLSchema"};
XML. setNamespaceMap (ns) ;
}

XML<h:html[s:string TITLE, h:Flow MAIN]> wrapper;

void setWrapper(String color) {
wrapper =
[[<h:html>
<h:head>
<h:title><[s:string TITLE]></h:title>
</h:head>
<h:body bgcolor={color}>
<h:h1><[s:string TITLE]></h:h1>
<[h:Flow MAIN]>
</h:body>
</h:html>]];
}

XML<h:ul> makeList (XML<b:cardlist> x) {
XML r = [[<h:ul><[CARDS]></h:ul>]]
XMLIterator i =
x.select("//b:card[b:phone]") .iterator();
while (i.hasNext()) {
XML ¢ = i.next();
r = r.plug("CARDS",
[[<h:1i>
<h:b><{c.select ("b:name/text () ")}></h:b>,
phone: <{c.select("b:phone/text()")}>

</h:1i>
<[CARDS]I>11);
}
return r;

}

public static void main(String[] args) {
XML cardlist = XML.get(args[0], "b:cardlist");
setWrapper ("white") ;
XML<h:html> x =

wrapper .plug("TITLE", "My Phone List")
.plug("MAIN", makeList(cardlist));

System.out.println(x);

}

}

The general syntax for XML template constants and the meaning of the methods
select, plug, get, and various others are described further in Section 2.

In the first part of the program, some global namespace declarations are
made. Schemas for these namespaces are supplied externally (the schema for
the business card XML language is shown in Section 3). Then a field wrapper
is defined, holding an XML template that must be an html tree, potentially
with TITLE gaps and MAIN gaps, which may occur in place of fragments of type
string and Flow, respectively (all of appropriate namespaces). The method

setWrapper assigns such an XML template to the wrapper field. This template
has two gaps named TITLE and one named MAIN. Additionally, it has one code
gap where the value of the color parameter is inserted. The method makeList
iterates through a list of card elements that have phone children and builds an
XHTML list. The method main loads in an XML document containing a list
of business card, invokes the setWrapper method, then constructs a complete
XHTML document by plugging values into the TITLE and MAIN gaps using the
makeList method, and finally outputs this document.

As an example, the program transforms the input

<cardlist xmlns="http://businesscard.org">
<card>
<name>John Doe</name>
<email>john.doe@widget.inc</email>
<phone>(202) 555-1414</phone>
</card>
<card>
<name>Zacharias Doe</name>
<email>zach@notmail.com</email>
</card>
<card>
<name>Jack Doe</name>
<email>jack@mailorder.edu</email>
<email>jack@geemail.com</email>
<phone>(202) 456-1414</phone>
</card>
</cardlist>

into an XHTML document that looks as follows:

My Phone List

e John Doe, phone: (202) 555-1414
o Jack Doe, phone: (202) 456-1414

Note that some XML variables in the program are declared by the type XML,
which represents all possible XML templates, and others use a more constrained
type, such as, the declaration of wrapper or the signature of makeList. XACT
now allows the programmer to combine these two approaches. The static type
checker uses data-flow analysis to reason about variables that are declared using
the former approach, and it conservatively checks that the annotated types are
preserved by execution of the program. For this program, one consequence is
that the makeList method, whose signature is fully annotated, can be type
checked separately, and invocations of this method can be type checked without
considering its body. (We discuss fields and side-effects in Section 7.) Also note
that the type checker can now reason about XML Schema types rather that
being limited to DTD.

Related Work

There are numerous other projects having similar goals as XACT; the paper [17]
contains a general survey of different approaches. The ones that are most closely
related to ours are XJ [9], Cw [1], and XDuce and its descendants [10]. XACT
is notably different in two ways: first, although variants of XML templates are
widely used in Web application development frameworks, this paradigm is not
supported by other type-safe XML transformation languages, which typically
allow only bottom-up XML tree construction; second, the annotation overhead
is minimal since schema types are only required at input and output, whereas
the others require schema type annotations at all XML variable declarations.
We believe that both aspects in many cases makes the XACT programming
style more flexible. Furthermore, our data-flow analysis also tracks string op-
erations [6], which enables it to reason about validity of attribute values and
character data—in contrast, the type checkers in the other systems generally
only focus on the structural parts of XML languages. (In fact, an additional
consequence of the extensions described here is that our static analyzer can also
model computed names of elements and attributes, however, we leave this idea
to future work.)

With the extensions proposed in this paper, XACT becomes closer to XJ [9],
which also uses XML Schema as type formalism and XPath for navigation. Still,
our use of optional type annotations avoids a problem that can make the XJ type
checker too rigid: with mandatory type annotations at all variable declarations
in XJ, it is impossible to type check a sequence of operations that temporarily
invalidate data. The types that are involved in XML transformations are often
exceedingly complicated and difficult to write down, and types for intermediate
results often do not correspond to named constructs in preexisting schemas.
The benefits of type annotations are that they can serve as documentation in
the programs and they can improve performance of type checking. By now
supporting optional annotations, XACT gets the best from the two worlds.

Moreover, XJ represents XML data as mutable trees, which incurs a need
for expensive runtime checks to preserve data validity. In XJ, subtyping is
nominal, whereas our approach gives semantic (or structural) subtyping. A
discussion of subtyping can be found in [8]. Note that although XML Schema
does contain mechanisms for declaring subtyping relationships nominally, the
choice of supporting XML Schema as type formalism in XACT does not force us
to use nominal subtyping. We use schemas only as notation for defining sets of
XML values—the internal structure of the notation being used is irrelevant.

The XDuce language family is based on the notion of regular expression
types. As mentioned earlier, a connection between regular expression types and
a variant of the summary graphs used in our program analysis is shown in [4].
Also, the formal expressiveness of regular expression types and RELAX NG
both correspond to that of regular tree languages. We return to these relations
in Sections 5 and 6. As XAcT, the XTATIC language [8], which is one of the
descendants of XDuce, incorporates XML into an object-oriented language in
an immutable style.

The Cw language adds XML support to C* by combining structural se-
quences, unions, and products with objects and simple values. The basic fea-
tures of XML Schema may be encoded in the type system, however little doc-
umentation of this is available. Rather than use full XPath for navigation in
XML trees as in XACT, Cw uses a reminiscent notion of generalized member
access that is closer to ordinary programming notation.

The type annotations we introduce are reminiscent of the notion of program-
mer—designer contracts proposed in [3]. In both cases, static declarations con-
strain how XML templates may be combined in the programs.

The paper [18] contains a useful classification of schema languages in terms
of categories of tree grammars: DTD corresponds to local tree grammars where
the content model of an element can only depend on the name of the element;
XML Schema corresponds to the larger category of single-type tree grammars
where elements that are siblings and have the same name must have identical
content models; and RELAX NG corresponds to the even more general category
of regqular tree grammars, which is equivalent to tree automata. With our new
results, XACT supports single-type tree grammars as type formalism.

Overview

In Sections 2 and 3 we begin by briefly recapitulating the design of XACT and
RELAX NG, and we characterize a subset of RELAX NG, called Restricted RE-
LAX NG, that we will use as an intermediate language in the program analysis.
Then, in Section 4 we introduce a variant of summary graphs. In Sections 5
and 6 we explain how schemas written in XML Schema can be converted into
summary graphs via Restricted RELAX NG, how to check validity of summary
graphs relative to Restricted RELAX NG schemas, and how these results can
be used in XACT to provide static guarantees of XML transformations. In Sec-
tion 7 we introduce optional typing using XML Schema constructs and discuss
the resulting language design. Finally, we present our conclusions in Section 8.

Note that we here report on work in progress, and not all of what we present
has yet been implemented and tested in practice so we cannot at this stage
present experimental results.

2 The Xacr Programming Language

We begin with a brief overview of the XACT language as it looks before adding
our new extensions. In XAcT, XML data is represented as templates, which
are well-formed XML fragments that may contain gaps in place of elements or
attribute values. A gap is either a name or a piece of code that evaluates to
a string or an XML template. As an example, the following XML template
contains four gaps: two named TITLE, one named MAIN, and one containing the
expression color:

<h:html>
<h:head>

<h:title><[TITLE]></h:title>
</h:head>
<h:body bgcolor={color}>
<h:h1><[TITLE]></h:h1>
<[MAIN]>
</h:body>
</h:html>

The special immutable class XML corresponds to the set of all possible XML
templates. The central operations on this class are the following;:

constant: a static method that creates a template from a constant string (the
syntax [[foo]] is sugar for XML.constant ("foo"));

plug: inserts a given string or template into all gaps of a given name in this
template;

select: returns the sub-templates of this template that are selected by a given
XPath expression;

get: a static method that creates a template from a non-constant string and
checks (at runtime) that it is valid relative to a given constant schema
type;

cast: performs a runtime check of validity of this template relative to a given
constant schema type;

analyze: instructs the static type checker to verify that this template will al-
ways be valid relative to a given schema type when the program runs
(remaining gaps are here treated as empty subtrees); and

toString: converts this template to its textual representation.

A schema type is the name of an element (or, with our extension from DTD to
XML Schema, a simple type or a complex type) that is declared in a schema.
The language of a schema type is defined as the set of XML documents (or
document fragments) that are valid relative to the schema type. Note that
in this version of XACT, before incorporating the extensions suggested in this
paper, schema types appear only at get, cast, and analyze operations. In
particular, declarations use the general type XML.

The primary job of the static type checker is to verify that only valid XML
data can occur at program locations marked by analyze operations, under
the assumption that get and cast operations always succeed. (It also checks
properties of plug and select operations, which is less relevant here.)

3 Defining a Subset of RELAX NG

A RELAX NG schema [7] is essentially a top-down tree automaton that accepts
a set of valid XML trees. It is described by a grammar consisting of recursively
defined patterns of various kinds, including the following: element matches one

element with a given name and with contents and attributes described by a sub-
pattern; attribute similarly matches an attribute; text matches any character
data or attribute value; group, optional, zeroOrMore, oneOrMore, and choice
correspond to concatenation, zero or one occurrence, Zero or more OCCurrences,
one or more occurrences, and union, respectively; empty matches the empty
sequence of nodes; and notAllowed corresponds to the empty language. In
addition, the pattern interleave matches all possible mergings of the sequences
that match its sub-patterns.

Note that attributes are described in the same expressions as the content
models. Still, attributes are considered unordered, as always in XML, and syn-
tactic restrictions prevent an attribute name from occurring more than once in
any element. Mixing attributes and contents in this way is useful for describing
attribute—element constraints.

To ensure regularity, there is an important restriction on recursive pattern
definitions: recursion is only allowed if passing through an element pattern.

Element and attribute names can be described with name classes, which can
consist of lists of possible names and wildcards that match all names, potentially
restricted to a certain namespace or excluding certain specific names.

To describe datatypes more precisely than with the text pattern, RELAX
NG relies on an external language, usually the datatype part of XML Schema.
Using the data pattern, such datatypes can be referred to, and datatype facets
can be constrained by a parameter mechanism.

Furthermore, RELAX NG contains various modularization mechanisms, which
we can ignore here. As all other type-safe XML transformation languages, we
also ignore ID and IDREF attributes from DTD and the equivalent compatibility
features in RELAX NG.

As mentioned in the introduction, we handle XML Schema via a transla-
tion to RELAX NG [12], thus using RELAX NG as a convenient intermediate
language that avoids the many complicated technical details of XML Schema.
However, we only use a subset of RELAX NG, which we call Restricted RELAX
NG, being characterized as follows:

e for every element pattern p, any two element patterns that correspond
to possible children of p and have non-disjoint name classes must have the
same content;

e attribute patterns can only occur directly inside element patterns or in
optional, zeroOrMore, or oneOrMore patterns inside element patterns,
however, zeroOrMore and oneOrMore are only allowed if the attribute
pattern has an infinite name class; and

e interleave patterns can only occur directly inside element patterns
and can only contain element and text patterns, potentially enclosed
by optional patterns, and the only allowed siblings of interleave pat-
terns are attribute patterns and optional, zeroOrMore, and oneOrMore
patterns that contain attribute patterns.

(We here consider ref patterns as abbreviations of the patterns being referred

to.) The first property limits the notation to single-type tree grammars, the
second prevents context sensivity of attribute patterns, and the third makes
it easier to check inclusion of interleave patterns.

Restricted RELAX NG has two important properties: first, it is sufficient
for the translation from XML Schema; second, it makes the summary graph
validation in Section 6 significantly more tractable.

By the translation to Restricted RELAX NG, a schema type corresponds to
a pattern definition:

e an element declaration corresponds to an element pattern;

e asimple type corresponds to a pattern, which we call a simple-type pattern,
that can only contain the constructs data and choice (and also 1ist and
value, which we otherwise ignore here for simplicity); and

e a complex type corresponds to a pattern, which we call a complez-type
pattern, that consists of two sub-patterns—one describing a content model
and one describing attributes.

We use this observation in Section 6.
The following schema written in XML Schema may be used to describe the
input to the example program shown in Section 1:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:b="http://businesscard.org"
targetNamespace="http://businesscard.org"
elementFormDefault="qualified">

<element name="cardlist">
<complexType>
<sequence>
<element ref="b:card"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

<element name="card" type="b:card_type"/>

<complexType name="card_type">
<sequence>
<element name="name" type="string"/>
<element name="email" type="string"
maxOccurs="unbounded" />
<element name="phone" type="string"
minOccurs="0"/>
</sequence>
</complexType>

</schema>

Assuming cardlist as root element name, this can be translated into the fol-
lowing Restricted RELAX NG schema (here using the compact RELAX NG
syntax):

default namespace = "http://businesscard.org"

start = element cardlist { card* }
card = element card { card_type }
card_type =
element name { xsd:string },
element email { xsd:string }+,
element phone { xsd:string }7

The translation from XML Schema to Restricted RELAX NG is exact and the
size of the output schema is proportional to the size of the input schema.

4 Summary Graphs in Validity Analysis

The static type checker in XACT works in two steps. First, a data-flow analysis
of the whole program is performed, using the standard data-flow analysis frame-
work [11] but with a highly specialized lattice structure where abstract values
are summary graphs. A summary graph is a finite representation of a potentially
infinite set of XML templates, much like a schema but tailor-made for use in
the program analysis [14]. Second, when the fixed point has been computed, we
check that the sets of templates represented by the resulting summary graphs
are valid relative to the respective schemas.

To allow a smooth integration of XML Schema as a replacement for DTD,
we slightly modify the definition of summary graphs as explained below and
change the summary graph validation algorithm accordingly and to work with
Restricted RELAX NG (the old algorithm supported DTD via an embedding
into DSD2 [16]).

A summary graph, as it is defined in [14], has two parts: one that is set up
for the given program and remains fixed during the iterative data-flow analysis,
and one that changes monotonically during the analysis.

The fixed part contains finite sets of nodes of various kinds: element nodes
(Ng), attribute nodes (N_4), chardata nodes (N¢), and template nodes (N7).
These node sets are determined by the use of schemas, template constants,
and XML operations. The former three sets represent the possible elements,
attributes, and chardata sequences that may arise when running the program.
The template nodes represent sequences of template gaps, which either occur
explicitly in template constants or implicitly due to XML operations or schemas.
Additionally, the fixed part specifies a number of maps: name assigns a name
to each element node and attribute node; attr : Ne — 2N4 associates attribute
nodes with element nodes; contents : N¢ — N connects element nodes with
descriptions of their contents; and gaps : Ny — G* associates a sequence of gap
names from a finite set G with each template node.

The changing part of a summary graph consist of:

10

a set of root nodes R C N¢g U Nr;

template edges T C Ny x G x (N7 U Ng U N¢);

string edges S : N¢ U N4 — REG where REG are all regular string
languages over the Unicode alphabet; and

e a gap presence map P : G — 2NAUNT x 9NAUNT o T T where I' =
9{OPEN,CLOSED}

The language of a summary graph is intuitively the set of XML templates that
can be obtained by unfolding it, starting from a root node and plugging ele-
ments, templates, and strings into gaps according to the edges. A template
edge (n1,g,n2) € T informally means that ny may be plugged into the g gaps
in ny, and a string edge S(n) = L means that every string in L may be plugged
into the gap in n. The gap presence map, which we will not explain in further
detail here, is needed during the data-flow analysis to determine where template
gaps and attribute gaps occur. (For the curious reader, this is all formalized in
[14].) We also define the language of an individual node n in a summary graph:
this is simply the language of the modified summary graph where R is set to

We now introduce two small modifications:

1. We let the name function return a regular set of names, rather than a
single name. This will be used to more easily model name classes in
Restricted RELAX NG. The definition of unfolding is generalized accord-
ingly: unfolding an element node n yields an element whose name can
be any string in name(n), and similarly for attribute nodes. In case an
unfolding leads to an element with two attributes of the same name, one
of them is chosen arbitrarily and overrides the other.

To accommodate attribute declarations that have infinite name classes and
are repeated using zeroOrMore or oneOrMore, we define the unfolding of
an attribute node n where name(n) is infinite such that it may produce
more than one attribute.

2. We distinguish between two kinds of template nodes: sequence nodes and

interleave nodes. The former have the meaning of the old template nodes;
the latter will be used to model interleave patterns. We define the un-
folding of an interleave node as all possible interleavings of the unfoldings
of its gaps.
Reflecting the limitation on the interleave construct in Restricted RE-
LAX NG, we require that template edges from interleave nodes can only
end in element nodes or chardata nodes (not in other template nodes).
Also, template edges cannot end in interleave nodes (thus, interleave nodes
can only occur as roots and as immediate content of element nodes).

As an example (borrowed from [14]), we can define a summary graph whose
language is the set of ul lists with zero or more li items that each contain a

11

string from some language L. Assume that the fixed structure is given by Ng =
{1,4}, Na =0, Ny = {2,3,5} (where all three are sequence nodes), N¢ = {6},
contents(1) = 2, contents(4) = 5, attr(1) = attr(4) = 0, name(1) = {ul },
name(4) = {li }, gaps(2) = items , gaps(3) = g -items , and gaps(5) = text .
The remaining components are as follows:

R={1}
T ={(2,items ,3),(3,items ,3),(3,9,4), (5, text ,6)}
S(6)=1L

(For simplicity, we ignore the gap presence map.) This can be illustrated as
follows:

itens

1 2 .

3@ 4 5 6
T (1 L Xy KNy Sy L N WY

iiten’s iitem;

The boxes represent element nodes, rounded boxes are template nodes, the circle
is a chardata node, and the dots represent potentially open template gaps.

For a given program, the family of summary graphs forms a finite-height
lattice, which is used in the data-flow analysis. To determine the regular string
languages used in the string edges, we use a separate program analysis that
provides conservative approximations of the possible values of all string expres-
sion in the given program [6]. The data-flow transfer functions for operations
remain as explained in [14] with only negligible changes as consequence of the
modifications of the summary graph definition, the only exceptions being the
ones we address in the following section.

With the generalization of the name function, we can in fact now easily
model computed names of elements and attributes—provided that we add op-
erations for this in the XML class, of course, and we leave this to future work.

5 A Translation from Restricted RELAX NG to
Summary Graphs

To define the transfer functions for the operations get and cast, we need an
algorithm for translating the given schema type into a summary graph that has
the same language. In [14], it is shown how this can be done for DTD schemas;
we now present a modified algorithm that supports Restricted RELAX NG and
then rely on the translation from XML Schema to Restricted RELAX NG to
map from schema types to patterns.

Intuitively, this translation is straightforward: we may simply view summary
graphs as a graphical representation of Restricted RELAX NG patterns, pro-
vided that we ignore the gap presence component of the summary graphs and
the regularity requirement in Restricted RELAX NG. Due to the connection
between RELAX NG and regular expression types, this translation can also

12

be seen as a variant of the translation between regular expression types and
summary graphs shown in [4].

Given a Restricted RELAX NG pattern, we construct a summary graph
fragment as follows:

e First, we observe that each name class, each data pattern, and the text
pattern all define regular string languages. (Namespaces are handled by
expanding qualified names according to the applicable namespace decla-
rations.)

e For an element pattern, we exploit the syntactic restrictions described
in Section 4. An element pattern always consists of three parts: a name
class, a content model, and a collection of attribute declarations. Thus, we
convert it to an element node e and a template node ¢ with contents(e) =
t. We define name(e) as the regular string language corresponding to
the name class. The attribute declarations are converted recursively into
attribute nodes (as explained below), and attr(e) is set accordingly. The
content model is converted recursively into a summary graph fragment
rooted by t.

e An attribute pattern is converted into an attribute node a. We define
name(a) in the same way as for element patterns, and S(a) is set to
the regular string language corresponding to the sub-pattern describing
the attribute values. If the attribute is declared as optional using the
optional pattern, the gap presence map is set to record this (as in [14]).

e For patterns describing content models of elements, the patterns text,
group, optional, zeroOrMore, oneOrMore, choice, and empty are han-
dled exactly as the equivalent constructs in DTD content model definitions
in the way explained in [14]. Intuitively, each pattern corresponds to a
tiny summary graph fragment that unfolds to the same language. A data
pattern becomes a chardata node s where S(s) is the corresponding reg-
ular string language. The interleave pattern is translated in the same
way as group, except that an interleave node is used instead of a sequence
node.

e Finally, the notAllowed pattern can be modeled as a template node ¢
where gaps(t) = g for some gap name g and ¢ has no outgoing template
edges.

The set of root nodes R contains the single node that corresponds to the whole
pattern being translated. Recursion in pattern definitions simply results in
loops in the summary graph. The constructs from RELAX NG that we have
omitted in the description in Section 3 can be handled in a similar way as those
mentioned here. Note that the translation is exact: the language of the pattern
is the same as the language of the resulting summary graph.

As an example, translating the pattern

element ul { element 1li { xsd:integer }* }

13

results in the summary graph shown in Section 4, assuming that L is the lan-
guage of strings that match xsd:integer.

6 Validating Summary Graphs

When the data-flow analysis has computed a summary graph for each XML
expression in the XACT program, we check for each analyze operation that
the language of its summary graph is included in the language of the specified
schema type. If the check fails, appropriate validity warnings are emitted. The
entire analysis is sound: if no validity warnings show up, the programmer can
be sure that, at runtime, the XML values that appear at the program points
marked by analyze operations will be valid relative to the given schema types.

The old summary graph analyzer used in XACT is described in [5]. That al-
gorithm, which supports DTD through an embedding into DSD2, as mentioned
earlier, has proven successful in practice. We here describe a variant that works
with Restricted RELAX NG instead of DSD2.

Given a summary graph node n € NgUN7 and a Restricted RELAX NG pat-
tern p where p is an element pattern, a simple-type pattern, or a complex-type
pattern (as defined in Section 3), we wish to determine whether the language of
n is included in the language of p.

We begin by considering the case where n is not an interleave node and p
is not an interleave pattern. First, a context-free grammar C' is constructed
from the part of the summary graph that is rooted by n and where element and
chardata nodes are considered as terminals (that is, nested element and char-
data nodes are not considered here). Each of the chardata node terminals ¢ is
then replaced by a regular grammar equivalent to S(c). If C is not linear, we ap-
ply a regular over-approximation [15] (which we also use in [6]). Thus, we have
a regular string language L,, over element nodes and Unicode characters that
describes the possible unfoldings of n. Similarly, p defines a regular string lan-
guage L, over element patterns and Unicode characters. To obtain a common
vocabulary, we now replace each element node n’ in L,, by (name(n’)) (where
(and) are some otherwise unused characters), and similarly for the element
patterns in L,. Then, we check that L,, is included in L, with standard tech-
niques for regular string languages. If this check fails, a suitable validity error
message is generated. Otherwise, for each pair (n’,p’) of an element node in
L, and an element pattern in L, where name(n’) and name(p’) are nondis-
joint, we perform two checks: first, we check recursively that the language of
contents(n’) is included in the language of the content model of p’; second, we
check that the attributes of n’ match those on p’. The latter check is made as
follows: For each attribute node a € attr(n'), each name x € name(a), and each
value y € S(a), a corresponding attribute pattern must occur in p’—that is,
one where z is in the language of its name class and y is in the language of
its sub-pattern; also, if a is marked as optional by the gap presence map, the
attribute pattern must be enclosed by an optional pattern, and conversely,
attribute patterns occurring in p’ that are not enclosed by optional patterns

14

must correspond to one of the non-optional attribute nodes. Again, a suitable
validity error message is generated if the check fails.

If n is an interleave node and p is an interleave pattern, we exploit the
restrictions on these constructs and check for each gap g¢; in gaps(n) = g1 ... g
that a sub-pattern p’ of p can be chosen such that there is a template edge
(n,g;,n’) where the language of n’ is included in the language of p’ and each
of the sub-patterns of p is chosen exactly once. Here, we can ignore chardata
nodes and text patterns, except that we require that p contains a text pattern
if a chardata node occurs.

The remaining cases where n is an interleave node but p is not an interleave
pattern or n is not an interleave node but p is an interleave pattern can be
handled by combinations of the algorithms explained above.

To avoid redundant computations (and to ensure termination, in case of
loops in the summary graph or recursive definitions in the schema) we apply
memoization such that a given pair (n,p) is only processed once. If a loop is
detected, we can coinductively assume that the inclusion holds.

With this algorithm, we check for each root node n € R that its language is
included in the language of the pattern corresponding to the given schema type.

As an example of the case with an element node and an element pattern,
let n be element node 1 in the summary graph from Section 4 and let p be the
pattern shown in Section 5:

p = element ul { element 1i { xsd:integer }* }

The context-free grammar for L,, has the following productions (where only Ny
is a terminal):

it
]\[2 — Né ems
Né[ems — N3 | €
t
N3 — N§ Njems
Ng — N4
Nétems N N3 | €

This grammar is linear, so the regular approximation is not applied. The pattern
p contains a single sub-pattern

p' = element 1i { xsd:integer }

and by recursively comparing node 4 and p’ we find out that the language of
node 4 is included in the language of p’. We now see that L, C L,, so we
conclude that the language of element node 1 is in fact included in the language
of the pattern.

With the exception of the regular approximation of the context-free gram-
mars mentioned above, the inclusion check is exact. Also, since the schemas
already define only regular languages, the approximation can only cause a loss
of precision if the XML transformation defined by the XACT program intro-
duces non-regularity in the summary graphs, and our experience from [14] and

15

[5] indicate that this rarely results in false errors. In particular, the trivial iden-
tity function, which inputs XML data using get with some schema type and
immediately after applies analyze with the same schema type, is guaranteed to
type check without warnings for any schema type. Moreover, we could replace
the approximation by an algorithm that checks inclusion of a context-free lan-
guage in a regular language, if full precision is considered more important than
performance.

An obvious alternative approach to the algorithm explained above would
be to exploit the connection with regular expression types and apply the re-
sults from the XDuce project for checking subtyping between regular expression
types [10]. Our main argument for choosing the algorithm explained above is
that it has been shown earlier that this approach is efficient for XACT programs.
Still, the relation between these different inclusion checking algorithms is worth
a further investigation.

As an interesting side-effect of our approach, we get an inclusion checker for
Restricted RELAX NG and hence also for XML Schema: given two schemas,
S1 and So, convert S7 to a summary graph SG using the algorithm described
in Section 5 and then apply the algorithm presented above on SG and Ss.
(Alternatively, the algorithm presented above could be modified to work directly
with Restricted RELAX NG schemas instead of summary graphs.)

7 Optional Type Annotations

We will now extend XACT with optional type annotations such that program-
mers may declare the intended schema types for XML template variables, method
parameters, and return values. Besides being useful as in-lined documentation
of programmer intentions, type annotations can lead to better modularity prop-
erties of the validity analysis.

Every XML type may now optionally be annotated in the following way where
S and T1,...,T, are schema types and g1, ..., g, are gap names:

XML<S [Ty G1y---51In gn]>

The semantics of an annotated type is the language described by S under the
assumption that every occurrence of gap g; has been plugged with a value in
the language of schema type Tj;.

In XML template constants, every template gap must now have the form
<[T gl>, where T is a schema type and ¢ is the gap name. This allows us to,
at runtime, tag each gap ¢g in an XML template with a schema type.

In gap annotations in XML declarations and template costants, we permit
Kleene star of a schema type, T*, meaning that the gap can be filled with a
sequence of values from the language of T'. Kleene star annotations are occasion-
ally needed because we cannot always find existing schema types for sequences of
values. As an example, the XML Schema description of XHTML has no named
content type describing a sequence of 1i elements. Theoretically, we could per-
mit type annotations to be arbitrary regular expressions over schema types or

16

even small inlined XML Schema fragments, but we have not yet observed the
need for this.

Every assignment of an XML template v to a variable x whose type anno-
tation is t = S[Ty g1,...,Tn gn] must, at runtime, satisfy three constraints:

e All gaps occurring in v must be declared in .

e For every gap g occurring in v, the language of its type tag must be
included in the language of the schema type for g as declared in t.

e The value v must, under the assumption that all gaps were plugged ac-
cording to their type tags, belong to the language of S.

We put similar constraints on return statements and method invocations, except
that for return statements the return value is compared with the declared return
type, and for method invocations every actual parameter value is compared with
the corresponding declared parameter type. Moreover, every plug operation
must respect gap tags, that is, the value being plugged in to a gap g must
belong to the language of the tag of g.

The following describes a modification of our existing static program analysis
to support checking of the extra constraints introduced by annotations.

First, the abstract representation of sets of XML templates is extended to
also keep track of the declared schema types of gap names. For a given XACT
program, we let 7 denote the finite set of all types mentioned by gap annotations
in template constants, and we introduce a new summary graph component D :
G — 7T mapping gap names to their declared type. The language of a summary
graph is not affected by this change.

This leads to extending the data-flow transfer function for the constant op-
eration to generate a summary graph with mappings D(g) = T for every gap <T'
g> occurring in the given XML template constant. (A simple syntactical check
ensures that in each template constant all gaps of the same name are declared
with identical schema types.) The transfer function for the plug operation sim-
ply unions the D mappings of its arguments. (Conflicts are avoided by a check
mentioned below.) All other transfer functions act as the identity on the new
D component.

To ensure type consistency of variables declared with annotated XML types,
we must validate all assignments to such variables. We check, using the valida-
tion algorithm described in Section 6, that the language of the inferred summary
graph for the right-hand side of an assignment is a subset of the language per-
mitted by the schema type annotation. However, this inclusion check is modified
to treat gaps as if they were plugged with values corresponding to their declared
types. More precisely, for every gap g in the inferred summary graph we apply
the algorithm described in Section 5 to construct a summary graph fragment
SG, corresponding to the schema type D(g) and then add template edges from
all occurrences of g to the roots of SG|.

To ensure type consistency of template gaps, we perform an additional check
of every x.plug(g,y) operation using the summary graphs SG, and SG, in-
ferred by the data-flow analysis for x and y, respectively. First, we check that

17

the language of SG,, is a subset of the language of D, (g) declared for g in SG,
using the inclusion algorithm presented in Section 6. Then, we check that all
gap names h occurring in both SG, and SG, are declared with identical types,
that is, Dy (h) = Dy(h).

As a product of the guaranteed type consistency of variables declared with
annotated XML types, reading from a variable can now use the declared type
instead of the inferred one. More precisely, for every read from an XML typed
variable we normally use an inferred summary graph to describe the set of
possible template values at that program point, but now, since all assignments
to = have already been checked for validity with respect to the declared schema
type for z, we can instead apply the algorithm from Section 5 to obtain the
summary graph corresponding to the declared schema type.

Note that the support for type annotations leads to a programming style
where the explicit analyze operation is rarely needed—instead, one may request
a static type check by assigning to an annotated variable. This is the style
required in other XML transformation languages.

It is well-known that type annotations in programming languages enable
more modular type checking. A component, whose interface is fully annotated,
can be type checked independently of its context, and type checking the con-
text can be performed without considering the body of the component. In our
setting, this, for example, corresponds to methods where all XML typed param-
eters and return types are annotated, and further, every non-local assignment
and read within the method body involves fields declared with annotated types
(the latter to constrain side-effects through field variables). As discussed in Sec-
tion 1, annotations also have drawbacks, however, in XACT, type annotations
are optional. This allows the programmer to mix annotated and unannotated
XML types to get the best from both worlds.

8 Conclusion

We have presented an approach for generalizing the XACT system to support
XML Schema as type formalism and permit optional type annotations. Com-
pared with other programming languages for type-safe XML transformations,
type annotations are permitted but not mandatory, which allows the program-
mer to balance between the pros and cons of type annotations.

The extension to XML Schema takes advantage of connections between XML
Schema, RELAX NG, and summary graphs. In particular, it involves a tractable
subset of RELAX NG that we use as an intermediate language in the static
analysis.

We are working on making the ideas presented in this paper available in the
next version of the XACT implementation.

18

References

1]

[10]

[11]

[12]

Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data
access in Cw. In Proc. 19th Furopean Conference on Object-Oriented Pro-
gramming, ECOOP 05, volume 3586 of LNCS. Springer-Verlag, July 2005.

Paul V. Biron and Ashok Malhotra. XML Schema part 2:
Datatypes second edition, October 2004. W3C Recommendation.
http://www.w3.org/TR/xmlschema-2/.

Henning Boéttger, Anders Mgller, and Michael I. Schwartzbach. Contracts
for cooperation between Web service programmers and HTML designers.
Journal of Web Engineering, 5(1), 2006.

Aske Simon Christensen, Anders Mgller, and Michael I. Schwartzbach.
Static analysis for dynamic XML. Technical Report RS-02-24, BRICS,
May 2002. Presented at Programming Language Technologies for XML,
PLAN-X ’02.

Aske Simon Christensen, Anders Mgller, and Michael I. Schwartzbach. Ex-
tending Java for high-level Web service construction. ACM Transactions
on Programming Languages and Systems, 25(6):814-875, 2003.

Aske Simon Christensen, Anders Mgller, and Michael 1. Schwartzbach. Pre-
cise analysis of string expressions. In Proc. 10th International Static Anal-
ysis Symposium, SAS ’03, volume 2694 of LNCS, pages 1-18. Springer-
Verlag, June 2003.

James Clark and Makoto Murata. RELAX NG specification, December
2001. OASIS. http://www.oasis-open.org/committees/relax-ng/.

Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan
Schmitt. The Xtatic experience. Technical Report MS-CIS-04-24, Univer-
sity of Pennsylvania, October 2004. Presented at Programming Language
Technologies for XML, PLAN-X ’05.

Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael G. Burke,
Rajesh Bordawekar, Igor Pechtchanski, and Vivek Sarkar. XJ: Facilitating
XML processing in Java. In Proc. 14th International Conference on World
Wide Web, WWW ’05, pages 278-287. ACM, May 2005.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. ACM Transactions on Internet Technology, 3(2):117—
148, 2003.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frame-
works. Acta Informatica, 7:305-317, 1977. Springer-Verlag.

Kohsuke Kawaguchi. Sun RELAX NG Converter, April 2003.

http://www.sun.com/software/xml/developers/relaxngconverter/.

19

[13]

[18]

[19]

Christian Kirkegaard, Aske Simon Christensen, and Anders Mgller. A
runtime system for XML transformations in Java. In Proc. Second In-
ternational XML Database Symposium, XSym ’04, volume 3186 of LNCS.
Springer-Verlag, August 2004.

Christian Kirkegaard, Anders Mgller, and Michael I. Schwartzbach. Static
analysis of XML transformations in Java. IEEE Transactions on Software
Engineering, 30(3):181-192, March 2004.

Mehryar Mohri and Mark-Jan Nederhof. Robustness in Language and
Speech Technology, chapter 9: Regular Approximation of Context-Free
Grammars through Transformation. Kluwer Academic Publishers, 2001.

Anders Mgller. Document Structure Description 2.0, December 2002.
BRICS, Department of Computer Science, University of Aarhus, Notes
Series NS-02-7. Available from http://www.brics.dk/DSD/.

Anders Mgller and Michael I. Schwartzbach. The design space of type
checkers for XML transformation languages. In Proc. Tenth International
Conference on Database Theory, ICDT 05, volume 3363 of LNCS, pages
17-36. Springer-Verlag, January 2005.

Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML
schema languages using formal language theory. In Proc. Extreme Markup
Languages, August 2001.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema part 1: Structures second edition, October 2004. W3C
Recommendation. http://www.w3.org/TR/xmlschema-1/.

20

Recent BRICS Report Series Publications

RS-05-31 Christian Kirkegaard and Anders Mgller. Type Checking with
XML Schema inXACT. September 2005. 20 pp.

RS-05-30 Karl Krukow. An Operational Semantics for Trust Policies
September 2005.

RS-05-29 Olivier Danvy and Henning Korsholm Rohde. On Obtaining
the Boyer-Moore String-Matching Algorithm by Partial Evalua-
tion. September 2005. ii+9 pp. To appear innformation Pro-
cessing LettersThis version supersedes BRICS RS-05-14.

RS-05-28 Ji1 Srba. On Counting the Number of Consistent Genotype As-
signments for PedigreesSeptember 2005. 15 pp. To appear in
FSTTCS '05.

RS-05-27 Pascal Zimmer. A Calculus for Context-Awareness August
2005. 21 pp.

RS-05-26 Henning Korsholm Rohde.Measuring the Propagation of In-
formation in Partial Evaluation. August 2005. 39 pp.

RS-05-25 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited ControlAugust 2005. ii+11 pp.
To appear in Journal of Functional Programming This version
supersedes BRICS RS-05-10.

RS-05-24 Matgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy August 2005. iv+43 pp. To appear in the jour-
nal Logical Methods in Computer Sciencd his version super-
sedes BRICS RS-05-11.

RS-05-23 Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A
Framework for Concrete Reputation-Systemauly 2005. 48 pp.
This is an extended version of a paper to be presented at ACM
CCS’05.

RS-05-22 Malgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines July 2005. iv+39 pp.

RS-05-21 Philipp Gerhardy and Ulrich Kohlenbach. General Logical
Metatheorems for Functional AnalysisJuly 2005. 65 pp.

RS-05-20 Ilvan B. Dam@rd, Serge Fehr, Louis Salvail, and Christian
Schaffner. Cryptography in the Bounded Quantum Storage
Model. July 2005. 23 pp.

