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Fast Partial Evaluation

of Pattern Matching in Strings ∗

Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde
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Department of Computer Science
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December 10, 2004

Abstract

We show how to obtain all of Knuth, Morris, and Pratt’s linear-time string matcher
by specializing a quadratic-time string matcher with respect to a pattern string. Al-
though it has been known for 15 years how to obtain this linear matcher by partial
evaluation of a quadratic one, how to obtain it in linear time has remained an open
problem.

Obtaining a linear matcher by partial evaluation of a quadratic one is achieved by
performing its backtracking at specialization time and memoizing its results. We show
(1) how to rewrite the source matcher such that its static intermediate computations
can be shared at specialization time and (2) how to extend the memoization capabilities
of a partial evaluator to static functions. Such an extended partial evaluator, if its
memoization is implemented efficiently, specializes the rewritten source matcher in linear
time.

Finally, we show that the method also applies to a variant of Boyer and Moore’s
string matcher.
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1 Introduction

For 15 years now, it has been a traditional exercise in partial evaluation to obtain Knuth,
Morris, and Pratt’s string matcher by specializing a quadratic-time string matcher with
respect to a pattern string [16, 28]. Given a quadratic string matcher that searches for the
first occurrence of a pattern in a text, a partial evaluator specializes this string matcher
with respect to a pattern and yields a residual program that traverses the text in linear
time. The problem was first stated by Yoshihiko Futamura in 1987 [20] and since then, it
has served as a catalyst for the development of partial evaluators, giving rise to a variety of
solutions [3, 4, 15, 18, 19, 20, 22, 26, 32, 35, 38, 40, 41].

For 15 years, however, it has also been pointed out that the solutions only solve half of
the problem. Indeed, the Knuth-Morris-Pratt matcher first produces a ‘next’ table in time
linear in the length of the pattern and then traverses the text in time linear in the length of
the text. In contrast, a partial evaluator does not specialize a string matcher in linear time.
This shortcoming was already stated in Consel and Danvy’s first report of a solution [15]
and it has been mentioned ever since, up to and including Futamura’s keynote speech at
ASIA-PEPM 2002 [18]. The second half of the problem could therefore serve as a catalyst
for the development of fast partial evaluators.

In this article, we present a first solution to the second half of the problem.

Prerequisites We expect a passing familiarity with partial evaluation and string matching
as can be gathered in Jones, Gomard, and Sestoft’s textbook [28, 34] or in Consel and Danvy’s
tutorial notes [16]. In particular, familiarity with the basic algorithm for polyvariant program-
point specialization will be useful [10, 28, Section 5.4]. In addition, we distinguish between
the Knuth-Morris-Pratt matcher and the Morris-Pratt matcher in that the former uses one
character of negative information whereas the latter does not [11]. Our string matchers
are expressed in a first-order subset of the Scheme programming language [30]. They are
specialized using polyvariant program-point specialization, where certain source program
points (specialization points) are indexed with static values and kept in a ‘déjà-vu’ list (i.e.,
memoized), and residual program points are mutually recursive functions.

We follow the traditional terminology for time complexity: A matcher that runs in
O(|pattern| · |text|) is called “quadratic”, and a matcher that runs in O(|text|+ f(|pattern|))
is called “linear”, where the f(|pattern|) summand here arises from static computations per-
formed by a partial evaluator. If a quadratic matcher improves to a linear one by partial
evaluation with f = λx.x2, say, we obtain a linear matcher in “quadratic” time.

In the rest of this article, we use the terms “partial evaluator” and “(program) specializer”
interchangeably.

2 Obtaining a specialized matcher that works in linear

time

The essence of obtaining a linear-time string matcher by partial evaluation of a quadratic-time
string matcher is to ensure that backtracking is carried out at specialization time. To obtain
this effect, one can either rewrite the matcher so that backtracking only depends on static
data (such a rewriting is known as a binding-time improvement or a staging transformation
[34]) and use a simple partial evaluator [5, 15], or keep the matcher as is and use an advanced
partial evaluator [18, 37, 38, 40]. In this article, the starting point is a staged quadratic-
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time matcher and a simple memoizing partial evaluator, such as Similix, where specialization
points are dynamic conditional expressions [8].

Figure 1 displays a staged matcher similar to the ones developed in the literature [1, 5,
15, 28] (see Appendix A for a more complete picture). Matching is done naively from left to
right. After a mismatch the pattern is shifted one position to the right and matching resumes
at the beginning of the pattern. Since we know that a prefix of the pattern matches a part
of the text, we use this knowledge to continue matching using the pattern only. This part of
matching performs backtracking and is done by the rematch function. The matcher is staged
because backtracking only depends on static data. The key to linear-time string matching
is that backtracking can be precomputed either into a lookup table as in the Morris-Pratt
matcher or into a residual program as in partial evaluation.

If a specializer meets certain requirements, specializing the matcher of Figure 1 with
respect to a pattern string yields a linear-time matcher that behaves like the Morris-Pratt
matcher. Specifically, the specializer must compute static operations at specialization time
and generate a residual program where dynamic operations do not disappear, are not dupli-
cated, and are executed in the same order as in the source program.

3 Linear-time specialization

As already shown in the literature [1, 23], each specialized version of a staged matcher such
as that of Figure 1 has size linear in the length of the pattern. For two reasons, however,
specialization does not proceed in time linear in the length of the pattern:

• The first reason is that for every position in the pattern, the specializer blindly performs
the backtracking steps of the staged quadratic matcher. These backtracking steps are
carried out by static functions, which are not memoization points and whose results are
not memoized. But even if the results were memoized, the backtracking steps would
still be considered unrelated because of the index that caused the mismatch.

• The second reason is connected to an internal data structure of the specializer. Man-
aging the déjà-vu list, which is really a dictionary data structure, as, e.g., a list is not
fast enough.

In order to achieve linear-time specialization, the matcher must be rewritten such that
the backtracking steps become related, the memoization capabilities of the specializer must
be extended to handle static functions, and the implementation of the memoization must be
efficient.

Terminology For the purpose of analysis, static backtracking is a function that takes a
string—a problem—and returns a (possibly empty) prefix of that string—the solution—such
that the solution is the longest proper prefix of the problem that is also a suffix of the problem.
A subproblem is a prefix of a problem. A computation is the sequence of computational steps
involved in applying static backtracking to a given problem. Given a pattern, backtracking
at position i is the computation where the problem is the prefix of length i of the pattern.
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(define (main pattern text)

(match pattern text 0 0))

(define (match pattern text j k)

(if (= (string-length pattern) j)

(- k j)

(if (= (string-length text) k)

-1

(compare pattern text j k))))

(define (compare pattern text j k)

(if (equal? (string-ref pattern j) (string-ref text k))

(match pattern text (+ j 1) (+ k 1))

(let ([s (rematch pattern j)])

(if (= s -1)

(match pattern text 0 (+ k 1))

(compare pattern text s k)))))

(define (rematch pattern i)

(if (= i 0)

-1

(letrec ([try (lambda (jp kp)

(if (= kp i)

jp

(if (equal? (string-ref pattern jp)

(string-ref pattern kp))

(try (+ jp 1) (+ kp 1))

(try 0 (+ (- kp jp) 1)))))])

(try 0 1))))

Figure 1: A staged quadratic-time left-to-right string matcher

• main is the matcher’s entry point which directly calls match.

• match checks whether matching should terminate, either because an occurrence of the
pattern has been found in the text or because the end of the text has been reached.
Otherwise, compare is called to perform the next character comparison. For simplicity,
we assume that string-length works in constant time; if not, we would compute the
lengths once and pass them as parameters.

• compare checks whether the jth character of the pattern matches the kth character of
the text. If so, match is called to match the rest of the pattern against the rest of the
text. If not, rematch is called to backtrack based on the part of the pattern that did
match the text.

• rematch backtracks based on a part of the pattern. It returns an index corresponding
to the length of the longest proper prefix that is also a suffix of the given part of the
pattern. If such a prefix does not exist, it returns -1. The returned index corresponds
to the index returned by the Morris-Pratt failure function [1, 2]. The local recursive
function try finds the length of the longest proper prefix of the pattern that is also a
suffix by successively trying each proper prefix.
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Figure 2: Sharing of computations with compositional backtracking

The top tape represents a text (part of which is abacababc); the other tapes represent
the pattern abacababa. Each box represents a computation. The top line of each box
is the problem, and the bottom line is the corresponding solution. For computation C,
each of the comparisons performed during backtracking is shown and numbered.

3.1 Compositional backtracking

We relate backtracking at different positions by expressing the backtracking compositionally,
which we define as expressing a solution to a problem in terms of solutions to its subproblems.1

Backtracking is performed by the rematch function and we rewrite it so that it becomes
recursive and unaware of its context (thus avoiding, say, continuations or the index that
originally caused a mismatch).

Figure 2 illustrates how to express backtracking compositionally and how it enables shar-
ing of intermediate computations at specialization time. For the pattern abacababa, the
backtracking at positions 3, 7, and 8 are the computations marked with A, B, and C, re-

1Our use of the word is reminiscent of its use in denotational semantics, except that our definition of a
problem is not an inductive data type. In particular, we do not have unique decomposition.
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(define (main pattern text) ...) ;;; as in Fig.1

(define (match pattern text j k) ...) ;;; as in Fig.1

(define (compare pattern text j k) ...) ;;; as in Fig.1

(define (rematch pattern i)

(if (= i 0)

-1

(letrec ([try-subproblem

(lambda (j)

(if (= j -1)

0

(if (equal? (string-ref pattern j)

(string-ref pattern (- i 1)))

(+ j 1)

(try-subproblem (rematch pattern j)))))])

(try-subproblem (rematch pattern (- i 1))))))

Figure 3: Compositional backtracking suitable for fast partial evaluation

Compared to Figure 1, rematch has been rewritten to allow sharing of computations.
It calls itself recursively to find the solution to the immediate subproblem. The local
recursive function try-subproblem then tries to extend the solution to the immediate
subproblem to a solution to the original problem. If the solution cannot be extended,
rematch is called to find the next candidate solution.

spectively. In general, backtracking at position i is always the first part of backtracking at
position i+1, and ideally the solution to the first computation can directly be extended to a
solution to the second one.

Let us consider what to do if the solution cannot be extended. The solution given by
computation B, aba, is an example of this, since comparison 8 fails and therefore abac is
not the solution to computation C. However, the solution aba is by definition the longest
proper prefix of abacaba that is also a suffix. Since the solution aba is a prefix, it is also
a subproblem, namely the problem of computation A, and since it is a suffix, part of the
continued backtracking (comparisons 9 and 10) is identical to computation A. Computation
A can therefore be shared. In the same manner as before, we try to extend the solution
given by computation A, a, to the solution to computation C. In this case the solution can
be extended to ab.

In short, the key observation is that the solution given by computation B is equal to the
problem in computation A, and therefore computation A can be shared within computation
C. The solution to static backtracking on a given problem can therefore be expressed in terms
of solutions to static backtracking on subproblems.

By expressing backtracking compositionally, we obtain the staged matcher displayed in
Figure 3, which is suitable for fast partial evaluation. The rematch function has been rewrit-
ten to use a local recursive function, try-subproblem, that tries to extend the solutions to
subproblems to a full solution. The backtracking part of the matcher now allows sharing of
computations.
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3.2 Strengthening the memoization capabilities of the specializer

Despite the further rewriting, the specializer is still not able to exploit the compositional
backtracking. The reason is that it only memoizes at specialization points. Since special-
ization points are dynamic conditional expressions and the recursive backtracking is purely
static, the specializer does not memoize the results.

What is needed is static memoization, where purely static program points are memoized
and used within the specialization process itself. The results of purely static functions should
be cached and used statically to avoid redoing past work. In the partial evaluator, static
memoization is then essentially the same as the usual—dynamic—memoization. As usual
with tabulation techniques, the requirements imposed on both types of memoization are
that initialization, insertion and retrieval can be done in constant time (amortized). For
the string matchers presented in this article these requirements can be met by a dictionary
that uses a (growing) hash-table and a collision-free hash function based on the pattern and
the index into the pattern. To avoid rehashing the pattern at all memoization points, we
must remember hash values for static data. In general, more advanced hashing and indexing
mechanisms would be needed (e.g., based on tries [12, 36]) and the time complexities of
initialization, insertion and retrieval would be weakened from constant time (amortized) to
expected constant time (amortized).

3.3 Specializing the staged matcher in linear time

Given these efficient memoization capabilities, the rewritten matcher can be specialized in
linear time. Each of the linear number of residual versions of compare and match can clearly
be generated in constant time. We therefore only have to consider specializing the rematch

function (note that specializing a completely static function with respect to all its arguments
simply amounts to applying the function to those arguments).

Since rematch always calls itself recursively on the immediate subproblem and all results
are memoized, we only need to ensure that backtracking with respect to the largest prob-
lem, i.e., backtracking at position i, where i is the length of the pattern, is done in linear
time. Recursive calls and returns take linear time. For a given subproblem at j, however,
try-subproblem may be unfolded up to j times. Unfolding only occurs more than once if the
solution to the subproblem cannot be extended to a full solution, that is, if the j-1st charac-
ter causes a mismatch. Therefore, the additional time spent in all calls to try-subproblem is
proportional to the overall number of mismatches during backtracking. Since backtracking
is just (staged) brute-force string matching, the number of mismatches is clearly no greater
than the length of the pattern.

Generating the residual versions of the rematch function can therefore also be done in
linear time and the entire specialization process takes linear time.
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(define (main pattern text) ...) ;;; as in Fig.1

(define (match pattern text j k) ...) ;;; as in Fig.1

(define (rematch pattern i) ...) ;;; as in Fig.3

(define (compare pattern text j k)

(if (equal? (string-ref text k)

(string-ref pattern j))

(match pattern text (+ j 1) (+ k 1))

(let ([s (rematch-neg pattern j)])

(if (= s -1)

(match pattern text 0 (+ k 1))

(compare pattern text s k)))))

(define (rematch-neg pattern i)

(if (= i 0)

-1

(let ([j (rematch pattern i)])

(if (equal? (string-ref pattern j)

(string-ref pattern i))

(rematch-neg pattern j)

j))))

Figure 4: Backtracking also using one character of negative information

Compared to Figure 3, a wrapper function rematch-neg for rematch has been added.
compare calls rematch-neg instead of rematch. rematch-neg calls rematch to compute
the solution to Morris-Pratt backtracking. It then checks whether this solution is
also a solution to Knuth-Morris-Pratt backtracking by performing an extra character
comparison. If the solution to Morris-Pratt backtracking is not a solution to Knuth-
Morris-Pratt backtracking (the character comparison succeeds) rematch-neg calls itself
recursively to compute the solution.

4 From Morris-Pratt to Knuth-Morris-Pratt

The Morris-Pratt matcher and the Knuth-Morris-Pratt matcher differ in that the latter
additionally uses one character of negative information [11]. Therefore, the Knuth-Morris-
Pratt matcher statically avoids repeated identical mismatches by ensuring that the character
at the resume position is not the same as the character at the mismatch position.

Extending the result to the Knuth-Morris-Pratt matcher is not difficult. The only caveat
is that we cannot readily use backtracking at position i in backtracking at position i+1,
because with negative information the solution at i is never a part of the solution at i+1.
Instead, we observe that the solution to the simpler form of backtracking where the negative
information is omitted—Morris-Pratt backtracking—is indeed always a part of the solution.

The matcher in Figure 4 uses this observation. Based on Morris-Pratt backtracking
as embodied in the rematch function of Figure 3, the rematch-neg function computes the
solution to Knuth-Morris-Pratt backtracking. If both rematch and rematch-neg are statically
memoized, evaluating them for all positions at specialization time can be done in linear time.
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5 From Morris-Pratt to a variant of Boyer-Moore

The ideas presented in the previous sections can also be applied to string matchers that
traverse the pattern from right to left, in contrast to the Morris-Pratt and the Knuth-Morris-
Pratt, which traverse the pattern from left to right. Figure 5 displays a staged right-to-left
matcher2 (see Appendix B for a more complete picture). Partial evaluation of this matcher
gives rise to a variant of the Boyer-Moore algorithm, namely the original Boyer-Moore with
the bad-character-shift heuristic (i.e., the δ1 table) suppressed [9, page 771]. This variant is
still quadratic in the worst case. Analogously with the staged left-to-right matcher (Figure 1),
partial evaluation of this matcher is not particularly fast—it is in fact cubic in the worst case
even with static memoization. In the same spirit, we must rewrite the matcher to make
sharing of computations feasible.

Again, we wish to phrase backtracking compositionally. Here the key observation is
that backtracking for the staged right-to-left matcher is simply reversed brute-force string
matching. That is, rematch at i finds the (second-to-last) right-most occurrence of the (m−
i − 1)-sized suffix of the pattern in the pattern itself. Figure 6 illustrates this observation
in analogy with Figure 2. For the pattern ababacaba, the backtracking at positions 4 and
5 are the computations marked with B and C, respectively. The analogy is only partial,
because now compositional backtracking is a two-level procedure: since backtracking is now
reversed string matching, the auxiliary computation A is an “internal” backtracking used by
backtracking. Despite the perhaps involved appearance, the underlying intuition is simple:
backtracking is phrased as a mirror image of Morris-Pratt string matching.

We thus obtain the staged matcher displayed in Figure 7, which is suitable for fast partial
evaluation. The rewriting consists essentially of replacing the reversed brute-force matcher
by a reversed Morris-Pratt matcher with compositional backtracking, where in addition the
calls to rematch are shared. By an argument similar to the one in Section 3.3, this matcher
can be specialized in linear time given a partial evaluator with strengthened memoization
capabilities.

2Note that here staging reorders the comparisons in order to process static information before performing
dynamic comparisons. This means that the sequences of comparisons actually performed by the original
and staged versions, respectively, become substantially different and are in general not permutations of each
other.
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(define (main pattern text)

(let ([m (string-length pattern)])

(match pattern text (- m 1) (- m 1) m)))

(define (match pattern text j k m)

(if (= j -1)

(+ k 1)

(if (>= k (string-length text))

-1

(compare pattern text j k m))))

(define (compare pattern text j k m)

(if (equal? (string-ref pattern j) (string-ref text k))

(match pattern text (- j 1) (- k 1) m)

(let ([i (rematch pattern j m)])

(match pattern text (- m 1) (+ k (- (* 2 (- m 1)) (+ i j))) m))))

(define (rematch pattern i m)

(if (= i (- m 1))

(- i 1)

(letrec ([try (lambda (jp kp)

(if (or (= -1 kp) (= i jp))

(+ kp (- (- m 1) jp))

(if (equal? (string-ref pattern jp)

(string-ref pattern kp))

(try (- jp 1) (- kp 1))

(try (- m 1) (- (+ (- m jp) kp) 2)))))])

(try (- m 1) (- m 2)))))

Figure 5: A staged quadratic-time right-to-left string matcher
The matcher matches from right to left and is otherwise similar to the staged matcher
of Figure 1:

• main is the matcher’s entry point which directly calls match.
• match checks whether matching should terminate, either because an occurrence of the

pattern has been found in the text or because the end of the text has been reached.
If not, compare is called to perform the next character comparison. As in Figure 1,
we assume that string-length works in constant time; otherwise, we would compute
the lengths once and pass them as parameters.

• compare checks whether the jth character of the pattern matches the kth character of
the text. If so, match is called to match the rest of the pattern against the rest of the
text. If not, rematch is called to backtrack based on the part of the pattern that did
match the text.

• rematch backtracks based on a suffix of the pattern. It finds the right-most occurrence
of the given suffix in the pattern excluding the last character. The suffix is allowed
to “fall off” the end of the pattern. rematch returns an index corresponding to the
right-most character in the pattern that is part of the found match. If the suffix is
empty the index of the second-to-last character in the pattern is returned. If the suffix
falls off the end of the pattern completely without finding a match, -1 is returned.
The local recursive function try finds this right-most occurrence of the suffix in the
pattern by successively trying each possible position from right to left.
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Figure 6: Sharing of computations with compositional backtracking

The top tape represents a text (part of which is bcaba); the other tapes represent the
pattern ababacaba. Each box represents a computation: squares boxes represents back-
tracking computations, whereas triangular boxes represent auxiliary computations. The
top line of each box is a suffix of the pattern. For squared boxes the bottom line is the
second-to-last occurrence of that suffix in the pattern, whereas for triangular boxes the
bottom line is the largest proper prefix of the top line that is also a suffix. Thus, com-
positional backtracking correspond to (reversed) Morris-Pratt string matching, where
the auxiliary computations correspond to (reversed) Morris-Pratt backtracking. For
computation C, each of the comparisons performed during backtracking is shown and
numbered.
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(define (main pattern text) ...) ;;; as in Fig.5

(define (match pattern text j k m) ...) ;;; as in Fig.5

(define (compare pattern text j k m) ...) ;;; as in Fig.5

(define (rematch pattern i m)

(if (= i (- m 1))

(- i 1)

(letrec ([try (lambda (jp kp)

(if (or (= -1 kp) (= i jp))

(+ kp (- (- m 1) jp))

(if (equal? (string-ref pattern jp)

(string-ref pattern kp))

(try (- jp 1) (- kp 1))

(let ([s (inner-rematch pattern jp m)])

(if (= s m)

(try (- m 1) (- kp 1))

(try s kp))))))])

(let ([j (rematch pattern (+ i 1) m)])

(if (>= -1 (- j (- (- m 1) (+ i 1))))

j

(try (+ i 1) (- j (- (- m 1) (+ i 1)))))))))

(define (inner-rematch pattern i m)

(if (= i (- m 1))

m

(letrec ([try-subproblem

(lambda (j)

(if (= j m)

(- m 1)

(if (equal? (string-ref pattern (+ i 1))

(string-ref pattern j))

(- j 1)

(try-subproblem (inner-rematch pattern j m)))))])

(try-subproblem (inner-rematch pattern (+ i 1) m)))))

Figure 7: Compositional backtracking suitable for fast partial evaluation

Compared to Figure 5, rematch has been rewritten to allow sharing of computations.
rematch corresponds to right-to-left Morris-Pratt string matching. It calls itself re-
cursively to find the solution to the immediate subproblem. The local recursive func-
tion try then tries to extend the solution to the immediate subproblem to a solution
to the original problem. inner-rematch corresponds to a right-to-left variant of the
Morris-Pratt rematch function. As for the Morris-Pratt matcher of Figure 3, it calls
itself recursively on the immediate subproblem and uses the local recursive function
try-subproblem to extend the solution to the subproblem to a solution of the original
problem. Both rematch and inner-rematch allow the given suffix to fall off the end of
the pattern.
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6 Related work

The Knuth-Morris-Pratt matcher has been reconstructed many times in the program-transf-
ormation community since Knuth’s own construction (he obtained it by calculating it from
Cook’s 2DPDA construction [31, page 338]). Examples of the methods used are Dijkstra’s
invariants [17], Bird’s recursion introduction and tabulation [7], Takeichi and Akama’s equa-
tional reasoning [41], Colussi’s Hoare logic [14], and Hernández and Rosenblueth’s logic-
program derivation [25]. Variants of the Boyer-Moore have also been reconstructed: both by
partial evaluation [4, 18], and by logic-program derivation [24].

Bird’s recursion introduction and tabulation is our closest related work. Bird derives the
Morris-Pratt matcher from a quadratic-time stack algorithm using recursion introduction.
The recursive failure function he derives is essentially the same as the rematch function of
Figure 3. Bird then tabulates the failure function to obtain the linear-time preprocessing
phase of the Morris-Pratt matcher.

Takeichi and Akama’s equational reasoning is our second closest related work. By hand
(i.e., without using a partial evaluator), they transform a quadratic-time functional string
matcher into the linear-time Morris-Pratt matcher. As part of the transformation, they iso-
late a function equivalent to the Morris-Pratt failure function. Using partial parameterization
and memoization data structures, this function is tabulated in time linear in the size of a
pattern string, thereby obtaining the Morris-Pratt matcher.

As for enhancing the capabilities of partial evaluators, Glück and Jørgensen have described
an approach based on composing partial evaluators with interpreters [21].

7 Conclusion and perspectives

We have shown how to obtain all of Knuth, Morris, and Pratt’s linear-time string matcher by
partial evaluation of a quadratic-time string matcher with respect to a pattern string. Ob-
taining a linear-time string matcher by partial evaluation was already known, but obtaining
it in linear time was an open problem.

To this end, we have rewritten the staged matcher so that its backtracking is compo-
sitional, thereby enabling the computations to be shared at specialization time. We have
also identified that the sharing of dynamic computations as achieved with the traditional
déjà-vu list [28] is not enough; static computations must also be shared. The concepts
involved—staging, i.e., binding-time separation, and sharing of computations as in dynamic
programming [6]—have long been recognized as key ones in partial evaluation [4, 33]. They
are, however, not sufficient to obtain linear-time string matchers in linear time. In addition,
the static computations must be shared by memoization, and both the static and the dynamic
memoization mechanisms must be efficient.

Static memoization in itself is no silver bullet: a program must be (re)written so that
static computations can be shared; otherwise, as usual with tabulation techniques, memo-
ization is just a waste of resources. Such a rewriting is likely to be non-trivial: the insight
required to obtain the staged matcher is proportional to the original insight (which is due to
Pratt3) required to obtain linear-time preprocessing for the Knuth-Morris-Pratt. Integrating
Pratt’s insight in advanced partial evaluators such as generalized partial computation and
supercompilation is likely also to be non-trivial.

3Personal communication to the second author, Stanford, California, August 1989.

14



Independently of partial evaluation, we can also consider the staged matchers by them-
selves. To this end, we can express them as functional programs with memo-functions, i.e., in
some sense, as fully lazy functional programs. These programs, given efficient memoization
capabilities, are the lazy-functional equivalent of the Morris-Pratt and Knuth-Morris-Pratt
imperative matchers. (Holst and Gomard as well as Kaneko and Takeichi made a similar
observation [26, 29].) In particular, these programs work in linear time.

Finally, we would like to point out that the Knuth-Morris-Pratt matcher is not an end
in itself. Fifteen years ago, this example was used to show that partial evaluators needed
considerable power (be it polyvariant program-point specialization or generalized partial
computation) to produce efficient specialized programs. It gave rise to the so-called KMP
test [39, 40]: a partial evaluator is said to pass the KMP test if it specializes a quadratic-time
string matcher into a linear-time one. What our work shows today is that a partial evaluator
needs even more power (static memoization and efficient data structures) to pass the Pratt
test: we say that a partial evaluator passes the Pratt test if it passes the KMP test in linear
time. Such a fast partial evaluator remains to be implemented.
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A Partial evaluation of staged left-to-right matchers

This appendix provides a more complete view of partial evaluation of staged left-to-right
string matchers than in Section 2. The starting point is a brute-force quadratic-time left-
to-right string matcher, such as the one shown in Figure 8. The corresponding ending point
is a specialized linear-time string matcher, such as the one shown in Figure 9, which is
specialized to match the pattern abac. There, the specialized matcher behaves exactly like
the Morris-Pratt matcher for the pattern abac.

Specializing the brute-force quadratic matcher using a simple memoizing partial evalua-
tor, such as Similix, does not yield a linear-time matcher (only a linear-sized one). One way
to overcome this problem is to rewrite or stage the quadratic matcher such that backtracking
only depends on static data and therefore can be computed by the partial evaluator. How-
ever, partial evaluation then takes quadratic time because the overall workload has not been
reduced—only moved.

This work describes how to actually reduce the workload by further rewriting the staged
matcher (Figure 3) and by enhancing the memoization capabilities of the partial evaluator
(Section 3).

Pictorially, the situation is as follows:

Figure 8
staging // Figure 1

rewriting (Sec. 3.1)
&&MMMMMMMMMMMMM

O(n2) PE //____________ Figure 9

Figure 3

O(n) PE (Sec. 3.2)

88qqqqqqq

The matchers in Figures 1, 3, and 8 perform the exact same sequence of character compar-
isons; they differ only in where they fetch the text characters during backtracking.
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(define (main pattern text)

(match pattern text 0 0))

(define (match pattern text j k)

(if (= (string-length pattern) j)

(- k j)

(if (= (string-length text) k)

-1

(compare pattern text j k))))

(define (compare pattern text j k)

(if (equal? (string-ref pattern j) (string-ref text k))

(match pattern text (+ j 1) (+ k 1))

(match pattern text 0 (+ (- k j) 1))))

Figure 8: A brute-force quadratic-time left-to-right string matcher

• main is the matcher’s entry point which directly calls match.

• match checks whether matching should terminate, either because an occurrence of the
pattern has been found in the text or because the end of the text has been reached. If
not, compare is called to perform the next character comparison. Again, for simplicity,
we assume that string-length works in constant time.

• compare checks whether the jth character of the pattern matches the kth character of
the text. If so, match is called to match the rest of the pattern against the rest of the
text. If not, the whole pattern and the corresponding part of the text are restored, the
text position is incremented by one character, and match is called to restart matching.
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(define (mainabac text)

(match0 text 0))

(define (match0 text k)

(if (= (string-length text) k)

-1

(compare0 text k)))

(define (compare0 text k)

(if (equal? #\a (string-ref text k))

(match1 text (+ k 1))

(match0 text (+ k 1))))

(define (match1 text k)

(if (= (string-length text) k)

-1

(compare1 text k)))

(define (compare1 text k)

(if (equal? #\b (string-ref text k))

(match2 text (+ k 1))

(compare0 text k)))

(define (match2 text k)

(if (= (string-length text) k)

-1

(compare2 text k)))

(define (compare2 text k)

(if (equal? #\a (string-ref text k))

(match3 text (+ k 1))

(match0 text (+ k 1))))

(define (match3 text k)

(if (= (string-length text) k)

-1

(compare3 text k)))

(define (compare3 text k)

(if (equal? #\c (string-ref text k))

(- (+ k 1) 4)

(compare1 text k)))

Figure 9: A specialized left-to-right matcher

The connection to the matchers in Figures 1, 3, and 8 is:

• For all strings text,
(mainabac text) = (main "abac" text).

• For all strings text, integers k, and i ∈ {0, 1, 2, 3},
(matchi text k) = (match "abac" text i k).

• For all strings text, integers k, and i ∈ {0, 1, 2, 3},
(comparei text k) = (compare "abac" text i k).
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B Partial evaluation of staged right-to-left matchers

This appendix provides a more complete view of partial evaluation of staged right-to-left
string matchers than in Section 5. The starting point is a brute-force quadratic-time right-
to-left string matcher, such as the one shown in Figure 10. The corresponding ending point
is a specialized string matcher, such as the one shown in Figure 11, which is specialized to
match the pattern abac.

Specializing the brute-force quadratic matcher using a simple memoizing partial evalu-
ator, such as Similix, does not precompute any significant part of the computations. One
way to overcome this problem is to rewrite or stage the quadratic matcher such that part of
the computations only depends on static data and therefore can be computed by the partial
evaluator. In the case of the simple right-to-left matcher this rewriting reorders comparisons
in order to process static information before performing dynamic comparisons. This reorder-
ing does not change the time complexity of the matcher. However, partial evaluation of the
staged matcher turns out to take cubic time (consider, e.g., the pattern anbn).

This work describes how to reduce the time-complexity of partial evaluation by further
rewriting the staged matcher (Figure 7) and by enhancing the memoization capabilities of
the partial evaluator (Section 3).

Pictorially, the situation is as follows:

Figure 10
staging // Figure 5

rewriting (Sec. 5)
&&MMMMMMMMMMMMM

O(n3) PE //____________ Figure 11

Figure 7

O(n) PE (Sec. 3.2)

88ppppppp

(define (main pattern text)

(let ([m (string-length pattern)])

(match pattern text (- m 1) (- m 1) m)))

(define (match pattern text j k m)

(if (= j -1)

(+ k 1)

(if (>= k (string-length text))

-1

(compare pattern text j k m))))

(define (compare pattern text j k m)

(if (equal? (string-ref pattern j) (string-ref text k))

(match pattern text (- j 1) (- k 1) m)

(match pattern text (- m 1) (+ k (- m j)))))

Figure 10: A brute-force quadratic-time right-to-left string matcher

The brute-force right-to-left string matcher is essentially the same as the brute-force
left-to-right string matcher of Figure 8 except that matching is performed from right to
left instead of from left to right. The matcher successively tries each possible position
of the pattern in the text. If a mismatch occurs, the next possible position is tried by
incrementing the text position by one character and restarting matching.
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(define (mainabac text)

(match3 text 3))

(define (match3 text k)

(if (>= k (string-length text))

-1

(compare3 text k)))

(define (compare3 text k)

(if (equal? #c (string-ref text k))

(match2 text (- k 1))

(match3 text (+ k 1))))

(define (match2 text k)

(if (>= k (string-length text))

-1

(compare2 text k)))

(define (compare2 text k)

(if (equal? #a (string-ref text k))

(match1 text (- k 1))

(match3 text (+ k 5))))

(define (match1 text k)

(if (>= k (string-length text))

-1

(compare1 text k)))

(define (compare1 text k)

(if (equal? #b (string-ref text k))

(match0 text (- k 1))

(match3 text (+ k 6))))

(define (match0 text k)

(if (>= k (string-length text))

-1

(compare0 text k)))

(define (compare0 text k)

(if (equal? #a (string-ref text k))

(+ (- k 1) 1)

(match3 text (+ k 7))))

Figure 11: A specialized right-to-left matcher

The connection to the matchers in Figures 5, 7, and 10 is:

• For all strings text,
(mainabac text) = (main "abac" text).

• For all strings text, integers k, and i ∈ {0, 1, 2, 3},
(matchi text k) = (match "abac" text i k).

• For all strings text, integers k, and i ∈ {0, 1, 2, 3},
(comparei text k) = (compare "abac" text i k).
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