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Abstract

The extra compaction of the most compacting CPS transformation in exis-
tence, which is due to Sabry and Felleisen, is generally attributed to (1) mak-
ing continuations occur first in CPS terms and (2) classifying more redexes
as administrative. We show that this extra compaction is actually indepen-
dent of the relative positions of values and continuations and furthermore
that it is solely due to a context-sensitive transformation of beta-redexes.
We stage the more compact CPS transformation into a first-order uncurry-
ing phase and a context-insensitive CPS transformation. We also define a
context-insensitive CPS transformation that provides the extra compaction.
This CPS transformation operates in one pass and is dependently typed.
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1 Introduction

1.1 Continuation-passing style (CPS)

The meaning of a λ-term, in general, depends on its evaluation order. Evaluation-
order independence was one of the motivations for continuations [20, 26], and
continuation-passing style was developed as an evaluation-order independent λ-
encoding of λ-terms [8, 19]. In this λ-encoding, each evaluation context is repre-
sented by a λ-abstraction, called a continuation, and each λ-abstraction is passed
a continuation in addition to its usual argument. All intermediate results are sent
to a continuation and thus all calls are tail-calls. This λ-encoding gives rise to
a variety of continuation-passing styles, whose structure is a subject of study in
itself [12, 21, 25].

1.2 The CPS transformation

The format of CPS λ-terms was soon noticed to be of interest for the compiler
writer [24], which in turn fostered interest in automating the transformation of λ-
terms into CPS. Over the last twenty years, a wide body of CPS transformations
has thus been developed for various purposes, e.g., to compile and to analyze
programs, and to generate compilers [1, 10, 14, 23, 24, 27].

The näıve λ-encoding into CPS, however, generates a quite impressive inflation
of lambdas, most of which form administrative redexes that can be safely reduced.
Administrative reductions yield CPS terms corresponding to what one could write
by hand. It has therefore become a challenge to eliminate as many administrative
redexes as possible, at CPS-transformation time. (Contracting other β-redexes
would correspond to simplifying the source term, which falls out of the scope of
the CPS transformation.)

1.3 Sabry and Felleisen’s optimization

In their article “Reasoning about Programs in Continuation-Passing Style” [22],
Sabry and Felleisen present a CPS transformation that yields more compact
terms than existing CPS transformations. For example [22, Footnote 6], CPS-
transforming

((λx.λy.x) a) b

where a and b are (free) variables, yields the term

λk.((λx.((λy.k x) b)) a)

whereas earlier transformations, such as Steele’s [24] or Danvy and Filinski’s [5],
yield the more voluminous term

λk.((λx.λk1.(k1 (λy.λk2.k2 x))) a (λm.m bk)).

Sabry and Felleisen’s optimization relies on using Fischer’s CPS (where contin-
uations occur first, as in λk.λx.e), whereas earlier transformations use Plotkin’s
CPS (where values occur first, as in λx.λk.e).1

1As traditional, the reference to Fischer is a little bit stretched since Fischer’s domain of
discourse was uncurried Lisp functions [8]. But we also follow the tradition here.
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1.4 This article

Section 2 reviews administrative reductions in the CPS transformation and charac-
terizes Sabry and Felleisen’s optimization, independently of the relative positions
of values and continuations in CPS terms (i.e., both for Fischer’s and Plotkin’s
CPS). Section 3 constructs a similarly compact CPS transformation by composing
an uncurrying phase and an ordinary CPS transformation. Section 4 integrates
the optimization in a context-insensitive, one-pass CPS transformation. Section
5 concludes.

2 Administrative reductions in the CPS transfor-
mation

2.1 Context-insensitive administrative reductions

Appel, Danvy and Filinski, and Wand each independently developed a “one-pass”
CPS transformation for call by value [1, 5, 27]. This CPS transformation relies
on a context-free characterization of administrative reductions, i.e., a character-
ization that is independent of any source term. This one-pass transformation,
shown below for Plotkin’s CPS, is formulated with a static, context-free distinction
between (translation-time) administrative reductions and (run-time) reductions,
using a two-level λ-calculus [5, 18].

[[·]]p : Λ → (Λ → Λ) → Λ
[[x]]p = λκ.κ @x

[[λx.e]]p = λκ.κ @(λx.λk.[[e]]′p @ k)
[[e0 e1]]p = λκ.[[e0]]p @(λt0.[[e1]]p @ (λt1.(t0 @ t1)@ (λv.κ @ v)))

[[x]]′p = λk.k @ x

[[λx.e]]′p = λk.k @ (λx.λk.[[e]]′p @ k)
[[e0 e1]]′p = λk.[[e0]]p @(λt0.[[e1]]p @ (λt1.(t0 @ t1)@ k))

“λ” and “@” denote hygienic abstract-syntax constructors and “λ” and “@” de-
note translation-time abstractions and (infix) applications, respectively.

A λ-term e : Λ is CPS-transformed with λk.[[e]]′p @ k. (The reader is directed
to [5, Section 2] for a construction of this one-pass CPS transformation based on
control-flow analysis [23].)

The corresponding one-pass transformation for Fischer’s CPS is as follows.

[[·]]f : Λ → (Λ → Λ) → Λ
[[x]]f = λκ.κ @x

[[λx.e]]f = λκ.κ @(λk.λx.[[e]]′f @ k)
[[e0 e1]]f = λκ.[[e0]]f @ (λt0.[[e1]]f @ (λt1.(t0 @(λv.κ @ v))@ t1))

[[x]]′f = λk.k @ x

[[λx.e]]′f = λk.k @ (λk.λx.[[e]]′f @ k)
[[e0 e1]]′f = λk.[[e0]]f @ (λt0.[[e1]]f @ (λt1.(t0 @ k)@ t1))

A λ-term e : Λ is CPS-transformed with λk.[[e]]′f @ k.

2



2.2 Context-sensitive administrative reductions

Sabry and Felleisen proposed a three-pass CPS transformation that (1) tags all the
“new” lambdas introduced by the CPS transformation, (2) repeatedly reduces the
β-redexes with a tagged lambda, and (3) untags the remaining tagged lambdas:

[[x]] = λk.k x

[[λx.e]] = λk.k (λk.λx.[[e]] k)
[[e0 e1]] = λk.[[e0]] (λt0.[[e1]] (λt1.t0 k t1))

A λ-term e is CPS-transformed with [[e]].
An administrative reduction amounts to reducing a β-redex where the λ-abstr-

action is tagged.
In contrast to the Fischer-style one-pass CPS transformation of Section 2.1,

this three-pass transformation (a) does not use @ for applications and is more im-
plicit by not underlining abstract-syntax constructors; (b) is a first-order rewriting
system whereas the one-pass transformation is a higher-order one; and (c) in ad-
dition, contains one more overlined λ-abstraction, namely the one declaring the
continuation of a λ-abstraction. The extra overline makes administrative reduc-
tions context-sensitive, as illustrated below:

[[λx.((λy.y) x)]] = λk.k (λk.λx.(λk.k (λk.λy.(λk.k y) k))λt0.(λk.k x)λt1.t0 k t1)
−→

β
+ λk.k (λk.λx.(λk.λy.k y) k x)

−→β λk.k (λk.λx.(λy.k y)x)

The term λk.λx.... arises from the transformation of λx.... and cannot be admin-
istratively reduced. The term λk.λy.... arises from the transformation of λy....
and can be administratively reduced.

In contrast, in a context-insensitive one-pass CPS transformation, all overlined
λ-abstractions are guaranteed to occur in an overlined application (and thus there
is no need for post-erasure). A context-sensitive CPS transformation thus can
perform more administrative reductions than a context-insensitive one.

Furthermore, we can precisely locate the (single) extra gain: for source β-
redexes. Given a source β-redex, one can actually substitute the continuation of
the application for the continuation of the abstraction:

(λx.e[c/k]) t1

thereby enabling further administrative reductions inside e.
This reduction is not accounted for in a (say, Plotkin-style) one-pass CPS

transformation, since in the particular case where t0 denotes λx.λk.e, one does
not simplify

(t0 @ t1)@ c

into
(λx.e[c/k])@ t1.

3



The reduction thus yields more compact CPS counterparts of source β-redexes,
in that the translated λ-abstractions are not explicitly passed any continuation
when they occur in a β-redex.2

On the other hand, a similar phenomenon already occurs for let expressions,
as reviewed next.

2.3 CPS transformation of let expressions

The CPS transformation of let expressions reads as follows:

[[let x = e′ in e]] = λκ.[[e′]]λt′.let x = t′ in [[e]]κ

In words, e is in tail-position in the let expression, and is CPS-transformed with
respect to the same κ as the let expression. This technique is instrumental in
binding-time analysis [3] and continuation-based partial evaluation [15].

Seeing let expressions as syntactic sugar for β-redexes, it appears clearly that
the context-sensitive administrative reduction includes the standard let optimiza-
tion, independently of whether continuations are put first or last. This adminis-
trative reduction, however, yields more.

2.4 CPS transformation of nested β-redexes

Extra mileage is obtained for (curried) λ-abstractions that are fully applied. CPS-
transforming the curried application of a “n-ary” λ-abstraction to n arguments
relocates the continuation of the application to the body of the λ-abstraction:

[[(λx1. . . . λxn.e) e1 . . . en]]
= λκ.[[e1]] @ (λt1. . . . [[en]] @ (λtn.(λxn. . . . (λx1.[[e]] @κ)@ t1 . . .)@ tn) . . .)

[[(λx1. . . . λxn.e) e1 . . . en]]′

= λk.[[e1]] @ (λt1. . . . [[en]] @ (λtn.(λxn. . . . (λx1.[[e]]′ @ k)@ t1 . . .)@ tn) . . .)

This extra mileage is independent of whether continuations are put first or last.
As a net effect, a term such as

(λf.λg.λx.f x (g x)) (a b) c (d e)

where a, b, c, d, and e are variables, is CPS transformed into (letting continuations
occur last)

λk.a b (λf.(λg.d e (λx.f x (λv1.g x (λv2.v1 v2 k)))) c).

Observe how the λ-abstractions λf.... and λx.... end up as the continuations of
the applications (a b) and (d e), and how the application of λg.... to c survives in
the CPS term.

Letting continuations occur first would yield a similar term:

λk.a (λf.(λg.d (λx.f (λv1.g (λv2.v1 k v2)x)x) e) c) b.

2As Shivers puts it and as can be read off their type, the translated λ-abstractions are
‘promoted to continuations’ [23].
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2.5 Summary and conclusion

A CPS transformation with context-sensitive administrative reductions yields
more compact CPS terms because it exposes more administrative redexes. The
extra administrative reductions affect nested β-redexes corresponding to fully ap-
plied curried λ-abstractions, and reduce continuation-passing by promoting the
inner λ-abstractions to continuations. These extra administrative reductions can
be carried out independently of whether continuations occur first or last in CPS
terms.

The extra compaction of Sabry and Felleisen’s CPS transformation is therefore
independent of the relative positions of values and continuations. Furthermore, it
is solely due to a context-sensitive transformation of beta-redexes.

3 Staging the more compact CPS transformation

Sabry and Felleisen [22, Definition 7, page 306] identify a reduction βlift moving
the context of a β-redex into the body of the corresponding λ-abstraction:3

E[(λx.e)e′] −→ (λx.E[e])e′

where E 6= [ ] and x 6∈ FV (E)
(βlift )

They also pointed out that CPS-transforming a term e and mapping the result
back to direct style yields a term in βlift -normal form.

But a term in βlift -normal form does not give rise to the extra context-sensitive
administrative reduction of Section 2. Therefore, the extra power of the context-
sensitive CPS transformation is solely due to βlift .

The more compact CPS transformation can thus be staged as follows:

1. a phase uncurrying (and appropriately renaming, if need be) all β-redexes
(λx1. . . . λxn.e) e1 . . . en into nested let expressions let x1 = e1

in let x2 = e2

in . . . let xn = en

in e

2. an ordinary, context-insensitive CPS transformation (either à la Plotkin or
à la Fischer) handling let expressions.

The benefit of this staging, we believe, is three-fold: (a) it clarifies the extra
compaction; (b) it extends a context-insensitive, one-pass CPS transformation;
and (c) it suggests how to obtain even more compact terms. Indeed, in the same
fashion as control-flow analysis can be used to locate the application sites of cur-
ried λ-abstractions in order to uncurry them [1, 11], the CPS transformation can
benefit from control-flow information to promote more functions to continuations.

3The transitive closure of βlift is a generalized reduction in the sense of Bloo, Kamareddine,
and Nederpelt [2].
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Ψ0 v = v : τ0

where τ0 = Λ.
Ψn+1 v = λt.λκ.(v @ t)@ (λv′.κ @(Ψn v′))

: τn+1

where τn+1 = Λ → (τn → Λ) → Λ.
[[·]]n : Λ → (τn → Λ) → Λ
[[x]]n = λκ.κ @(Ψn x)

[[λx.e]]0 = λκ.κ @(λx.λk.[[e]]0 @(λt.k @ t))
[[λx.e]]n+1 = λκ.κ @(λt.λκ′.(λx.[[e]]n @κ′)@ t)

[[e0 e1]]n = λκ.[[e0]]n+1 @ (λt0.[[e1]]0 @ (λt1.(t0 @ t1)@κ))

Figure 1: A family of one-pass, call-by-value CPS transformations à la Plotkin

4 More compact CPS transformations in one pass

Promoting functions into continuations compromises context independence in the
CPS transformation, since how to CPS-transform a λ-abstraction depends on
whether it occurs in a β-redex or not. Fortunately, it does so in a very regular
way, which makes it possible to derive a family of one-pass CPS transformations
indexed by positions in the current context.

@0

ssss KKKK

@1

rrrr LLLL

qqq
q

@n

rrrr LLL
L

λn−1

λn−2

Indexing the transformation functions with the lexical position of their argu-
ment yields the one-pass CPS transformation à la Plotkin (i.e., with continuations
last) of Figure 1. A λ-term e : Λ is CPS-transformed with

λk.[[e]]0 @ (λt.k @ t).

Similarly, a one-pass CPS transformation à la Fischer (i.e., with continuations
first) is displayed in Figure 2.
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Φ0 v = v : τ0

where τ0 = Λ.
Φn+1 v = λκ.v @(λv′.κ @ (Φn v′))

: τn+1

where τn+1 = (τn → Λ) → Λ.
[[·]]n : Λ → (τn → Λ) → Λ
[[x]]n = λκ.κ @(Φn x)

[[λx.e]]0 = λκ.κ @(λk.λx.[[e]]0 @(λt.k @ t))
[[λx.e]]n+1 = λκ.κ @(λκ′.λx.[[e]]n @κ′)

[[e0 e1]]n = λκ.[[e0]]n+1 @ (λt0.[[e1]]0 @ (λt1.(t0 @κ)@ t1))

Figure 2: A family of one-pass, call-by-value CPS transformations à la Fischer

[[·]]0 is applied to the root of a term (i.e., to the body of a λ-abstraction or
to the expression in position of argument in an application). For n > 0, [[·]]n is
applied to an expression in position of function in an application; n is the depth
of the expression since the closest root, as in the picture above. The Ψ (resp. Φ)
function coerces a syntactic object into a translation-time one.

The transformation based on these families of functions can be proven correct
by a simulation theorem similar to Plotkin’s [19]. The correctness criterion is a
relation between the transformation of the result of an expression and the result
of the transformation of it, i.e., (noting contextual equivalence with ∼)

e −→∗ v implies [[e]]0 λa.a −→∗ v′ and v′ ∼ [[v]]0 λa.a

as well as preservation of non-termination and of getting stuck [7, 17].
Reflecting the context dependence of both CPS transformations, the two-level

specifications in Figures 1 and 2 are not themselves simply typed. Instead, they
are dependently typed and define two families of simply typed two-level specifi-
cations. Each of these families produces simply-typed two-level λ-terms, that can
be statically (i.e., administratively) reduced in one pass. The ML signature of
the first elements of each family are displayed in Figure 3, page 9. (If one uses
Scheme, one can simply treat the indices as arguments.)

5 Conclusion and issues

In their study of CPS programs [22], Sabry and Felleisen needed a CPS transfor-
mation that would perform more administrative reductions than the ones already
available [1, 5, 10, 27]. We have identified the extra power of this CPS trans-
formation: a context-sensitive administrative reduction enabling a more effective
treatment of β-redexes which corresponds to Bloo, Kamareddine, and Nederpelt’s
notion of generalized reduction. This treatment turns out to be independent of the
relative positions of values and continuations. The resulting three-pass CPS trans-
formation can be stated as a two-pass process involving (1) a first-order uncurrying

7



phase and (2) a one-pass CPS transformation with context-insensitive adminis-
trative reductions. We have also presented two one-pass CPS transformations
embodying the extra compaction and generalizing the corresponding one-pass
CPS transformations à la Plotkin and à la Fischer. They can be adapted mutatis
mutandis for encoding λ-terms into monadic normal form [4, 13, 16] (sometimes
called A-normal form [9, Figure 9]), including βlift .

Acknowledgements: The first author is grateful to Matthias Felleisen, Andrzej
Filinski, John Hatcliff, and Amr Sabry for discussions and comments on this topic
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