
BRICS
Basic Research in Computer Science

CPS Transformation of Beta-Redexes

Olivier Danvy
Lasse R. Nielsen

BRICS Report Series RS-04-39

ISSN 0909-0878 December 2004

B
R

IC
S

R
S

-04-39
D

anvy
&

N
ielsen:

C
P

S
Transform

ation
ofB

eta-R
edexes

Copyright c© 2004, Olivier Danvy & Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/39/

CPS Transformation of Beta-Redexes ∗

Olivier Danvy and Lasse R. Nielsen

BRICS †

Department of Computer Science
University of Aarhus ‡

December 2004

Abstract

The extra compaction of the most compacting CPS transformation in exis-
tence, which is due to Sabry and Felleisen, is generally attributed to (1) mak-
ing continuations occur first in CPS terms and (2) classifying more redexes
as administrative. We show that this extra compaction is actually indepen-
dent of the relative positions of values and continuations and furthermore
that it is solely due to a context-sensitive transformation of beta-redexes.
We stage the more compact CPS transformation into a first-order uncurry-
ing phase and a context-insensitive CPS transformation. We also define a
context-insensitive CPS transformation that provides the extra compaction.
This CPS transformation operates in one pass and is dependently typed.

Keywords

Functional programming, program derivation, continuation-passing style
(CPS), Plotkin, Fischer, one-pass CPS transformation, two-level lambda-
calculus, generalized reduction, dependent types.

∗Extended version of an article to appear in Information Processing Letters. A prelimi-
nary version was presented at the Third ACM SIGPLAN Workshop on Continuations (CW’01),
January 16, 2001, London, UK [6].

†Basic Research in Computer Science (http://www.brics.dk/),
Centre of the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
E-mail: {danvy,lrn}@brics.dk

i

Contents

1 Introduction 1
1.1 Continuation-passing style (CPS) 1
1.2 The CPS transformation . 1
1.3 Sabry and Felleisen’s optimization 1
1.4 This article . 2

2 Administrative reductions in the CPS transformation 2
2.1 Context-insensitive administrative reductions 2
2.2 Context-sensitive administrative reductions 3
2.3 CPS transformation of let expressions 4
2.4 CPS transformation of nested β-redexes 4
2.5 Summary and conclusion . 5

3 Staging the more compact CPS transformation 5

4 More compact CPS transformations in one pass 6

5 Conclusion and issues 7

List of Figures

1 A family of one-pass, call-by-value CPS transformations à la Plotkin 6
2 A family of one-pass, call-by-value CPS transformations à la Fischer 7
3 Signatures of the ML implementations of Figures 1 (Plotkin) and

2 (Fischer) . 9

ii

1 Introduction

1.1 Continuation-passing style (CPS)

The meaning of a λ-term, in general, depends on its evaluation order. Evaluation-
order independence was one of the motivations for continuations [20, 26], and
continuation-passing style was developed as an evaluation-order independent λ-
encoding of λ-terms [8, 19]. In this λ-encoding, each evaluation context is repre-
sented by a λ-abstraction, called a continuation, and each λ-abstraction is passed
a continuation in addition to its usual argument. All intermediate results are sent
to a continuation and thus all calls are tail-calls. This λ-encoding gives rise to
a variety of continuation-passing styles, whose structure is a subject of study in
itself [12, 21, 25].

1.2 The CPS transformation

The format of CPS λ-terms was soon noticed to be of interest for the compiler
writer [24], which in turn fostered interest in automating the transformation of λ-
terms into CPS. Over the last twenty years, a wide body of CPS transformations
has thus been developed for various purposes, e.g., to compile and to analyze
programs, and to generate compilers [1, 10, 14, 23, 24, 27].

The näıve λ-encoding into CPS, however, generates a quite impressive inflation
of lambdas, most of which form administrative redexes that can be safely reduced.
Administrative reductions yield CPS terms corresponding to what one could write
by hand. It has therefore become a challenge to eliminate as many administrative
redexes as possible, at CPS-transformation time. (Contracting other β-redexes
would correspond to simplifying the source term, which falls out of the scope of
the CPS transformation.)

1.3 Sabry and Felleisen’s optimization

In their article “Reasoning about Programs in Continuation-Passing Style” [22],
Sabry and Felleisen present a CPS transformation that yields more compact
terms than existing CPS transformations. For example [22, Footnote 6], CPS-
transforming

((λx.λy.x) a) b

where a and b are (free) variables, yields the term

λk.((λx.((λy.k x) b)) a)

whereas earlier transformations, such as Steele’s [24] or Danvy and Filinski’s [5],
yield the more voluminous term

λk.((λx.λk1.(k1 (λy.λk2.k2 x))) a (λm.m bk)).

Sabry and Felleisen’s optimization relies on using Fischer’s CPS (where contin-
uations occur first, as in λk.λx.e), whereas earlier transformations use Plotkin’s
CPS (where values occur first, as in λx.λk.e).1

1As traditional, the reference to Fischer is a little bit stretched since Fischer’s domain of
discourse was uncurried Lisp functions [8]. But we also follow the tradition here.

1

1.4 This article

Section 2 reviews administrative reductions in the CPS transformation and charac-
terizes Sabry and Felleisen’s optimization, independently of the relative positions
of values and continuations in CPS terms (i.e., both for Fischer’s and Plotkin’s
CPS). Section 3 constructs a similarly compact CPS transformation by composing
an uncurrying phase and an ordinary CPS transformation. Section 4 integrates
the optimization in a context-insensitive, one-pass CPS transformation. Section
5 concludes.

2 Administrative reductions in the CPS transfor-
mation

2.1 Context-insensitive administrative reductions

Appel, Danvy and Filinski, and Wand each independently developed a “one-pass”
CPS transformation for call by value [1, 5, 27]. This CPS transformation relies
on a context-free characterization of administrative reductions, i.e., a character-
ization that is independent of any source term. This one-pass transformation,
shown below for Plotkin’s CPS, is formulated with a static, context-free distinction
between (translation-time) administrative reductions and (run-time) reductions,
using a two-level λ-calculus [5, 18].

[[·]]p : Λ → (Λ → Λ) → Λ
[[x]]p = λκ.κ @x

[[λx.e]]p = λκ.κ @(λx.λk.[[e]]′p @ k)
[[e0 e1]]p = λκ.[[e0]]p @(λt0.[[e1]]p @ (λt1.(t0 @ t1)@ (λv.κ @ v)))

[[x]]′p = λk.k @ x

[[λx.e]]′p = λk.k @ (λx.λk.[[e]]′p @ k)
[[e0 e1]]′p = λk.[[e0]]p @(λt0.[[e1]]p @ (λt1.(t0 @ t1)@ k))

“λ” and “@” denote hygienic abstract-syntax constructors and “λ” and “@” de-
note translation-time abstractions and (infix) applications, respectively.

A λ-term e : Λ is CPS-transformed with λk.[[e]]′p @ k. (The reader is directed
to [5, Section 2] for a construction of this one-pass CPS transformation based on
control-flow analysis [23].)

The corresponding one-pass transformation for Fischer’s CPS is as follows.

[[·]]f : Λ → (Λ → Λ) → Λ
[[x]]f = λκ.κ @x

[[λx.e]]f = λκ.κ @(λk.λx.[[e]]′f @ k)
[[e0 e1]]f = λκ.[[e0]]f @ (λt0.[[e1]]f @ (λt1.(t0 @(λv.κ @ v))@ t1))

[[x]]′f = λk.k @ x

[[λx.e]]′f = λk.k @ (λk.λx.[[e]]′f @ k)
[[e0 e1]]′f = λk.[[e0]]f @ (λt0.[[e1]]f @ (λt1.(t0 @ k)@ t1))

A λ-term e : Λ is CPS-transformed with λk.[[e]]′f @ k.

2

2.2 Context-sensitive administrative reductions

Sabry and Felleisen proposed a three-pass CPS transformation that (1) tags all the
“new” lambdas introduced by the CPS transformation, (2) repeatedly reduces the
β-redexes with a tagged lambda, and (3) untags the remaining tagged lambdas:

[[x]] = λk.k x

[[λx.e]] = λk.k (λk.λx.[[e]] k)
[[e0 e1]] = λk.[[e0]] (λt0.[[e1]] (λt1.t0 k t1))

A λ-term e is CPS-transformed with [[e]].
An administrative reduction amounts to reducing a β-redex where the λ-abstr-

action is tagged.
In contrast to the Fischer-style one-pass CPS transformation of Section 2.1,

this three-pass transformation (a) does not use @ for applications and is more im-
plicit by not underlining abstract-syntax constructors; (b) is a first-order rewriting
system whereas the one-pass transformation is a higher-order one; and (c) in ad-
dition, contains one more overlined λ-abstraction, namely the one declaring the
continuation of a λ-abstraction. The extra overline makes administrative reduc-
tions context-sensitive, as illustrated below:

[[λx.((λy.y) x)]] = λk.k (λk.λx.(λk.k (λk.λy.(λk.k y) k))λt0.(λk.k x)λt1.t0 k t1)
−→

β
+ λk.k (λk.λx.(λk.λy.k y) k x)

−→β λk.k (λk.λx.(λy.k y)x)

The term λk.λx.... arises from the transformation of λx.... and cannot be admin-
istratively reduced. The term λk.λy.... arises from the transformation of λy....
and can be administratively reduced.

In contrast, in a context-insensitive one-pass CPS transformation, all overlined
λ-abstractions are guaranteed to occur in an overlined application (and thus there
is no need for post-erasure). A context-sensitive CPS transformation thus can
perform more administrative reductions than a context-insensitive one.

Furthermore, we can precisely locate the (single) extra gain: for source β-
redexes. Given a source β-redex, one can actually substitute the continuation of
the application for the continuation of the abstraction:

(λx.e[c/k]) t1

thereby enabling further administrative reductions inside e.
This reduction is not accounted for in a (say, Plotkin-style) one-pass CPS

transformation, since in the particular case where t0 denotes λx.λk.e, one does
not simplify

(t0 @ t1)@ c

into
(λx.e[c/k])@ t1.

3

The reduction thus yields more compact CPS counterparts of source β-redexes,
in that the translated λ-abstractions are not explicitly passed any continuation
when they occur in a β-redex.2

On the other hand, a similar phenomenon already occurs for let expressions,
as reviewed next.

2.3 CPS transformation of let expressions

The CPS transformation of let expressions reads as follows:

[[let x = e′ in e]] = λκ.[[e′]]λt′.let x = t′ in [[e]]κ

In words, e is in tail-position in the let expression, and is CPS-transformed with
respect to the same κ as the let expression. This technique is instrumental in
binding-time analysis [3] and continuation-based partial evaluation [15].

Seeing let expressions as syntactic sugar for β-redexes, it appears clearly that
the context-sensitive administrative reduction includes the standard let optimiza-
tion, independently of whether continuations are put first or last. This adminis-
trative reduction, however, yields more.

2.4 CPS transformation of nested β-redexes

Extra mileage is obtained for (curried) λ-abstractions that are fully applied. CPS-
transforming the curried application of a “n-ary” λ-abstraction to n arguments
relocates the continuation of the application to the body of the λ-abstraction:

[[(λx1. . . . λxn.e) e1 . . . en]]
= λκ.[[e1]] @ (λt1. . . . [[en]] @ (λtn.(λxn. . . . (λx1.[[e]] @κ)@ t1 . . .)@ tn) . . .)

[[(λx1. . . . λxn.e) e1 . . . en]]′

= λk.[[e1]] @ (λt1. . . . [[en]] @ (λtn.(λxn. . . . (λx1.[[e]]′ @ k)@ t1 . . .)@ tn) . . .)

This extra mileage is independent of whether continuations are put first or last.
As a net effect, a term such as

(λf.λg.λx.f x (g x)) (a b) c (d e)

where a, b, c, d, and e are variables, is CPS transformed into (letting continuations
occur last)

λk.a b (λf.(λg.d e (λx.f x (λv1.g x (λv2.v1 v2 k)))) c).

Observe how the λ-abstractions λf.... and λx.... end up as the continuations of
the applications (a b) and (d e), and how the application of λg.... to c survives in
the CPS term.

Letting continuations occur first would yield a similar term:

λk.a (λf.(λg.d (λx.f (λv1.g (λv2.v1 k v2)x)x) e) c) b.

2As Shivers puts it and as can be read off their type, the translated λ-abstractions are
‘promoted to continuations’ [23].

4

2.5 Summary and conclusion

A CPS transformation with context-sensitive administrative reductions yields
more compact CPS terms because it exposes more administrative redexes. The
extra administrative reductions affect nested β-redexes corresponding to fully ap-
plied curried λ-abstractions, and reduce continuation-passing by promoting the
inner λ-abstractions to continuations. These extra administrative reductions can
be carried out independently of whether continuations occur first or last in CPS
terms.

The extra compaction of Sabry and Felleisen’s CPS transformation is therefore
independent of the relative positions of values and continuations. Furthermore, it
is solely due to a context-sensitive transformation of beta-redexes.

3 Staging the more compact CPS transformation

Sabry and Felleisen [22, Definition 7, page 306] identify a reduction βlift moving
the context of a β-redex into the body of the corresponding λ-abstraction:3

E[(λx.e)e′] −→ (λx.E[e])e′

where E 6= [] and x 6∈ FV (E)
(βlift)

They also pointed out that CPS-transforming a term e and mapping the result
back to direct style yields a term in βlift -normal form.

But a term in βlift -normal form does not give rise to the extra context-sensitive
administrative reduction of Section 2. Therefore, the extra power of the context-
sensitive CPS transformation is solely due to βlift .

The more compact CPS transformation can thus be staged as follows:

1. a phase uncurrying (and appropriately renaming, if need be) all β-redexes
(λx1. . . . λxn.e) e1 . . . en into nested let expressions let x1 = e1

in let x2 = e2

in . . . let xn = en

in e

2. an ordinary, context-insensitive CPS transformation (either à la Plotkin or
à la Fischer) handling let expressions.

The benefit of this staging, we believe, is three-fold: (a) it clarifies the extra
compaction; (b) it extends a context-insensitive, one-pass CPS transformation;
and (c) it suggests how to obtain even more compact terms. Indeed, in the same
fashion as control-flow analysis can be used to locate the application sites of cur-
ried λ-abstractions in order to uncurry them [1, 11], the CPS transformation can
benefit from control-flow information to promote more functions to continuations.

3The transitive closure of βlift is a generalized reduction in the sense of Bloo, Kamareddine,
and Nederpelt [2].

5

Ψ0 v = v : τ0

where τ0 = Λ.
Ψn+1 v = λt.λκ.(v @ t)@ (λv′.κ @(Ψn v′))

: τn+1

where τn+1 = Λ → (τn → Λ) → Λ.
[[·]]n : Λ → (τn → Λ) → Λ
[[x]]n = λκ.κ @(Ψn x)

[[λx.e]]0 = λκ.κ @(λx.λk.[[e]]0 @(λt.k @ t))
[[λx.e]]n+1 = λκ.κ @(λt.λκ′.(λx.[[e]]n @κ′)@ t)

[[e0 e1]]n = λκ.[[e0]]n+1 @ (λt0.[[e1]]0 @ (λt1.(t0 @ t1)@κ))

Figure 1: A family of one-pass, call-by-value CPS transformations à la Plotkin

4 More compact CPS transformations in one pass

Promoting functions into continuations compromises context independence in the
CPS transformation, since how to CPS-transform a λ-abstraction depends on
whether it occurs in a β-redex or not. Fortunately, it does so in a very regular
way, which makes it possible to derive a family of one-pass CPS transformations
indexed by positions in the current context.

@0

ssss KKKK

@1

rrrr LLLL

qqq
q

@n

rrrr LLL
L

λn−1

λn−2

Indexing the transformation functions with the lexical position of their argu-
ment yields the one-pass CPS transformation à la Plotkin (i.e., with continuations
last) of Figure 1. A λ-term e : Λ is CPS-transformed with

λk.[[e]]0 @ (λt.k @ t).

Similarly, a one-pass CPS transformation à la Fischer (i.e., with continuations
first) is displayed in Figure 2.

6

Φ0 v = v : τ0

where τ0 = Λ.
Φn+1 v = λκ.v @(λv′.κ @ (Φn v′))

: τn+1

where τn+1 = (τn → Λ) → Λ.
[[·]]n : Λ → (τn → Λ) → Λ
[[x]]n = λκ.κ @(Φn x)

[[λx.e]]0 = λκ.κ @(λk.λx.[[e]]0 @(λt.k @ t))
[[λx.e]]n+1 = λκ.κ @(λκ′.λx.[[e]]n @κ′)

[[e0 e1]]n = λκ.[[e0]]n+1 @ (λt0.[[e1]]0 @ (λt1.(t0 @κ)@ t1))

Figure 2: A family of one-pass, call-by-value CPS transformations à la Fischer

[[·]]0 is applied to the root of a term (i.e., to the body of a λ-abstraction or
to the expression in position of argument in an application). For n > 0, [[·]]n is
applied to an expression in position of function in an application; n is the depth
of the expression since the closest root, as in the picture above. The Ψ (resp. Φ)
function coerces a syntactic object into a translation-time one.

The transformation based on these families of functions can be proven correct
by a simulation theorem similar to Plotkin’s [19]. The correctness criterion is a
relation between the transformation of the result of an expression and the result
of the transformation of it, i.e., (noting contextual equivalence with ∼)

e −→∗ v implies [[e]]0 λa.a −→∗ v′ and v′ ∼ [[v]]0 λa.a

as well as preservation of non-termination and of getting stuck [7, 17].
Reflecting the context dependence of both CPS transformations, the two-level

specifications in Figures 1 and 2 are not themselves simply typed. Instead, they
are dependently typed and define two families of simply typed two-level specifi-
cations. Each of these families produces simply-typed two-level λ-terms, that can
be statically (i.e., administratively) reduced in one pass. The ML signature of
the first elements of each family are displayed in Figure 3, page 9. (If one uses
Scheme, one can simply treat the indices as arguments.)

5 Conclusion and issues

In their study of CPS programs [22], Sabry and Felleisen needed a CPS transfor-
mation that would perform more administrative reductions than the ones already
available [1, 5, 10, 27]. We have identified the extra power of this CPS trans-
formation: a context-sensitive administrative reduction enabling a more effective
treatment of β-redexes which corresponds to Bloo, Kamareddine, and Nederpelt’s
notion of generalized reduction. This treatment turns out to be independent of the
relative positions of values and continuations. The resulting three-pass CPS trans-
formation can be stated as a two-pass process involving (1) a first-order uncurrying

7

phase and (2) a one-pass CPS transformation with context-insensitive adminis-
trative reductions. We have also presented two one-pass CPS transformations
embodying the extra compaction and generalizing the corresponding one-pass
CPS transformations à la Plotkin and à la Fischer. They can be adapted mutatis
mutandis for encoding λ-terms into monadic normal form [4, 13, 16] (sometimes
called A-normal form [9, Figure 9]), including βlift .

Acknowledgements: The first author is grateful to Matthias Felleisen, Andrzej
Filinski, John Hatcliff, and Amr Sabry for discussions and comments on this topic
and these transformations in June and July 1993, at CMU. Kristoffer Rose wanted
to see the dependent types of Figures 1 and 2 spelled out. Thanks are also due to
the CW’01 and IPL reviewers and to Julia Lawall and Olin Shivers for perceptive
comments.

This work is partially supported by the ESPRIT Working Group APPSEM II
(http://www.appsem.org) and by the Danish Natural Science Research Council,
Grant no. 21-03-0545.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube
with definitions and generalised reduction. Information and Computation,
126(2):123–143, 1996.

[3] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis:
On the impact of the CPS transformation. Journal of Functional Program-
ming, 13(5):867–904, 2003.

[4] Olivier Danvy. A new one-pass transformation into monadic normal form. In
Görel Hedin, editor, Compiler Construction, 12th International Conference,
CC 2003, number 2622 in Lecture Notes in Computer Science, pages 77–89,
Warsaw, Poland, April 2003. Springer-Verlag.

[5] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391,
1992.

[6] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. In
Amr Sabry, editor, Proceedings of the Third ACM SIGPLAN Workshop on
Continuations, Technical report 545, Computer Science Department, Indi-
ana University, pages 35–39, London, England, January 2001. Accepted for
publication in Information Processing Letters (2004).

[7] Olivier Danvy and Lasse R. Nielsen. A higher-order colon translation. In Her-
bert Kuchen and Kazunori Ueda, editors, Functional and Logic Programming,
5th International Symposium, FLOPS 2001, number 2024 in Lecture Notes in
Computer Science, pages 78–91, Tokyo, Japan, March 2001. Springer-Verlag.

8

signature CPST_PLOTKIN =

sig

val P_0 : exp -> env -> (exp -> exp) -> exp

val P_1 : exp -> env -> ((exp -> (exp -> exp) -> exp) -> exp) -> exp

val P_2 : exp -> env -> ((exp -> ((exp -> (exp -> exp) -> exp) -> exp) -> exp) -> exp) -> exp

val P_3 : exp -> env -> ((exp -> ((exp -> ((exp -> (exp -> exp) -> exp) -> exp) -> exp) -> exp) -> exp) -> exp) -> exp

val Psi_0 : exp -> exp

val Psi_1 : exp -> exp -> (exp -> exp) -> exp

val Psi_2 : exp -> exp -> ((exp -> (exp -> exp) -> exp) -> exp) -> exp

exception CPS_Overflow of int

val t_plotkin : exp -> exp

end

signature CPST_FISCHER =

sig

val F_0 : exp -> env -> (exp -> exp) -> exp

val F_1 : exp -> env -> (((exp -> exp) -> exp) -> exp) -> exp

val F_2 : exp -> env -> (((((exp -> exp) -> exp) -> exp) -> exp) -> exp) -> exp

val F_3 : exp -> env -> (((((((exp -> exp) -> exp) -> exp) -> exp) -> exp) -> exp) -> exp) -> exp

val Phi_0 : exp -> exp

val Phi_1 : exp -> (exp -> exp) -> exp

val Phi_2 : exp -> (((exp -> exp) -> exp) -> exp) -> exp

exception CPS_Overflow of int

val t_fischer : exp -> exp

end

Figure 3: Signatures of the ML implementations of Figures 1 (Plotkin) and 2 (Fischer)

9

[8] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic Com-
putation, 6(3/4):259–288, 1993. <http://www.brics.dk/~hosc/vol06/
03-fischer.html> Earlier version available in the proceedings of an ACM
Conference on Proving Assertions about Programs, SIGPLAN Notices, Vol. 7,
No. 1, January 1972.

[9] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237–247,
Albuquerque, New Mexico, June 1993. ACM Press.

[10] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. The MIT Press and McGraw-Hill, 1991.

[11] John Hannan and Patrick Hicks. Higher-order unCurrying. Higher-Order
and Symbolic Computation, 13(3):179–218, 2000.

[12] John Hatcliff. The Structure of Continuation-Passing Styles. PhD thesis, De-
partment of Computing and Information Sciences, Kansas State University,
Manhattan, Kansas, June 1994.

[13] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages 458–471,
Portland, Oregon, January 1994. ACM Press.

[14] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin,
and Norman Adams. Orbit: An optimizing compiler for Scheme. In Proceed-
ings of the ACM SIGPLAN’86 Symposium on Compiler Construction, pages
219–233, Palo Alto, California, June 1986. ACM Press.

[15] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In
Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on Lisp
and Functional Programming, LISP Pointers, Vol. VII, No. 3, pages 227–238,
Orlando, Florida, June 1994. ACM Press.

[16] Eugenio Moggi. Notions of computation and monads. Information and Com-
putation, 93:55–92, 1991.

[17] Lasse R. Nielsen. A study of defunctionalization and continuation-passing
style. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Den-
mark, July 2001. BRICS DS-01-7.

[18] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages,
volume 34 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1992.

[19] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975.

10

[20] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Com-
putation, 6(3/4):233–247, 1993.

[21] Amr Sabry. The Formal Relationship between Direct and Continuation-
Passing Style Optimizing Compilers: A Synthesis of Two Paradigms. PhD
thesis, Computer Science Department, Rice University, Houston, Texas, Au-
gust 1994. Technical report 94-242.

[22] Amr Sabry and Matthias Felleisen. Reasoning about programs in continu-
ation-passing style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

[23] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-CS-91-145.

[24] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978. Technical report AI-TR-474.

[25] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, Edinburgh, Scotland, 1997. ECS-LFCS-97-
376.

[26] Christopher P. Wadsworth. Continuations revisited. Higher-Order and Sym-
bolic Computation, 13(1/2):131–133, 2000.

[27] Mitchell Wand. Correctness of procedure representations in higher-order as-
sembly language. In Stephen Brookes, Michael Main, Austin Melton, Michael
Mislove, and David Schmidt, editors, Proceedings of the 7th International
Conference on Mathematical Foundations of Programming Semantics, num-
ber 598 in Lecture Notes in Computer Science, pages 294–311, Pittsburgh,
Pennsylvania, March 1991. Springer-Verlag.

11

Recent BRICS Report Series Publications

RS-04-39 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2004. ii+11 pp. Superseedes an article
to appear in Information Processing Lettersand BRICS report
RS-00-35.

RS-04-38 Olin Shivers and Mitchell Wand. Bottom-Upβ-Substitution:
Uplinks andλ-DAGs. December 2004.

RS-04-37 Jørgen Iversen and Peter D. Mosses.Constructive Action Se-
mantics for Core ML. December 2004. 68 pp. To appear in a
specialLanguage Definitions and Tool Generationissue of the
journal IEE Proceedings Software.

RS-04-36 Mark van den Brand, Jørgen Iversen, and Peter D. Mosses.
An Action Environment. December 2004. 27 pp. Appears in
Hedin and Van Wyk, editors, Fourth ACM SIGPLAN Workshop
on Language Descriptions, Tools and Applications, LDTA ’04,
2004, pages 149–168.

RS-04-35 Jørgen Iversen.Type Checking Semantic Functions in ASDF.
December 2004.

RS-04-34 Anders Møller and Michael I. Schwartzbach. The Design
Space of Type Checkers for XML Transformation Languages.
December 2004. 21 pp. Appears in Eiter and Libkin, editors,
Database Theory: 10th International Conference, ICDT ’05
Proceedings, LNCS 3363, 2005, pages 17–36.

RS-04-33 Aske Simon Christensen, Christian Kirkegaard, and Anders
Møller. A Runtime System for XML Transformations in Java.
December 2004. 15 pp. Appears in Bellahsene, Milo, Rys, Suciu
and Unland, editors,Database and XML Technologies: Second
International XML Database Symposium, XSym ’04 Proceed-
ings, LNCS 3186, 2004, pages 143–157. Supersedes the earlier
BRICS report RS-03-29.

RS-04-32 Philipp Gerhardy. A Quantitative Version of Kirk’s Fixed Point
Theorem for Asymptotic Contractions. December 2004. 9 pp.

RS-04-31 Philipp Gerhardy and Ulrich Kohlenbach. Strongly Uniform
Bounds from Semi-Constructive Proofs. December 2004. 31 pp.

