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between Call-by-Need Evaluators

and Lazy Abstract Machines ∗

Mads Sig Ager, Olivier Danvy, and Jan Midtgaard
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Department of Computer Science
University of Aarhus‡

February 2004

Abstract

We bridge the gap between compositional evaluators and abstract ma-
chines for the lambda-calculus, using closure conversion, transformation
into continuation-passing style, and defunctionalization of continuations.
This article is a followup of our article at PPDP 2003, where we consider
call by name and call by value. Here, however, we consider call by need.

We derive a lazy abstract machine from an ordinary call-by-need eval-
uator that threads a heap of updatable cells. In this resulting abstract
machine, the continuation fragment for updating a heap cell naturally
appears as an ‘update marker’, an implementation technique that was in-
vented for the Three Instruction Machine and subsequently used to con-
struct lazy variants of Krivine’s abstract machine. Tuning the evaluator
leads to other implementation techniques such as unboxed values. The
correctness of the resulting abstract machines is a corollary of the correct-
ness of the original evaluators and of the program transformations used
in the derivation.

∗To appear in Information Processing Letters (extended version).
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {mads,danvy,jmi}@brics.dk
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1 Background and introduction

In previous work [1], we reported a simple derivation that makes it possible to
derive Krivine’s machine from an ordinary call-by-name evaluator and Felleisen
et al.’s CEK machine from an ordinary call-by-value evaluator, and to con-
struct evaluators that correspond to Landin’s SECD machine, Hannan and
Miller’s CLS machine, Schmidt’s VEC machine, and Curien et al.’s Categor-
ical Abstract Machine. This derivation consists of three successive off-the-shelf
program transformations: closure conversion, transformation into continuation-
passing style (CPS), and Reynolds’s defunctionalization. By closure-converting
the evaluator, its expressible, denotable, and storable values are made first or-
der. By transforming it into continuation-passing style (CPS), its flow of control
is made manifest as a continuation. By defunctionalizing this continuation, the
flow of control is materialized as a first-order data structure. The result is a
transition function, i.e., an abstract machine. We are not aware of any other
derivation that accounts for independently designed evaluators and abstract
machines, even though closure conversion, CPS transformation, and defunc-
tionalization are each far from being new and their combination can be found,
e.g., in the textbook Essentials of Programming Languages [17, 18].

The derivation also makes it possible to map refinements and variations
from an evaluator to the corresponding abstract machine. For example, one
can derive arbitrarily many “new” abstract machines by inlining monads in an
evaluator expressed in Moggi’s computational meta-language [2]. One can also
reflect refinements and variations from an abstract machine to the correspond-
ing evaluator. For example, the optimization leading to a properly tail-recursive
SECD machine is not specific to abstract machines; it has a natural counter-
part in the corresponding evaluator [10]. More generally, one can intervene at
any point in the derivation to interject a concept and derive the corresponding
evaluator and abstract machine.

So far, we have only considered call by name and call by value. In the present
work, we consider call by need and we derive a lazy abstract machine from a
call-by-need evaluator. We then outline possible variants, review related work,
and conclude. This article can be read independently of our earlier work.

2 From evaluator to abstract machine

We start from a call-by-name evaluator for the λ-calculus, written in Standard
ML [30]. To make it follow call by need [19, 23, 42], we thread a heap of
updatable cells (Section 2.2). Threading this heap is akin to inlining a state
monad [2]. Using updatable cells to implement call by need is traditional [3,
page 333] [36, page 176] [43, page 81]. We then closure-convert the evaluator
(Section 2.3), CPS-transform it (Section 2.4), and defunctionalize the contin-
uations (Section 2.5). The result is the transition functions of a lazy abstract
machine (Section 2.6).
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2.1 A compositional evaluator

Our starting point is a call-by-name, higher-order, and compositional evaluator
for the λ-calculus. We represent λ-terms as elements of the following inductive
data type. A program is a closed term.

datatype term = IND of int (* lexical offset / de Bruijn index *)

| ABS of term

| APP of term * term

The evaluator is defined recursively over the structure of terms. It is com-
positional in the sense of denotational semantics because it defines the meaning
of a term as a composition of the meaning of its parts. It is also higher-order
because the expval and denval data types contain functions. An environment
is represented as a list of values. The function List.nth returns the element at
a given index in an environment. A program is evaluated in an empty environ-
ment.

structure Eval0

= struct

datatype expval = FUN of denval -> expval

and denval = THUNK of unit -> expval

type env = denval list

(* eval : term * env -> expval *)

fun eval (IND n, e)

= let val (THUNK u) = List.nth (e, n)

in u ()

end

| eval (ABS t, e)

= FUN (fn v => eval (t, v :: e))

| eval (APP (t0, t1), e)

= let val (FUN f) = eval (t0, e)

in f (THUNK (fn () => eval (t1, e)))

end

(* main : term -> expval *)

fun main t

= eval (t, nil)

end

As identified by Reynolds in his seminal article on definitional interpreters [38],
a direct-style evaluator inherits the evaluation order of its meta-language. Since
the meta-language is ML, a naive direct-style evaluator would entail call by
value. In order to model call by name, we have used thunks [22]. In the next
section, we model call-by-need evaluation by threading a heap of updatable cells
in the evaluator.
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2.2 Representing call by need by threading a heap of up-
datable cells

In order to model call-by-need evaluation, we introduce a heap structure with
three operations:

• Heap.allocate stores a given value in a fresh heap cell and returns the
location of this cell;

• Heap.dereference fetches the value stored in a given heap cell; and

• Heap.update updates a given heap cell with a given value.

We thread a heap through the evaluator. The evaluator uses the heap to
store computed values and delayed computations. Variables now denote loca-
tions of cells in the heap. Evaluation of a variable bound to the location of a
delayed computation forces this computation and updates the heap cell with the
computed value. Evaluation of a variable bound to the location of a computed
value immediately yields that value. Evaluation of an abstraction yields a value,
which is a function expecting a heap and the location of its argument in that
heap. For an application, a delayed computation representing the argument is
allocated in the heap, the operator is evaluated, and both the location of the
delayed argument and the heap are passed to the resulting function.

structure Eval1

= struct

type env = Heap.location list

datatype expval = FUN of Heap.location * heap -> expval * heap

and stoval = DELAYED of heap -> expval * heap

| COMPUTED of expval

withtype heap = stoval Heap.heap

(* eval : term * env * heap -> expval * heap *)

fun eval (IND n, e, h)

= let val l = List.nth (e, n)

in case Heap.dereference (h, l)

of (DELAYED u)

=> let val (v, h’) = u h

val h’’ = Heap.update (h’, l, COMPUTED v)

in (v, h’’)

end

| (COMPUTED v)

=> (v, h)

end

| eval (ABS t, e, h)

= (FUN (fn (l, h) => eval (t, l :: e, h)), h)

5



| eval (APP (t0, t1), e, h)

= let val (h’, l)

= Heap.allocate (h, DELAYED (fn h => eval (t1, e, h)))

val (FUN f, h’’) = eval (t0, e, h’)

in f (l, h’’)

end

(* main : term -> expval * heap *)

fun main t

= eval (t, nil, Heap.empty)

end

This call-by-need evaluator, like the one in Eval0, is compositional. It is
also higher-order because of its storable values stoval and its expressible values
expval. In the next section, we make it first order by defunctionalizing stoval

and expval, as first suggested by Landin and Reynolds [27, 38].

2.3 Representing functions with closures

In Eval1, the inhabitants of the function space in expval are all instances of
the λ-abstraction fn (l, h) => eval (t, l :: e, h) used in the meaning of an
abstraction. Similarly, the inhabitants of the function space in stoval are all
instances of the λ-abstraction fn h => eval (t1, e, h) used in the meaning of
an application. In order to make the evaluator first order, we closure convert
(i.e., we defunctionalize) these function spaces into tuples holding the values of
the free variables of the corresponding λ-abstractions [13, 27, 38].

structure Eval2

= struct

type env = Heap.location list

datatype expval = CLO of term * env

datatype stoval = DELAYED of term * env

| COMPUTED of expval

type heap = stoval Heap.heap

(* eval : term * env * heap -> expval * heap *)

fun eval (IND n, e, h)

= let val l = List.nth (e, n)

in case Heap.dereference (h, l)

of (DELAYED (t, e’))

=> let val (v, h’) = eval (t, e’, h)

val h’’ = Heap.update (h’, l, COMPUTED v)

in (v, h’’)

end

| (COMPUTED v)

=> (v, h)

end
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| eval (ABS t, e, h)

= (CLO (t, e), h)

| eval (APP (t0, t1), e, h)

= let val (h’, l) = Heap.allocate (h, DELAYED (t1, e))

val (CLO (t0’, e’), h’’) = eval (t0, e, h’)

in eval (t0’, l :: e’, h’’)

end

(* main : term -> expval * heap *)

fun main t

= eval (t, nil, Heap.empty)

end

As a corollary of the correctness of defunctionalization [5, 31], this closure-
converted evaluator is equivalent to the evaluator in Eval1, in the sense that
Eval1.main and Eval2.main either both diverge or both converge on the same
input; when they converge, Eval2.main yields the closure-converted counterpart
of the result of Eval1.main. In particular, defunctionalizing expressible values
and storable values does not change the call-by-need nature of storable values.

After closure conversion, the evaluator is no longer compositional, even
though it is still recursive. In the next section, we make it tail recursive by
transforming it into continuation-passing style [11, 35, 41].

2.4 Representing control with continuations

We CPS transform the evaluator. The auxiliary functions (for the environment
and for the heap) are atomic and therefore we leave them in direct style [12].

structure Eval3

= struct

type env = Heap.location list

datatype expval = CLO of term * env

datatype stoval = DELAYED of term * env

| COMPUTED of expval

type heap = stoval Heap.heap

(* eval : term * env * heap * (expval * heap -> ’a) -> ’a *)

fun eval (IND n, e, h, k)

= let val l = List.nth (e, n)

in case Heap.dereference (h, l)

of (DELAYED (t, e’))

=> eval (t, e’, h,

fn (v, h’)

=> let val h’’

= Heap.update (h’, l, COMPUTED v)

in k (v, h’’)

end)
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| (COMPUTED v)

=> k (v, h)

end

| eval (ABS t, e, h, k)

= k (CLO (t, e), h)

| eval (APP (t0, t1), e, h, k)

= let val (h’, l) = Heap.allocate (h, DELAYED (t1, e))

in eval (t0, e, h’,

fn (CLO (t0’, e’), h’’) => eval (t0’, l :: e’, h’’, k))

end

(* main : term -> expval * heap *)

fun main t

= eval (t, nil, Heap.empty, fn (v, h) => (v, h))

end

As a corollary of the correctness of the CPS transformation [35], this CPS-
transformed evaluator is equivalent to the evaluator in Eval2, in the sense that
Eval2.main and Eval3.main either both diverge or both converge on the same
input; when they converge, they yield first-order values that are isomorphic.
In particular, CPS transforming the evaluator does not change the call-by-need
nature of storable values.

After CPS transformation, the evaluator is higher order because of the con-
tinuations. In the next section, we make it first order by defunctionalizing
them [13, 38].

2.5 Representing continuations using defunctionalization

In Eval3, the function space of continuations is inhabited by instances of three
λ-abstractions: one with no free variables in the definition of main (the initial
continuation), one with two free variables in the meaning of a variable, and one
with two free variables in the meaning of an application. Defunctionalizing the
continuations amounts to introducing a data type cont with three summands
and defining the corresponding apply function apply cont. Each summand holds
the values of the free variables of the corresponding λ-abstraction.

structure Eval4

= struct

type env = Heap.location list

datatype expval = CLO of term * env

datatype stoval = DELAYED of term * env

| COMPUTED of expval

datatype cont = CONT0

| CONT1 of Heap.location * cont

| CONT2 of Heap.location * cont
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type heap = stoval Heap.heap

(* eval : term * env * heap * cont -> expval * heap *)

fun eval (IND n, e, h, k)

= let val l = List.nth (e, n)

in case Heap.dereference (h, l)

of (DELAYED (t, e’))

=> eval (t, e’, h, CONT1 (l, k))

| (COMPUTED v)

=> apply_cont (k, v, h)

end

| eval (ABS t, e, h, k)

= apply_cont (k, CLO (t, e), h)

| eval (APP (t0, t1), e, h, k)

= let val (h’, l) = Heap.allocate (h, DELAYED (t1, e))

in eval (t0, e, h’, CONT2 (l, k))

end

(* apply_cont : cont * expval * heap -> expval * heap *)

and apply_cont (CONT0, v, h)

= (v, h)

| apply_cont (CONT1 (l, k), v, h)

= let val h’ = Heap.update (h, l, COMPUTED v)

in apply_cont (k, v, h’)

end

| apply_cont (CONT2 (l, k), CLO (t, e), h)

= eval (t, l :: e, h, k)

(* main : term -> expval * heap *)

fun main t

= eval (t, nil, Heap.empty, CONT0)

end

As a corollary of the correctness of defunctionalization [5, 31], this defunc-
tionalized evaluator is equivalent to the evaluator in Eval3, in the sense that
Eval3.main and Eval4.main either both diverge or both converge on the same
input; when they converge, they yield first-order values that are isomorphic. In
particular, defunctionalizing the continuations of the evaluator does not change
the call-by-need nature of the storable values.

This evaluator uses two transition functions. It implements an abstract
machine where the cont datatype elements are evaluation contexts. The CONT1

evaluation context acts as an ‘update marker’ in the sense of Fairbairn and
Wray’s Three Instruction Machine [15].

The evaluation contexts can be given more meaningful names than CONT0,
CONT1, and CONT2. We keep these names to stress that the evaluation contexts
are not invented but appear naturally through the derivation as defunctionalized
continuations.
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2.6 A lazy abstract machine

In Eval4, the cont data type is isomorphic to the data type of lists containing
two kinds of heap locations. Representing cont as such a list (used as a single-
threaded stack), we obtain the following stack-based abstract machine. The
machine consists of two mutually recursive transition functions performing ele-
mentary state transitions. The first transition function operates on quadruples
consisting of a term t, an environment e (a list of denotable values, i.e., of heap
locations), a heap h mapping locations ` to storable values (tagged with D for
delayed or C for computed), and a stack k of evaluation contexts consisting of
heap locations tagged with C1 (corresponding to CONT1) and C2 (corresponding
to CONT2). The second transition function operates on triples consisting of a
stack, an expressible value, and a heap.

• Source syntax: t ::= n | λt | t0 t1

• Expressible values (closures): v ::= [t, e]

• Storable values: w ::= D(t, e) | C(v)

• Initial transition, transition rules, and final transition:

t ⇒init 〈t, nil , Heap.empty , nil〉
〈n, e, h, k〉 ⇒eval 〈t, e′, h, (C1 `) :: k〉

if List .nth(e, n) = `

and Heap.dereference(h, `) = D(t, e′)

〈n, e, h, k〉 ⇒eval 〈k, v, h〉
if List .nth(e, n) = `

and Heap.dereference(h, `) = C(v)

〈λt, e, h, k〉 ⇒eval 〈k, [t, e], h〉
〈t0 t1, e, h, k〉 ⇒eval 〈t0, e, h′, (C2 `) :: k〉

where Heap.allocate(h, D(t1, e)) = (h′, `)

〈(C1 `) :: k, v, h〉 ⇒apply 〈k, v, h′〉
where Heap.update(h, `, C(v)) = h′

〈(C2 `) :: k, [t, e], h〉 ⇒apply 〈t, ` :: e, h, k〉
〈nil , v, h〉 ⇒final 〈v, h〉

This abstract machine is in one-to-one correspondence with the evaluator of
Section 2.5. It is also equivalent to the evaluator of Section 2.2, since it was de-
rived using meaning-preserving transformations that make the evaluation steps
explicit without changing the call-by-need nature of evaluation. We recognize
it as a lazy and properly tail-recursive variant of Krivine’s machine [9, 26]: (the
locations of) arguments are pushed on the stack and functions are directly en-
tered and find (the locations of) their arguments on the stack. In particular, C1

acts as the update marker of the Three Instructions Machine [15].
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3 Variants and extensions

In Section 2.2, the order of operations in Eval1 can be changed and Eval1 can
be optimized by fold-unfold transformation [24]:

(a) In the application branch of the evaluator, the order of the heap alloca-
tion and the evaluation of the operator can be swapped. In the resulting
abstract machine, the CONT2 evaluation context holds the argument term
and the environment and the heap allocation takes place in the apply
transition function.

(b) If the operand of an application is a variable, we can look it up directly,
thereby avoiding the construction of space-leaky chains of thunks. (Ac-
tually, this optimization is the compilation model of call by name in Al-
gol 60 for identifiers occurring as actual parameters [37, Section 2.5.4.10,
pages 109-110].) In terms of the evaluator of Section 2.1, this optimization
corresponds to η-reducing a thunk.

(c) If the operand of an application is a λ-abstraction, we can store the cor-
responding closure as a computed value rather than as a delayed compu-
tation. Alternatively we can extend the domain of denotable values with
unboxed values and pass the closure directly to the called function.

Putting (b) and (c) together guarantees that a thunk is only used to delay the
evaluation of an application. We can exploit this invariant with a specialized
version of eval for applications, to minimize the number of structural tests over
the source syntax. The two versions of eval are mutually (tail-)recursive.

Each of these variants gives rise to an abstract machine. The structure
of each of these abstract machines reflects the structure of the corresponding
evaluator. For example, the two mutually (tail-)recursive versions of eval give
rise to two ⇒eval transition functions.

Finally, we handle language extensions by extending the original evaluator
and deriving the corresponding abstract machine.

4 Related work

Designing abstract machines is a favorite among functional programmers [14].
On the one hand, few abstract machines are actually derived with meaning-
preserving steps, and on the other hand, few abstract machines are invented
from scratch. Instead, most abstract machines are inspired by one formal system
or another and they are subsequently proved to correctly implement a given
evaluation strategy [8, 9, 20, 21, 26].

Constructing call-by-need abstract machines for the λ-calculus has tradi-
tionally been done by constructing call-by-name abstract machines for the λ-
calculus, and then introducing an update mechanism at the machine level. For
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example, Fairbairn and Wray invented update markers for the Three Instruc-
tion Machine to make it lazy, and this mechanism was later used by Crégut and
Sestoft to construct lazy variants of Krivine’s abstract machine [9, 15, 39].

A forerunner of our work is Sestoft’s derivation of a lazy abstract machine
from Launchbury’s natural semantics for lazy evaluation [28, 40]. Sestoft starts
from a natural semantics whereas we start from a compositional environment-
based evaluator. He considers λ-terms with recursive bindings whereas we only
consider λ-terms here. He proceeds in several intuitive but non-standard steps,
and therefore needs to prove the correctness of each intermediate result, whereas
we rely on the well-established correctness of each of the intermediate transfor-
mations. First, he introduces a stack containing unevaluated arguments and
update markers, whereas we mechanically obtain this stack as a defunctional-
ized continuation in the sense of Reynolds. Second, he introduces environments
and closures, whereas we start from an environment-based evaluator which we
closure convert. Third, he introduces variable indices, whereas we start from ab-
stract syntax with de Bruijn indices (compiling names into lexical offsets could
be done at any point of our derivation). Sestoft then extends the source language
and repeats the derivation, obtaining extended versions of his abstract machine,
and so do we for language extensions. Finally, he optimizes his abstract ma-
chines into several variants, whereas to a non-trivial extent, we maintain the
correspondence between optimized evaluators and abstract machines (for exam-
ple, we would obtain environment trimming by flat closure conversion instead
of by deep closure conversion). More generally, Sestoft concentrates on deriv-
ing one particular abstract machine out of one natural semantics, whereas the
present article is part of a general investigation of a correspondence between
evaluators and abstract machines [1, 2, 6, 7, 10].

Friedman, Ghuloum, Siek and Winebarger consider optimizations of a lazy
Krivine machine [16]. Their starting point is a machine that corresponds to the
evaluator described in Variant (a) of Section 3. To optimize this machine, they
use the classic optimization from Variant (b) in Section 3, and storable values
are accessed via an extra indirection. This extra indirection makes it possible
to avoid building lists of update markers on the stack, thereby eliminating se-
quences of updates of multiple heap locations with the same value. Instead, the
value can be stored in only one location and that location can be shared. Fried-
man, Ghuloum, Siek and Winebarger prove the correctness of these machines
and measure their effectiveness compared to Sestoft’s machine.

Josephs gave a continuation semantics for lazy functional languages [25].
The CPS-transformed evaluator in Section 2.4 closely corresponds to this deno-
tational semantics.

Ariola, Felleisen, Maraist, Odersky, and Wadler have developed a call-by-
need lambda calculus that models call by need syntactically [4]. They deliber-
ately do not use a heap and assignments to model call-by-need evaluation and
their machine is therefore very different from the one derived here.

Besides environment-based machines [29, 33], a wealth of machines based
on graph reduction also exist [32, 34]. They illustrate considerable ingenuity
and cleverness. A byproduct of our research program is to determine how much
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of this cleverness is intrinsic to abstract machines per se and how much can
be accounted for as a refined evaluation function. The functional correspon-
dence can also provide guidelines for constructing complex abstract machines.
For example, along the lines described in the present article, we can derive a
lazy abstract machine handling arbitrarily complex computational effects—e.g.,
stack inspection—given a call-by-need evaluator equipped with the correspond-
ing monad [2].

5 Conclusion and issues

We have presented a derivation of a lazy abstract machine from a call-by-
need evaluator for the λ-calculus. The derivation originates in our previous
work [1, 10]. It consists of three successive program transformations: closure
conversion, CPS transformation, and defunctionalization. The correctness of the
resulting abstract machine is thus a corollary of the correctness of the original
evaluator and of the program transformations. The program transformations
make evaluation steps explicit and do not change the call-by-need nature of
evaluation.

In our previous work, we illustrated the correspondence between a num-
ber of evaluators and a number of abstract machines for the λ-calculus, and
we showed how some abstract-machine features originate either in the corre-
sponding evaluator or as an artefact of the derivation (e.g., the control stack
being a defunctionalized continuation). The present work shows that the cor-
respondence scales from call by value and call by name to call by need. It
illustrates the correspondence between a number of call-by-need evaluators and
a number of lazy abstract machines, and it shows how some abstract-machine
features originate either in the corresponding evaluator—e.g., unboxed values,
or as an artefact of the derivation—e.g., update markers. As a byproduct, one
can now straightforwardly construct a range of lazy abstract machines, includ-
ing lazy variants of Krivine’s machine, Landin’s SECD machine, Hannan and
Miller’s CLS machine, Schmidt’s VEC machine, and Curien et al.’s Categorical
Abstract Machine out of the corresponding call-by-need evaluators.

Acknowledgments: We are grateful to the anonymous referees and to Julia
Lawall and Peter Sestoft for their comments. This work is supported by the ES-
PRIT Working Group APPSEM II (http://www.appsem.org) and by the Danish
Natural Science Research Council, Grant no. 21-03-0545.
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