
BRICS
Basic Research in Computer Science

A Functional Correspondence between
Monadic Evaluators and
Abstract Machines for
Languages with Computational Effects

Mads Sig Ager
Olivier Danvy
Jan Midtgaard

BRICS Report Series RS-04-28

ISSN 0909-0878 December 2004

B
R

IC
S

R
S

-04-28
A

ger
etal.:

F
unctionalC

orrespondence
betw

een
M

onadic
E

valuators
and

A
bstractM

achines

Copyright c© 2004, Mads Sig Ager & Olivier Danvy & Jan
Midtgaard.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/28/

A Functional Correspondence between

Monadic Evaluators and Abstract Machines

for Languages with Computational Effects∗

Mads Sig Ager, Olivier Danvy, and Jan Midtgaard

BRICS†

Department of Computer Science
University of Aarhus‡

December 2004

Abstract

We extend our correspondence between evaluators and abstract machines
from the pure setting of the λ-calculus to the impure setting of the com-
putational λ-calculus. We show how to derive new abstract machines from
monadic evaluators for the computational λ-calculus. Starting from (1) a
generic evaluator parameterized by a monad and (2) a monad specifying a
computational effect, we inline the components of the monad in the generic
evaluator to obtain an evaluator written in a style that is specific to this
computational effect. We then derive the corresponding abstract machine
by closure-converting, CPS-transforming, and defunctionalizing this specific
evaluator. We illustrate the construction first with the identity monad, ob-
taining the CEK machine, and then with a lifting monad, a state monad,
and with a lifted state monad, obtaining variants of the CEK machine with
error handling, state and a combination of error handling and state.

In addition, we characterize the tail-recursive stack inspection presented
by Clements and Felleisen as a lifted state monad. This enables us to com-
bine this stack-inspection monad with other monads and to construct ab-
stract machines for languages with properly tail-recursive stack inspection
and other computational effects. The construction scales to other monads—
including one more properly dedicated to stack inspection than the lifted
state monad—and other monadic evaluators.

∗Extended version of an article to appear in TCS.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {mads,danvy,jmi}@brics.dk

1

Contents

1 Introduction 4
1.1 Example: the factorial function . 4
1.2 The functional correspondence . 6

2 A call-by-value monadic evaluator in ML 7

3 On using ML as a metalanguage 9

4 From the identity monad to an abstract machine 10
4.1 The identity monad . 10
4.2 Inlining the monad in the monadic evaluator 10
4.3 Closure conversion . 11
4.4 CPS transformation . 12
4.5 Defunctionalization . 12
4.6 The CEK machine . 13
4.7 Summary and conclusion . 14

5 From a lifting monad to an abstract machine 14
5.1 A lifting monad . 14
5.2 A CEK machine with error handling 15
5.3 Summary and conclusion . 16

6 From a state monad to an abstract machine 16
6.1 A state monad . 16
6.2 A CEK machine with state . 17
6.3 Summary and conclusion . 18

7 From a lifted state monad to an abstract machine 18
7.1 A lifted state monad . 18
7.2 A CEK machine with error handling and state 20
7.3 Summary and conclusion . 20

8 Stack inspection as a lifted state monad 21

9 A dedicated monad for stack inspection 26

10 Related work 26

11 Conclusion 27

A Propagating vs. stopping 28

2

B From an exception monad to an abstract machine 30
B.1 An exception monad . 30
B.2 A CEK machine with exceptions 31
B.3 An alternative implementation of exceptions 32
B.4 Summary and conclusion . 32

C Combining state and exceptions 33
C.1 From a combined state and exception monad to an abstract ma-

chine (version 1) . 33
C.2 From a combined state and exception monad to an abstract ma-

chine (version 2) . 35
C.3 Summary and conclusion . 37

D Combining stack inspection and exceptions 37
D.1 A combined stack-inspection and exception monad 37
D.2 An abstract machine for stack inspection and exceptions 39
D.3 Summary and conclusion . 40

3

1 Introduction

Diehl, Hartel, and Sestoft’s overview of abstract machines for programming-
language implementation [14] concluded on the need to develop a theory of ab-
stract machines. In previous work [3, 9], we have attempted to contribute to this
theory by identifying a correspondence between interpreters (i.e., evaluation func-
tions in the sense of denotational semantics) and abstract machines (i.e., transi-
tion systems in the sense of operational semantics). The correspondence builds on
the observation that defunctionalized continuation-passing evaluators are abstract
machines. One can therefore obtain an abstract machine, i.e., a state-transition
system [31], by CPS-transforming and defunctionalizing an evaluator. More gen-
erally, any recursive function that is defined over an inductive data type can be
turned into a transition system by CPS transformation and defunctionalization.
Let us first illustrate the correspondence with the factorial function and the cor-
responding transition system.

1.1 Example: the factorial function

Here is the factorial function, expressed in Standard ML [28]:

(* main0 : int -> int *)

fun main0 n

= fac0 n

(* fac0 : int -> int *)

and fac0 0

= 1

| fac0 n

= n * (fac0 (n - 1))

The definition above is in direct style. We transform it into continuation-passing
style (CPS) [10, 30, 36] by naming each intermediate result, sequentializing their
computation, and introducing an extra functional argument, the continuation:

(* main1 : int -> int *)

fun main1 n

= fac1 (n, fn a => a)

(* fac1 : int * (int -> int) -> int *)

and fac1 (0, k)

= k 1

| fac1 (n, k)

= fac1 (n - 1, fn v => k (n * v))

In this CPS program, as in all CPS programs, all calls are tail calls and all
subcomputations are elementary (i.e., they cannot diverge).

Defunctionalizing the continuation amounts to changing its representation and
replacing it by a data type and the corresponding apply function [11,34]. We enu-
merate all the constructors (i.e., lambda-abstractions) that give rise to inhabitants
of this function space. There are two such constructors: the initial continuation

4

in main and the continuation in the induction case of fac. These two constructors
are consumed when the continuation is applied, which happens in both clauses of
fac—one immediately and the other one in the continuation. The data type rep-
resenting the continuation therefore has two constructors, and the corresponding
apply function has two clauses:

datatype cont = C0

| C1 of int * cont

(* apply_cont : cont * int -> int *)

fun apply_cont (C0, v)

= v

| apply_cont (C1 (n, k), v)

= apply_cont (k, n * v)

The first constructor is nullary (i.e., constant) and the second is binary, reflecting
the number of free variables in the corresponding lambda-abstractions.

In the defunctionalized factorial function, the continuation is constructed using
C0 and C1, and consumed using apply cont:

(* main2 : int -> int *)

fun main2 n

= fac2 (n, C0)

(* fac2 : int * cont -> int *)

and fac2 (0, k)

= apply_cont (k, 1)

| fac2 (n, k)

= fac2 (n - 1, C1 (n, k))

This program is first order because it is defunctionalized. All of its calls are tail
calls and all of its subcomputations are elementary because it is a (defunction-
alized) CPS program. Therefore it is a state-transition system—i.e., an abstract
machine—in the sense of Plotkin [31]: for each function, its actual parameters
define a configuration and each of its clauses defines a transition.

For clarity, we can reformat this transition system in a more traditional way:

• Input (integer): n

• Output (integer): v

• Defunctionalized continuations: k ::= C0 | C1(n, k)

• Initial transition, transition rules (two kinds), and final transition:

n ⇒init 〈n, C0〉
〈0, k〉 ⇒fac 〈k, 1〉
〈n, k〉 ⇒fac 〈n− 1, C1(n, k)〉

〈C1(n, k), v〉 ⇒cont 〈k, n× v〉
〈C0, v〉 ⇒final v

5

1.2 The functional correspondence

This relation between defunctionalized continuation-passing evaluators and ab-
stract machines suggests a functional correspondence between evaluators and ab-
stract machines [3,9]. This correspondence is constructive: to obtain an abstract
machine, we start from a compositional evaluator and

1. make it operate on first-order data by closure-converting its expressible and
denotable values [25, 37];

2. sequentialize evaluation by CPS-transforming it [10,30,36], thereby materi-
alizing its control flow into continuations; and

3. make it operate on first-order control by defunctionalizing these continua-
tions [11, 34].

The correspondence originates in Reynolds’s seminal article “Definitional Inter-
preters for Higher-Order Programming Languages” [34], where all the elements
(closure conversion, CPS transformation, and defunctionalization) are presented
and used. Today, these elements are classical, textbook material [15, 21]. Never-
theless, this correspondence has let us derive Krivine’s machine from a canonical
call-by-name evaluator and Felleisen et al.’s CEK machine from a canonical call-
by-value evaluator. These two machines have been independently developed. To
the best of our knowledge, and with the exception of Felleisen and Friedman’s
initial presentation of the CEK machine [16, Section 2], these two machines have
never been associated with defunctionalization, CPS transformation, and closure
conversion. The correspondence has also let us reveal the evaluators underly-
ing Landin’s SECD machine, Schmidt’s VEC machine, Hannan and Miller’s CLS
machine, and Curien et al.’s Categorical Abstract Machine [3, 9].

We have verified that the correspondence holds for call-by-need evaluators
and lazy abstract machines [4], logic programming [6], imperative programming,
and object-oriented programming, including Featherweight Java and a subset of
Smalltalk. We have also constructed generalizations of Krivine’s machine and of
the CEK machine by starting from normalization functions [2]. The correctness
of the abstract machines (resp. of the evaluators) is a corollary of the correctness
of the evaluators (resp. of the abstract machines) and of the correctness of the
transformations.

In this article, we take a next step by applying the methodology to evaluators
and abstract machines for languages with computational effects [5, 29, 38]. We
consider a generic evaluator parameterized by a monad (Sections 2 and 3). We
then successively consider several monads: the identity monad (Section 4), a lifting
monad (Section 5), a state monad (Section 6), and a lifted state monad (Section 7).
We inline the components of these monads in the generic evaluator, obtaining
specific evaluators. The first one is in direct style, reflecting the computational
effect of the identity monad. The second one is in direct style with error handling,
reflecting the computational effect of the lifting monad. The third and fourth ones
are in state-passing style, reflecting the computational effect of the state monad

6

and of the lifted state monad. We then construct the corresponding abstract
machines by closure-converting, CPS-transforming, and defunctionalizing these
specific evaluators:

generic
monadic evaluator

instantiation

""DD
DD

DD
DD

DD
DD

computational monad

{{ww
ww

www
ww

ww
ww

w

specific evaluator

inlining (⇒ specific style)
closure conversion (⇒ first-order data)
CPS transformation (⇒ sequential evaluation)
defunctionalization (⇒ first-order control)

��
abstract machine

We next turn to the security technique of ‘stack inspection’ [20]. Clements
and Felleisen recently debunked the myth that stack inspection is incompatible
with proper tail recursion [7]. To this end, they presented an abstract machine
implementing stack inspection in a properly tail-recursive way. We characterize
Clements and Felleisen’s stack inspection as a lifted state monad (Section 8). We
then present a monad that accounts for stack inspection more precisely than the
lifted state monad, we review related work, and we conclude.

In appendix we also consider an exception monad (Appendix B), the two pos-
sible monads obtained by combining this exception monad with the state monad
(Appendix C), and a combination of the stack-inspection monad and the excep-
tion monad (Appendix D). We mechanically construct the corresponding abstract
machines.

2 A call-by-value monadic evaluator in ML

As traditional [5,17,38], we specify a monad as a type constructor and two poly-
morphic functions:

signature MONAD

= sig

type ’a monad

val unit : ’a -> ’a monad

val bind : ’a monad * (’a -> ’b monad) -> ’b monad

end

Our source language is the untyped λ-calculus with integer literals:

7

datatype term = LIT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

where identifiers are represented as values of type ide. Programs are closed terms.
The corresponding expressible values are integers and functions:

datatype value = NUM of int

| FUN of value -> value M.monad

for a structure M : MONAD.
Our monadic interpreter uses an environment Env with the following signature:

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : ide * ’a * ’a env -> ’a env

val lookup : ide * ’a env -> ’a

end

Throughout this article e denotes environments and eempty denotes the empty
environment.

The evaluation function is defined by structural induction on terms:

(* eval : term * value Env.env -> value M.monad *)

fun eval (LIT i, e)

= M.unit (NUM i)

| eval (VAR x, e)

= M.unit (Env.lookup (x, e))

| eval (LAM (x, t), e)

= M.unit (FUN (fn v => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)

= M.bind (eval (t0, e),

fn v0 => M.bind (eval (t1, e),

fn v1 => let val (FUN f) = v0

in f v1

end))

Given a program, the main evaluation function calls eval with this term and
the initial environment:

fun main t

= eval (t, env_base)

In actuality, this evaluation function, eval, env base, and value are defined in an
ML functor parameterized with a structure M : MONAD.

Except for the identity monad, each monad comes with operations that need
to be integrated in the source language. Rather than systematically extending

8

the syntax of the source language with these operations, we hold some of them in
the initial environment. For example, rather than having a special form for the
successor function, we define it with a binding in the base environment:

val env_base

= Env.extend ("succ", FUN (fn (NUM i)

=> M.unit (NUM (i + 1))), Env.empty)

3 On using ML as a metalanguage

ML is a Turing-complete, statically typed, call-by-value language with computa-
tional effects:

• ML programs can therefore diverge and to this end, ML comes with a ‘built-
in’ lifting monad to account for divergence. In Section 2, we implicitly make
use of this monad in the codomain of eval: applying eval to a term and an
environment only yields a result if it terminates.

• Compiling the evaluator of Section 2 yields warnings to the effect that pat-
tern matching, in the clause for APP and in the initial environment, is in-
complete. Should we attempt to evaluate a source program that is ill-typed
(e.g., because it applies the successor function to a function instead of to
an integer), a run-time exception would be raised. In that sense, ML also
comes with a ‘built-in’ error monad to account for pattern-matching errors.

In the remainder of this article, we instantiate the evaluator of Section 2 with
monads. We could be pedantic and only consider monads that are layered on top
of two lifting monads—one for pattern-matching errors and one for divergence.
The result would be a notational overkill, and therefore we choose to use ML’s
built-in monads.

For the purpose of our work, we view monads as a factorization device for
writing evaluators, as in Wadler’s tutorial [38]. We symbolically simplify the
monadic evaluator of Section 2 with respect to a given monad (thereby obtaining a
direct-style evaluator out of the identity monad, a lifted evaluator out of the lifting
monad, a state-threading evaluator out of a state monad, a continuation-passing
evaluator out of the continuation monad, an exception-oriented evaluator out of an
exception monad, etc.). Our symbolic simplification undoes Moggi’s factorization
and it is carried out by inlining the definitions of the type constructor, of unit

and bind, and of the monadic operations.
Finally, we follow the functional-programming tradition initiated by Wadler

[38] and we reason equationally over the definitions of unit and bind to verify that
they satisfy the three monadic laws:

• Left unit: bind (unit a, k) = k a

• Right unit: bind (m, unit) = m

• Associativity: bind (m, fn a => bind (k a, h)) = bind (bind (m, k), h)

9

4 From the identity monad to an abstract ma-
chine

We first specify the identity monad and inline its components in the monadic
evaluator of Section 2, obtaining an evaluator in direct style. We then take the
same steps as in our previous work [3]: closure conversion, CPS transformation,
and defunctionalization. The result is Felleisen et al.’s CEK machine [16, 19].

4.1 The identity monad

The identity monad is specified with an identity type constructor and the corre-
sponding two polymorphic functions:

structure Identity_Monad : MONAD

= struct

type ’a monad = ’a

fun unit a

= a

fun bind (m, k)

= k m

end

Proposition 1 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The identity monad is known to be a monad. Alternatively, the monadic
laws can be verified by equational reasoning. �

4.2 Inlining the monad in the monadic evaluator

Inlining the components of the identity monad in the monadic evaluator of Sec-
tion 2 yields an ordinary call-by-value evaluator in direct style where numerals
are mapped to numbers, variables are mapped to their denotation, etc.:

datatype value = NUM of int

| FUN of value -> value

val env_base

= Env.extend ("succ", FUN (fn (NUM i) => (NUM (i + 1))), Env.empty)

(* eval : term * value Env.env -> value *)

fun eval (LIT i, e)

= NUM i

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => eval (t, Env.extend (x, v, e)))

10

| eval (APP (t0, t1), e)

= let val v0 = eval (t0, e)

val v1 = eval (t1, e)

val (FUN f) = v0

in f v1

end

fun main p

= eval (p, env_base)

4.3 Closure conversion

We defunctionalize the function space in the data type of values. There are two
function constructors:

• one in the denotation of lambda-abstractions, which we represent by a clo-
sure, pairing the code of lambda-abstractions together with their lexical
environment, and

• one in the initial environment, which we represent by a specialized construc-
tor SUCC.

We splice these two constructors in the data type of values:

datatype value = NUM of int

| CLO of ide * term * value Env.env

| SUCC

Closures are produced when interpreting lambda-abstractions, and the succes-
sor function is produced in the initial environment. Both are consumed when
interpreting applications. The rest of the evaluator does not change:

val env_base = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * value Env.env -> value *)

fun eval (LIT i, e)

= NUM i

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= CLO (x, t, e)

| eval (APP (t0, t1), e)

= let val v0 = eval (t0, e)

val v1 = eval (t1, e)

in case v0

of (CLO (x, t, e))

=> eval (t, Env.extend (x, v1, e))

| SUCC

=> let val (NUM i) = v1

in NUM (i + 1)

end

end

11

fun main p

= eval (p, env_base)

4.4 CPS transformation

We materialize the control flow of the evaluator using continuations. The data
type of values and the initial environment do not change. The evaluation function
takes an extra parameter, the continuation. Values that used to be returned in
the direct-style evaluator are now passed to the continuation. Intermediate values
that used to be named with a let expression are now named by the parameter of
a new continuation:

(* eval : term * value Env.env * (value -> ’a) -> ’a *)

fun eval (LIT i, e, k)

= k (NUM i)

| eval (VAR x, e, k)

= k (Env.lookup (x, e))

| eval (LAM (x, t), e, k)

= k (CLO (x, t, e))

| eval (APP (t0, t1), e, k)

= eval (t0, e, fn v0 =>

eval (t1, e, fn v1 =>

(case v0

of (CLO (x, t, e))

=> eval (t, Env.extend (x, v1, e), k)

| SUCC

=> let val (NUM i) = v1

in k (NUM (i + 1))

end)))

fun main p

= eval (p, env_base, fn v => v)

The same evaluator is obtained by inlining the components of the continuation
monad in the monadic evaluator of Section 2 and closure-converting the result.

4.5 Defunctionalization

We defunctionalize the function space of continuations. There are three function
constructors:

• one in the initial continuation, which we represent by a constructor STOP,
and

• two in the interpretation of applications, one with t1, e, and k as free vari-
ables, and one with v0 and k as free variables.

12

We represent the function space of continuations with a data type with three
constructors and an apply function interpreting these constructors. As already
noted elsewhere [11,12], the data type of defunctionalized continuations coincides
with the data type of evaluation contexts for the source language [15, 16]:

datatype cont = STOP

| ARG of term * value Env.env * cont

| FUN of value * cont

The data type of values and the initial environment do not change. Continua-
tions that used to be constructed with a function abstraction in the continuation-
passing evaluator are now constructed with STOP, ARG, or FUN. Continuations that
used to be consumed with a function application are now consumed by the dis-
patching function apply cont:

(* eval : term * value Env.env * cont -> value *)

fun eval (LIT i, e, k)

= apply_cont (k, NUM i)

| eval (VAR x, e, k)

= apply_cont (k, Env.lookup (x, e))

| eval (LAM (x, t), e, k)

= apply_cont (k, CLO (x, t, e))

| eval (APP (t0, t1), e, k)

= eval (t0, e, ARG (t1, e, k))

(* apply_cont : cont * value -> value *)

and apply_cont (STOP, v)

= v

| apply_cont (ARG (t1, e, k), v0)

= eval (t1, e, FUN (v0, k))

| apply_cont (FUN (CLO (x, t, e), k), v)

= eval (t, Env.extend (x, v, e), k)

| apply_cont (FUN (SUCC, k), NUM i)

= apply_cont (k, NUM (i + 1))

fun main p

= eval (p, env_base, STOP)

This defunctionalized continuation-passing evaluator is an implementation of the
CEK machine extended with literals [16, 19], which we present next.

4.6 The CEK machine

• Source syntax (terms):

t ::= piq | x | λx.t | t0 t1

• Expressible values (integers, closures, and predefined functions) and evalu-
ation contexts (i.e., defunctionalized continuations):

v ::= i | [x, t, e] | succ

k ::= stop | arg(t, e, k) | fun(v, k)

13

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , stop〉
〈piq, e, k〉 ⇒eval 〈k, i〉
〈x, e, k〉 ⇒eval 〈k, e(x)〉

〈λx.t, e, k〉 ⇒eval 〈k, [x, t, e]〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k)〉

〈arg(t1, e, k), v〉 ⇒cont 〈t1, e, fun(v, k)〉
〈fun([x, t, e], k), v〉 ⇒cont 〈t, e[x 7→ v], k〉

〈fun(succ, k), i〉 ⇒cont 〈k, i + 1〉
〈stop, v〉 ⇒final v

where ebase = eempty [succ 7→ succ]
einit = ebase

4.7 Summary and conclusion

We have presented a series of evaluators and one abstract machine that correspond
to a call-by-value monadic evaluator and the identity monad. The first evaluator
is a traditional, Lisp-like one in direct style. The machine is the CEK machine.
The correctness of the evaluators and of the abstract machine is a corollary of the
correctness of the original monadic evaluator and of the transformations.

5 From a lifting monad to an abstract machine

We specify a lifting monad and inline it in the monadic evaluator, obtaining
a lifted evaluator. Closure converting, CPS-transforming, and defunctionalizing
this lifted evaluator yields a CEK machine with error handling.

5.1 A lifting monad

We consider the lifting monad equipped with an operation for failing:

signature LIFTING_MONAD

= sig

include MONAD

val fail : ’a monad

end

structure Lifting_Monad : LIFTING_MONAD

= struct

datatype ’a lift = LIFT of ’a | BOTTOM

type ’a monad = ’a lift

fun unit a

= LIFT a

14

fun bind (m, k)

= (case m

of (LIFT a)

=> k a

| BOTTOM

=> BOTTOM)

val fail = BOTTOM

end

Proposition 2 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The lifting monad is known to be a monad [29]. Alternatively, the
monadic laws can be verified by equational reasoning. �

We extend the base environment with the function fail:

val env_init

= Env.extend ("fail", FUN (fn _ => fail), env_base)

5.2 A CEK machine with error handling

Inlining the components of the lifting monad in the monadic evaluator of Sec-
tion 2 yields a call-by-value evaluator. As in Section 4, we closure-convert, CPS-
transform, and defunctionalize this inlined evaluator. The result is a version of the
CEK machine with error handling. The source language and evaluation contexts
are as in the CEK machine of Section 4.

• Expressible values (integers, closures, and predefined functions) and results:

v ::= i | [x, t, e] | succ | fail
r ::= lift(v) | bottom

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , stop〉
〈piq, e, k〉 ⇒eval 〈k, lift(i)〉
〈x, e, k〉 ⇒eval 〈k, lift(e(x))〉

〈λx.t, e, k〉 ⇒eval 〈k, lift([x, t, e])〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k)〉

〈arg(t1, e, k), lift(v)〉 ⇒cont 〈t1, e, fun(v, k)〉
〈arg(t1, e, k), bottom〉 ⇒cont 〈k, bottom〉

〈fun([x, t, e], k), lift(v)〉 ⇒cont 〈t, e[x 7→ v], k〉
〈fun(succ, k), lift(i)〉 ⇒cont 〈k, lift(i + 1)〉
〈fun(fail , k), lift(v)〉 ⇒cont 〈k, bottom〉
〈fun(v, k), bottom〉 ⇒cont 〈k, bottom〉

〈stop, r〉 ⇒final r

15

where ebase = eempty [succ 7→ succ]
einit = ebase [fail 7→ fail]

In case of failure, the machine propagates bottom out of the surrounding eval-
uation contexts and yields it as the final result. The machine could be optimized
by re-classifying the fail -transition to be a final transition (i.e., a transition that
directly yields bottom as the result) and by removing all the bottom-propagating
transitions. In the corresponding CPS evaluator, this optimization hinges on the
type isomorphism between the sum-accepting continuation value lift -> ’a and
the pair of continuations (value -> ’a) * (unit -> ’a). This isomorphism en-
ables the optimization from unit -> ’a (i.e., a propagating continuation) to ’a

(i.e., an immediate stop). We illustrate this optimization in Appendix A.

5.3 Summary and conclusion

We have presented a lifting monad and an abstract machine that corresponds
to the call-by-value monadic evaluator and this monad. The resulting machine
is a version of the CEK machine with error handling. The correctness of the
evaluators and of the abstract machine is a corollary of the correctness of the
original monadic evaluator and of the transformations.

6 From a state monad to an abstract machine

We specify a state monad and inline it in the monadic evaluator, obtaining an
evaluator in state-passing style. Closure converting, CPS-transforming, and de-
functionalizing this state-passing evaluator yields a CEK machine with state.

6.1 A state monad

We consider a state monad where the state is, for conciseness, one integer. We
equip this monad with two operations for reading and writing the state:

signature STATE_MONAD

= sig

include MONAD

type storable

type state

val get : storable monad

val set : storable -> storable monad

end

structure State_Monad : STATE_MONAD

= struct

type storable = int

type state = storable

type ’a monad = state -> ’a * state

16

fun unit a

= (fn s => (a, s))

fun bind (m, k)

= (fn s => let val (a, s’) = m s

in k a s’

end)

val get = (fn s => (s, s))

fun set i

= (fn s => (s, i))

end

Proposition 3 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The state monad is known to be a monad [29]. Alternatively, the
monadic laws can be verified by equational reasoning. �

We extend the base environment with two functions get and set:

val env_init

= Env.extend ("set", FUN (fn (NUM i)

=> bind (set i, fn i => unit (NUM i))),

Env.extend ("get", FUN (fn _ => bind (get, fn i => unit (NUM i))),

env_base))

Evaluation starts with an initial state state init : State Monad.state.

6.2 A CEK machine with state

Inlining this state monad in the monadic evaluator of Section 2 and uncurrying
the eval function and the function space in the data type of expressible values
yields a call-by-value evaluator in state-passing style. As in Section 4, we closure-
convert, CPS-transform, and defunctionalize the inlined evaluator. The result is
a CEK machine with state [15]. The source language and evaluation contexts are
as in the CEK machine of Section 4.

• Expressible values (integers, closures, and predefined functions) and results:

v ::= i | [x, t, e] | succ | get | set

r ::= (v, s)

17

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈piq, e, s, k〉 ⇒eval 〈k, (i, s)〉
〈x, e, s, k〉 ⇒eval 〈k, (e(x), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, ([x, t, e], s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈arg(t1, e, k), (v, s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉
〈fun([x, t, e], k), (v, s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉

〈fun(succ, k), (i, s)〉 ⇒cont 〈k, (i + 1, s)〉
〈fun(get, k), (v, s)〉 ⇒cont 〈k, (s, s)〉
〈fun(set, k), (i, s)〉 ⇒cont 〈k, (s, i)〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set]

and sinit is the initial state (e.g., −1).

6.3 Summary and conclusion

We have presented a state monad and an abstract machine that corresponds to
a call-by-value monadic evaluator and this monad. The evaluator obtained by
inlining the components of the state monad is in state-passing style. The machine
is a CEK machine with state. The correctness of the evaluators and of the abstract
machine is a corollary of the correctness of the original monadic evaluator and of
the transformations.

7 From a lifted state monad to an abstract ma-

chine

We specify a lifted state monad and inline its components in the monadic eval-
uator, obtaining an evaluator in state-passing style. Closure converting, CPS-
transforming, and defunctionalizing this state-passing evaluator yields a version
of the CEK machine with error handling and state. This monad and this machine
form a stepping stone towards stack inspection.

7.1 A lifted state monad

We consider a lifted state monad where the state is, for conciseness, one integer.
We equip this monad with three operations for reading and writing the state and
for failing:

18

signature LIFTED_STATE_MONAD

= sig

include MONAD

type storable

type state

val get : storable monad

val set : storable -> storable monad

val fail : ’a monad

end

structure Lifted_State_Monad : LIFTED_STATE_MONAD

= struct

datatype ’a lift = LIFT of ’a | BOTTOM

type storable = int

type state = storable

type ’a monad = state -> (’a * state) lift

fun unit a

= (fn s => LIFT (a, s))

fun bind (m, k)

= (fn s => case m s

of (LIFT (a, s’))

=> k a s’

| BOTTOM

=> BOTTOM)

val get = (fn s => LIFT (s, s))

fun set i

= (fn s => LIFT (s, i))

val fail = (fn s => BOTTOM)

end

Proposition 4 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The lifted state monad is a combination of the lifting monad and of a
state monad, and is known to be a monad [29]. Alternatively, the monadic laws
can be verified by equational reasoning. �

We extend the base environment with three functions get, set, and fail:

val env_init

= Env.extend ("fail", FUN (fn _ => fail),

Env.extend ("set", FUN (fn (NUM i)

=> bind (set i, fn i => unit (NUM i))),

Env.extend ("get", FUN (fn _ => bind (get, fn i => unit (NUM i))),

env_base)))

Evaluation starts with an initial state state init : Lifted State Monad.state.

19

7.2 A CEK machine with error handling and state

Inlining the components of the lifted state monad in the monadic evaluator of
Section 2 and uncurrying the eval function and the function space in the data
type of expressible values yields a call-by-value evaluator in state-passing style. As
in Section 4, we closure-convert, CPS-transform, and defunctionalize this inlined
evaluator. The result is a version of the CEK machine with error handling and
state [15]. The source language and evaluation contexts are as in the CEK machine
of Section 4.

• Expressible values (integers, closures, and predefined functions) and results:

v ::= i | [x, t, e] | succ | get | set | fail
r ::= lift(v, s) | bottom

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈piq, e, s, k〉 ⇒eval 〈k, lift(i, s)〉
〈x, e, s, k〉 ⇒eval 〈k, lift(e(x), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, lift([x, t, e], s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈arg(t1, e, k), lift(v, s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉
〈arg(t1, e, k), bottom〉 ⇒cont 〈k, bottom〉

〈fun([x, t, e], k), lift(v, s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉
〈fun(succ, k), lift(i, s)〉 ⇒cont 〈k, lift(i + 1, s)〉
〈fun(get, k), lift(v, s)〉 ⇒cont 〈k, lift(s, s)〉
〈fun(set, k), lift(i, s)〉 ⇒cont 〈k, lift(s, i)〉
〈fun(fail , k), lift(v, s)〉 ⇒cont 〈k, bottom〉

〈fun(v, k), bottom〉 ⇒cont 〈k, bottom〉
〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set][fail 7→ fail]

and sinit is the initial state.

As in Section 5 the machine could be optimized as illustrated in Appendix A
to stop immediately in case of failure.

7.3 Summary and conclusion

We have presented a lifted state monad and an abstract machine that corresponds
to the call-by-value monadic evaluator and this monad. The evaluator obtained
by inlining the components of the lifted state monad is in state-passing style. The
machine is a version of the CEK machine with state and error handling. The
correctness of the evaluators and of the abstract machine is a corollary of the
correctness of the original monadic evaluator and of the transformations.

20

8 Stack inspection as a lifted state monad

Stack inspection is a security mechanism developed to allow code with different
levels of trust to interact in the same execution environment (e.g., the JVM or the
CLR) [20]. Before execution, the code is annotated with a subset R of a fixed set
of permissions P . For example, trusted code is annotated with all permissions and
untrusted code is only annotated with a subset of permissions. Before accessing
a restricted resource during execution, the call stack is inspected to test that
the required access permissions are available. This test consists of traversing the
entire call stack to ensure that the direct caller and all indirect callers all have
the required permissions to access the resource. Traversing the entire call stack
prevents untrusted code from gaining access to restricted resources by (indirectly)
calling trusted code. Trusted code can prevent inspection of its callers for some
permissions by explicitly granting those permissions. Trusted code can only grant
permissions with which it has been annotated.

Because the entire call stack has to be inspected before accessing resources,
the stack-inspection mechanism seems to be incompatible with global tail-call
optimization. However, Clements and Felleisen have shown that this is not true
and that stack inspection is in fact compatible with global tail-call optimization [7].
Their observation is that the security information of multiple tail calls can be
summarized in a permission table. If each stack frame contains a permission
table, stack frames do not need to be allocated for tail-calls—the permission table
of the current stack frame can be updated instead. This tail-recursive semantics
for stack inspection is similar to tail-call optimization in (dynamically scoped)
Lisp [32]. It is presented in the form of a CESK machine, the CM machine, and
Clements and Felleisen have proved that this machine uses asymptotically as much
space as Clinger’s tail-call optimized CESK machine [8]. In the CM machine, the
call stack is represented as CEK evaluation contexts enriched with a permission
table.

The language of the CM machine is the λ-calculus extended with four con-
structs:

1. R[t], to annotate a term t with a set of permissions R. When executed, the
permissions available are restricted to the permissions in R by making the
complement R = P \ R unavailable; t is then executed with the updated
permissions.

2. grant R in t, to grant a set of permissions R during the evaluation of a term
t. When executed, the permissions R are made available, and t is executed
with the updated permissions.

3. test R then t0 else t1, to branch depending on whether a set of permissions
R is available. When executed, the call stack is inspected using a predicate
called OK, and t0 is executed if the permissions are available; otherwise t1
is executed.

4. fail, to fail due to a security error. When executed, the evaluation is

21

terminated with a security error (and therefore the machine is optimized as
described in Appendix A).

Our starting point is a simplified version of Clements and Felleisen’s CM ma-
chine. Their machine includes a heap and a garbage-collection rule to make it
possible to extend Clinger’s space-complexity analysis to the CM machine. For
simplicity, we leave out the heap and the garbage-collection rule from the ma-
chine, and, without loss of generality (because the source language is untyped),
we omit recursive functions from the source language. Clements and Felleisen’s
source language does not have literals; for simplicity, we do likewise and we omit
literals and the successor function from the source language. Our focus is the
basic stack-inspection mechanism and the features we have omitted from the CM
machine do not interfere with this basic mechanism. The simplified CM machine
is as follows:

• Permissions R ⊆ P and permission tables m ∈ P → {grant ,no} for a fixed
set of permissions P .

• Source syntax (terms):

t ::= x | λx.t | t0 t1 |
R[t] | grant R in t | test R then t0 else t1 | fail

• Expressible values (closures), outcomes, and evaluation contexts:

v ::= [x, t, e]
o ::= v | fail
k ::= stop(m) | arg(t, e, k, m) | fun(v, k, m)

• Initial transition, transition rules (two kinds), and final transitions:

t ⇒init 〈t, eempty , stop(mempty)〉
〈x, e, k〉 ⇒eval 〈k, e(x)〉

〈λx.t, e, k〉 ⇒eval 〈k, [x, t, e]〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k, mempty)〉
〈R[t], e, k〉 ⇒eval 〈t, e, k[R 7→ no]〉

〈grant R in t, e, k〉 ⇒eval 〈t, e, k[R 7→ grant]〉
〈test R then t0 else t1, e, k〉 ⇒eval 〈t0, e, k〉 if OK[R][k]
〈test R then t0 else t1, e, k〉 ⇒eval 〈t1, e, k〉 if not OK[R][k]

〈fail, e, k〉 ⇒final fail
〈arg(t, e, k, m), v〉 ⇒cont 〈t, e, fun(v, k, mempty)〉

〈fun([x, t, e], k, m), v〉 ⇒cont 〈t, e[x 7→ v], k〉
〈stop(m), v〉 ⇒final v

where mempty denotes the empty permission table,

stop(m)[R 7→ c] = stop(m[R 7→ c])
arg(t, e, k, m)[R 7→ c] = arg(t, e, k, m[R 7→ c])
fun(v, k, m)[R 7→ c] = fun(v, k, m[R 7→ c])

22

and
OK[∅][k] = true

OK[R][stop(m)] = R ∩m−1(no) = ∅
OK[R][arg(t, e, k, m)]
OK[R][fun(t, k, m)]

}
= (R ∩m−1(no) = ∅) ∧ OK[R \m−1(grant)][k]

In the CM machine, evaluation contexts are CEK evaluation contexts enriched
with permission tables. They are therefore a zipped version of the CEK evaluation
contexts and a stack of permission tables. We unzip the CM evaluation contexts
into CEK evaluation contexts and a stack of permission tables. This unzipping
corresponds to separating the security mechanism from the function call mech-
anism. In the literature, it has been argued that security mechanisms such as
stack inspection are best viewed separately from the stack. For instance, Abadi
and Fournet separate the security mechanism from the stack in order to obtain
a stronger security mechanism that is not tied to the behaviour of the stack [1].
Wallach, Appel, and Felten also separate the security mechanism from the stack
to obtain an alternative semantics and implementation of stack inspection [39].
As for us, we separate the security mechanism from the stack in order to make the
evaluation mechanism clearer: the CM machine is a variant of the CEK machine
that keeps track of a stack of permission tables.

The unzipped CM machine is as follows. Permissions, permission tables, source
syntax, expressible values, and outcomes remain the same as in the original CM
machine. The OK predicate is changed to inspect the stack of permission tables
instead of the evaluation contexts:

• Evaluation contexts:
k ::= stop | arg(t, e, k) | fun(v, k)

• Initial transition, transition rules (two kinds), and final transitions:

t ⇒init 〈t, eempty , mempty :: nil , stop〉
〈x, e, ms, k〉 ⇒eval 〈k, ms, e(x)〉

〈λx.t, e, ms, k〉 ⇒eval 〈k, ms, [x, t, e]〉
〈t0 t1, e, ms, k〉 ⇒eval 〈t0, e, mempty :: ms, arg(t1, e, k)〉

〈R[t], e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ no] :: ms, k〉
〈grant R in t, e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ grant] :: ms, k〉

〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t0, e, ms, k〉 if OK[R][ms]
〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t1, e, ms, k〉 if not OK[R][ms]

〈fail, e, ms, k〉 ⇒final fail
〈arg(t, e, k), m :: ms, v〉 ⇒cont 〈t, e, mempty :: ms, fun(v, k)〉

〈fun([x, t, e], k), m :: ms, v〉 ⇒cont 〈t, e[x 7→ v], ms, k〉
〈stop, ms, v〉 ⇒final v

where
OK[∅][ms] = true
OK[R][nil] = true

OK[R][m :: ms] = (R ∩m−1(no) = ∅) ∧ OK[R \m−1(grant)][ms]

23

As we have already observed in previous work [3,6,9,11,12], the evaluation con-
texts, together with the cont transition function, are the defunctionalized coun-
terpart of a continuation. We can therefore “refunctionalize” this continuation
and then write the evaluator in direct style. The resulting evaluator threads a
state—the stack of permission tables—and evaluation can fail. The evaluator can
therefore be expressed as an instance of a monadic evaluator with a lifted state
monad.

In the lifted state monad for stack inspection, the storable values are permis-
sion tables, and the state is a stack of storable values. The operations on the
permission tables are expressed as the monadic operations push empty, pop top,
clear top, mark complement no, mark grant, and OK. Furthermore, the monadic
operation fail terminates the computation with a security error. The stack-
inspection state monad is implemented as a structure with the following signature:

signature STACK_INSPECTION_LIFTED_STATE_MONAD

= sig

include MONAD

val fail : ’a monad

val push_empty : unit monad

val pop_top : unit monad

val clear_top : unit monad

val mark_complement_no : permission Set.set -> unit monad

val mark_grant : permission Set.set -> unit monad

val OK : permission Set.set -> bool monad

end

where permission is a type of permissions and Set.set is a polymorphic type of
sets.

The definitions of unit and bind are those of the lifted state monad of Sec-
tion 7; fail implements the security error; push empty pushes an empty permission
table on top of the permission-table stack; pop top pops the top permission ta-
ble off the permission-table stack; clear top clears the topmost permission table;
mark complement no updates the topmost permission table by making the com-
plement of the argument set of permissions unavailable; mark grant updates the
topmost permission table by making the argument set of permissions available;
and OK inspects the permission stack to test whether the argument permissions
are available.

The source language is represented as an ML datatype:

datatype term = VAR of ide

| LAM of ide * term

| APP of term * term

| FRAME of permission Set.set * term

| GRANT of permission Set.set * term

| TEST of permission Set.set * term * term

| FAIL

24

The monadic evaluator corresponding to the unzipped version of the CM ma-
chine is as follows:

datatype value = FUN of value -> value monad

(* eval : term * value Env.env -> value monad *)

fun eval (LAM (x, t), e)

= unit (FUN (fn v => eval (t, Env.extend (x, v, e))))

| eval (VAR x, e)

= unit (Env.lookup (e, x))

| eval (APP (t0, t1), e)

= bind (push_empty, fn () =>

bind (eval (t0, e), fn v0 =>

bind (clear_top, fn () =>

bind (eval (t1, e), fn v1 =>

bind (pop_top, fn () => let val (FUN f) = v0

in f v1

end)))))

| eval (FRAME (R, t), e)

= bind (mark_complement_no R, fn () => eval (t, e))

| eval (GRANT (R, t), e)

= bind (mark_grant R, fn () => eval (t, e))

| eval (TEST (R, t0, t1), e)

= bind (OK R, fn b => if b then eval (t0, e) else eval (t1, e))

| eval (FAIL, e)

= fail

This evaluator alters the state by pushing and popping permission tables when
evaluating applications. One could be tempted to make these changes implicit
by integrating them in the definition of bind and use the generic evaluator of
Section 2. However, the result would not be a monad because the right-unit
law would not hold. Therefore, the state changes have to appear explicitly in
the monadic evaluator—a situation that has precedents, e.g., in one of Wadler’s
monadic evaluators [38, Section 2.5]. For these reasons the evaluator just above
differs from the generic evaluator of Section 2.

The derivation process is reversible. Starting from this lifted state monad
where the state is a stack of permission tables and this monadic evaluator, it
is a simple exercise to reconstruct the unzipped CM machine by inlining the
monad, closure converting the expressible values, CPS-transforming the evaluator,
optimizing the continuation as illustrated in Appendix A to stop immediately in
case of failure, and defunctionalizing the resulting continuations. In addition,
we are now in position to combine properly tail-recursive stack inspection with
other effects by combining the stack-inspection monad with other monads at the
monadic level. Inlining such combined monads lets us derive abstract machines
with properly tail-recursive stack inspection and other computational effects. As
an illustration we present a combination of the stack-inspection monad and the
exception monad in Appendix D.

To summarize, we have shown that Clements and Felleisen’s properly tail-
recursive stack inspection can be expressed as a lifted state monad. Constructing

25

abstract machines for a language with stack inspection and other effects expressed
as monads therefore reduces to designing the desired combination of the monads
and then mechanically deriving the corresponding abstract machine. The cor-
rectness of this abstract machine is a corollary of the correctness of the original
monadic evaluator and of the transformations.

9 A dedicated monad for stack inspection

We observe that the lifted state monad is overly general to characterize the com-
putational behaviour of stack inspection:

type ’a monad = permission_table list -> (’a * permission_table list) lift

This type would also fit if all permissions in the stack were updatable. However,
that is not the case—only the top permission table can be modified, and the other
permission tables in the stack are read-only.

Instead, we can cache the top permission table and make it both readable and
writable while keeping the rest of the stack read only. The corresponding type
constructor is as follows:

type ’a monad = permission_table * permission_table list

-> (’a * permission_table) lift

Proposition 5 The type constructor above, together with the following definitions
of unit and bind, satisfies the three monadic laws.

fun unit a

= (fn (p, pl) => LIFT (a, p))

fun bind (m, k)

= (fn (p, pl) => case m (p, pl)

of (LIFT (a, p’))

=> k a (p’, pl)

| BOTTOM

=> BOTTOM)

Proof: By equational reasoning. �
This monad provides a more accurate characterization of stack inspection than
the one in Section 8.

As an exercise, we have constructed the corresponding abstract machine. This
machine is similar to the one in Section 8.

10 Related work

Stack inspection is used as a fine-grained access control mechanism for Java [22].
It allows code with different levels of trust to safely interact in the same execution
environment. Before access to a restricted resource is allowed, the entire call stack
is inspected to test that the required permissions are available. Wallach, Appel,

26

and Felten present a semantics for stack inspection based on a belief logic [39].
Their semantics is not tied to inspecting stack frames, and it is thus compatible
with tail-call optimization. Their implementation, called security-passing style,
allows them to implement stack inspection for Java without changing the JVM.
Instead, they perform a global byte-code rewriting before loading. Fournet and
Gordon develop a formal semantics and an equational theory for a λ-calculus
model of stack inspection [20]. They use this equational theory to formally in-
vestigate how stack inspection affects known program transformations such as
inlining and tail-call optimization. Clements and Felleisen present a properly
tail-call optimized semantics for stack inspection based on Fournet and Gordon’s
semantics [7]. This tail-call optimized semantics is given in the form of a CESK
machine, which was the starting point for our work.

Since Moggi’s breakthrough [29], monads have been widely used to parame-
terize functional programs with effects [5, 38]. We are not aware, though, of the
use of monads in connection with abstract machines for computational effects.

For several decades abstract machines have been an active area of research,
ranging from Landin’s classical SECD machine [25, 33] to the modern JVM [26].
As observed by Diehl, Hartel, and Sestoft [14], research on abstract machines
has chiefly focused on developing new machines and proving them correct. The
thrust of our work is to explore a correspondence between interpreters and abstract
machines [3, 4, 6, 9] that takes its roots in Reynolds seminal work on definitional
interpreters [34].

There are two forerunners to our work:

1. Reynolds’s original work [34], where he CPS-transforms and defunctionalizes
a call-by-value evaluator for λ-terms. We observe that the resulting first-
order evaluator coincides with (and anticipates) the CEK machine.

2. Schmidt’s PhD work [35], where he constructs a transition system by defunc-
tionalizing a continuation-passing call-by-name evaluator for λ-terms. We
observe that the resulting transition system coincides with (and anticipates)
Krivine’s machine.

The present work is a next step of our study of the correspondence between
evaluators and abstract machines. Essentially the same correspondence has been
put to use by Graunke, Findler, Krishnamurthi, and Felleisen to transform func-
tional programs into abstract machines for programming the web [23]. The only
difference is that Graunke, Findler, Krishnamurthi, and Felleisen use lambda-
lifting instead of closure conversion. They do not need closure conversion be-
cause they do not consider evaluators for higher-order programming languages,
and we do not need lambda-lifting because our evaluators are already lambda-
lifted [13, 24].

11 Conclusion

We have extended the correspondence between evaluators and abstract machines
from the pure setting of the λ-calculus to the impure setting of the computational

27

λ-calculus. Throughout, we have advocated that a viable alternative to designing
abstract machines for languages with computational effects on a case-by-case basis
is deriving them from a monadic evaluator and a computational monad. As
a consequence one does not need to establish the correctness of each abstract
machine on a case-by-case basis since it is a corollary of the correctness of the
original monadic evaluator and of the transformations. We have illustrated this
alternative with several monads.

We have also characterized Clements and Felleisen’s properly tail-recursive
stack inspection as a lifted state monad, and we have proposed an alternative,
dedicated monad for this computational effect. These two monads enable us to
combine stack inspection with other computational effects at the monadic level
and then systematically construct the corresponding abstract machines. We are
therefore in position to construct, e.g., a variant of Krivine’s machine with stack
inspection as well as variants of the Categorical Abstract Machine and of the
SECD machine with arbitrary computational effects expressed as monads.

Acknowledgments: We are grateful to Dariusz Biernacki, Julia Lawall, Pe-
ter Thiemann, and Mitchell Wand for commenting a preliminary version of this
article. Thanks are also due to Eugenio Moggi for his editorship and to John
Clements and the anonymous referees for their feedback.

This work is partially supported by the ESPRIT Working Group APPSEM II
(http://www.appsem.org), the SECURE project EU FET-GC IST-2001-32486, and
the Danish Natural Science Research Council, Grant no. 21-03-0545.

A Propagating vs. stopping

This appendix illustrates the optimization of returning a final result directly in-
stead of propagating it through surrounding evaluation contexts. We consider the
traditional example of multiplying the leaves of a tree of integers:

datatype bt = LEAF of int

| NODE of bt * bt

We want to take advantage of the fact that 0 is an absorbant element for multi-
plication. To this end, we lift the intermediate results of the auxiliary function
that traverses the input tree:

datatype int_lifted = ZERO

| NOT_ZERO of int

(* mult_ds : bt -> int *)

fun mult_ds t

= let (* visit : bt -> int_lifted *)

fun visit (LEAF 0)

= ZERO

| visit (LEAF n)

= NOT_ZERO n

28

| visit (NODE (t1, t2))

= (case visit t1

of ZERO

=> ZERO

| (NOT_ZERO n1)

=> (case visit t2

of ZERO

=> ZERO

| (NOT_ZERO n2)

=> NOT_ZERO (n1 * n2)))

in case visit t

of ZERO

=> 0

| (NOT_ZERO n)

=> n

end

If a 0 leaf is encountered during the recursive descent, ZERO is propagated out until
the top-level case expression.

Let us write visit in continuation-passing style:

(* mult_cps : bt -> int *)

fun mult_cps t

= let (* visit : bt * (int_lifted -> int) -> int *)

fun visit (LEAF 0, k)

= k ZERO

| visit (LEAF n, k)

= k (NOT_ZERO n)

| visit (NODE (t1, t2), k)

= visit (t1, fn ZERO

=> k ZERO

| (NOT_ZERO n1)

=> visit (t2, fn ZERO

=> k ZERO

| (NOT_ZERO n2)

=> k (NOT_ZERO (n1 * n2))))

in visit (t, fn ZERO

=> 0

| (NOT_ZERO n)

=> n)

end

The same propagation takes place. To optimize it, we use the type isomorphism
between the sum-accepting continuation int lifted -> int and the pair of con-
tinuations (unit -> int) * (int -> int), one for propagating the final result and
one to continue the computation, and we simplify the propagating continuation
away:

29

(* mult_cps_opt : bt -> int *)

fun mult_cps_opt t

= let (* visit : bt * (int -> int) -> int *)

fun visit (LEAF 0, k)

= 0

| visit (LEAF n, k)

= k n

| visit (NODE (t1, t2), k)

= visit (t1, fn n1 => visit (t2, fn n2 => k (n1 * n2)))

in visit (t, fn n => n)

end

In the optimized version, the continuation is only applied to non-zero intermediate
results, and as soon as a zero leaf is encountered, the computation stops.

B From an exception monad to an abstract ma-

chine

We specify an exception monad and inline it in the monadic evaluator, obtaining
an exception-oriented evaluator. We closure-convert, CPS-transform, and de-
functionalize this exception-oriented evaluator and obtain a CEK machine with
exceptions. We then consider an alternative implementation of exceptions.

B.1 An exception monad

We consider an exception monad where, for conciseness, there is only one kind of
exception and it carries no values. We equip this monad with two operations for
raising and handling exceptions:

signature EXCEPTION_MONAD

= sig

include MONAD

val raise_exception : ’a monad

val handle_exception : ’a monad * (unit -> ’a monad) -> ’a monad

end

structure Exception_Monad : EXCEPTION_MONAD

= struct

datatype ’a E = RES of ’a | EXC

type ’a monad = ’a E

fun unit a

= RES a

30

fun bind (m, k)

= (case m

of (RES a)

=> k a

| EXC

=> EXC)

val raise_exception = EXC

fun handle_exception (m, h)

= (case m

of (RES a)

=> RES a

| EXC

=> h ())

end

Proposition 6 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The exception monad is known to be a monad [29]. Alternatively, the
monadic laws can be verified by equational reasoning. �

We extend the source language with a special form to handle an exception
(and the monadic evaluator with a branch for evaluating this special form), and
we extend the base environment with a function to raise an exception:

datatype term = ...

| HANDLE of term * term

fun eval ...

| eval (HANDLE (t0, t1), e)

= handle_exception (eval (t0, e), fn () => eval (t1, e))

val env_init

= Env.extend ("raise", FUN (fn _ => raise_exception), env_base)

B.2 A CEK machine with exceptions

Inlining this exception monad in the extended monadic evaluator yields a call-by-
value evaluator in exception-oriented style. As in Section 4 we closure-convert,
CPS-transform, and defunctionalize the inlined evaluator. The result is a version
of the CEK machine with exceptions:

• Source syntax (terms):

t ::= piq | x | λx.t | t0 t1 | t0 handle t1

• Expressible values (integers, closures, and predefined functions), results, and
evaluation contexts:

31

v ::= i | [x, t, e] | succ | raise
r ::= res(v) | exc
k ::= stop | arg(t, e, k) | fun(v, k) | exc(t, e, k)

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , stop〉
〈piq, e, k〉 ⇒eval 〈k, res(i)〉
〈x, e, k〉 ⇒eval 〈k, res(e(x))〉

〈λx.t, e, k〉 ⇒eval 〈k, res([x, t, e])〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k)〉

〈t0 handle t1, e, k〉 ⇒eval 〈t0, e, exc(t1, e, k)〉
〈arg(t1, e, k), res(v)〉 ⇒cont 〈t1, e, fun(v, k)〉
〈arg(t1, e, k), exc〉 ⇒cont 〈k, exc〉

〈fun([x, t, e], k), res(v)〉 ⇒cont 〈t, e[x 7→ v], k〉
〈fun(succ, k), res(i)〉 ⇒cont 〈k, res(i + 1)〉
〈fun(raise , k), res(v)〉 ⇒cont 〈k, exc〉

〈fun(v, k), exc〉 ⇒cont 〈k, exc〉
〈exc(t1, e, k), res(v)〉 ⇒cont 〈k, res(v)〉
〈exc(t1, e, k), exc〉 ⇒cont 〈t1, e, k〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [raise 7→ raise]

B.3 An alternative implementation of exceptions

Alternatively, in the continuation-passing evaluator obtained after closure con-
version and CPS-transformation, we can exploit the type isomorphism between
a sum-expecting continuation value E -> ’a and a pair of continuations (value

-> ’a) * (unit -> ’a). The resulting interpreter is equipped with two continua-
tions. The corresponding notion of computation, at the monadic level, also uses
two continuations—a normal continuation and a handler continuation. Defunc-
tionalizing this double-barreled continuation-passing interpreter yields an abstract
machine with two stacks: a regular control stack and a stack of exception han-
dlers. Architecturally, these two stacks are not a clever invention or a gratuitous
variant, but the consequences of a principled derivation.

B.4 Summary and conclusion

We have presented an exception monad and an abstract machine that corresponds
to a call-by-value monadic evaluator and this monad. The evaluator obtained by
inlining the components of the exception monad is in exception-oriented style.
The machine is a CEK machine with exceptions. We have also shown how to
obtain an alternative implementation of exceptions with two continuations and

32

how it leads to an abstract machine with two stacks. The correctness of the
evaluators and of the abstract machines is a corollary of the correctness of the
original monadic evaluator and of the transformations.

C Combining state and exceptions

As is well known, there are two ways to combine the state and exception monads,
giving rise to different semantics [5]. We consider both combinations and derive
the corresponding abstract machines.

Both combinations of the state and exception monads are represented as struc-
tures with the following signature:

signature STATE_AND_EXCEPTION_MONAD

= sig

include STATE_MONAD

val raise_exception : ’a monad

val handle_exception : ’a monad * (unit -> ’a monad) -> ’a monad

end

The source language and the monadic evaluator are those of Appendix B
with a special form to handle exceptions. The base environment is extended with
functions get, set, and raise to read and write the state, and to raise an exception.

C.1 From a combined state and exception monad
to an abstract machine (version 1)

We consider the combination of the state and exception monads where the state is
passed both on successful termination and on exceptional termination. We equip
the monad with operations to read and write the state, and to raise and handle
exceptions. When an exception is handled, the state in which the exception was
raised is available, and execution can be resumed in that state:

structure State_and_Exception_Monad : STATE_AND_EXCEPTION_MONAD

= struct

datatype ’a E = RES of ’a | EXC

type storable = int

type state = storable

type ’a monad = state -> ’a E * state

fun unit a

= (fn s => (RES a, s))

33

fun bind (m, k)

= (fn s => let val (a, s’) = m s

in case a

of (RES a)

=> k a s’

| EXC

=> (EXC, s’)

end)

val get = (fn s => (RES s, s))

fun set i

= (fn s => (RES s, i))

val raise_exception = (fn s => (EXC, s))

fun handle_exception (t0, t1)

= (fn s => let val (a, s’) = t0 s

in case a

of (RES a)

=> (RES a, s’)

| EXC

=> t1 () s’

end)

end

Proposition 7 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The combined state and exception monad is known to be a monad [5].
Alternatively, the monadic laws can be verified by equational reasoning. �

We inline this combined monad in the monadic evaluator and closure convert,
CPS-transform, and defunctionalize the resulting evaluator to obtain the following
abstract machine with state and exceptions:

• Source syntax (terms):

t ::= piq | x | λx.t | t0 t1 | t0 handle t1

• Expressible values (integers, closures, and predefined functions), results, and
evaluation contexts:

v ::= i | [x, t, e] | succ | get | set | raise
r ::= (res(v), s) | (exc, s)
k ::= stop | arg(t, e, k) | fun(v, k) | exc(t, e, k)

34

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈piq, e, s, k〉 ⇒eval 〈k, (res(i), s)〉
〈x, e, s, k〉 ⇒eval 〈k, (res(e(x)), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, (res([x, t, e]), s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈t0 handle t1, e, s, k〉 ⇒eval 〈t0, e, s, exc(t1, e, k)〉
〈arg(t1, e, k), (res(v), s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉
〈arg(t1, e, k), (exc, s)〉 ⇒cont 〈k, (exc, s)〉

〈fun([x, t, e], k), (res(v), s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉
〈fun(succ, k), (res(i), s)〉 ⇒cont 〈k, (res(i + 1), s)〉
〈fun(get, k), (res(v), s)〉 ⇒cont 〈k, (res(s), s)〉
〈fun(set, k), (res(i), s)〉 ⇒cont 〈k, (res(s), i)〉

〈fun(raise , k), (res(v), s)〉 ⇒cont 〈k, (exc, s)〉
〈fun(v, k), (exc, s)〉 ⇒cont 〈k, (exc, s)〉

〈exc(t1, e, k), (res(v), s)〉 ⇒cont 〈k, (res(v), s)〉
〈exc(t1, e, k), (exc, s)〉 ⇒cont 〈t1, e, s, k〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set][raise 7→ raise]

and sinit is the initial state.

C.2 From a combined state and exception monad
to an abstract machine (version 2)

We consider the combination of the state and exception monads where the state
is passed on successful termination and discarded on exceptional termination. We
equip the monad with operations to read and write the state, and to raise and
handle exceptions. When handling an exception, execution cannot be resumed in
the state in which the exception was raised. One choice, which we take here, is
to use a so-called ‘snapback’ or transactional semantics and resume execution in
the state that was active when the handler was installed [18, 27]:

structure State_and_Exception_Monad’ : STATE_AND_EXCEPTION_MONAD

= struct

datatype ’a E = RES of ’a | EXC

type storable = int

type state = storable

type ’a monad = state -> (’a * state) E

35

fun unit a

= (fn s => RES (a, s))

fun bind (m, k)

= (fn s => (case m s

of (RES (a, s’))

=> k a s’

| EXC

=> EXC))

val get = (fn s => RES (s, s))

fun set i

= (fn s => RES (s, i))

val raise_exception = (fn s => EXC)

fun handle_exception (t0, t1)

= (fn s => (case t0 s

of (RES (a, s’))

=> RES (a, s’)

| EXC

=> t1 () s))

end

Proposition 8 The type constructor above, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: The combined state and exception monad is known to be a monad [5].
Alternatively, the monadic laws can be verified by equational reasoning. �

We inline this combined monad in the monadic evaluator and closure convert,
CPS-transform, and defunctionalize the resulting evaluator to obtain the following
abstract machine with state and exceptions:

• Source syntax (terms):

t ::= piq | x | λx.t | t0 t1 | t0 handle t1

• Expressible values (integers, closures, and predefined functions), results, and
evaluation contexts:

v ::= i | [x, t, e] | succ | get | set | raise
r ::= res(v, s) | exc
k ::= stop | arg(t, e, k) | fun(v, k) | exc(t, e, s, k)

36

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈piq, e, s, k〉 ⇒eval 〈k, res(i, s)〉
〈x, e, s, k〉 ⇒eval 〈k, res(e(x), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, res([x, t, e], s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈t0 handle t1, e, s, k〉 ⇒eval 〈t0, e, s, exc(t1, e, s, k)〉
〈arg(t1, e, k), res(v, s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉

〈arg(t1, e, k), exc〉 ⇒cont 〈k, exc〉
〈fun([x, t, e], k), res(v, s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉

〈fun(succ, k), res(i, s)〉 ⇒cont 〈k, res(i + 1, s)〉
〈fun(get, k), res(v, s)〉 ⇒cont 〈k, res(s, s)〉
〈fun(set, k), res(i, s)〉 ⇒cont 〈k, res(s, i)〉

〈fun(raise, k), res(v, s)〉 ⇒cont 〈k, exc〉
〈fun(v, k), exc〉 ⇒cont 〈k, exc〉

〈exc(t1, e, s, k), res(v, s′)〉 ⇒cont 〈k, res(v, s′)〉
〈exc(t1, e, s, k), exc〉 ⇒cont 〈t1, e, s, k〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set][raise 7→ raise]

and sinit is the initial state.

C.3 Summary and conclusion

We have presented two combined monads accounting for state and exceptions
and two abstract machines corresponding to a call-by-value monadic evaluator
and these two monads. The design decisions of combining monads was taken
at the monadic level and the corresponding abstract machines were then derived
mechanically. The correctness of these abstract machines is a corollary of the
correctness of the original monadic evaluator and of the transformations.

D Combining stack inspection and exceptions

We specify a combination of the stack-inspection (lifted state) monad of Section 8
and the exception monad of Appendix B. We inline this monad in the monadic
evaluator corresponding to the unzipped version of the CM machine from Section 8
and obtain a version of the CM machine extended with exceptions.

D.1 A combined stack-inspection and exception monad

Adding exceptions on top of the stack-inspection monad we obtain a monad which
is implemented as a structure with the following signature:

37

signature STACK_INSPECTION_AND_EXCEPTION_MONAD

= sig

include STACK_INSPECTION_LIFTED_STATE_MONAD

val raise_exception : ’a monad

val handle_exception : ’a monad * ’a monad -> ’a monad

end

Straightforwardly adding exceptions on top of the stack-inspection monad yields
the following definitions of the monad type constructor, unit, and bind, using a
type permission table to represent permission tables:

datatype ’a lift = LIFT of ’a | BOTTOM

datatype ’a E = RES of ’a | EXC

type state = permission_table list

type ’a monad = state -> ((’a * state) lift) E

fun unit a

= fn s => RES (LIFT (a, s))

fun bind (m, k)

= (fn s => (case m s

of (RES a’)

=> (case a’

of (LIFT (a, s1))

=> k a s1

| BOTTOM

=> RES BOTTOM)

| EXC

=> EXC))

In this definition of the monad there are three possible outcomes of a computation.
To simplify the definition of bind, instead of explicitly layering exceptions on top of
the lifting of the stack-inspection monad we use the following isomorphic definition
of the monad:

datatype ’a lift_E = RES of ’a | EXC | BOTTOM

type state = permission_table list

type ’a monad = state -> (’a * state) lift_E

fun unit a

= fn s => RES (a, s)

fun bind (m, k)

= (fn s => (case m s

of (RES (a, s1))

=> k a s1

| EXC

=> EXC

| BOTTOM

=> BOTTOM))

38

Proposition 9 The above type constructor, together with the above definitions of
unit and bind, satisfies the three monadic laws.

Proof: By equational reasoning. �

With the above definition of the monad the definitions of raise exception and
handle exception are as follows:

val raise_exception = (fn s => EXC)

fun handle_exception (t0, t1)

= (fn s => (case t0 s

of (RES a)

=> RES a

| EXC

=> t1 s

| BOTTOM

=> BOTTOM))

Notice that a snapback semantics is used when handling an exception. It is crucial
for security that the permissions in effect at the time the handler was installed
are reinstated and execution resumed with those permissions when the exception
is handled.

The definition of the monadic operations for manipulating permission stacks
are straightforwardly extended to account for exceptions.

In Appendix C we put the raise operation in the initial environment. Here, for
diversity value, we add it to the language of Section 8 as a syntactic construct:

datatype term = ...

| RAISE

| HANDLE of term * term

The monadic evaluator is as in Section 8 with two extra clauses:

...

| eval (RAISE, e)

= raise_exception

| eval (HANDLE (t0, t1), e)

= handle_exception (eval (t0, e), eval (t1, e))

D.2 An abstract machine for stack inspection and excep-
tions

Inlining the components of the combined stack-inspection and exception monad
in the monadic evaluator of Section 8 and uncurrying the eval function and the
function space in the data type of expressible values yields an exception-oriented
call-by-value evaluator in state-passing style. Closure converting the expressible
values, CPS-transforming the evaluator, optimizing the continuation as illustrated
in Appendix A to stop immediately in case of security failure, and defunctional-
izing the resulting continuations yields the following abstract machine with stack

39

inspection and exceptions. Permissions, permission tables, and the definition of
OK are as in the unzipped CM machine:

• Source syntax (terms):

t ::= x | λx.t | t0 t1 |
R[t] | grant R in t | test R then t0 else t1 | fail |
raise | t0 handle t1

• Expressible values (closures), results, outcomes, and evaluation contexts:

v ::= [x, t, e]
r ::= res(v, ms) | exc
o ::= r | fail
k ::= stop | arg(t, e, k) | fun(v, k) | exc(t, e, ms, k)

• Initial transition, transition rules (two kinds), and final transitions:

t ⇒init 〈t, eempty , mempty :: nil , stop〉
〈x, e, ms, k〉 ⇒eval 〈k, res(e(x), ms)〉

〈λx.t, e, ms, k〉 ⇒eval 〈k, res([x, t, e], ms)〉
〈t0 t1, e, ms, k〉 ⇒eval 〈t0, e, mempty :: ms, arg(t1, e, k)〉

〈R[t], e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ no] :: ms, k〉
〈grant R in t, e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ grant] :: ms, k〉

〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t0, e, ms, k〉 if OK[R][ms]
〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t1, e, ms, k〉 if not OK[R][ms]

〈raise, e, ms, k〉 ⇒eval 〈k, exc〉
〈t0 handle t1, e, ms, k〉 ⇒eval 〈t0, e, ms, exc(t1, e, ms, k)〉

〈fail, e, ms, k〉 ⇒final fail
〈arg(t, e, k), res(v, m :: ms)〉 ⇒cont 〈t, e, mempty :: ms, fun(v, k)〉

〈arg(t, e, k), exc〉 ⇒cont 〈k, exc〉
〈fun([x, t, e], k), res(v, m :: ms)〉 ⇒cont 〈t, e[x 7→ v], ms, k〉

〈fun([x, t, e], k), exc〉 ⇒cont 〈k, exc〉
〈exc(t, e, ms′, k), res(v, ms)〉 ⇒cont 〈k, res(v, ms)〉

〈exc(t, e, ms, k), exc〉 ⇒cont 〈t, e, ms, k〉
〈stop, r〉 ⇒final r

As in Appendix B, in the continuation-passing evaluator we could have further
exploited the type isomorphism between a sum-expecting continuation and a pair
of continuations. Doing so we obtain an abstract machine with two stacks: a
regular control stack and a stack of exception handlers.

D.3 Summary and conclusion

We have presented a combined monad accounting for stack inspection and excep-
tions and an abstract machine corresponding to a call-by-value monadic evaluator
and this monad. The design decision of how to combine the monads is taken at

40

the monadic level and the construction of the corresponding abstract machine is
mechanical.

References

[1] Mart́ın Abad̀ı and Cédric Fournet. Access control based on execution history.
In Virgil Gligor and Michael Reiter, editors, Proceedings of the 10th Annual
Network and Distributed System Security Symposium (NDSS’03), pages 107–
121, San Diego, California, February 2003. Internet Society.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From
interpreter to compiler and virtual machine: a functional derivation. Tech-
nical Report BRICS RS-03-14, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, March 2003.

[3] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A
functional correspondence between evaluators and abstract machines. In Dale
Miller, editor, Proceedings of the Fifth ACM-SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP’03),
pages 8–19. ACM Press, August 2003.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between call-by-need evaluators and lazy abstract machines. Informa-
tion Processing Letters, 90(5):223–232, 2004. Extended version available as
the technical report BRICS-RS-04-3.

[5] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In
Gilles Barthe, Peter Dybjer, Lúıs Pinto, and João Saraiva, editors, Applied
Semantics – Advanced Lectures, number 2395 in Lecture Notes in Computer
Science, pages 42–122, Caminha, Portugal, September 2000. Springer-Verlag.

[6] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by de-
functionalization. In Maurice Bruynooghe, editor, Logic Based Program Syn-
thesis and Transformation, 13th International Symposium, LOPSTR 2003,
number 3018 in Lecture Notes in Computer Science, pages 143–159, Uppsala,
Sweden, August 2003. Springer-Verlag.

[7] John Clements and Matthias Felleisen. A tail-recursive semantics for stack
inspections. In Pierpaolo Degano, editor, Programming Languages and Sys-
tems, 12th European Symposium on Programming, ESOP 2003, number 2618
in Lecture Notes in Computer Science, pages 22–37, Warsaw, Poland, April
2003. Springer-Verlag.

[8] William D. Clinger. Proper tail recursion and space efficiency. In Keith D.
Cooper, editor, Proceedings of the ACM SIGPLAN’98 Conference on Pro-
gramming Languages Design and Implementation, pages 174–185, Montréal,
Canada, June 1998. ACM Press.

41

[9] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In
Clemens Grelck and Frank Huch, editors, Implementation and Application of
Functional Languages, 16th International Workshop, IFL’04, Lecture Notes
in Computer Science, Lübeck, Germany, September 2004. Springer-Verlag.
To appear. Extended version available as the technical report BRICS-RS-03-
33.

[10] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391,
1992.

[11] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press. Ex-
tended version available as the technical report BRICS RS-01-23.

[12] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics.
Technical Report BRICS RS-04-26, DAIMI, Department of Computer Sci-
ence, University of Aarhus, Aarhus, Denmark, November 2004. A prelimi-
nary version appears in the informal proceedings of the Second International
Workshop on Rule-Based Programming (RULE 2001), Electronic Notes in
Theoretical Computer Science, Vol. 59.4.

[13] Olivier Danvy and Ulrik P. Schultz. Lambda-lifting in quadratic time. Journal
of Functional and Logic Programming, 10(1), July 2004. Available online at
http://danae.uni-muenster.de/lehre/kuchen/JFLP/.

[14] Stephan Diehl, Pieter Hartel, and Peter Sestoft. Abstract machines for pro-
gramming language implementation. Future Generation Computer Systems,
16:739–751, 2000.

[15] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Unpublished lecture notes. http://www.ccs.neu.edu/home/
matthias/3810-w02/readings.html, 1989-2003.

[16] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD
machine, and the λ-calculus. In Martin Wirsing, editor, Formal Description
of Programming Concepts III, pages 193–217. Elsevier Science Publishers
B.V. (North-Holland), Amsterdam, 1986.

[17] Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor, Pro-
ceedings of the Twenty-First Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 446–457, Portland, Oregon, January 1994. ACM
Press.

[18] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor, Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 175–188, San Antonio, Texas, January 1999.
ACM Press.

42

[19] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237–247,
Albuquerque, New Mexico, June 1993. ACM Press.

[20] Cédric Fournet and Andrew D. Gordon. Stack inspection: Theory and
variants. ACM Transactions on Programming Languages and Systems,
25(3):360–399, May 2003.

[21] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages, second edition. The MIT Press, 2001.

[22] Li Gong and Roland Schemers. Implementing protection domains in Java
Development Kit 1.2. In Proceedings of the Internet Symposium on Network
and Distributed System Security, San Diego, California, March 1998.

[23] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Automatically restructuring programs for the web. In
Martin S. Feather and Michael Goedicke, editors, 16th IEEE International
Conference on Automated Software Engineering (ASE 2001), pages 211–222,
Coronado Island, San Diego, California, USA, November 2001. IEEE Com-
puter Society.

[24] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Architecture, number 201 in Lecture Notes in Computer Sci-
ence, pages 190–203, Nancy, France, September 1985. Springer-Verlag.

[25] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[26] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

[27] Robert E. Milne and Christopher Strachey. A Theory of Programming Lan-
guage Semantics. Chapman and Hall, London, and John Wiley, New York,
1976.

[28] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defi-
nition of Standard ML (Revised). The MIT Press, 1997.

[29] Eugenio Moggi. Notions of computation and monads. Information and Com-
putation, 93:55–92, 1991.

[30] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975.

[31] Gordon D. Plotkin. A structural approach to operational semantics. Techni-
cal Report FN-19, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, September 1981.

43

[32] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, Cam-
bridge, England, 1996.

[33] John D. Ramsdell. The tail-recursive SECD machine. Journal of Automated
Reasoning, 23(1):43–62, July 1999.

[34] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference (1972),
with a foreword.

[35] David A. Schmidt. State transition machines for lambda calculus expressions.
In Neil D. Jones, editor, Semantics-Directed Compiler Generation, number 94
in Lecture Notes in Computer Science, pages 415–440, Aarhus, Denmark,
1980. Springer-Verlag.

[36] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978. Technical report AI-TR-474.

[37] Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1/2):1–49, 2000.

[38] Philip Wadler. The essence of functional programming (invited talk). In
Andrew W. Appel, editor, Proceedings of the Nineteenth Annual ACM Sym-
posium on Principles of Programming Languages, pages 1–14, Albuquerque,
New Mexico, January 1992. ACM Press.

[39] Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. SAFKASI:
a security mechanism for language-based systems. ACM Transactions on
Software Engineering and Methodology, 9(4):341–378, 2000.

44

Recent BRICS Report Series Publications

RS-04-28 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Monadic Evaluators and Ab-
stract Machines for Languages with Computational Effects. De-
cember 2004. 44 pp. Extended version of an article to appear
in Theoretical Computer Science.

RS-04-27 Gerth Stølting Brodal, Rolf Fagerberg, and Gabriel Moruz.On
the Adaptiveness of Quicksort. December 2004. 23 pp. To ap-
pear in Demetrescu and Tamassia, editors,Seventh Workshop
on Algorithm Engineering and Experiments, ALENEX ’05 Pro-
ceedings, 2005.

RS-04-26 Olivier Danvy and Lasse R. Nielsen.Refocusing in Reduction
Semantics. November 2004. iii+44 pp. This report supersedes
BRICS report RS-02-04. A preliminary version appears in the
informal proceedings of the Second International Workshop
on Rule-Based Programming, RULE 2001, Electronic Notes in
Theoretical Computer Science, Vol. 59.4.

RS-04-25 Mayer Goldberg. On the Recursive Enumerability of Fixed-
Point Combinators. November 2004. 7 pp.

RS-04-24 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2004. 30 pp.

RS-04-23 Hans Ḧuttel and Jiř ı́ Srba. Recursion vs. Replication in Sim-
ple Cryptographic Protocols. October 2004. 26 pp. To appear
in Vojtas, editor, 31st Conference on Current Trends in Theory
and Practice of Informatics, SOFSEM ’05 Proceedings, LNCS,
2005.

RS-04-22 Gian Luca Cattani and Glynn Winskel. Profunctors, Open
Maps and Bisimulation. October 2004. 64 pp. To appear in
Mathematical Structures in Computer Science.

RS-04-21 Glynn Winskel and Francesco Zappa Nardelli.New-HOPLA—
A Higher-Order Process Language with Name Generation. Oc-
tober 2004. 38 pp.

RS-04-20 Mads Sig Ager.From Natural Semantics to Abstract Machines.
October 2004. 21 pp. Presented at theInternational Symposium
on Logic-based Program Synthesis and Transformation, LOP-
STR 2004, Verona, Italy, August 26–28, 2004.

