
BRICS
Basic Research in Computer Science

On the Recursive Enumerability of
Fixed-Point Combinators

Mayer Goldberg

BRICS Report Series RS-04-25

ISSN 0909-0878 November 2004

B
R

IC
S

R
S

-04-25
M

.G
oldberg:

O
n

the
R

ecursive
E

num
erability

ofF
ixed-P

ointC
om

binators



Copyright c© 2004, Mayer Goldberg.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/25/



On the Recursive Enumerability

of Fixed-Point Combinators

Mayer Goldberg∗

November, 2004

Abstract

We show that the set of fixed-point combinators forms a recursively-
enumerable subset of a larger set of terms that is (A) not recursively
enumerable, and (B) the terms of which are observationally equivalent to
fixed-point combinators in any computable context.

1 Introduction

Fixed-point combinators are considered classical material by now in the λ-
calculus, combinatory logic, and functional programming. They used to define
recursive functions and circular data structures by replacing recursion and circu-
larity with self-application. Many fixed-point combinators are known, including
ones by Curry [3, Page 178], Turing [7], Klop [1]. A well-known construction
due to Böhm is used to show that there are infinitely-many distinct fixed-point
combinators is due to [6].

In this paper we show that the set of fixed-point combinators is recur-
sively enumerable. We found the implications of this result quite surprising:
If we think of a fixed-point combinator as a device for defining recursive func-
tions, then the existence of a partial recursive function that identifies fixed-point
combinators suggests that we may be able to identify, either statically or dy-
namically, certain classes of λ-terms as having a potential for non-termination,
given that they reduce to terms that contain a fixed-point combinator as a sub-
expression. The second result presented in this paper sets the theoretical limit
for this endevor: It has been known for some time that there exist terms that
have the Böhm-tree of a fixed-point combinator, but that in fact fail to satisfy
the equation that defines a fixed-point combinator [5]. Such terms can however
be used to define recursive functions and circular structures in just the same
way as ordinary fixed-point combinators are used. These curious terms are in-
distinguishable from fixed-point combinators in any applicative context. Put

∗Department of Computer Science, Ben Gurion University, P.O. Box 653, Beer Sheva 84105,
Israel.

1



otherwise, such terms are observationally equivalent to fixed-point combinators.
We show that the set of fixed-point combinators forms a recursively enumerable
subset of a larger set that is not recursively enumerable, and therefore, cannot
be enumerated by a recursive function. We refer to terms in this larger set as
non-standard fixed-point combinators, and terms that fail to satisfy the fixed
point equation as strictly non-standard fixed-point combinators.

1.1 Notation and Pre-requisites

This work is carried out in the λKβη-calculus [1]. The = symbol on λ-terms is
taken to mean textual identity of language tokens, unless otherwise stated (e.g.,
taken modulo α-conversion). The one-step βη-reduction is given by −→→, and
the equivalence relation induced by the βη-relation is given by =βη . Equality
“by definition” is given by ≡ . The set of λ-terms is given by Λ. The set of
combinators, given by Λ0, is the set of terms with no free variables (aka “closed
terms”). We use Church numerals [2, 1] to do arithmetic in the λ-calculus.
The n-th Church numeral is given by cn. The successor function on Church
numerals is given by Succ. The truth values in logic False, True are modeled in
the λ-calculus using the combinators:

False = λxy.y

True = λxy.x

For any λ-term F , the fixed point of F is a λ-term x such that Fx=βη x. A
fixed-point combinator [1, Section 6.1] is a λ-term with the property that when
applied to any λ-term x it returns the fixed point of x. More formally, a λ-term
Φ is a fixed-point combinator if for any λ-term x, the following holds:

Φx =βη x(Φx)

The set N is the set of natural numbers not including zero. We use the
notation {0} ∪ N to refer to the set of non-negative integers.

2 The set of fixed-point combinators is recur-
sively enumerable

We present a construction enumerating the set of fixed-point combinators. A
similar construction can be shown for sets of n multiple fixed-point combinators,
for any n > 1.

2.1 Theorem: The set of fixed-point combinators is recursively enumerable.

Proof: A combinator Φ is a fixed-point combinator if for any term x ∈ Λ
we have Φx=βη x(Φx). By the ξ-rule [1, Page 23], we abstract over x to get
λx.Φx=βη λx.x(Φx). By η-reducing the left-hand side we get Φ =βη λx.x(Φx).

2



Therefore, by the Church-Rosser theorem, there exist n, m ∈ N, Ψ ∈ Λ, such
that

Φ −→βη · · · −→βη︸ ︷︷ ︸
m

Ψ

λx.x(Φx) −→βη · · · −→βη︸ ︷︷ ︸
n

Ψ (1)

This equality can be verified mechanically, terminating if the equality holds, and
diverging otherwise. This, together with the fact that the set Λ0 (of combina-
tors) is recursively enumerable, implies that the set of fixed-point combinators
is recursively enumerable. A detailed construction follows.

The set Λ0 is recursively enumerable, so there exists an effective surjection
C : N → Λ0. Let V0 = ∅. For any j > 0 we define:

Cj ≡ C(j)
Dj ≡ λx.x(Cjx)

If we can show that Cj =βη Dj , then it follows that Cj is a fixed-point com-
binator. To do this “in parallel”, for j = 1, 2, . . ., we introduce the structure
Qj:

Qj = 〈Cj , {Cj} , {Dj} , j〉
We use this structure to maintain all the terms that can be reached from Cj

and Dj via any finite number of βη-steps, so as we move from Vj to Vj+1, the
second and third projections of each of the quadruples “grow” to include all
terms that can be reached by an additional βη-step. We now define the set
Fj of all quadruples for which we can now show that the first projection is a
fixed-point combinator:

Fj = {〈x1, x2, x3, x4〉 ∈ Vj : x2 ∩ x3 6= ∅}
Note that for all quadruples in Fj (and indeed in Vj as well), the relation between
the first and fourth projections is given by x1 = C(x4). Consequently, there is a
unique ordering on the quadruples in Fj that is induced by the ascending order
of the fourth projection of each quadruple. The first projection of any quadruple
in Fj is a fixed-point combinator, and we list these fixed-point combinators in
the ordering induced by the ordering on the quadruples. We now remove the
structures that correspond to fixed-point combinators:

Wj = Vj \ Fj

And extend the second and third projections respectively, to include all the
terms that can be reached after one additional βη-step:

W ′
j = {〈x1, x

′
2, x

′
3, x4〉 :

〈x1, x2, x3, x4〉 ∈ Wj ,
x′

2 = x2 ∪ {y : x →βη y, for some x ∈ x2}
x′

3 = x3 ∪ {y : x →βη y, for some x ∈ x3}}

3



The set Vj+1 is defined to contain both the new structure Qj , as well as the
extended quadruples:

Vj+1 = {Qj} ∪W ′
j

The enumeration of the set of fixed-point combinators is obtained by enumerat-
ing the first projections in all quadruples in {Fj}j∈N

according to the ordering
induced by j, as the primary index, and then by the fourth projections in each
Fj , as the secondary index. �

3 Non-standard fixed-point combinators

All fixed-point combinators have the same infinite extension λf.f(f(f · · · )),
which is the same as stating they all have the same Böhm tree [1, Page 217]:

λf.f
|
f
|
...

The converse does not hold, i.e., it is not the case that any term with the infinite
extension λf.f(f(f · · · )) is a fixed-point combinator. Statman gives an example
of such a term in his paper Some Examples of Non-Existent Combinators [5,
Page 442], where for M ≡ λx.xx, B ≡ λxyz.x(yz), he makes the observation
that:

Note that BM(B(BM)B) has the right Böhm tree to be a fixed
point combinator but it is not one.

The term pointed out by Statman is one of many similar terms that fail to
satisfy Equation (1) for any finite m, n. Such terms, however, can be used to
define recursive functions. This motivates the following definition.

3.1 Definition: A non-standard fixed-point combinator. A term Ψ
is a non-standard fixed-point combinator if Ψ has the same Böhm-tree as a
fixed-point combinator.

Clearly, the set of fixed-point combinators is a proper subset of the set of
non-standard fixed-point combinators. We therefore refer to non-standard fixed-
point combinator that is not a fixed-point combinator as a strictly non-standard
fixed-point combinator.

The above definition can be extended to sets of n multiple fixed-point com-
binators, for n > 1.

We can define a non-standard fixed-point combinator Ψ by abstracting f
over an expression E1 that reduces to an application of f over an expression E2,
etc, so that Ψ has the infinite extension λf.f(f(f · · · )). For Ψ to be a strictly

4



non-standard fixed-point combinator, the set of terms {En}n∈N must satisfy
¬(En =βη En+1) for all n ∈ N.

We define our own construction for a non-standard fixed-point combinator
as follows:

Ψ ≡ λf.((λxn.f(xx(Succ n)))
(λxn.f(xx(Succ n)))
c1)

The corresponding En, En+1 are as follows:

En = ((λxn.f(xx(Succ n)))
(λxn.f(xx(Succ n)))
cn)

En+1 = ((λxn.f(xx(Succ n)))
(λxn.f(xx(Succ n)))
cn+1)

and cannot be shown to be equal within a finite number of βη-steps.
The definition of Ψ may appear contrived, since it makes no real use of n, and

any good compiler e.g., for Scheme or Common LISP, would optimize it away,
reducing Ψ to Curry’s well-known fixed-point combinator. It is not difficult,
however, to force n to do some useful work, and thus prevent its elimination by
an optimizing compiler. For example, we could apply it to f , as in this alternate
non-standard fixed-point combinator:

Ψ′ ≡ λf.((λxn.nf(xx(Succ n)))
(λxn.nf(xx(Succ n)))
c1)

3.2 Theorem: The set of non-standard fixed-point combinators is not
recursively enumerable.

Proof: Let S be the set of non-standard fixed-point combinators. The
structure of our proof is as follows:

• We show that S is not recursive.

• We show that the complement of S, given by S = Λ0 \ S, is recursively
enumerable.

It follows from the above two items that S is not recursively enumerable, for if
both S, S are recursively enumerable, then both are recursive [4, Page 58]. The
details of the proof follow.

If S is recursive, then there exists a combinator E, such that for any combi-
nator M , with encoding pMq, we have:

(E pMq) −→→
{

True for M ∈ S
False otherwise

5



Let M0 be any non-standard fixed-point combinator, with encoding pM0q. Let
Turing be a combinator that takes an encoding of a Turing machine T , given
by pT q, and returns the identity combinator I if T terminates (and diverges if
T diverges). Using Turing, we define the combinator F as follows:

F ≡ λt.(Turing t M0)

For any Turing machine T , the application (E p(F pT q)q) returns True if T
terminates, and returns False if T diverges. This decides the Halting Problem
for Turing machines, which is of course, not possible. Hence E does not exist,
and S is not recursive.

The set S is the set of terms outside the set of non-standard fixed-point
combinators, i.e., the set of terms that do not have the infinite extension
λf.f(f(f · · · )). We show that S is recursively enumerableby presenting an ef-
fective enumeration of its elements. The proof proceeds much like the proof of
Theorem 2.1: Once again, we enumerate the set of combinators, carrying each
combinator along in some structure (an ordered triple in this case), and filter
out those terms that match our criteria. The details are given below.

We make use of the effective surjection C : N → Λ0 from the proof of
Theorem 2.1. Let V0 = ∅. For any j > 0 we define:

Cj ≡ C(j)
Qj ≡ 〈Cj , {Cj} , j〉

We use this structure to maintain all the terms that can be reached from Cj

via any finite number of βη-steps, so as we move from Vj to Vj+1, the second
projection of each of the triples “grows” to include all the terms that can be
reached by an additional βη-step. We now define the set of Fj of all triples
for which we can now show that the first projection fails to have the infinite
extension λf.f(f(f · · · )). We will make use of the effective predicate N(x) as a
“filter”:

Fj = {〈x1, x2, x3〉 : N(x), for some x ∈ x2}

N(x) =




True for x 6= λf.fn((λx.A)B), modulo
α-equivalence, and for some
A, B ∈ Λ, n ∈ {0} ∪N

False otherwise

We now remove the structures that correspond to terms that were found not to
have the infinite extension λf.f(f(f · · · )):

Wj = Vj \ Fj

We now extend the second projection to include all the terms that can be reached
after one additional βη-step:

W ′
j = {〈x1, x

′
2, x3〉 :

x′
2 = x2 ∪ {y : x →βη y, for some x ∈ x2}}

6



The set Vj+1 is defined to contain both the new structure Qj , as well as the
extended triples:

Vj+1 = {Qj} ∪W ′
j

The enumeration of the set S is obtained by enumerating the first projections in
all the triples in {Fj}j∈N

according to the ordering induced by j, as the primary
index, and then by the third projections in each Fj , as the secondary index. �

Acknowledgments

This work was supported in part by the Danish Research Academy. I am grateful
to BRICS for hosting me and for providing a stimulating environment. Thanks
are also due to Olivier Danvy, Neil Jones, Menachem Kojman, and Torben
Mogensen for their comments and encouragement.

References

[1] Hendrik P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1984.

[2] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[3] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic,
volume I. North-Holland Publishing Company, 1958.

[4] Hartley Jr. Rogers. Theory of Recursive Functions and Effective Computabil-
ity. (publisher The MIT Press), 1987.

[5] Richard Statman. Some Examples of Non-Existent Combinators. Theoretical
Computer Science, 121:441–448, 1993.

[6] Joseph E. Stoy. Denotational Semantics: the Scott-Strachey Approach to
Programming Language Theory. The MIT Press Series in Computer Science.
MIT Press, 1977.

[7] Alan Turing. The p-functions in λ-k-conversion. Journal of Symbolic Logic,
pages 164–164, 1937.

7



Recent BRICS Report Series Publications

RS-04-25 Mayer Goldberg. On the Recursive Enumerability of Fixed-
Point Combinators. November 2004. 7 pp.

RS-04-24 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2004. 30 pp.

RS-04-23 Hans Ḧuttel and Jiř ı́ Srba. Recursion vs. Replication in Simple
Cryptographic Protocols. October 2004.

RS-04-22 Gian Luca Cattani and Glynn Winskel. Profunctors, Open
Maps and Bisimulation. October 2004. 64 pp. To appear in
Mathematical Structures in Computer Science.

RS-04-21 Glynn Winskel and Francesco Zappa Nardelli.New-HOPLA—
A Higher-Order Process Language with Name Generation. Oc-
tober 2004. 38 pp.

RS-04-20 Mads Sig Ager.From Natural Semantics to Abstract Machines.
October 2004. 21 pp. Presented at theInternational Symposium
on Logic-based Program Synthesis and Transformation, LOP-
STR 2004, Verona, Italy, August 26–28, 2004.

RS-04-19 Bolette Ammitzbøll Madsen and Peter Rossmanith.Maximum
Exact Satisfiability: NP-completeness Proofs and Exact Algo-
rithms. October 2004. 20 pp.

RS-04-18 Bolette Ammitzbøll Madsen. An Algorithm for Exact Satis-
fiability Analysed with the Number of Clauses as Parameter.
September 2004. 4 pp.

RS-04-17 Mayer Goldberg. Computing Logarithms Digit-by-Digit.
September 2004. 6 pp.

RS-04-16 Karl Krukow and Andrew Twigg. Distributed Approximation
of Fixed-Points in Trust Structures. September 2004. 25 pp.

RS-04-15 Jeśus Fernando Almansa. Full Abstraction of the UC Frame-
work in the Probabilistic Polynomial-time Calculus ppc. August
2004.

RS-04-14 Jesper Makholm Byskov. Maker-Maker and Maker-Breaker
Games are PSPACE-Complete. August 2004. 5 pp.


