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Recursion vs. Replication in Simple

Cryptographic Protocols

Hans Hüttel? and Jǐŕı Srba??

BRICS? ? ?, Department of Computer Science, University of Aalborg
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

Abstract. We use some recent techniques from process algebra to draw
several conclusions about the well studied class of ping-pong protocols
introduced by Dolev and Yao. In particular we show that all nontriv-
ial properties, including reachability and equivalence checking wrt. the
whole van Glabbeek’s spectrum, become undecidable for a very simple
recursive extension of the protocol. The result holds even if no nonde-
terministic choice operator is allowed. We also show that the extended
calculus is capable of an implicit description of the active intruder, in-
cluding full analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère. We conclude by showing that reachability analysis
for a replicative variant of the protocol becomes decidable.

1 Introduction

Process calculi have been suggested as a natural vehicle for reasoning about
cryptographic protocols. In [1], Abadi and Gordon introduced the spi-calculus
(a variant of the π-calculus) and described how properties such as secrecy and
authenticity can be expressed via notions of observational equivalence (like may-
testing). Alternatively, security questions have been studied using reachability
analysis [3, 5, 11].

We provide a basic study of expressiveness and feasibility of cryptographic
protocols. We are interested in two verification approaches: reachability analy-
sis and equivalence (preorder) checking. In reachability analysis the question is
whether a certain (bad or good) configuration of the protocol is reachable from
a given initial one. In equivalence checking the question is whether a protocol
implementation is equivalent (e.g. bisimilar) to a given specification (optimal
behaviour). These verification strategies can be used even in the presence of an
active intruder (in the Dolev-Yao style), i.e., an agent with capabilities to listen
to any communication, to perform analysis and synthesis of communicated mes-
sages according to the actual knowledge of compromised keys, and to actively
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participate in the protocol behaviour by transmitting new messages. This can be
naturally implemented not only into the reachability analysis (see e.g. [4]) but
also into the equivalence checking approach. As described in [12], these questions
for equivalence (preorder) checking approach can be formulated as follows: “a
protocol P guarantees a security property X if, whatever hostile environment E
with a certain initial knowledge φI , then P is equivalent (in preorder) to (with)
the specification α(P ).” Formally this is given by saying that

protocol P satisfies property X iff ∀E ∈ E : P ‖ E ≈ α(P ). (1)

By an appropriate choice of the specification function α and a suitable equiv-
alence (preorder) ≈, several security properties can be verified. Here is a small
selection:

– Secrecy (confidential information should be available only to the partners of
the communication). Here ≈ stands for trace preorder.

– (Message) authenticity (identification of other agents (messages) participat-
ing in communication ). Here ≈ stands for trace equivalence or preorder.

– Fairness (in a contract, no party can gain advantage by ending the protocol
prematurely). Here ≈ stands for failure equivalence.

Various notions of bisimilarity are studied in this context as bisimilarity is
usually the “most decidable behavioral equivalence” as confirmed e.g. by several
positive decidability results in process algebra [6]. Hence the questions whether
a certain class of cryptographic protocols has decidable reachability and equiv-
alence (bisimilarity) checking are of particular importance for automated verifi-
cation.

A number of security properties are decidable for finite protocols [3, 19]. In
the case of an unbounded number of protocol configurations, the picture is more
complex. Durgin et al. showed in [10] that security properties are undecidable in
a restricted class of so-called bounded protocols (that still allows for infinitely
many reachable configurations). In [2] Amadio and Charatonik consider a lan-
guage of tail-recursive protocols with bounded encryption depth and name gener-
ation; they show that, whenever certain restrictions on decryption are violated,
one can encode two-counter machines in the process language. On the other
hand, Amadio, Lugiez and Vanackère show in [4] that the reachability problem
is in PTIME for a class of protocols with iteration.

In this paper we focus solely on ping-pong based behaviours of recursive and
replicative protocols (perhaps the simplest behaviour of all studied calculi) in
order to draw general conclusions about expressiveness and tractability of for-
mal verification of cryptographic protocols. The class of ping-pong protocols was
introduced in 1983 by Dolev and Yao [9]. The formalism deals with memory-less
protocols which may be subjected to arbitrarily long attacks. Here, the secrecy
of a finite ping-pong protocol can be decided in polynomial time. Later, Dolev,
Even and Karp found a cubic-time algorithm [8]. The class of protocols stud-
ied in [4] contains iterative ping-pong protocols and, as a consequence, secrecy
properties remain polynomially decidable even in this case.
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In the present paper we continue our study of recursive and replicative ex-
tensions of ping-pong protocols. In [14] we showed that the recursive extension
of the calculus is Turing powerful, however, the nondeterministic choice operator
appeared to be essential in the construction. The question whether the calculus
is Turing powerful even without any explicit way to define nondeterministic pro-
cesses was left open. Here we present a radically new reduction from multi-stack
automata and strengthen the undecidability results to hold even for protocols
without nondeterministic choice. We prove, in particular, that both reachabil-
ity and equivalence checking for all equivalences and preorders between trace
equivalence/preorder and isomorphism of labelled transition systems (which in-
cludes all equivalences and preorders from van Glabbeek’s spectrum [20]) become
undecidable. These results are of general importance because they prove the im-
possibility of automated verification for essentially all recursive cryptographic
protocols capable of at least the ping-pong behaviour.

In the initial study from [14], the question of active attacks on the protocol
was not dealt with. We shall demonstrate that a complete notion of the active
intruder (including analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère [4]) can be explicitly encoded into our formalism in order
to analyze general properties like in the scheme (1).

Finally, we study a replicative variant of the calculus. Surprisingly, such a
calculus becomes decidable, at least with regard to reachability analysis. We use
a very recent result from process algebra (decidability of reachability for weak
process rewrite systems by Křet́ınský, Řehák and Strejček [15]) in order to derive
the result. We believe that this is one of the reasons which formally confirm the
general trend that replication is a good choice for cryptographic formalisms and
that is why recursion is only rarely studied.

2 Basic definitions

2.1 Labelled transition systems with label abstraction

In order to provide a uniform framework for our study of ping-pong protocols,
we define their semantics by means of labelled transition systems. A labelled
transition system (LTS) is a triple T = (S,Act,−→) where S is a set of states
(or processes), Act is a set of labels (or actions), and −→⊆ S × Act × S is a
transition relation, written α

a−→ β, for (α, a, β) ∈−→. As usual we extend the
transition relation to the elements of Act∗. We also write α −→∗ β, whenever
α

w−→ β for some w ∈ Act∗.
The idea is that the states represent global configurations of a given proto-

col and the transitions describe the information flow. Labels on the transitions
moreover represent the messages (both plain-text and cipher-text) which are
being communicated during the state changes.

Remark 1. In [14] the semantics of ping-pong protocols is given in terms of tran-
sition systems with knowledge, i.e., unlabelled transition systems where each
state it assigned its knowledge, represented as a subset of a certain set of all
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possible knowledge values. By standard techniques such a knowledge-based se-
mantics can be translated to labelled transition systems and the studied veri-
fication properties (reachability, equivalence checking, etc.) are preserved. For
example a state A with two knowledge values p1 and p2 can be transformed
to a labelled transition system where the values p1 and p1 are represented as
self-loops in state A which are visible under special actions p1 and p2. A fresh
action a is used to represent the change of the state (the unlabelled transitions
in the original knowledge-based semantics).

The explicit possibility to observe the full content of messages is sometimes
not very realistic; it means that an external observer of such a system can e.g.
distinguish between two different messages encrypted by the same encryption
key, without the actual knowledge of the key.

In order to restrict capabilities of the observer we introduce a so called label
abstraction function φ : Act 7→ Act. Given a LTS T = (S,Act,−→T ) and a
label abstraction function φ we define a new LTS Tφ

def= (S,Act,−→Tφ
) where

α
φ(a)−→Tφ

β iff α
a−→T β for all α, β ∈ S and a ∈ Act. We call Tφ a labelled

transition system with label abstraction.
Let us now focus on the messages (actions). Assume a given set of encryption

keys K. The set of all messages over K is given by the following abstract syntax

m ::= k | k ·m

where k ranges over K. Hence every element of the set K is a (plain-text) message
and if m is a message then k ·m is a (cipher-text) message (meaning that the
message m is encrypted by the key k). Given a message k1 · k2 · · · kn over K we
usually1 write it only as a word k1k2 · · · kn from K∗. Note that kn is the plain-
text part of the message and the outermost encryption key is always on the left
(k1 in our case). In what follows we shall identify the set of messages and K∗,
and we denote the extra element of K∗ consisting of the empty sequence of keys
by ε.

Example 1. Let us consider a labelled transition system T def= (S,Act,−→)
where S

def= {A, B, C}, Act
def= K∗ for a given set of keys K = {k1, k2, λ} and −→

is given by the following picture.

A
k1k2 // B

k2 // C

The protocol computation starts in the state A and is very simple. First a plain-
text k2 encrypted by the encryption key k1 is communicated to the process B,
which decrypts the message and sends out the plain-text k2. Let us now assume
a label abstraction function φ defined by φ(k) = k if k ∈ K and φ(m) = λ

1 In our previous work on ping-pong protocols [14] we denoted a message m encrypted
by a key k as {m}k. We changed the notation in order to improve the clarity of the
proofs. In particular, when messages like k1k2 · · · kn are used, the previous syntax
described the keys in a reversed order, which was technically inconvenient.
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otherwise. The labelled transition system Tφ with label abstraction function φ
now looks as follows.

A
λ // B

k2 // C

This translates to the fact that the external observer is not allowed to see the
content of encrypted messages (the action λ is used instead) and only plain-text
messages can be recognized. ut

The level of abstraction we may select depends on the particular studied
property we are interested in and it directly corresponds to the specification
function α from (1). Nevertheless, it seems reasonable to require at least the
possibility to distinguish between plain-text and cipher-text messages. We say
that a label abstraction function φ is reasonable iff φ(k) 6= φ(k′w) for all k, k′ ∈ K
and w ∈ K+.

2.2 A calculus of recursive ping-pong protocols

We shall now define a calculus which captures exactly the class of ping-pong
protocols by Dolev and Yao [9] extended (in a straightforward manner) with
recursive definitions.

Let K be a set of encryption keys. A specification of a recursive ping-pong is
a finite set of process definitions ∆ such that for every process constant P (from
a given set Const) the set ∆ contains exactly one process definition of the form

P
def=

∑
i1∈I1

vi1 B . wi1B.Pi1 +
∑

i2∈I2

vi2 .Pi2 +
∑

i3∈I3

wi3 .Pi3

where I1, I2 and I3 are finite sets of indices such that I1 ∪ I2 ∪ I3 6= ∅, and
vi1 , vi2 , wi1 and wi3 are messages (belong to K∗) for all i1 ∈ I1, i2 ∈ I2 and
i3 ∈ I3, and Pi ∈ Const ∪ {0} for all i ∈ I1 ∪ I2 ∪ I3 such that 0 is a special
constant called the empty process. We moreover require that vi2 and wi3 for all
i2 ∈ I2 and i3 ∈ I3 are different from the empty message ε. (Observe that any
specification ∆ contains only finitely many keys.)

Summands continuing in the empty process constant 0 will be written with-
out the 0 symbol and process definitions will often be written in their unfolded
form using the nondeterministic choice operator ‘+’. An example of a process
definition is e.g. P

def= k1B . k2B.P1 + k1B . k3B + k1k2.P1 + k1k1 + k1k2.P2.
The intuition is that each summand of the form vi1 B . wi1B.Pi1 can receive

a message encrypted by a sequence vi1 of outermost keys, decrypt the message
using these keys, send it out encrypted by the sequence of keys wi1 , and finally
behave as the process constant Pi1 . The symbol B stands for the rest of the
message after decrypting it with the key sequence vi1 . This describes a standard
ping-pong behaviour of the process.

In addition to this we may have summands of the forms vi2 .Pi2 and wi3 .Pi3 ,
meaning simply that a message is received and forgotten or unconditionally
transmitted, respectively. This is a small addition to the calculus we presented
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in [14] in order to allow for discarding of old messages and generation of new
messages. These two features were not available in the earlier version of the
calculus but they appear to be technically convenient when modeling an explicit
intruder and for strengthening the positive decidability results in Section 5.
Nevertheless, the undecidability results presented in Section 3 are valid even
without this extension since only the standard ping-pong behaviour is used in
the constructions. A feature very similar to the forgetful input operation can be
also found in [4].

A configuration of a ping-pong protocol specification ∆ is a parallel compo-
sition of process constants, possibly preceded by output messages. Formally the
set Conf of configurations is given by the following abstract syntax

C ::= 0 | P | w.P | C ‖ C

where 0 is the empty configuration, P ∈ Const ∪ {0} ranges over process cons-
tants including the empty process, w ∈ K∗ ranges over the set of messages, and
‘‖’ is the operator of parallel composition.

We introduce a structural congruence relation ≡ which identifies configura-
tions that represent the same state of the protocol. The relation ≡ is defined as
the least congruence over configurations (≡⊆ Conf× Conf) such that (Conf, ‖,0)
is a commutative monoid and ε.P ≡ P for all P ∈ Const. In what follows we
shall identify configurations up to structural congruence.

Remark 2. We let ε.P ≡ P because the empty message should never be com-
municated. This means that when a prefix like kB . B.P receives a plain-text
message k and tries to output ε.P , it simply continues as the process P .

We shall now define the semantics of ping-pong protocols in terms of labelled
transition systems. We define a set ConfS ⊆ Conf consisting of all configurations
that do not contain the operator of parallel composition and call these sim-
ple configurations. We also define two sets In(C, m),Out(C, m) ⊆ ConfS for all
C ∈ ConfS and m ∈ K+. The intuition is that In(C, m) (Out(C, m)) contains
all configurations which can be reached from the simple configuration C after
receiving (resp. outputting) the message m from (to) the environment. Formally,
In(C, m) and Out(C, m) are the smallest sets which satisfy:

– Q ∈ In(P, m) whenever P ∈ Const and m.Q is a summand of P
– wα.Q ∈ In(P, m) whenever P ∈ Const and vB . wB.Q is a summand of P

such that m = vα
– P ∈ Out(m.P, m) whenever P ∈ Const∪ {0}
– Q ∈ Out(P, m) whenever P ∈ Const and m.Q is a summand of P .

A given protocol specification ∆ determines a labelled transition system
T (∆) def= (S,Act,−→) where the states are configurations of the protocol mod-
ulo the structural congruence (S def= Conf/≡), the set of labels (actions) is the
set of messages that can be communicated between the agents of the protocol
(Act

def= K+), and the transition relation −→ is given by the following SOS rule
(recall that ‘‖’ is commutative).
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m ∈ K+ C1, C2 ∈ ConfS C′
1 ∈ Out(C1, m) C′

2 ∈ In(C2, m)

C1 ‖ C2 ‖ C
m−→ C′

1 ‖ C′
2 ‖ C

This means that (in the context C) two simple configurations (agents) C1

and C2 can communicate a message m in such a way that C1 outputs m and
becomes C′

1 while C2 receives the message m and becomes C′
2.

Example 2. Let us consider a protocol specification ∆.

P
def= k.P ‖ kB . kkB.P ‖ k.Q Q

def= k.P

A fragment of the labelled transition system reachable from the initial configu-
ration P ‖ P looks as follows.

P ‖ P
k //

k ��

P ‖ kk.P
kk // P ‖ kkk.P

kkk // . . .

P ‖ Q

k

WW

ut

For further discussion and examples of recursive ping-pong protocols we refer
the reader to [14].

2.3 Reachability and behavioural equivalences

One of the problems that is usually studied is that of reachability analysis: given
two configurations C1, C2 ∈ Conf we ask whether C2 is reachable from C1, i.e.,
if C1 −→∗ C2. In this case the set of labels is irrelevant.

As the semantics of our calculus is given in terms of labelled transition sys-
tems (together with an appropriate label abstraction function), we can also study
the equivalence checking problems. Given some behavioural equivalence or pre-
order ↔ from van Glabbeek’s spectrum [20] (e.g. strong bisimilarity or trace,
failure and simulation equivalences/preorders just to mention a few) and two
configurations C1, C2 ∈ Conf of a protocol specification ∆, the question is to
decide whether C1 and C2 are ↔-equivalent (or ↔-preorder related) in T (∆),
i.e., whether C1 ↔ C2.

3 Recursive ping-pong protocols without explicit choice

In this section we strengthen the undecidability result from [14] and show that
the reachability and equivalence checking problems are undecidable for ping-
pong protocols without an explicit operator of nondeterminism and using clas-
sical ping-pong behaviour only, i.e., for protocols without any occurrence of
the choice operator ‘+’ and where every defining equation is of the form P

def=
vB . wB.P ′ such that P ′ ∈ Const.
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Remark 3. Note that every process constant is allowed to have exactly one defin-
ing equation, however, no constraints are imposed on the communication be-
haviour of the parallel components.

We moreover show that the negative results apply to all behavioural equiv-
alences and preorders between trace equivalence/preorder and isomorphism of
LTS (which preserves labelling) with regard to all reasonable label abstraction
functions as defined in Section 2.

These results are achieved by showing that recursive ping-pong protocols
can step-by-step simulate a Turing powerful computational device, in our case a
computational model called multi-stack machines.

A multi-stack machine R with ` stacks (` ≥ 1) is a triple R = (Q, Γ,−→)
where Q is a finite set of control-states, Γ is a finite stack alphabet such that
Q ∩ Γ = ∅, and −→⊆ Q× Γ ×Q× Γ ∗ is a finite set of transition rules, written
pX −→ qα for (p, X, q, α) ∈−→.

A configuration of a multi-stack machine R is an element from Q×(Γ ∗)`. We
assume a given initial configuration (q0, w1, . . . , w`) where q0 ∈ Q and wi ∈ Γ ∗

for all i, 1 ≤ i ≤ `. If some of the stacks wi are empty, we denote them by ε.
A computational step is defined such that whenever there is a transition rule

pX −→ qα then a configuration which is in the control-state p and has X on top
of the i’th stack (the tops of the stacks are on the left) can perform the following
transition:

(p, w1, . . . , Xwi, . . . , w`) −→ (q, w1, . . . , αwi, . . . , w`)

for all w1, . . . , w` ∈ Γ ∗ and for all i, 1 ≤ i ≤ `.
It is a folklore result that multi-stack machines are Turing powerful. Hence

(in particular) the following problem is easily seen to be undecidable: given an
initial configuration (q0, w1, . . . , w`) of a multi-stack machine R, can we reach
the configuration (h, ε, . . . , ε) for a distinguished halting control-state h ∈ Q such
that all stacks are empty? Without loss of generality we can even assume that a
configuration in the control-state h is reachable iff all stacks are empty.

Let R = (Q, Γ,−→) be a multi-stack machine. We define the following set of
keys of a ping-pong specification ∆: K def= Q ∪ Γ ∪ {kp | p ∈ Q} ∪ {t, k∗}. Here t
is a special key such that every communicated message is an encryption of the
plain-text key t. The reason for this is that it ensures that the protocol never
communicates any plain-text message. The key k∗ is a special purpose locking
key and it is explained later on in the construction.

We shall construct a ping-pong protocol specification ∆ as follows.

– For every transition rule pX −→ qα we have a process constant PpX−→qα

with the following defining equation.

PpX−→qα
def= pXB . kqαB.PpX−→qα

– For every state p ∈ Q we have two process constants Tp and T ′
p.

Tp
def= kpB . k∗B.T ′

p
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T ′
p

def= k∗B . pB.Tp if p ∈ Q r {h}, and T ′
h

def= hB . hB.T ′
h

Recall that h ∈ Q is the halting control-state.
– Finally, we define a process constant B (standing for a buffer over a fixed

key k∗).
B

def= k∗B . k∗B.B

In this defining equation the key k∗ locks the content of the buffer such that
it is accessible only by some T ′

p.

Note that ∆ does not contain any choice operator ‘+’ as required.
Let (q0, w1, . . . , w`) be an initial configuration of the multi-stack machine

R. The corresponding initial configuration of the protocol ∆ is defined as fol-
lows (the meta-symbol Π stands for a parallel composition of the appropriate
components).

( ∏
(r,A,s,β)∈−→

PrA−→sβ

)
‖

( ∏
p∈Qr{q0}

Tp

)
‖ T ′

q0
‖

( ∏
j∈{1,...,`}

k∗wjt.B
)

(2)

The following invariants will be preserved during any computational sequence
starting from this initial configuration:

– at most one T ′
p for some p ∈ Q is present as a parallel component (the

intuition is that this represents the fact that the machine R is in the control-
state p), and

– plain-text messages are never communicated.

Let (p, w1, . . . , wi, . . . w`) −→ (q, w1, . . . , αw′
i, . . . w`) be a computational step

of R using the rule pX −→ qα such that wi = Xw′
i. This one step is simulated by

a sequence of four transitions in the ping-pong protocol ∆ (see Figure 3). In the
first step one buffer is selected and unlocked (the current control-state p replaces
the locking key k∗ in the outermost encryption). In particular the buffer k∗wit.B
can be unlocked. No other kinds of transitions are possible in the first step.
Opening of the selected buffer means that some of the process constants PrA−→sβ

become able to accept this message. In particular the process constant PpX−→qα

can receive the message and output kqαwit for further communication; the key
kq determines the control-state change. (At this stage also a communication
between k∗wit.B and B is enabled but it does not change the current state and
hence it cannot contribute to a computational progress.) In the next step only
Tq can receive the message kqαwit, it remembers the new control-state q by
becoming T ′

q and offers the k∗-locked message for a communication with B. This
last communication (when B receives back the modified buffer) ends a simulation
of one computational step of R.

The following property is easy to see: if after some number of steps starting in
a protocol configuration corresponding to (p, w1, . . . , w`) we reach a first protocol
configuration where T ′

q appears for some q ∈ Q then this corresponds to one
correct computational step in R. On the other hand, the computation of ∆ can
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“ Y
(r,A,s,β)∈−→

PrA−→sβ

”
‖

“ Y
r∈Qr{p}

Tr

”
‖ T ′

p ‖
“ Y

j∈{1,...,`}
k∗wjt.B

”

↓ k∗wit“ Y
(r,A,s,β)∈−→

PrA−→sβ

”
‖

“ Y
r∈Qr{p}

Tr

”
‖ pwit.Tp ‖

“ Y
j∈{1,...,`},j 6=i

k∗wjt.B
”

‖ B

↓ pwit“ Y
(r,A,s,β)∈(−→r{(p,X,q,α)})

PrA−→sβ

”
‖ kqαw′

it.PpX−→qα ‖
“ Y

r∈Q

Tr

”
‖

“ Y
j∈{1,...,`},j 6=i

k∗wjt.B
”

‖ B

↓ kqαw′
it“ Y

(r,A,s,β)∈−→
PrA−→sβ

”
‖

“ Y
r∈Qr{q}

Tr

”
‖ k∗αw′

it.T
′
q ‖

“ Y
j∈{1,...,`},j 6=i

k∗wjt.B
”

‖ B

↓ k∗αw′
it“ Y

(r,A,s,β)∈−→
PrA−→sβ

”
‖

“ Y
r∈Qr{q}

Tr

”
‖ T ′

q ‖
“ Y

j∈{1,...,`},j 6=i

k∗wjt.B
”

‖ k∗αw′
it.B

Fig. 1. Simulation of (p,w1, . . . , wi, . . . w`) −→ (q, w1, . . . , w
′
iα, . . . w`) s.t. wi = Xw′

i

get stuck after the first communication step (in case that the unlocked buffer
does not enable an application of any rule rA −→ sβ) or an infinite sequence of
communication steps of the form m.B ‖ B

m−→ m.B ‖ B is also possible.
This is formally captured in the following lemma.

Lemma 1. In the given multi-stack machine R the configuration (q, w′
1, . . . , w

′
`)

is reachable from (p, w1, . . . , w`) if and only if
( ∏

(r,A,s,β)∈−→
PrA−→sβ

)
‖

( ∏
p∈Qr{q}

Tp

)
‖ T ′

q ‖
( ∏

j∈{1,...,`}
k∗w′

jt.B
)

is reachable (in ∆) from
( ∏

(r,A,s,β)∈−→
PrA−→sβ

)
‖

( ∏
p∈Qr{p}

Tp

)
‖ T ′

p ‖
( ∏

j∈{1,...,`}
k∗wjt.B

)
.

The following theorems are now easily derived.
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Theorem 1. The reachability problem for recursive ping-pong protocols without
an explicit choice operator is undecidable.

Proof. Immediately from Lemma 1 and from the undecidability of reachability
for multi-stack machines. ut

Theorem 2. The equivalence checking problem for recursive ping-pong proto-
cols without an explicit choice operator is undecidable for any behavioral equiv-
alence/preorder between trace equivalence/preorder and isomorphism (including
all equivalences and preorders from van Glabbeek’s spectrum [20]) and for any
reasonable label abstraction function.

Proof. Let R be a multi-stack machine and ∆ the protocol specification con-
structed above with the initial configuration C as given by (2). We consider the
question whether C ‖ h is equivalent (or in preorder) with C.

In case that the halting control-state h is not reachable from the initial
configuration of R, we know from Lemma 1 that T ′

h will never appear as a
parallel component in any reachable state from C. This implies that the plain-
text message h will never be communicated and hence C ‖ h and C exhibit
isomorphic behaviours under any label abstraction function.

On the other hand, if h is reachable from the initial configuration of R then
because of Lemma 1 a configuration in ∆ with the parallel component T ′

h is
reachable. Such a configuration is stuck in the process on the right, however,
in the process on the left the plain-text message h can be communicated be-
tween T ′

h and the extra parallel component h. This means that C ‖ h and C
are not even related by the trace preorder (and hence they are also not trace
equivalent) because after a finite sequence of communicated messages there is
a successor of the configuration C ‖ h which can communicate the plain-text h
while (as argued before) C can only exchange cipher-text messages. As the label
abstraction function φ is reasonable, necessarily for all messages m (cipher-texts)
communicated in C it is the case that φ(m) 6= φ(h).

To sum up, if the machine R cannot reach the halting configuration then
C ‖ h and C are isomorphic and if R halts than C ‖ h and C are not in trace
preorder. This implies that all equivalences and preorders between trace and
isomorphism are undecidable for any reasonable label abstraction function. ut

4 The active intruder

In the literature on applying process calculi to the study of cryptographic proto-
cols, there have been several proposals for explicit modelling the active intruder
(environment). Foccardi, Gorrieri and Martinelli in [12] express the environment
within the process calculus, namely as a process running in parallel with the
protocol. In [4] Amadio, Lugiez and Vanackère describe a tiny process calculus
similar to ours, except that they use replication instead of recursion. Moreover,
the environment is described in the semantics of the calculus. Transitions are of
the form

(C, T ) → (C′, T ′)

11



where C and C′ are protocol configurations and T and T ′ denote the sets of
messages known to the environment (all communication occurs only by passing
messages through these sets).

The environment is assumed to be hostile; it may compute new messages
by means of the operations of analysis and synthesis and pass these on to the
process. Let K be a set of encryption keys as before. The analysis of a set of
messages T ⊆ K∗ is the least set A(T ) satisfying

A(T ) = T ∪ {w | kw ∈ A(T ), k ∈ K ∩ A(T )}. (3)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T ) satisfying

S(T ) = A(T ) ∪ {kw | w ∈ S(T ), k ∈ K ∩ S(T )}. (4)

The next lemmas follow immediately from Tarski’s fixed-point theorem.

Lemma 2. The analysis of a set of messages T ⊆ K∗ is the union of the family
of sets Ai(S) defined by

A0(T ) = T

Ai+1(T ) = Ai(T ) ∪ {w | kw ∈ Ai(T ), k ∈ K ∩ Ai(T )}

Lemma 3. The synthesis of a set of messages T ⊆ K∗ is the union of the family
of sets Si(T ) defined by

S0(T ) = A(T )
Si+1(T ) = Si(T ) ∪ {kw | w ∈ Si(T ), k ∈ K ∩ Si(T )}

The set of compromised keys Kc for a given set T ⊆ K∗ of messages is defined by
Kc

def= K∩S(T ), which is easily seen to be equal to K∩A(T ). (The compromised
keys are immediately available for the intruder because they are either in his
initial knowledge or can be discovered by the analysis.)

Remark 4. Let T ⊆ K∗ be a given set of messages. The following observation
is easy to verify: in order to compute the complete set Kc of compromised keys
of size n, it is enough to find messages m1, . . . , mn ∈ T such that when we
analyze them in a sequence, we discover exactly all compromised keys. Formally,
we define

K0
c

def= ∅ and Ki
c

def= Ki−1
c ∪ {k ∈ K | mi = wk, w ∈ (Ki−1

c )∗}

for all i, 1 ≤ i ≤ n, and then Kc = Kn
c . ut

Proposition 1. It holds that w ∈ S(T ) if and only if w can be written as
w = uw′ for some u ∈ K∗

c and there exists u′ ∈ K∗
c such that u′w′ ∈ T .

Proof. Notice that because of Lemma 2 w ∈ A(T ) iff there is u ∈ K∗
c such that

uw ∈ T . The proposition then follows by an application of Lemma 3. ut
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We can now design an environment sensitive semantics for our calculus close
in style to that of [4]. We define the reduction relation → by the following set of
axioms (here x ∈ P means that x is a summand in the defining equation of the
process constant P ).

(P ‖ C, T ) → (wα.P ′ ‖ C, T ) if (vB . wB.P ′) ∈ P and vα ∈ S(T ) (A1)
(P ‖ C, T ) → (P ′ ‖ C, T ) if (v.P ′) ∈ P and v ∈ S(T ) (A2)

(w.P ‖ C, T ) → (P ‖ C, T ∪ {w}) (A3)
(P ‖ C, T ) → (P ′ ‖ C, T ∪ {w}) if (w.P ′) ∈ P (A4)

We show that this semantics can be internalized in our calculus within our
existing semantics.

4.1 Intruder implementation

Let Pr be an initial configuration of a given protocol ∆ with its (finite) set of
protocol keys Kp. Without loss of generality we may assume that ∆ is input-
guarded, meaning that it contains no input prefixes of the form B (i.e., every
input prefix is guarded by at least one encryption key; this is easily guaranteed
by replacing every summand of the form B. wB.Pi with

∑
k∈Kp

kB . wkB.Pi,
which can be easily seen to generate the same labelled transition system).

Given a protocol configuration Pr , we shall define the intruder as an extra
parallel component in the configuration (and hence using the same syntax). The
intruder will remember a set Kc ⊆ Kp of the compromised keys (as defined
above) plus he will use an extra set of keys {`P , `B, `T} of so called locking keys
and another key # called a separation key.

We implement the intruder as an abstract set of operations that can modify
two main data structures, a pool and a buffer. Note that this is a conceptual ab-
straction: in fact the set of all data is represented as a single message containing
the total sequence of keys of messages that have been encountered. For this the
structure pool will store all available messages separated by the key #, and the
buffer structure can be either empty or it can store a single message in order to
enable its analysis and synthesis. Moreover (for technical reasons) all messages
placed into the pool will be in the reversed order of encryption keys.

All communication between the intruder and the protocol Pr will pass through
the buffer. The available operations are in Table 1. Note that all the correspond-
ing process constants are parameterized by the set Kc of currently discovered
compromised keys. The intuition is that listen can transfer any message offered
by the protocol Pr and store it to the buffer. Similarly output can offer the
content of the buffer for communication with the original protocol Pr . Deposit
can transfer the message stored in buffer into the pool (the extra key # is used
to separate the messages stored in the pool and the transfered message is stored
into P in the reversed order). Retrieve can nondeterministically select a single
message from the pool and copy it into the buffer. Analyze can provide an anal-
ysis of the current message in the buffer according to the set of compromised
keys Kc (during this a new compromised key can be discovered and the set Kc is

13



Operation Direction Process constant

Listen Protocol → Buffer LKc

Output Buffer → Protocol OKc

Deposit Buffer → Pool DKc

Retrieve Pool → Buffer RKc

Analyze Buffer → Buffer AKc

Synthesize Buffer → Buffer SKc

Switch no data operation XKc

Table 1. Abstract operations of the intruder

updated accordingly). Synthesize can add an arbitrarily long sequence of com-
promised keys onto the message currently stored in the buffer. Finally, the switch
process constant XKc allows for a nondeterministic selection of any one of the
previously mentioned operations. In any configuration of the intruder, exactly
one of the process constants from Table 1 is present as a parallel component.

All internal communication within the intruder uses one of the locking keys
mentioned above as the outermost key in the communicated messages. Together
with our assumption that the original protocol is input-guarded by the keys Kp,
this guarantees that none of those messages are available for a communication
with the protocol as they have to be unlocked first. Also observe that because
the process constants from Table 1 are parameterized by Kc ⊆ Kp, we have
exponentially many of them with respect to the size of the set Kp. This is for
technical convenience only, and it is discussed in more detail in Conclusion.

Let us now define all the components of the intruder.

4.2 Buffer implementation

All operations of the intruder use their own private buffer. A buffer B` is a
process which can temporarily store any message encrypted with the locking
key `.

B`
def= `B . `B.B` (5)

The intruder uses three such buffers. We assign them the names P (pool), B
(buffer) and BT (temporary buffer) as follows.

P = B`P B = B`B BT = B`T

4.3 Initial configuration

The initial intruder with a given set of compromised keys Kc is described by
the following configuration.

Iinit = `P #.P ‖ `B.B ‖ `T .BT ‖ XKc (6)

14



The prefix `P # ensures that the empty message ε is available on the pool
initially, and this will make it possible to output any compromised key k by
using the synthesis operation on ε to obtain kε = k. The other two buffers are
simply initialized to empty by transmitting only the corresponding locking key.

An intruder configuration is any configuration I such that Iinit→∗I. The
behaviour of the intruder will be described in such a way that any intruder
configuration will always be of the form

CP ‖ CB ‖ CBT ‖ CX

where CP is either P or `P w.P for some w ∈ (Kp ∪ {#})∗, CB is either B or
`Bw.B for some w ∈ K∗

p , CBT is either BT or `T w.BT for some w ∈ (Kp∪{#})∗,
and CX is either Y or w.Y where Y ∈ {XKc , LKc , OKc , DKc , RKc , AKc , SKc}
and w ∈ K∗.

As the original protocol is assumed to be input-guarded, in a configuration
like Pr ‖ I (where Pr is a protocol configuration and I is an intruder configura-
tion), we will make sure that only a process constant Y in the CX part of I can
manipulate the available buffers in parts CP , CB and CBT .

4.4 Switching between operations

The intruder is always capable of choosing nondeterministically between any of
the six operations in Table 1. In this way, the intruder can manipulate messages
by any means necessary. This is expressed by the central component of the
intruder, the switch process constant XKc , which is parameterized by the set of
currently compromised keys Kc.

XKc
def= `B.LKc (7)

+ `P B . `PB.OKc (8)

+ `P B . `PB.DKc (9)

+ `B.RKc (10)

+ `P B . `PB.AKc (11)

+ `P B . `PB.SKc (12)

As XKc is always in parallel with a pool of the form `P w.P , the following
communication is possible `P w.P ‖ XKc

`P w−→ P ‖ `P w.Y
`P w−→ `P w.P ‖ Y for

any Y ∈ {OKc , DKc , AKc , SKc}. This corresponds to giving a control to the
appropriate process constant Y (the use of pool to make the switch is here only
for technical reasons and the pool content is untouched). The process constants
LKc and RKc use a different switching method which guarantees that the state
change is possible only if the buffer B is empty (i.e., it outputs only the key `B).
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4.5 Listen to the protocol

As the intruder runs in parallel with the protocol configuration Pr , it may collect
any message transmitted by Pr . It then encrypts the message by the locking key
`B and stores the message into the buffer B. The control is returned to XKc

afterwards.

LKc def=
∑

k∈Kp

kB . `BkB.XKc (13)

Formally, if m ∈ K∗
p and Pr can transmit m and become Pr ′, we can perform

the following communication.

Pr ‖ B ‖ LKc
m−→ Pr ′ ‖ B ‖ `Bm.XKc

`Bm−→ Pr ′ ‖ `Bm.B ‖ XKc

4.6 Output a message to the protocol

The intruder may output any message stored in the buffer B by removing its
locking key `B, thereby making the message available to the protocol.

OKc def= `BB . B.O′Kc (14)

O′Kc def= lB.XKc (15)

Hence if Pr can receive a message m ∈ K∗
p and become Pr ′ then we get the

following communication.

Pr ‖ `Bm.B ‖ OKc
`Bm−→ Pr ‖ B ‖ m.O′Kc m−→

Pr ′ ‖ B ‖ O′Kc `B−→ Pr ′ ‖ `B.B ‖ XKc

4.7 Analysis and synthesis

Assume that the buffer B contains some message of the form `Bw.B where w ∈
Kp

∗. Computing an element of the analysis amounts to step-by-step decryption
with any of the compromised keys from Kc.

AKc
def=

∑
k∈Kc

`BkB . `BB.AKc +
∑

k∈Kp

`Bk.A1
Kc

k + `P B . `P B.XKc (16)

A1
Kc

k
def= `B.XKc∪{k} for all k ∈ Kp (17)

The second summand in equation (16) corresponds to the discovery of a plain-
text key, which is promptly added to the set of compromised keys by equation
(17), the buffer B is initialized to `B.B and the control is given to XKc∪{k}. The
third summand in (16) allows the intruder to end the analysis phase and return
the control to the switch XKc .
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Computing an element of the synthesis simply enables to add (step-by-step)
as many compromised keys as the intruder wants to the message stored in the
buffer B.

SKc def=
∑

k∈Kc

`B B . `BkB.SKc + `P B . `P B.XKc (18)

4.8 Deposit

This operation deposits a message from the buffer B into the pool P by moving
it key by key.

DKc
def=

∑
k∈Kp

`BkB . `BB.DKc

k + `B.D′Kc

# (19)

DKc

k
def= `P B . `P kB.DKc for all k ∈ Kp (20)

D′Kc

#
def= `B.DKc

# (21)

DKc

#
def= `P B . `P #B.XKc (22)

The equations (19) and (20) perform the key transfer from B to P . One step
of such a transfer looks as follows (here k ∈ Kp and w1 and w2 are arbitrary
messages).

`P w1.P ‖ `Bkw2.B ‖ DKc
`Bkw2−→ `P w1.P ‖ B ‖ `Bw2.D

Kc

k

`Bw2−→

`P w1.P ‖ `Bw2.B ‖ DKc

k

`P w1−→ P ‖ `Bw2.B ‖ `P kw1.D
Kc

`P kw1−→

`P kw1.P ‖ `Bw2.B ‖ DKc

Recall that as indicated before, the messages are stored in reverse order in P .
When the bottom of the buffer B is reached, the second summand in equation
(19) can be applied. First the key `B is returned to the buffer B by equation
(21) and finally the control is given to the process constant XKc while adding
the separation key # into the pool by equation (22).

4.9 Retrieve

To retrieve a message from the pool (the most complicated operation of the con-
struction), the retrieval process scans through the message separation markers
# until it nondeterministically decides to copy a message to the buffer (here it
is also the only place where the temporary buffer is used).
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RKc
def= `B.R1

Kc (23)

R1
Kc def=

∑
k∈Kp∪{#}

`PkB . `P B.RKc

k + `P #B . `P B.SKc

# + `P .T ′
2
Kc (24)

RKc

k
def= `T B . `T kB.R1

Kc for all k ∈ Kp ∪ {#} (25)

SKc

#
def= `T B . `T #B.T Kc (26)

T Kc
def=

∑
k∈Kp

`P kB . `PB.T Kc

k + `P #B . `P #B.T2
Kc + `P .T ′

2
Kc (27)

T Kc

k
def= `T B . `T kB.T1

Kc

k for all k ∈ Kp (28)

T1
Kc

k
def= `B B . `BkB.T Kc for all k ∈ Kp (29)

T ′
2
Kc def= `P .T2

Kc (30)

T2
Kc def=

∑
k∈Kp∪{#}

`T kB . `T B.T3
Kc

k + `T .T4
Kc (31)

T3
Kc

k
def= `P B . `P kB.T2

Kc for all k ∈ Kp ∪ {#} (32)

T4
Kc def= `T .XKc (33)

First the buffer B is initialized with the key `B by equation (23). Then
by equations (24) and (25) all keys from Kp can be moved one by one to the
temporary buffer BT . In case that the #-key is discovered during the process,
the intruder can either continue as before by placing the key into the temporary
buffer (using the first summand in (24)), or he can decide that # is the start of
the selected message to be copied into the buffer B and use the second summand
of (24).

In the latter case equation (26) places the # key into the temporary buffer
BT and evokes the process constant T Kc which copies the next piece of the
message from the pool both into the temporary buffer BT and also into the
buffer B. This is done using the equations (28) and (29) and the control returns
to T Kc . Whenever the first separation key # appears as the outermost key,
the second summand in (27) applies and the intruder continues from T2

Kc in
equation (31). The same happens when the end of the pool is reached (third
summand of equation (27)). In this case the key `P is first return into the pool
by the process constant T ′

2
Kc and then the process continues by equation (31)

as before.

The remaining equations (31) – (33) simply return the content of the tempo-
rary buffer BT back to the pool and give the control to XKc (making sure that
the temporary buffer is reseted to `T .BT ).
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4.10 Correctness of the encoding

We now show that the intruder faithfully describes the environment sensitive
semantics defined in the beginning of Section 4 by axioms (A1) – (A4).

To do this, we need to define the knowledge of the intruder. We take this to
be the totality of the set of messages that he can output to the environment.

Let E
def=

∑
k∈Kp

kB . kB.E be an observer (environment) which allows us
to observe all messages encrypted by keys from Kp. Let =⇒ be an (unlabelled)
reflexive and transitive closure of transition relations labelled by actions that are
not available to the environment (internal communication of the intruder), i.e.,

=⇒ def=
( ⋃

m∈(KrKp)·K∗

m−→
)∗

.

The set of known messages of an intruder configuration I is defined by

km(I) def= {w ∈ Kp
∗ | E ‖ I =⇒ ◦ w−→}.

We say that I is a proper intruder configuration whenever I does not contain
any parallel component of the form LKc , OKc or m.O′Kc . In other words it is
not directly committed to communicate with the environment.

We now show an operational correspondence result which states that the
intruder, as described above, accurately describes the behaviour of the environ-
ment sensitive semantics expressed by axioms (A1) – (A4). The following lemma
shows that the intruder can synthesize all possible messages.

Lemma 4. For any proper intruder configuration I it holds that km(I) = S(km(I)).

Proof. The inclusion km(I) ⊆ S(km(I)) follows from the definition of synthesis.
Let w ∈ S(km(I)). We will show that w ∈ km(I). Because of Remark 4 we know
that the set of compromised keys Kc (where n = |Kc|) can be computed by
analyzing of certain messages m1, . . . , mn ∈ km(I). As these messages belong to
km(I) they can consequently be placed (in the given order) into the buffer B and
analyzed. This will update the current set of compromised keys remembered by
the intruder to the complete set Kc. Because of Proposition 1 we know that w can
be constructed by first placing a selected message into the buffer and by removing
all the compromised keys (by AKc) and then by adding the compromised keys
in order to form w (by SKc). The message w can then be communicated to the
environment E by OKc and hence w ∈ km(I). ut

The first theorem states that the intruder can mimic the behaviour of the
environment-sensitive semantics.

Theorem 3 (Completeness). Let C be a protocol configuration, let T ⊆ K∗,
and let I be a proper intruder configuration such that S(T ) = km(I). If

(C, T ) → (C ′, T ′)

19



then there exists w ∈ K∗
p and a transition sequence

(C ‖ I) =⇒ ◦ w−→ (C′ ‖ I ′)

such that S(T ′) = km(I ′) and I ′ is a proper intruder configuration.

Proof. The intruder’s strategy is clear. He listens to every message communi-
cated by the protocol and stores all such messages into the pool in order to be
able to synthesize the appropriate messages and communicate them back to the
protocol at some later stage.

First observe that there are four possible axioms (A1) – (A4) to perform
(C, T ) → (C ′, T ′). In case of the axioms (A1) and (A2) we know that the protocol
configuration C receives a message w from S(T ) and becomes C′, and that
T ′ = T . Because w ∈ S(T ) = km(I) we know that the intruder I can perform
I =⇒ I ′′ such that E ‖ I ′′

w−→ E′ ‖ I ′ and hence also (C ‖ I) =⇒ ◦ w−→ (C′ ‖ I ′).
Moreover, km(I ′) = km(I) as required because every message that appears in
the buffer B can be also copied to the pool P for a use later on. It is also easy
to see that I ′ is proper.

In case of the axioms (A3) and (A4) the protocol configuration C emits a
message w and becomes C′, and T ′ = T ∪{w}. In this case the intruder deposits
the content of the buffer into the pool (in case that it was not empty) and then
receives the message w from C. This means that (C ‖ I) =⇒ ◦ w−→ (C′ ‖ I ′)
and moreover km(I ′) now contains the message w (obviously I ′ is proper). This
implies that S(T ′) = S(T ∪ {w}) = km(I ′) because of Lemma 4.

ut

Conversely, the intruder cannot gain any extra knowledge than the one he
can construct by analysis and synthesis of the available messages.

Theorem 4 (Soundness). Let C be a protocol configuration, let T ⊆ K∗, and
let I be an intruder configuration such that km(I) ⊆ S(T ). If for some w ∈ K∗

p

(C ‖ I) =⇒ ◦ w−→ (C′ ‖ I ′)

then there exists a transition

(C, T ) → (C ′, T ′) or (C, T ) → ◦ → (C ′, T ′)

such that km(I ′) ⊆ S(T ′).

Proof. There are two cases to distinguish. In the first case the intruder either
listens to the message w sent by C, or he outputs w for a communication with the
protocol C. This means that there is a corresponding transition also in (C, T ) →
(C ′, T ′) and it is easy to verify that km(I ′) ⊆ S(T ′). In the second case the
intruder does not interfere with the communication in C (hence km(I ′) = km(I))
and such a communication step is simulated by two steps (C, T ) → ◦ → (C′, T ′)
(in the environment sensitive semantics all messages must pass through T ). By
the fact that S(T ) ⊆ S(T ′), we can immediately see that km(I ′) ⊆ S(T ′). ut
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5 Replicative ping-pong protocols

In this section we shall define a replicative variant of our calculus for ping-pong
protocols. We will then show that this formalism is not Turing powerful because
the reachability problem becomes decidable. This is to be put in contrast with
several results where replicative calculi are known to be capable of simulating
recursive ones (see e.g. [17] for the case of pi-calculus which implies also the
same result for spi-calculus, and [13, 18] for other examples). On the other hand,
a similar discrimination result as ours between recursion and replication was
recently proved for CCS [7].

Let us now define replicative ping-pong protocols. Let K be the set of en-
cryption keys as before. The set Conf of protocol configurations is given by the
following abstract syntax

C ::= 0 | vB . wB | v | w | !(vB . wB) | !(v) | !(w) | C ‖ C

where 0 is the symbol for the empty configuration, v and w range over K∗,
and ! is the bang operator (replication). As before, we shall introduce structural
congruence ≡, which is the smallest congruence over Conf such that

– (Conf, ‖,0) is a commutative monoid
– ε ‖ C ≡ C ≡ ε ‖ C
– !(ε) ≡ 0 ≡ !(ε)
– !(C) ≡ C ‖!(C).

A labelled transition system determined by a configuration (where states are
configurations modulo ≡ and labels are non-empty messages as before) is defined
by the following SOS rules (recall the replicative axiom !(C) ≡ C ‖!(C) and the
fact that ‘‖’ is commutative).

m ∈ K+

m ‖ m ‖ C
m−→ C

m ∈ K+ m = vα

m ‖ vB . wB ‖ C
m−→ wα ‖ C

Example 3. An initial configuration C
def= !(k) ‖ !(kB . kkB) generates a labelled

transition system in Figure 2 with infinitely many reachable configurations (only
a finite fragment is depicted). Observe that (unlike recursive protocols) the num-
ber of parallel components can grow arbitrarily (e.g. the left-most branch in the
picture). The reason is that we allow prefixes of the form !(w) which can uncon-
ditionally output new messages and that we have replicative agents accepting
these messages.

In case that the number of output prefixes for all reachable configurations is
bounded by some number n, the parallel components of the form !(v), !(w) and
!(v B . wB) can be replaced by n parallel occurrences of fresh process constants
P!(v), P!(w) and P!(vB. wB) respectively such that P!(v)

def= v.P!(v), P!(w)
def= w.P!(w)

and P!(vB. wB)
def= v B . wB.P!(vB. wB), and hence it can be simulated by recursive

protocols. ut
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Fig. 2. Initial fragment of a labelled transition system for C
def
= !(k) ‖ !(kB . kkB)

We shall now show that the reachability problem for general replicative ping-
pong protocols is decidable. We reduce our problem to reachability of weak pro-
cess rewrite systems (wPRS) which was very recently proven to be decidable [15].

Following the work of Mayr [16], let Const be a set of process constants. The
set E of process expressions over Const is defined by

E ::= ε | X | E.E | E ‖ E

where ε is the symbol for empty expression, X ranges over Const, ‘.’ is the
operator of sequential composition and ‘‖’ is the operator of parallel composition.
We identify processes up to structural congruence, which is the least congruence
such that ‘.’ is associative, ‘‖’ is associative and commutative and ε is a unit for
‘.’ and ‘‖’.

Let Q be a finite set of control-states and Act a set of actions. A state-
extended process rewrite system (sePRS) is a finite set ∆ of rewrite rules of the
form pE

a−→ qF where p, q ∈ Q, a ∈ Act, and E, F ∈ E such that E 6= ε.
A given sePRS ∆ generates a labelled transition system T (∆) where states

are process expressions over Const modulo the structural congruence, the set of
actions is Act and the transition relation is given by the following SOS rules
(recall that ‘‖’ is commutative).

(pE
a−→ qF ) ∈ ∆

pE
a−→ qF

pE
a−→ qE′

p(E.F ) a−→ q(E′.F )

pE
a−→ qE′

p(E ‖ F ) a−→ q(E′ ‖ F )

A sePRS ∆ is called a weak process rewrite system (wPRS) iff there is a
partial ordering ≤ on Q such that all rewrite rules pE

a−→ qF from ∆ satisfy
that q ≤ p.

Theorem 5 ([15]). The reachability problem for wPRS is decidable.
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Let us now consider an arbitrary configuration C in the calculus of replicative
ping-pong protocols. We shall construct a wPRS system ∆ which preserves the
reachability property.

The configuration C can be naturally written as C ≡ A ‖ B ‖ O where
A contains all parallel components of the form !(v B . wB), !(v) and !(w); B
contains all parallel components of the form vB . wB and v; and O contains all
output prefixes of the form w. Here we assume that the rules of the structural
congruence ≡ are applied as long as possible in order to minimize the size of the
configuration C (such assumptions are implicit also later on). Observe now that
any configuration C′ ≡ A ‖ B′ ‖ O′ reachable from C contains exactly the same
part A and every parallel component from B′ is also in B.

The intuition of the reduction is that A does not have to be remembered as
all parallel components from A are always available, B will be stored in control-
states of the wPRS (note that there are only finitely many different components
in B′ for all reachable configurations of the form A ‖ B′ ‖ O′) and the parallel
components from O will be stored as a parallel composition of stacks in the
wPRS system.

Let C ≡ A ‖ B ‖ O be the initial configuration. Formally, the wPRS rules
∆ where Const

def= K ∪ {Z, X} (Z is a special symbol for the bottom of a stack,
X is a process constant for creating more parallel components) and where Q

def=
{pB′ | ∃B′′ s.t. B ≡ B′ ‖ B′′} are defined as follows.

1. pB′
X −→ pB′

(X ‖ w.Z) B′ ⊆ B and !(w) ∈ A

2. pB′
w.Z −→ pB′

B′ ⊆ B and !(w) ∈ A

3. pB′
Z −→ pB′

B′ ⊆ B

4. pB′
v.Z −→ pB′

B′ ⊆ B and !(v) ∈ A

5. pB′
v −→ pB′

w B′ ⊆ B and !(vB . wB) ∈ A

6. pB′
v.Z −→ pB′′

B′ ⊆ B and B′ ≡ B′′ ‖ v

7. pB′
v −→ pB′′

w B′ ⊆ B and B′ ≡ B′′ ‖ vB . wB

In the definitions above, whenever we have w ∈ K∗, we use the word w also
in the wPRS rules in the meaning that it represents a sequential composition of
process constants contained in w, i.e., if w = a1a2 · · · an then w in the wPRS rules
stands for the sequential composition a1.a2. . . . .an. Moreover B′ ⊆ B means that
there is some B′′ such that B ≡ B′ ‖ B′′ and x ∈ A means that the expression
x is a parallel component in A. All actions are omitted as they are irrelevant for
the reachability question.

Rules 1. – 3. correspond to the structural congruence ≡. As !(w) ≡ w ‖!(w)
rule 1. enables us to create a new parallel component w whenever !(w) ∈ A
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and by rule 2. such a component can always be deleted. Rule 3. corresponds to
the fact that ε ‖ C ≡ C. (Recall that we assume that C does not contain any
component of the form !(ε) or !(ε).)

Rules 4. – 7. are computational rules: in rules 4. and 5. we allow the reception
of messages by the components in A and the control-state does not change in
this case; in rules 6. and 7. we do the same for components in B′ (the current
remaining part of B) and whenever such a component is used, we remove it from
B′ by changing the control-state to pB′′

.
Let us assume the initial configuration C ≡ A ‖ B ‖ O as above such that

O ≡ w1 ‖ w2 ‖ · · · ‖ wn. The initial configuration of the wPRS system ∆ is then

pB(X ‖ w1.Z ‖ w2.Z ‖ · · · ‖ wn.Z).

It is easy to see that every rewriting step in ∆ corresponds either to a single
computational step in the replicative ping-pong protocol or to an application of
some congruence rule. On the other hand, any communication in the protocol
can be directly simulated in ∆.

Hence we can make the following observation (assuming that O′ ≡ w′
1 ‖ w′

2 ‖
· · · ‖ w′

n′).

Lemma 5. It holds that

A ‖ B ‖ O −→∗ A ‖ B′ ‖ O′

if and only if

pB(X ‖ w1.Z ‖ w2.Z ‖ · · · ‖ wn.Z) −→∗ pB′
(X ‖ w′

1.Z ‖ w′
2.Z ‖ · · · ‖ w′

n′ .Z).

Theorem 6. The reachability problem for replicative ping-pong protocols is de-
cidable.

Proof. By Lemma 5 we reduced the problem to the reachability question for
wPRS (observe that pB′≥ pB′′

iff B′′ ⊆ B′ is the natural ordering on control-
states of the wPRS demonstrating that the control-state unit has a monotone
behaviour). The decidability result then follows from Theorem 5. ut

6 Conclusion

We have seen that ping-pong protocols extended with recursive definitions have
full Turing power. This is the case even in the absence of nondeterministic choice
operator ‘+’. A result like this implies that any reasonable property for all richer
calculi cannot be automatically verified.

We also presented an explicit description of the active intruder in the syntax
of recursive ping-pong protocols. The presented encoding gives an exponential
blow-up in the size of the protocol. However, it is in fact not necessary and for
a given protocol an active intruder of polynomial size can be constructed (it is
enough to store the set of compromised keys in an extra buffer). We have decided
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to present the construction which is exponentially larger for clarity reasons.
Nevertheless the polynomial modification of the analysis and synthesis part using
the extra buffer can be easily implemented – it only becomes technically more
tedious.

Finally, we showed that reachability analysis for a replicative variant of the
protocol becomes feasible. Our proof uses very recent results from process alge-
bra [15] and can be compared to the work of Amadio, Lugiez and Vanackère [4]
which establishes the decidability of reachability for a similar replicative pro-
tocol capable of ping-pong behaviour. Their approach uses a notion of a pool
of messages explicitly modelled in the semantics and reduces the question to a
decidable problem of reachability for prefix rewriting. In our approach we allow
spontaneous generation of new messages which is not possible in their calcu-
lus. Moreover, we can distinguish between replicated and once-only behaviours
(unlike in [4] where all processes have to be replicated).

Last but not least we hope that our approach can be possibly extended to
include other operations as the decidability result for replicative protocols uses
only a limited power of wPRS (only a parallel composition of stacks). Hence
there is a place for further extensions of the protocol syntax while preserving
a decidable calculus (e.g. messages of the form k1(k2 op k3)k4 for some extra
composition operation op on keys can be easily stored in wPRS as k1.(k2 ‖
k3).k4). Such a study is left for future research.

Other open problems include decidability of bisimilarity for replicative ping-
pong protocols and the question to determine general conditions that guarantee
equi-expressiveness of recursion and replication (see e.g. [17, 13, 18]).
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