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Abstract

We describe how to construct correct abstract machines from the class
of L-attributed natural semantics introduced by Ibraheem and Schmidt at
HOOTS 1997. The construction produces stack-based abstract machines
where the stack contains evaluation contexts. It is defined directly on
the natural semantics rules. We formalize it as an extraction algorithm
and we prove that the algorithm produces abstract machines that are
equivalent to the original natural semantics. We illustrate the algorithm
by extracting abstract machines from natural semantics for call-by-value,
call-by-name, and call-by-need evaluation of lambda terms.
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1 Introduction

Abstract machines have been widely used in the implementation of program-
ming languages [7]. Most of them have been invented from scratch and subse-
quently been proved to correctly implement the specification of a programming
language [11]. Some of them have been derived from the specification of a pro-
gramming language using some formal system [10, 17]. Most of these derivations
use ad hoc derivation steps and are fairly complicated.

In this work we present a simple approach to the construction of correct
abstract machines from natural semantics descriptions. At HOOTS 1997 Ibra-
heem and Schmidt introduced a restricted class of natural semantics called L-
attributed natural semantics [12]. The class of L-attributed natural semantics
is restricted to have a left-to-right ordering on the premises of each rule ensur-
ing that a proof search using the rules can be performed as left-to-right tree
traversals. We observe that for the class of L-attributed natural semantics it is
possible to directly extract abstract machines from the natural semantics rules.
The extracted machines are stack based and the stack contains evaluation con-
texts. We formalize this observation as an extraction algorithm and we prove
that the algorithm produces abstract machines that are equivalent to the natural
semantics.

The class of L-attributed natural semantics is large, containing for instance
semantics for pure functional languages, impure functional languages, and im-
perative languages. The extraction algorithm makes it possible to mechanically
extract abstract machines that are correct by construction from these semantics.
We illustrate the extraction algorithm by extracting abstract machines from L-
attributed natural semantics for call-by-value, call-by-name, and call-by-need
evaluation of λ-terms.

The rest of this article is organized as follows. We first define the class of
L-attributed natural semantics (Section 2.1). We next define an algorithm for
extracting abstract machines from L-attributed natural semantics (Section 2.2)
and prove its correctness (Section 2.3). We then consider applications of the
extraction (Section 3). Finally, we consider limitations of the approach (Sec-
tion 4), review related work (Section 5), and conclude (Section 6).

2 From natural semantics to abstract machines

We consider operational semantics for languages consisting of terms. Terms
are inductively constructed from atomic terms using term constructors. Other
than that, the terms are left unspecified. Values and environments are left
unspecified.

• t ∈ Terms,

• op ∈ Term constructors,

• v ∈ Values,

3



• ρ ∈ Environments,

• σ ∈ Stacks.

We use the notation v : σ for the stack σ with the value v added as the top
element. We use subscripting (ti) and primes (t′) to distinguish different occur-
rences of the meta variables.

2.1 L-attributed natural semantics

In this section we present a restricted class of natural semantics called L-
attributed natural semantics. The definition below is essentially identical to
the definition of Ibraheem and Schmidt [12]. Similar restrictions on the format
of natural semantics rules can be found in Hannan and Miller’s work on deriv-
ing abstract machines from operational semantics using proof-theoretic meth-
ods [10].

Definition 1 (L-attributed natural semantics) A natural semantics is L-
attributed if it consists of rules of the form:

ρ1 ` t′1 ⇓ v1 ρ2 ` t′2 ⇓ v2 . . . ρm ` t′m ⇓ vm

ρ0 ` op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm)

for some partial functions fρi

r , f ti

r , and fval
r with 1 ≤ i ≤ m.

Rules with no premises (m = 0) are called axiom rules and rules with at least
one premise (m > 0) are called non-axiom rules. The number of premises m of
a rule is not related to the number of subterms n of the term in the conclusion
of the rule as illustrated by the following examples:

• A semantics for a language of boolean-valued terms might contain a nega-
tion term constructor ¬t with one subterm. The natural semantics rule
for the evaluation of ¬t would have one premise stating that the subterm
t evaluates to a boolean b. The value in the conclusion of the rule would
then be ¬b. In this case the number of premises equals the number of
subterms.

• For a language with if -expressions the number of premises will be less than
the number of subterms in rules for the if term constructor if t0 then t1 else t2.
There will be one premise for the evaluation of the first subterm t0 and
one premise for the evaluation of either t1 or t2.

• A natural semantics for call-by-value evaluation of λ-terms contains a rule
for the application term constructor t0 t1 with two subterms. This rule
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has three premises: the evaluation of t0 to a function value, the evaluation
of t1 to an argument value, and the evaluation of the application of the
function value to the argument value. In this case the number of premises
is greater than the number of subterms.

Compared to Kahn’s original definition of natural semantics [13], an L-
attributed natural semantics is restricted to working on ternary relations relat-
ing a term and an environment to a value. The restriction to ternary relations
is not a serious restriction: environments, terms, and values are left unspeci-
fied, so all three components can have structure. In Kahn’s format, each rule
has an unordered collection of premises and the rule may have conditions. The
L-attributed rules instead have a left-to-right ordering on the premises. This
ordering is captured in the definition by ensuring that each of the environments
ρi, terms ti, and values vi can be computed from the previous environments,
terms, and values. Furthermore, the rules do not have explicit conditions. Con-
ditions are encoded as part of the functional dependencies f ti

r , fρi

r , and fval
r

between environments, terms, and values. Therefore, the functions giving the
dependencies are partial functions and a rule only applies if the dependency
functions are defined for the given arguments.

Enforcing a left-to-right ordering on the premises of the rules ensures that if
the semantics is deterministic, a proof search using the rules can be performed
as a single left-to-right depth-first traversal. Therefore, if the semantics is deter-
ministic, the proof search can be implemented as a recursively defined evaluator
in a functional language. For the rest of the development in this article we do
not assume that the semantics is deterministic.

2.2 Abstract-machine extraction

We now show how to extract an abstract machine directly from L-attributed
natural semantics rules. The abstract machines we consider are state-transition
systems operating on three types of states:

1. Triples (t, ρ, σ)E consisting of a term, an environment, and a stack. States
of this form correspond to evaluating the term t in the environment ρ and
stack σ.

2. Pairs (σ, v)A consisting of a stack and a value. States of this form corre-
spond to ‘applying’ the stack σ to the value v.

3. Values v representing the final state of a computation.

Before defining the extraction, we introduce a bit of notation. Given an
L-attributed natural semantics rule of the form

ρ1 ` t′1 ⇓ v1 ρ2 ` t′2 ⇓ v2 . . . ρm ` t′m ⇓ vm

ρ0 ` op(t1, . . . , tn) ⇓ vm+1

(r)
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where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm)

for 1 ≤ i ≤ m, we define the tuples rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] for each
1 ≤ j ≤ m. The overlining of terms, environments, and values indicates that the
terms, environments, and values are only present in the tuple if they are used
by dependency functions fρk

r or f tk
r for k > j or by fval

r . A term, environment,
or value is used by a later dependency function if the corresponding variable
occurs free in the body of one of these functions. For such a tuple, we define
the application f(t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1, vj) to be the application of
the function f to the elements that are actually present in the tuple and a
value supplying dummy arguments for the elements not present in the tuple.
Supplying dummy arguments makes sense since they will not be used—if they
were used, there would be a value corresponding to the overlined variable in the
tuple.

With these notational conventions in place, we are ready to define the ex-
traction of an abstract machine from an L-attributed natural semantics.

Definition 2 (Extracted abstract machine) Given an L-attributed natural
semantics where each rule has a distinct name, define the extracted abstract
machine consisting of the following transition rules:

1. An unload rule to terminate the computation:

(σ0, v)A → v

where σ0 is the empty stack.

2. For each axiom in the L-attributed natural semantics

ρ ` op(t1, . . . , tn) ⇓ v (r)

the rule:
(op(t1, . . . , tn), ρ, σ)E → (σ, v)A

where v = fval
r (t1, . . . , tn, ρ).

3. For each non-axiom rule in the L-attributed natural semantics

ρ1 ` t′1 ⇓ v1 ρ2 ` t′2 ⇓ v2 . . . ρm ` t′m ⇓ vm

ρ0 ` op(t1, . . . , tn) ⇓ vm+1
(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm)

for 1 ≤ i ≤ m, the rules:
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• Initial evaluation rule:

(op(t1, . . . , tn), ρ0, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E

where t′1 = f t1
r (t1, . . . , tn, ρ0) and ρ1 = fρ1

r (t1, . . . , tn, ρ0).

• Stack application rules for 1 ≤ i ≤ m− 1:

(ri[t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1] : σ, vi)A →
(t′i+1, ρi+1,ri+1[t1, . . . , tn, ρ0, . . . , ρi+1, v1, . . . , vi] : σ)E

where t′i+1 = f
ti+1
r (t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1, vi)

ρi+1 = f
ρi+1
r (t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1, vi).

and

• Final stack application rule:

(rm[t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1] : σ, vm)A → (σ, vm+1)A

where vm+1 = fval
r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1, vm).

The stack introduced by the extraction algorithm is a stack of evaluation
contexts. The extraction is therefore a new way of constructing evaluation
contexts in the style of Felleisen [8]. (Our previous work on deriving abstract
machines by continuation-passing style transforming and defunctionalizing eval-
uators provided another construction of evaluation contexts as defunctionalized
continuations [1, 6].)

2.3 Correctness of the extraction

The extraction of Definition 2 is partially correct with respect to the original
L-attributed natural semantics. The correctness is partial in the sense that we
only consider finite derivations, i.e., convergent computations.

Theorem 1 (Equivalence) An L-attributed natural semantics and the extrac-
ted abstract machine are equivalent. For all term constructors op, terms t1, . . . , tn,
environments ρ, and values v:

ρ ` op(t1, . . . , tn) ⇓ v ⇒ (op(t1, . . . , tn), ρ, σ0)E →∗ v

and

(op(t1, . . . , tn), ρ, σ0)E →k v ⇒ ρ ` op(t1, . . . , tn) ⇓ v

for some finite k > 0, where σ0 is the empty stack.

In order to prove Theorem 1 we prove two lemmas that each imply one part
of the equivalence.
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Lemma 1 For all term constructors op, terms t1, . . . , tn, environments ρ, stacks
σ, and values v:

ρ ` op(t1, . . . , tn) ⇓ v ⇒ (op(t1, . . . , tn), ρ, σ)E →∗ (σ, v)A.

Proof: By induction on the height of the derivation of

ρ ` op(t1, . . . , tn) ⇓ v

Assume that the last rule used in the derivation was an axiom of the form

ρ ` op(t1, . . . , tn) ⇓ v (r)

then by definition the extracted abstract machine contains the rule

(op(t1, . . . , tn), ρ, σ)E → (σ, v)A

where v = fval
r (t1, . . . , tn, ρ0) which is what we needed to show.

Assume that the last rule used in the derivation was a non-axiom rule of the
form

ρ1 ` t′1 ⇓ v1 ρ2 ` t′2 ⇓ v2 . . . ρm ` t′m ⇓ vm

ρ0 ` op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm).
By inversion we know that each of the premises holds and therefore by the
induction hypothesis for all 1 ≤ i ≤ m

(t′i, ρi, σ)E →∗ (σ, vi)A

for all stacks σ. For each 1 ≤ j ≤ m, we prove that

(op(t1, . . . , tn), ρ0, σ)E →∗ (rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ, vj)A

by induction on j.

Base case: j = 1 and by definition of the extracted abstract machine there is
an initial evaluation rule such that

(op(t1, . . . , tn), ρ0, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E .

By the outer induction hypothesis on the premises of the L-attributed
natural semantics rule, the following derivation exists:

(op(t1, . . . , tn), ρ0, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E
→∗ (r1[t1, . . . , tn, ρ0, ρ1] : σ, v1)A.

8



Induction case: j > 1. By the induction hypothesis on j − 1 we can derive

(op(t1, . . . , tn), ρ0, σ)E →∗ (rj−1[t1, . . . , tn, ρ0, . . . , ρj−1, v1, . . . , vj−2] : σ, vj−1)A.

By definition the extracted abstract machine contains the rule

(rj−1[t1, . . . , tn, ρ0, . . . , ρj−1, v1, . . . , vj−2] : σ, vj−1)A →
(t′j , ρj,rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ)E .

By the outer induction hypothesis on the premises of the L-attributed
natural semantics rule, the following holds:

(t′j , ρj,rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ)E →∗

(rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ, vj)A.

Putting these parts together finishes the subproof.

By what we have just proved with j = m combined with the final stack ap-
plication rule of the extracted abstract machine we have the following derivation

(op(t1, . . . , tn), ρ, σ)E →∗ (rm[t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1] : σ, vm)A
→ (σ, vm+1)A

which concludes the proof. �
Setting σ = σ0, the empty stack, in Lemma 1 we obtain one direction of

Theorem 1.

Lemma 2 For all term constructors op, terms t1, . . . , tn, environments ρ, stacks
σ, and values v, if

(op(t1, . . . , tn), ρ, σ)E →k v

for a finite k > 0 then
ρ ` op(t1, . . . , tn) ⇓ v′

for some value v′ and there exists a prefix of the abstract machine derivation of
length a < k such that

(op(t1, . . . , tn), ρ, σ)E →a (σ, v′)A.

Proof: By induction on the length k of the derivation.

Base case: k = 2. The minimum length of a derivation of the extracted abstract
machine is two steps, and the derivation has the form:

(op(t1, . . . , tn), ρ, σ0)E → (σ0, v)A → v

where σ0 is the empty stack. The first step of this derivation is only
possible for a rule in the extracted abstract machine that corresponds to
an axiom in the L-attributed natural semantics. Since such a rule exists
in the extracted abstract machine, the following axiom must be a part of
the natural semantics:

ρ ` op(t1, . . . , tn) ⇓ v

Setting a = 1 finishes this case.
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Induction case: k > 2. Since the number of steps in the abstract-machine
derivation is larger than two, the first rule used in the derivation was
extracted from a natural semantics rule with m ≥ 1 premises:

ρ1 ` t′1 ⇓ v1 ρ2 ` t′2 ⇓ v2 . . . ρm ` t′m ⇓ vm

ρ0 ` op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm).

We start by proving that for all 1 ≤ i ≤ m there exists a prefix of the
abstract machine derivation of length ai < k − 1 such that

(op(t1, . . . , tn), ρ, σ)E →ai (ri[t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1] : σ, vi)A

and
ρi ` t′i ⇓ vi

for some value vi. The proof is by induction on i.

Base case: i = 1. The derivation of length k has the following form

(op(t1, . . . , tn), ρ, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E →k−1 v

By the outer induction hypothesis on k − 1

ρ1 ` t′1 ⇓ v1

and there exists a prefix of the abstract machine derivation of length
p < k − 1 such that

(t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E →p (r1[t1, . . . , tn, ρ0, ρ1] : σ, v1)A.

Since the stack is non-empty, a final state cannot be reached in less
than two steps, so we know that p < k−2. Letting a1 = p+1 finishes
this case.

Inductive case: i = t + 1 for some t ≥ 1. By the induction hypothesis
on t

(op(t1, . . . , tn), ρ, σ)E →at (rt[t1, . . . , tn, ρ0, . . . , ρt, v1, . . . , vt−1] : σ, vt)A

for some at < k − 1. By definition, the extracted abstract machine
contains the stack application rule

(rt[t1, . . . , tn, ρ0, . . . , ρt, v1, . . . , vt−1] : σ, vt)A →
(t′t+1, ρt+1,rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ)E .
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We have that

(t′t+1, ρt+1,rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ)E →k−(at+1) v

and by the outer induction hypothesis

ρt+1 ` t′t+1 ⇓ vt+1

for some vt+1 and there exists a prefix of the abstract machine deriva-
tion of length p < k − (at + 1) such that

(t′t+1, ρt+1,rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ)E →p

(rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ, vt+1)A

Set at+1 = at + p + 1 < k. Since the stack is non-empty in the
configuration after at+1 steps, a final state cannot be reached in less
than two steps. Therefore at+1 < k − 1 which finishes the case.

We have just proved that for each 1 ≤ i ≤ m, ρi ` t′i ⇓ vi. Therefore,
we can build a derivation of ρ0 ` op(t1, . . . , tn) ⇓ v using the natural
semantics rule from which the first step in the abstract-machine derivation
was extracted. We have also proved that there exists a prefix of the
abstract machine derivation of the form

(op(t1, . . . , tn), ρ, σ)E →am

(rm[t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1] : σ, vm)A

where am < k − 1. Combining this with the final stack application rule
extracted from the natural semantics rule yields the prefix

(op(t1, . . . , tn), ρ, σ)E →am+1 (σ, v)A

of length am + 1 < k which finishes the proof.

�
Setting σ = σ0, the empty stack, in Lemma 2 we obtain the second direction

of Theorem 1. Therefore, the proof of Theorem 1 is a straightforward corollary
of Lemmas 1 and 2.

3 Applications

In Section 2 we have shown that abstract machines can be extracted directly
from L-attributed natural semantics. In this section we illustrate this extraction.
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3.1 Call-by-value evaluation of λ-terms

We first consider the following standard natural semantics for call-by-value eval-
uation of λ-terms. Terms are λ-calculus terms: variables x, abstractions λx.t,
and applications t0 t1. Values are closures 〈x, t, ρ〉, which are triples containing
a variable, a term, and an environment. An environment ρ is a partial function
from variables to values.

ρ ` x ⇓ ρ(x) (Var)

ρ ` λx.t ⇓ 〈x, t, ρ〉 (Lam)

ρ ` t0 ⇓ 〈x, t′, ρ′〉 ρ ` t1 ⇓ v′ ρ′[x 7→ v′] ` t′ ⇓ v

ρ ` t0 t1 ⇓ v
(App)

This natural semantics is obviously L-attributed: there is a left-to-right
ordering of the premises of each rule, and the dependency of later terms, envi-
ronments, and values on previous terms, environments and values can be easily
specified as functions. Therefore, we can apply the extraction of Section 2.2 to
obtain an abstract machine. The resulting abstract machine is as follows:

1. Unload rule:
(σ0, v)A → v

2. Axiom rules:
(x, ρ, σ)E → (σ, ρ(x))A

(λx.t, ρ, σ)E → (σ, 〈x, t, ρ〉)A
3. Non-axiom rules:

(t0 t1, ρ, σ)E → (t0, ρ,App1[t1, ρ] : σ)E

(App1[t1, ρ] : σ, v1)A → (t1, ρ,App2[v1] : σ)E

(App2[〈x, t, ρ′〉] : σ, v2)A → (t, ρ′[x 7→ v2],App3[ ] : σ)E

(App3[ ] : σ, v)A → (σ, v)A

We identify this machine as a variant of the CEK machine [9]. The only differ-
ence is that the extracted machine pushes an empty evaluation context on the
stack in the function application rule. This evaluation context is removed from
the stack by the last rule and the value is passed unchanged to the next eval-
uation context. Our extracted machine is therefore not properly tail-recursive.
We are currently extending our extraction to identify when the last evaluation
context is empty and the fval

r is the ‘identity function’ that just returns the
value of the last premise of a rule. In this case we could avoid adding an evalu-
ation context to the stack and not define the final stack application rule, which
would correspond to a tail-call optimization.
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3.2 Call-by-name evaluation of λ-terms

The following natural semantics is the standard semantics for call-by-name eval-
uation of λ-terms. As in Section 3.1, terms are λ-calculus terms: variables x,
abstractions λx.t, and applications t0 t1. Values are closures 〈x, t, ρ〉 which are
triples containing a variable, a term, and an environment. An environment ρ
is a partial function from variables to pairs (t, ρ) consisting of a term and an
environment.

ρ(x) = (t, ρ′) ρ′ ` t ⇓ v

ρ ` x ⇓ v
(Var)

ρ ` λx.t ⇓ 〈x, t, ρ〉 (Lam)

ρ ` t0 ⇓ 〈x, t, ρ′〉 ρ′[x 7→ (t1, ρ)] ` t ⇓ v

ρ ` t0 t1 ⇓ v
(App)

This natural semantics is L-attributed. It is easy to see that the Lam and
App rules fit the format of L-attributed natural semantics, but the Var rule
deserves a bit of explanation. The rule has one premise and a condition. Putting
it into L-attributed form, we have a rule of the form:

ρ1 ` t1 ⇓ v

ρ0 ` x ⇓ v
(Var’)

The condition ρ(x) = (t, ρ′) of the Var rule needs to be captured in the func-
tional dependencies f t1

Var’ and fρ1

Var’. The following functions capture the con-
dition:

f t1
Var’(x, ρ0) =

{
t if ρ0(x) = (t, ρ′)
undefined otherwise

fρ1

Var’(x, ρ0) =
{

ρ′ if ρ0(x) = (t, ρ′)
undefined otherwise

If the dependency functions are undefined for some arguments, the condition is
not true, and the rule does not apply.

With this explanation, we see that the natural semantics is L-attributed,
and we can apply the extraction of Section 2.2 to obtain an abstract machine.
The resulting abstract machine is as follows:

1. Unload rule:
(σ0, v)A → v

2. Axiom rules:
(λx.t, ρ, σ)E → (σ, 〈x, t, ρ〉)A
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3. Non-axiom rules:

(x, ρ, σ)E → (t, ρ′,Var1[ ] : σ)E if ρ(x) = (t, ρ′)

(Var1[ ] : σ, v)A → (σ, v)A
(t0 t1, ρ, σ)E → (t0, ρ,App1[t1, ρ] : σ)E

(App1[t, ρ] : σ, 〈x, t′, ρ′〉)A → (t′, ρ′[x 7→ (t, ρ)],App2[ ] : σ)E
(App2[ ] : σ, v)A → (σ, v)A

As in the call-by-value case, the machine is not properly tail recursive. Both the
Var1 and App2 evaluation contexts are empty, and when given a value they both
pass it directly to the next evaluation context on the stack. We are currently
extending the extraction algorithm to avoid generating these empty evaluation
contexts. Such an extension would correspond to a tail-call optimization.

One might hope to obtain the Krivine machine [5] from the call-by-name
semantics. However, the extraction always gives two transition relations: an
eval transition relation where the left-hand side of the transitions are triples and
an apply transition relation where the left-hand side of the transitions are pairs.
The Krivine machine only has one transition relation, so we cannot directly
obtain it by the extraction of Section 2.2. It is easy to transform the machine
obtained into the Krivine machine, but in its current form the extraction does
not give it directly.

3.3 Call-by-need evaluation of λ-terms

Launchbury gave a natural semantics for call-by-need evaluation of λ-terms [14]
which Sestoft used as the starting point of his derivation of a lazy abstract
machine [17]. Before deriving an abstract machine, Sestoft changed the renam-
ing behaviour of Launchbury’s natural semantics. In this section we start from
Sestoft’s revised version of Launchbury’s natural semantics and we apply the
extraction algorithm to obtain a lazy abstract machine.

The terms of the natural semantics are so-called normalized λ-terms: vari-
ables x, abstractions λx.t, applications t x, and let -expressions of the form
let x1 = t1, . . . , xn = tn in t (we use the abbreviation let {xi = ti} in t for
such let -expressions). In normalized λ-terms the argument in an application
is restricted to being a variable and non-trivial arguments are bound in let -
expressions. The bindings in a let -expression are mutually recursive.

The natural semantics is substitution based and we write t[t′/x] for the naive
simultaneous substitution of t′ for all free occurrences of x in t. We let Γ, ∆,
and Θ denote stores, which are partial functions from variables to terms, and A
denote a set of variables. Following Sestoft, we distinguish between two types
of variables: pointers p denoting an element in the store and let - or λ-bound
variables x. Sestoft’s revised version of Launchbury’s natural semantics is as
follows1:

1We have slightly reformatted Sestoft’s rules by writing (Γ, A) ` t ⇓ (∆, w) instead of
Γ : t ⇓A ∆ : w. This reformatting is inessential, but it makes it easier to realize that the
semantics is L-attributed.
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(Γ, A ∪ {p}) ` t ⇓ (∆, w)
(Γ[p 7→ t], A) ` p ⇓ (∆[p 7→ w], w)

(Var)

(Γ, A) ` λx.t ⇓ (Γ, λx.t) (Lam)

(Γ, A) ` t ⇓ (∆, λy.t′) (∆, A) ` t′[p/y] ⇓ (Θ, w)
(Γ, A) ` t p ⇓ (Θ, w)

(App)

(Γ[pi 7→ t̂i], A) ` t̂ ⇓ (∆, w)
(Γ, A) ` let {xi = ti} in t ⇓ (∆, w)

(Let)

In the Let rule, the pi are fresh variables in the sense that they do not occur
in Γ, A, or let {xi = ti} in t. The notation t̂ is shorthand for the substitution
t[p1/x1, . . . , pn/xn].

The restriction to normalized λ-terms together with the above rules for let -
expressions and variables ensures sharing of argument expressions, i.e., call-
by-need evaluation. In normalized terms, non-trivial argument expressions are
let -bound. The Let rule allocates such arguments in the store and the Var rule
updates the store with the value of the expression ensuring that the argument
expression is only evaluated once.

When evaluating variables using the Var rule, the variable that is currently
being evaluated is removed from the store to rule out recursions where the
evaluation of a variable requires the value of the variable itself. The variable
removed from the store is added again once its value is known. The set of
variables A records the variables that are left out of the store at any point in
the derivation. In the Let rule the freshness requirement on the variables can
be checked locally by inspecting the store and the set of variables currently left
out of the store.

The natural semantics is L-attributed. Environments are pairs consisting
of a store and a set of variables, terms are normalized λ-terms, and values are
pairs consisting of a store and a term. There is a clear left-to-right ordering on
the premises as also identified by Sestoft [17, Page 5]:

“[the rules are] essentially sequential: to build a derivation tree,
one must determine the final heap of any left-hand premise before
proceeding to any right-hand premise.”

Applying the extraction algorithm to the natural semantics yields the fol-
lowing abstract machine:

1. Unload rule:
(σ0, v)A → v

2. Axiom rules:
(λx.t, (Γ, A), σ)E → (σ, (Γ, λx.t))A
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3. Non-axiom rules:

(p, (Γ[p 7→ t], A), σ)E → (t, (Γ, A ∪ {p}),Var1[p] : σ)E

(Var1[p] : σ, (∆, w))A → (σ, (∆[p 7→ w], w))A

(t p, (Γ, A), σ)E → (t, (Γ, A),App1[p, (Γ, A)] : σ)E

(App1[p, (Γ, A)] : σ, (∆, λy.t))A → (t[p/y], (∆, A),App2[ ] : σ)E

(App2[ ] : σ, v)A → (σ, v)A

(let {xi = ti} in t, (Γ, A), σ)E → (t̂, (Γ[pi 7→ t̂i], A),Let1[ ] : σ)E

(Let1[ ] : σ, v)A → (σ, v)A

The transition rule for let -expressions has the same restrictions as the Let rule
of the natural semantics: each pi is a fresh variable in the sense that they do
not occur in Γ, A, or let {xi = ti} in t and the notation t̂ is shorthand for the
substitution t[p1/x1, . . . , pn/xn].

This abstract machine is essentially Sestoft’s mark 1 machine. Our machine
contains two transition relations and is not properly tail-recursive whereas Ses-
toft’s is a variant of the Krivine machine with only one transition relation.
Sestoft notices that when the machine adds a variable to the variable set A,
the same variable is also added to the stack. Therefore, the variable set is not
needed in the machine since the freshness restriction in the transition rule for
let -expressions can be checked using the stack instead of the set of variables.

3.4 Other applications

In Sections 3.1, 3.2, and 3.3 we have constructed abstract machines from nat-
ural semantics for call-by-value, call-by-name, and call-by-need evaluation of
λ-terms. Many natural semantics fit the format of L-attributed natural seman-
tics. For instance, one can give an L-attributed natural semantics for λ-calculus
extended with exceptions, state, and combinations of exceptions and state and
therefore stack inspection can be specified with an L-attributed natural seman-
tics [2]. Simple imperative languages can also be given L-attributed natural se-
mantics. From each of these natural semantics, the extraction algorithm yields
a correct abstract machine.

4 Limitations

The extraction presented in Section 2.2 has three main limitations:

1. The extraction algorithm is restricted to L-attributed natural semantics,
which rules out some natural semantics. For instance, the mini-ML natural
semantics of Kahn is not L-attributed because of cyclic dependencies used
to model recursive bindings [13].
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2. If an L-attributed natural semantics contains multiple rules for the same
term, the abstract machine resulting from the extraction is non-deterministic.

3. As explained in Sections 3.1 and 3.2, the extraction algorithm does not
give properly tail-recursive abstract machines.

We are currently working on extending both the class of L-attributed natural
semantics and the extraction algorithm to address these limitations.

Another limitation of the approach is that we only consider partial correct-
ness in the sense that we only consider convergent computations. In order to
address the issue of divergent computations we would have to provide a means
of reasoning about divergent computations in the framework of natural seman-
tics. Ibraheem and Schmidt considered divergent computations by applying a
coinductive interpretation of some of the natural semantics rules [12]. We leave
such a generalization for future work.

5 Related work

Defining natural semantics and abstract machines separately and then proving
that they coincide is standard. Most semantics textbooks describe both kinds
of semantics and show how to relate them [16, 18]. The goal of our work is to
mechanize the extraction of abstract machines from natural semantics so that
the extracted abstract machines are correct by construction.

In previous work, we have observed that defunctionalized, continuation-pas-
sing style evaluators are transition systems, i.e., abstract machines [1, 2, 3, 4, 6].
Starting from an evaluator written in a functional programming language such as
ML [15], we (1) transform the evaluator into continuation-passing style to make
its flow of control explicit, and (2) defunctionalize the continuations to make
them first order, obtaining a stack of evaluation contexts. The result is the ML-
encoding of an abstract machine, and the correctness of the abstract machine
is a corollary of the correctness of the original evaluator and of the program
transformations. The evaluators are direct encodings of natural semantics:

Natural
semantics

ML-encoding

��

Abstract
machine

ML-encoding

��
Eval // Eval cps // Evaldefun

The work presented in this article is a different approach to constructing correct
abstract machines from natural-semantics descriptions. We extract a correct
abstract machine directly from the natural semantics rules:

Natural
semantics

//________ Abstract
machine
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The idea of characterizing the left-to-right processing natural semantics in
the form of L-attributed natural semantics is due to Ibraheem and Schmidt [12].
The motivation for their definition came from L-attributed grammars. Ibraheem
and Schmidt are concerned with reasoning about divergent computations in the
framework of natural semantics. To this end, they start from L-attributed nat-
ural semantics and generate sets of positive (or convergent) rules and negative
(or divergent) rules. Using an inductive interpretation of the positive rules and
a coinductive interpretation of the negative rules allows them to reason about
divergent computations. In contrast, we only consider convergent computations,
and we extract an abstract machine from an L-attributed natural semantics that
is equivalent to the natural semantics.

Hannan and Miller derive abstract machines from natural semantics using
proof theory [10]. Their derivation consists in encoding a natural semantics in
a proof-theoretic meta-language and then carrying out transformations at the
meta-language level. In that sense, the work of Hannan and Miller is closely
related to our previous work on deriving abstract machine by using standard
program transformations on an encoding of a natural semantics in a functional
language. One of Hannan and Miller’s derivation steps relies on a left-to-right
ordering of the premises of the natural semantics rules. This restriction seems to
correspond to our present restriction to L-attributed natural semantics. Hannan
and Miller derive abstract machines for call-by-name and call-by-value evalu-
ation of λ-terms. Their starting points, called the N0 and V0 proof systems,
are L-attributed natural semantics. Both natural semantics are very close to
the standard ones presented in Sections 3.1 and 3.2. The difference is that λ-
terms are de Bruijn encoded, environments are lists of values, and there are
explicit rules for looking up an index in an environment. Applying our extrac-
tion to these L-attributes natural semantics yields abstract machines that are
very similar to the machines extracted in Sections 3.1 and 3.2.

Kahn introduced natural semantics and presented natural semantics for vari-
ous aspects of programming languages [13]. For instance, he presented a natural
semantics for mini-ML which is almost L-attributed: removing the letrec con-
struct from the language, the semantics is L-attributed and we can extract an
abstract machine directly. The problem with the letrec construct is that there is
a cyclic dependency between the value of a term and the environment in which
the term is evaluated. The environment in which to evaluate the term can
therefore not be defined solely as a function of previous terms, environments,
and values and therefore the semantics is not L-attributed.

Sestoft derived a lazy abstract machine from Launchbury’s natural semantics
for call-by-need evaluation of λ-terms [17]. His derivation consists of a number
of intuitive steps and a proof of the correctness of each of the steps. As illus-
trated in Section 3.3 the extraction algorithm presented in this article applies to
the natural semantics and the resulting machine is essentially Sestoft’s mark 1
machine. Sestoft obtained the mark 1 machine by introducing a stack of evalua-
tion contexts and subsequently proving the correctness of the resulting machine.
Our present work shows that such a stack introduction can be applied to a wide
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range of natural semantics and proves the correctness of the stack introduction
algorithm once and for all instead of relying on a correctness proof for each
machine. Sestoft only uses the mark 1 machine as a stepping stone, and goes
on to introduce environments (besides the stores already present), closures, and
variable indices. He proves the correctness of the resulting machines.

6 Conclusion

We have presented a simple and mechanical extraction of correct abstract ma-
chines from the class of L-attributed natural semantics introduced by Ibraheem
and Schmidt. We have formalized this extraction as an extraction algorithm
and proved its correctness. The class of L-attributed natural semantics is large,
containing semantics for call-by-value, call-by-name, and call-by-need functional
languages, as well as imperative languages. For each L-attributed natural se-
mantics the extraction algorithm produces a correct abstract machine.
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Contextual Graph-Rewriting. June 2004. 29 pp.


