
BRICS
Basic Research in Computer Science

Maximum Exact Satisfiability:
NP-completeness Proofs and Exact
Algorithms

Bolette Ammitzbøll Madsen
Peter Rossmanith

BRICS Report Series RS-04-19

ISSN 0909-0878 October 2004

B
R

IC
S

R
S

-04-19
M

adsen
&

R
ossm

anith:
M

axim
um

E
xactS

atisfiability:
N

P
-com

pleteness
P

roofs
and

E
xactA

lgorithm
s

Copyright c© 2004, Bolette Ammitzbøll Madsen & Peter
Rossmanith.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/19/

Maximum Exact Satisfiability: NP-completeness
Proofs and Exact Algorithms

Bolette Ammitzbøll Madsen
BRICS∗, Department of Computer Science

University of Aarhus, Denmark
bolette@brics.dk

Peter Rossmanith
Department of Computer Science

RWTH, Aachen, Germany
rossmani@informatik.rwth-aachen.de

October 2004

Abstract

Inspired by the Maximum Satisfiability and Exact Satisfiability prob-
lems we present two Maximum Exact Satisfiability problems. The first
problem called Maximum Exact Satisfiability is: given a formula in con-
junctive normal form and an integer k, is there an assignment to all
variables in the formula such that at least k clauses have exactly one
true literal. The second problem called Restricted Maximum Exact Sat-
isfiability has the further restriction that no clause is allowed to have
more than one true literal. Both problems are proved NP-complete re-
stricted to the versions where each clause contains at most two literals. In
fact Maximum Exact Satisfiability is a generalisation of the well-known
NP-complete problem MaxCut. We present an exact algorithm for Max-
imum Exact Satisfiability where each clause contains at most two literals
with time complexity O(poly(L)·2m/4), where m is the number of clauses
and L is the length of the formula. For the second version we give an
algorithm with time complexity O(poly(L) · 1.324718n), where n is the
number of variables. We note that when restricted to the versions where
each clause contains exactly two literals and there are no negations both
problems are fixed parameter tractable. It is an open question if this is
also the case for the general problems.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

1 Introduction

Much work on NP-complete problems has centered around SAT as the origi-
nal NP-complete problem. Many satisfiability type problems have been intro-
duced, and many exact, approximate and parameterised algorithms for these
problems have been given. We introduce two new NP-complete satisfiability
problems and give exact algorithms for both.

Traditionally algorithms for satisfiability problems have been given in the
following three parameters: n – the number of variables, m – the number of
clauses and L – the number of literals or the length of the formula. For further
introduction to these terms, see section 2.

1.1 Background

MaxSat. The Maximum Satisfiability problem (MaxSat), which is an im-
portant generalisation of SAT, is: Given a boolean formula F in conjunctive
normal form (CNF) with m clauses and a positive integer k ≤ m, is there a
truth assignment to the variables in F that simultaneously satisfies at least
k of the m clauses? Thus a fourth parameter k is introduced in maximisa-
tion/minimisation problems.

MaxSat is NP-complete even when restricted to Max2Sat, where each
clause contains at most 2 literals [8]. The algorithms with the currently best
known running times for MaxSat have time complexity O(L · 1.3247m) [4],
O(L+k2 ·1.3695k) [4] and O(L ·1.105729L) [1]. For Max2Sat, the best known
time complexities are O(poly(L)·2(m/5)) and O(poly(L)·2(L/10)), where poly(L)
is some polynomial in L [9]. When looking at the variables, it is only recently
that the trivial bound of 2n was improved. The new algorithm for Max2Sat
by Williams from 2004 has time complexity O(m32ωn/3), where ω < 2.379
is the matrix product exponent over a ring [18]. The improved time bound
however comes at the expense of using exponential space, whereas all other
algorithms mentioned in this paper only use polynomial space.

XSAT. The Exact Satisfiability problem XSAT (also called 1-in-k-SAT) is
the following: Given a boolean formula in conjunctive normal form, is there an
assignment to the variables satisfying exactly one literal in each clause? We
call such an assignment exactly satisfying.

The Exact Satisfiability problem is NP-complete even when restricted to
the case where each clause contains at most 3 literals and there are no nega-
tions [17]. This problem has also received renewed attention in recent years [11,
15, 5, 2].

2

1.2 New problems

MaxExactSat. The MaxExactSat problem is: given a boolean for-
mula in CNF and an integer k, is there a truth assignment to the variables
exactly satisfying at least k clauses simultaneously? This problem is NP-hard
even restricted to the special case MaxExact2Sat (each clause contains at
most two literals) with no negations and no unit clauses, as this special case is
equivalent to the well-known graph-problem MaxCut, which is known to be
NP-complete [10]. We present an algorithm for MaxExact2Sat (with nega-
tions and unit clauses) which has a running time of O(poly(L) · 2m/4). This
exponent matches that of the best known algorithm for MaxCut, which is
O(poly(m) · 2m/4), where m is the number of edges [7].

ResMaxExactSat. The second problem is Restricted MaxExact-
Sat (ResMaxExactSat). The ResMaxExactSat problem is MaxExact-
Sat with the restriction that no clauses may be ’over-satisfied’, i.e. two literals
in the same clause are not both allowed to be true. We show that the Res-
MaxExactSat problem is also NP-complete. Interestingly we can give a good
algorithm for ResMaxExactSat in the number of variables, which has only
recently been achieved for other MaxSat problems [18]. The time complexity
of the algorithm is O(poly(L) · 1.324718n).

1.3 Techniques and concepts

Branching algorithms and bottlenecks. Both the presented exact algo-
rithms are branching algorithms (also called splitting algorithms). The main
idea of a branching algorithm for a satisfiability problem is to ’branch’ on set-
ting a variable to either true or false, which gives us two smaller formulas to
solve. The algorithm then reduces the parameter before branching again. This
gives rise to a branching tree.

However in one case, we are not able to reduce the parameter by very much.
Such a worst case situation is often referred to as a ’bottleneck’ instance. We
show that this bottleneck situation can only arise once in any path from the
root to a leaf in the branching tree, a technique also used by e.g. Robson [16],
Gramm et al. [9] and Fedin et al. [7]. Thus it only has the effect of a constant
on the running time of the algorithm, and we can omit the corresponding
recurrence inequality from the analysis of the running time.

Parameterised algorithms. The classic MaxSat problem is fixed param-
eter tractable, which means that given a formula F , the question of whether
k clauses can be satisfied can be answered in time poly(L) · f(k), where f(k)
depends only on k.

3

It is not immediate that MaxExactSat or ResMaxExactSat is fixed
parameter tractable. However MaxExact2Sat with no unit clauses and no
negations is equivalent to MaxCut, which is known to be fixed parameter
tractable [14, 3]. We give an algorithm that shows that ResMaxExact2Sat
with no unit clauses and no negations is also fixed parameter tractable.

1.4 Outline

In section 2 we define the two problems and introduce the notation we will use.
In section 3 we prove that both of these problems are NP-complete, and that a
special variant of MaxExact2Sat, where each variable occur in at most two
clauses of size two, is in P. In section 4 we present exact algorithms for both
problems and look at parameterisation.

2 Preliminaries

In this paper a formula is a conjunction of m clauses C1 ∧ C2 ∧ · · · ∧ Cm over
n variables. A clause (l1, l2, . . . , lk) is a set of literals and possibly constants
(true and false). A literal is either a variable x or the negation of a variable
x̄. A unique variable is a variable that only occurs once in the formula. The
length of a formula, L, is the number of literals (and constants) in the formula.
A k-clause is a clause with k literals and constants, and a unit clause is a
clause with only one literal (or constant). For simplicity we will assume that
all variables in a formula occur at least as many times unnegated as negated
(otherwise replace literal x̄ with a new variable xnot and x with x̄not). An
assignment to a variable x, sets x to either true or false; a full assignment is
an assignment to all variables in a formula.

A clause is exactly satisfied if exactly one of its literals is true. In this
paper ’satisfied’ always means ’exactly satisfied’. If more than one literal in a
clause are true, we say that the clause is oversatisfied.

We define clauses as sets, so it is not possible for the same literal to occur
twice in the same clause. We also assume that a literal does not occur in a
clause together with its negation. For 2-clauses however this is not a problem,
as such clauses can easily be reduced. A 2-clause with two occurrences of the
same literal can not be exactly satisfied, and a 2-clause with a literal and its
negation will always be satisfied.

Definition 1. The MaxExactSat (Maximum Exact Satisfiability) problem
is: given a formula in CNF and an integer k, is there a full assignment exactly
satisfying at least k clauses?

The MaxExactkSat problem is the MaxExactSat problem, where all
clauses are restricted to at most k literals.

4

Definition 2. The ResMaxExactSat (Restricted Maximum Exact Satisfi-
ability) problem is MaxExactSat with the restriction that no clause may be
oversatisfied.

We note that in a ResMaxExactSat instance, we can eliminate all oc-
currences of the same variable twice in a clause. If the literal x occurs twice
in a clause, it must be set to false, as oversatisfying is not allowed, and if x
occurs together with x̄ in a clause, one of these literals will satisfy the clause,
so all other literals in the clause must be set to false, and the clause can be
removed.

We shall also look at a few graph problems on undirected graphs. Given a
graph G = (V,E), we denote the number of vertices n = |V | and the number
of edges m = |E|.

The MaxCut problem is: given a graph G = (V,E) and an integer k, is
there a cut in G of size at least k, i.e. a partition of V into disjoint sets V1

and V2 such that the number of edges, that have one endpoint in V1 and one
endpoint in V2 is at least k. This problem is NP-complete [10].

The Maximum Independent Set problem is: given a graph G = (V,E)
and an integer k, is there an independent set of size at least k in G, i.e. a
subset V ′ ⊆ V of size at least k such that no two vertices in V ′ are joined by
an edge in E. This problem is also NP-complete [10].

3 NP-completeness

We show that MaxExactSat and ResMaxExactSat are NP-complete even
restricted to clauses with at most two literals, and we prove that the version
of MaxExact2Sat in which all variables are restricted to occur in at most
two 2-clauses, can be solved in polynomial time.

Theorem 1. The MaxExactSat problem is NP-complete even when re-
stricted to the special-case MaxExact2Sat with no negations and no unit
clauses.

Proof. The MaxExact2Sat problem with no negations and no unit clauses
is NP-complete, as it is equivalent to MaxCut, which is known to be NP-
complete.

Given a MaxExact2Sat instance F with no negations and no unit clauses,
construct a graph G as follows: translate each variable to a vertex and each
clause to an edge. We prove that there is a cut of size k in G if and only if
there is a full assignment satisfying k clauses in F .

Given an assignment to the variables in F , which satisfies k clauses, let
V1 be the vertices corresponding to true variables in the assignment and V2

the vertices corresponding to the false variables. (V1, V2) is a cut of size k in

5

G: the clauses, which are exactly satisfied, are the ones in which one of the
variables is true and one is false. These clauses correspond to the edges in the
cut.

Now given a cut (V1, V2) of size k in G, set all variables corresponding to
vertices in V1 to true and all variables corresponding to vertices in V2 to false.
Then every clause corresponding to an edge in the cut will be exactly satisfied.

Given a MaxCut instance G, construct a formula F by translating each
vertex to a variable and each edge to a clause. The proof that there is a cut
of size k in G if and only if there is a full assignment satisfying k clauses in F
is the same as above.

Theorem 2. If every variable in a MaxExact2Sat formula occurs in at
most two 2-clauses, the problem can be solved in polynomial time.

Proof. First we note that we can simplify a formula where all variables occur
in at most two 2-clauses, such that all variables occur in exactly two 2-clauses
and possibly in one unit clause. We use the following three simplifications, as
long as one is applicable:

• If there are two clauses (x) and (x̄), no matter what x is set to we will
satisfy exactly one of these, so we can simply delete both and add one
to the number of satisfied clauses.

• If there is a variable x occurring in at least as many unit clauses as 2-
clauses, we will satisfy at least as many clauses setting x to satisfy the
unit clauses as we would if we set x to the opposite, so we set x to satisfy
the unit clauses, delete these and add the number of them to the number
of satisfied clauses. Any 2-clause (true, y) is replaced by the unit clause
(ȳ) and any clause (false, y) by (y).

• If there is a unique variable x, it must be in a 2-clause or it would have
been set by the above simplification. The clause in which x occurs can
always be satisfied by setting x to the negation of the other variable in
the clause, so we can delete this clause and add one to the number of
satisfied clauses.

We note that checking if one of these simplifications apply and applying it can
be done in polynomial time, and all three simplifications remove at least one
clause, so at most m simplifications are applied; thus the formula is simplified
in polynomial time.

For simplicity we assume that the formula is connected; otherwise we solve
the individual formulas separately. Since all variables now occur in exactly
two 2-clauses, the 2-clauses constitute a cycle on the variables. We have four
cases: we have either an odd or an even cycle and we have either an odd or an
even number of negations.

6

If we have either an odd cycle and an odd number of negations or we have
an even cycle and an even number of negations we can satisfy all 2-clauses.
Note that since there are two 2-clauses and at most one unit clause with each
variable, it will always be best to satisfy the two 2-clauses. This means that
there are only 2 feasible solutions (pick a variable x from one of the 2-clauses):

• set x = true and set all other variables such that all the 2-clauses are
satisfied.

• set x = false and set all other variables such that all the 2-clauses are
satisfied.

The result is then simply the one of the two possible solutions with the most
satisfied clauses.

If we have an odd cycle and an even number of negations or an even cycle
and an odd number of negations we can satisfy all but one of the 2-clauses. In
this case we have 2t possibilities for a cycle of t 2-clauses. We have t possibilities
of choosing which 2-clause is not satisfied and we have two possibilities of
setting the variables as described in the case with odd/odd and even/even. So
we solve this by picking a 2-clause, picking a truth value for the chosen variable
x and then setting the rest of the variables such that all but the chosen clause is
satisfied (this is repeated for the 2t possibilities and the best solution is chosen).
Note again it does not pay to satisfy a unit clause instead of a 2-clause as we
have at least one 2-clause that is satisfied with each variable.

To see that the ResMaxExactSat problem is NP-hard, we first introduce
the ’Independent Set Max Cover’ problem.

Definition 3. The Independent Set Max Cover problem is: given an
undirected graph and an integer k, is there an independent set with at least k
edges to the rest of the graph.

Independent Set Max Cover can also be described as MaxCut with
the restriction that one side of the cut must be an independent set.

Theorem 3. The Independent Set Max Cover problem is NP-complete.

Proof. The problem is easily seen to be in NP.
The problem is NP-hard as Maximum Independent Set reduces to it.

Given an instance of the Maximum Independent Set problem, i.e. a graph
G = (V,E), construct the instance G′ of the Independent Set Max Cover
problem as follows: start with G. For each v ∈ V construct a clique of size n
and attach this clique to v by n− d edges, where d is the degree of v in G. For
simplicity assume that we have no vertices with degree zero. See example in
figure 1.

7

Figure 1: Reduction from an instance G of MIS to an instance G′ of ISMC.
The vertices constituting the maximum independent set in G respectively the
independent set max cover in G′ are marked black.

We now prove that the original graph G has an independent set of size k
if and only if the graph G′ has an independent set which covers (2n − 1)k +
n(n− k) = n2 + (n− 1)k edges.

In G′ each original vertex of G has degree n, and each of the new vertices
connected to an original vertex also has degree n, whereas the new vertices not
connected to an original vertex have degree n − 1. If we choose an ’original’
vertex for our independent set, we can also choose an extra vertex from its
clique (assuming the graph has no isolated vertices), which adds 2n−1 covered
edges; choosing a new vertex in the clique adds only n covered edges.

If the original graph has an independent set of size k, choose this set plus
an extra vertex from each vertex-clique in the new graph. This set covers
(2n − 1)k + n(n − k) edges. If the new graph has an independent set, which
covers (2n−1)k +n(n−k) edges, it must be because n−k of the vertices each
cover n edges, and the two vertices chosen in each of the remaining k vertex-
cliques cover 2n− 1 edges. The k original vertices from the cliques where two
vertices are chosen form an independent set in the original graph.

We note that the above reduction is a polynomial-time transformation, but
it is not a parameterised reduction. This is significant as Maximum Indepen-
dent Set is W[1]-complete [6], whereas we shall later show that Indepen-
dent Set Max Cover is fixed parameter tractable.

Theorem 4. The ResMaxExactSat problem is NP-complete even when
restricted to the ResMaxExact2Sat problem with no unit clauses and no
negations.

Proof. The ResMaxExact2Sat problem with no unit clauses and no nega-
tions is equivalent to Independent Set Max Cover, which we have just
shown NP-complete. Given an instance F of ResMaxExact2Sat (with no
unit clauses and no negations), translate F to an instance G of Independent
Set Max Cover by translating each variable to a vertex and each clause to
an edge.

8

If there is an independent set V ′ in G, which covers k edges, set the vari-
ables in F corresponding to vertices in V ′ to true (and all other variables to
false); the k clauses corresponding to the covered edges will then be satis-
fied, and no clauses will be oversatisfied as V ′ is an independent set. If there
is an assignment to the variables in F satisfying k clauses, the vertices in G
corresponding to true variables constitute an independent set covering k edges.

Given an instance G of Independent Set Max Cover, simply translate
each vertex to a variable and each edge to a clause to obtain an instance F of
ResMaxExact2Sat (with no unit clauses and no negations). The argument
that there is an independent set covering k edges in G if and only if there is an
assignment to the variables in F satisfying k clauses is exactly as before.

We note that the question of whether there is an allowed assignment to a
ResMaxExactSat instance at all (i.e. an assignment that does not oversat-
isfy any clause) can be reduced to 2SAT and hence is in polynomial time. The
assignments which are not allowed are the ones that assign true to two literals
occurring in the same clause. This can be expressed in 2SAT as follows: if
literal x and literal y occur in a clause together, construct the 2SAT-clause
(x̄, ȳ). The size of the 2SAT-formula is bounded by (2n)2, which is polyno-
mial, so as 2SAT is in P, so is the question of whether there is an allowed
assignment to the ResMaxExactSat instance.

4 Algorithms

For MaxExact2Sat (allowing negations and unit clauses) we give an algo-
rithm in the number of clauses with time complexity O(poly(L) · 2m/4), which
is also the currently best known for MaxCut [7] in the number of edges.

For the general ResMaxExactSat problem, we give an algorithm in the
number of variables with time complexity O(poly(L) · 1.324718n).

Given a formula F , we branch on a variable x by either setting x to true
(this formula is denoted F [x]) or setting x to false (F [x̄]) and calling recursively
on these smaller formulas. The algorithm then reduces the parameter before
branching again. This gives rise to a branching tree. The algorithm for Max-
ExactSat for instance is analysed with respect to the parameter m, and in
most cases we can remove four clauses from each of the smaller formulas before
branching again, so we get the branching vector (4, 4) corresponding to a recur-
rence inequality for the running time of the form T (m) ≤ 2·T (m−4)+poly(L).
For further introduction to branching algorithms see for instance the paper by
Kullmann and Luckhardt [12]. However in one case, we are only able to get
the recurrence inequality T (m) ≤ 2 · T (m − 3) + poly(L). We show that this
bottleneck situation can only arise once in any path from the root to a leaf in

9

SIMPLIFY1(F):

/∗ returns a simplified formula F ′ along with the number k of removed exactly
satisfied clauses ∗/
if there are clauses (x) and (x̄) then

F � (F with the two above clauses deleted)
(F ′, k) � SIMPLIFY1(F)
return (F ′, k + 1)

end if
if some variable x occurs in at least as many unit clauses as 2-clauses then

F � (F with x set to satisfy the unit clauses and these deleted)
(F ′, k) � SIMPLIFY1(F)
return (F ′, k + the number of unit clauses with x)

end if
if there is a unique variable x then

F � (F with the clause in which x occurs deleted)
(F ′, k) � SIMPLIFY1(F)
return (F ′, k + 1)

end if
return (F, 0)

Figure 2: The simplification algorithm for MaxExact2Sat.

the branching tree. We can thus omit the corresponding recurrence inequality
from the analysis of the running time.

4.1 Algorithm for MaxExact2Sat

We present an algorithm for the MaxExact2Sat problem with time com-
plexity O(poly(L) · 2m/4). As we will never branch on a unit clause, we work
with m as the number of 2-clauses in the analysis of the algorithm. Since the
number of 2-clauses is of course smaller than or equal to the total number of
clauses, the result is also valid for m equal to the total number of clauses. This
algorithm also directly gives us the time bound O(poly(L) · 2L/8) in the length
of the formula, as L ≥ 2m, where m is the number of 2-clauses.

When calling an algorithm recursively on a formula with a variable set to
true or false, we replace any clause (true, y) by the clause (ȳ) and any clause
(false, y) by (y). Any unit clauses (true) or (false) are simply removed and the
number of true-clauses is added to the total.

We first introduce an algorithm, which simplifies the formula; see figure 2.

Theorem 5. The algorithm SIMPLIFY1 is correct and runs in polynomial
time.

Proof. The three simplifications in the algorithm are the exact same ones used
in the proof of Theorem 2. The proof that these simplifications are sound and

10

ME2S(F):

(F ′, k) � SIMPLIFY1(F)
if the formula is not connected then

call recursively on the separate formulas and return the sum of the results
end if
if all variables occur in at most two 2-clauses then

solve the instance in polynomial time and return the result
end if
if there is a variable x occurring in at least four 2-clauses then

/∗ branch on x (1) – branching vector at least (4, 4) ∗/
return k+ max(ME2S(F ′[x]), ME2S(F ′[x̄]))

end if
if some variable x occurs in three 2-clauses, and one of the variables it occurs with
(say y) occurs in only two 2-clauses (and possibly a unit clause) then

/∗ branch on x (2) – branching vector at least (4, 4) ∗/
return k+ max(ME2S(F ′[x]), ME2S(F ′[x̄]))

end if
/∗ all variables occur in three 2-clauses and zero, one or two unit clauses ∗/
pick a variable x
/∗ branch on x (3) – branching vector at least (3, 3) ∗/
return k+ max(ME2S(F ′[x]), ME2S(F ′[x̄]))

Figure 3: The main algorithm for MaxExact2Sat.

that the simplification algorithm runs in polynomial time is also given in the
proof of Theorem 2.

The main algorithm for MaxExact2Sat can be seen in figure 3.

Theorem 6. The algorithm ME2S solves the MaxExact2Sat problem in
time poly(L) · 2m/4 corresponding to the worst case branching vector (4, 4).

Proof. SIMPLIFY1 is sound and runs in polynomial time, and after calling
SIMPLIFY1 on a formula, all variables occur in more 2-clauses than unit
clauses. If a formula is not connected, we can simply solve the separate parts
and add the results. Theorem 2 states that an instance where all variables
occur in at most two 2-clauses can be solved in polynomial time. After this
if-statement, some variable occurs at least three times in a 2-clause, so the
algorithm covers all possible cases.

We argue that the branching vectors stated in the comments in the algo-
rithm in figure 3 are correct. In the first type of branch (marked (1) in the
comments), x occurs in at least four 2-clauses. When setting x to either true
or false, we remove all 2-clauses in which x occur (we create the same number
of unit clauses, but we do not count these). So both when setting x to true
and to false, we remove at least four 2-clauses.

11

In the second type of branch, x occurs only in three 2-clauses, so by the
above argument we only remove these three clauses when branching. However
the variable y, which occurs with x, occurs in only two 2-clauses (and possibly
a unit clause). If y occurs in two 2-clauses and no unit clauses, then after
branching on x it will occur in a unit clause and a 2-clause, and y can then
be set in the simplification step of the recursive call and the 2-clause removed,
so we get a branching vector of (4, 4). If y occurs in two 2-clauses and one
unit clause, then after branching on x it will occur in two unit clauses and a
2-clause. If the two unit clauses are opposite they cancel out and y becomes
unique and the 2-clause can then be removed (in the next simplification step),
giving us a branching vector of (4, 4). If the two unit clauses are identical, y
can simply be set (again in the next simplification step) and the 2-clause can
be removed, again giving us a branching vector of (4, 4).

In the third type of branch, as no other case applies, all variables occur in
exactly three 2-clauses and some may occur in one or two unit clauses. In this
case we can only get a branching vector of (3, 3), however by lemma 1 below
this case can only happen once in any path in the branching tree, which is why
we can omit this branching vector from the analysis.

Omitting the (3, 3) branching vector, the worst case branching vector is
(4, 4), which gives us a running time of O(poly(L) · 2m/4).

Lemma 1. The formula can only become 3-regular (all variables occur in ex-
actly three 2-clauses and zero, one or two unit clauses) one time in any path
(from the root) in the branching tree of algorithm ME2S.

Proof. When the formula has been 3-regular once, all variables occur in at
most three 2-clauses in the rest of the algorithm, as no assignment makes a
variable occur more times. If we look at the variables as vertices and the 2-
clauses as edges, we have a 3-regular graph. As the formula is connected, so is
the graph.

Now any assignment to some of the variables, will remove these variables
(vertices) as well as the 2-clauses (edges) in which they occur. As the graph
(formula) is connected, this means that we must have removed some edges to
the rest of the graph (the unassigned variables), and there must now be some
vertices with degree less than three, i.e. there must be some variables, that
occur in less than three 2-clauses.

Corollary 1. The algorithm ME2S solves the MaxExact2Sat problem in
time O(poly(L) · 2L/8).

4.2 Algorithm for ResMaxExactSat

We give an algorithm for the ResMaxExactSat problem running in time
O(poly(L) · 1.324718n), where n is the number of variables. This algorithm

12

SIMPLIFY2(F):

if there are clauses (x) and (x̄) then
F � (F with the two above clauses deleted)
(F ′, k) � SIMPLIFY2(F)
return (F ′, k + 1)

end if
if there is a variable x occurring in i unit clauses and no other clauses then

F � (F with these clauses deleted)
(F ′, k) � SIMPLIFY2(F)
return (F ′, k + i)

end if
if there are clauses (x, y) and (x̄, y) then

F � (F with y set to false and the two above clauses deleted)
(F ′, k) � SIMPLIFY2(F)
return (F ′, k + 1)

end if
if there are clauses (x, y) and (x̄, ȳ) then

F � (F with y set to x̄ and the two above clauses deleted)
(F ′, k) � SIMPLIFY2(F)
return (F ′, k + 2)

end if
if there is a variable x occurring only with one other variable y then

/∗ we can assume that x and y occur unnegated together (see proof) ∗/
if there are at least as many (x̄)-clauses as (x, y)-clauses then

F � (F with x set to false)
else

F � (F with x set to ȳ)
end if
return SIMPLIFY2(F)

end if

Figure 4: The simplification algorithm for ResMaxExactSat.

works for the general ResMaxExactSat problem, i.e. we have no restrictions
on the clause size.

When calling this algorithm recursively on a formula with a variable set to
true or false, we give all variables occurring in a clause with true an assign-
ment (if the variable occurs unnegated, it is set to false otherwise to true), as
oversatisfying is not allowed. Any occurrences of false are simply removed, and
any unit clauses (true) or (false) are removed and the number of true-clauses
is added to the total. If we get two occurrences of true in the same clause,
this branch does not lead to an allowed assignment; for the purpose of the
algorithm below, we will just assume that −∞ is returned.

We first introduce an algorithm, which simplifies the formula; see figure 4.

13

Theorem 7. The algorithm SIMPLIFY2 is correct and runs in polynomial
time.

Proof. We argue that the simplifications are correct. If we have two opposite
unit clauses (x) and (x̄), no matter what x is set to we will satisfy exactly one
of these, so we can simply delete both and add one to the total. If there is a
variable x occurring only in i unit clauses, we can simply satisfy all of these,
without affecting any other variables.

If there are clauses (x, y) and (x̄, y), y must be false, or we would oversatisfy
one of the clauses. So we set y to false and delete both clauses, one of which
will be exactly satisfied, regardless of the assignment to x. If there are clauses
(x, y) and (x̄, ȳ), we must set y equal to x̄, or one of the two clauses would be
oversatisfied. We have then exactly satisfied both clauses, and we can delete
them and add two to the total. Now if two variables x and y occur together
in two clauses, the clauses must be identical (otherwise one of the two above
rules would have been used), thus we can assume that any clause with x and
y is of the form (x, y) (otherwise rename the literals).

If a variable x occurs only together with one other variable y in one or more
clauses (x, y), these clauses can always be satisfied simply by setting x = ȳ. If
x also occurs unnegated in a number of unit clauses or negated in some unit
clauses, but less than there are 2-clauses (x, y), we shall still set x = ȳ, as if
y is later set to true, this forces x to be false and if y is later set to false, we
can satisfy all the 2-clauses with x by setting x to true; the unit clauses with
x will then also be satisfied; whereas the unit clauses with x̄ will not, but we
prefer to satisfy the 2-clauses, as there are more of these. If on the other hand
x also occurs negated in at least as many unit clauses as there are 2-clauses
(x, y), we set x = false, as if y is later set to true this is a must and in any
case we satisfy as least as many clauses setting x to false as we could setting
it to true.

To prove that the algorithm runs in polynomial time we simply note that
each if-statement can be checked and performed in polynomial time in the
length of the formula and removes either a clause or a variable. Thus at most
m + n simplifications can be performed, and SIMPLIFY2 runs in polynomial
time.

The main algorithm can be seen in figure 5.

Theorem 8. The algorithm RMES solves the ResMaxExactSat problem in
time O(poly(L) · 1.324718n) corresponding to the worst case branching vector
(5, 1).

Proof. The correctness of the algorithm follows from first observing that SIM-
PLIFY2 is sound and polynomial, and after simplification no variable occurs
with only one other variable, so one of the four branching cases apply. If a

14

RMES(F):

(F ′, k) � SIMPLIFY2(F)
if the formula contains four or less different variables then

solve the problem directly (try all assignments) and return the result
end if
if the formula is not connected then

call recursively on the separate formulas and return the sum of the results
end if
if there is a variable x occurring with at least 4 other variables then

/∗ branch on x (1) – branching vector at least (5, 1) ∗/
return k+ max(RMES(F ′[x]), RMES(F ′[x̄]))

end if
if there is a variable x occurring with 3 other variables, one of which occurs only
with x and one other variable then

/∗ branch on x (2) – branching vector at least (4, 2) ∗/
return k+ max(RMES(F ′[x]), RMES(F ′[x̄]))

end if
if there is a variable x occurring with 3 other variables then

/∗ branch on x (3) – branching vector (4, 1) ∗/
return k+ max(RMES(F ′[x]), RMES(F ′[x̄]))

end if
/∗ all variables occur with 2 other variables ∗/
pick a variable x
/∗ branch on x (4) – branching vector at least (3, 3) ∗/
return k+ max(RMES(F ′[x]), RMES(F ′[x̄]))

Figure 5: The main algorithm for ResMaxExactSat.

formula contains only four different variables, it can be solved directly in poly-
nomial time. If a formula is not connected, we can simply solve the separate
parts and add the results.

Secondly we argue that the branching vectors stated in the comments are
correct. If a variable x occurs with at least four other variables, just branching
on this variable immediately yields a branching vector of at least (5, 1), as
setting x to true forces the literals occurring with the literal x to be false,
and setting x to false forces the literals occurring with the literal x̄ to be false.
This means that if x occurs with exactly four other variables, we get branching
vectors (3, 3) if x occurs negated with two other variables, (4, 2) if x occurs
negated with one other variable and (5, 1) if x does not occur negated with
another variable.

If there is a variable x occurring with three other variables, one of which
occurs only with x and one other variable, we have one of the following situa-
tions. The variable x can occur in three 2-clauses. Let x̃ denote either x or x̄.
So we have (x̃, y), (x̃, z), (x,w) and possibly some unit clauses with x. Say y

15

occurs only with one other variable in (ỹ, u). When setting x to true we also
remove w, and when x̃ is set to true we also remove y and z. When x̃ is set
to false, y occurs only with u and can be removed in the following simplifica-
tion procedure, so we remove x and y in both branches and z and w in one
branch and get a branching vector of at least (4, 2) (notice that a negation on
the second x will result in (3, 3)). Otherwise x can occur in a 3-clause and a
2-clause: (x̃, y, z), (x̃, w) (and possibly some unit clauses with x). If y occurs
with no other variables, setting x̃ to false, will leave y occurring with only one
variable, and we can remove it giving us a branching vector of at least (4, 2)
again. The same is the case if w occurs with only one other variable. Notice
that x can not occur in a 4-clause in this case, as all of the variables which it
occurs with would then also occur with three variables.

If there is still a variable x occurring with three other variables, all of these
three variables must also occur with exactly two other variables besides x: if
one of them occurred with four or more different variables it would have been
caught by (1), if one of them occurred with only x and one other variable it
would have been caught by (2) and if one of them occurred only with x it would
have been caught by SIMPLIFY2. Branching on x only yields a branching
vector of (4, 1). However by lemma 2 below this case can only happen once
in any path in the branching tree, which is why we can omit this branching
vector from the analysis.

If we reach branch (4), all variables occur with only two other variables,
and there can only be 2-clauses and unit clauses, as any 3-clauses would be
disconnected from the rest of the graph, and would have been caught by the
second and subsequently the first if-statement. So we have the case where x
occurs in (x, y) and (x̃, z) and possibly some unit clauses, and y and z must
occur with another variable as we could otherwise have removed them. If y
and z occur together, we again have a closed sub-formula, which would have
been removed by the second and first if-statements, so assume they occur in
(ỹ, u) and (z̃, v). Now setting x to true will force y to be false, and setting
x to false will leave y occurring with only one other variable, so also in this
branch it can be removed. If x is not negated, the situation is the same for z,
and if x is negated the opposite occurs, but in both cases z is also removed in
both branches. This gives us a branching vector of (3, 3).

We remark that when all variables occur with only two other variables we
can actually solve ResMaxExactSat in polynomial time as the 2-clauses
form a cycle. This is, however, not necessary for the analysis of the algorithm.

Since the branch resulting in branching vector (4, 1) can only happen once
in any path in the branching tree, it only has the effect of a constant on the
running time. The worst case branching vector is then (5, 1), which gives us
the running time of O(poly(L) · 1.324718n).

16

Lemma 2. The formula can only become 3-regular (all variables occur with ex-
actly three other variables) one time in any path (from the root) in the branching
tree of algorithm RMES.

Proof. When the formula has been 3-regular once, all variables occur with at
most three other variables in the rest of the algorithm, as no assignment makes
a variable occur with more other variables. Remember also that the formula
is connected.

Now any assignment to some of the variables, will remove these variables as
well as the clauses in which they occur. As the formula is connected, this means
that we must have removed at least one clause with an unassigned variable,
and there must now be at least one variable that occurs with less than three
other variables.

4.3 Parameterisation

The classic MaxSat problem is fixed parameter tractable (FPT). The cur-
rently best known parameterised algorithm for MaxSat has time complexity
O(L + k2 · 1.3695k) [4]. That MaxSat is FPT is not surprising as we know
that we can always satisfy at least half of the clauses (try an assignment; if this
does not satisfy half the clauses, then the bitwise complement will), so in the
interesting case k > m/2, which means that an algorithm in m can be trans-
formed to an algorithm in k. Of course such an algorithm is not very effective,
but nevertheless shows that MaxSat is FPT. Mahajan and Raman [13] show
that if we change the parameter by asking if m/2 + k clauses can be satisfied
instead, the MaxSat problem is still FPT.

For MaxExactSat it is not immediate, that any certain part of the clauses
can always be satisfied, or even if the problem is fixed parameter tractable.
However MaxExact2Sat with no unit clauses and no negations is equivalent
to MaxCut, which is known to be fixed parameter tractable [14, 3].

The ResMaxExactSat problem has instances, where no clauses can be
satisfied (a simple example is (x, y)∧(x, ȳ)∧(x̄, y)), as any assignment oversat-
isfies some clause; thus there is not a certain part of the clauses that can always
be satisfied and a parameterised algorithm for this problem is not immediate.
We however give such an algorithm for the Independent Set Max Cover
problem, which is equivalent to ResMaxExact2Sat with no unit clauses and
no negations.

Theorem 9. The Independent Set Max Cover problem is fixed parameter
tractable.

Proof. Given an instance G = (V,E) of Independent Set Max Cover and
a parameter k, the question is if k edges can be covered by an independent set.

17

If some vertex has degree k or more, we can simply pick this vertex as the
independent set, and the answer is yes. Otherwise all vertices have degree at
most k − 1. Then the following simple branching-algorithm will work: Pick
some vertex v and branch on including either v or one of its neighbours in the
independent set. As v has degree at most k− 1, there are at most k branches,
and in each branch we include a vertex in the independent set, so we reduce
the parameter by one, and we get at most k recursive calls.

This gives us a time complexity of O(poly(L) ·kk), and Independent Set
Max Cover is FPT.

We note that for the ResMaxExact2Sat problem without unit clauses
we can also easily handle negations. If a variable occurs both unnegated and
negated, k is decreased by at least one, both when this variable is set to
true and to false (remember that oversatisfying is not allowed, so if we set
a literal in a clause to true, we must satisfy this clause). This means that
we can simply start by branching on the variables, which occur both negated
and unnegated, and when there are no more of these, we can continue with
the above algorithm. This is still a fixed parameter algorithm, and the time
complexity is still bounded by O(poly(L) · kk).

5 Conclusion

We have introduced two new maximum exact satisfiability problems, and
proved them NP-complete. We have also given exact algorithms for both
problems. Interesting open problems are if new algorithms with improved
time complexities, perhaps in different parameters, can be devised, and if the
two full problems are fixed parameter tractable?

Acknowledgements

We would like to thank Daniel Mölle and Stefan Richter for their help on proofs
and algorithms.

References

[1] N. Bansal and V. Raman. Upper bounds for MaxSat: further improved.
In Proceedings of the 10th International Symposium on Algorithms and
Computation (ISAAC 1999), volume 1741 of Lecture Notes in Computer
Science, pages 247–258. Springer, 1999.

18

[2] J. M. Byskov, B. A. Madsen, and B. Skjernaa. New algorithms for exact
satisfiability. Report Series RS-03-30, BRICS, Department of Computer
Science, Aarhus University, October 2003.

[3] L. Cai and J. Chen. On fixed-parameter tractability and approximability
of NP optimization problems. J. Comput. Syst. Sci., 54(3):465–474, 1997.

[4] J. Chen and I. Kanj. Improved exact algorithms for MAX-SAT. In
Proc. of the 5th Latin American Symposium on Theoretical Informatics
(LATIN’02), pages 341–355, Cancun, Mexico, 2002.

[5] V. Dahllöf, P. Jonsson, and R. Beigel. Algorithms for four variants of the
exact satisfiability problem. Theoretical Comput. Sci. In press.

[6] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness II: on completeness for W[1]. Theoretical Comput. Sci., 141(1-
2):109–131, 1995.

[7] S. S. Fedin and A. S. Kulikov. A 2|E|/4-time algorithm for MAX-CUT.
Zapiski nauchnyh seminarov POMI, 293:129–138, 2002. Available at http:
//logic.pdmi.ras.ru/~kulikov/maxcut_e.ps.gz.

[8] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Comput. Sci., 1:237–267, 1976.

[9] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. Worst-
case upper bounds for MAX-2-SAT with an application to MAX-CUT.
Discrete Appl. Math., 130(2):139–155, 2003.

[10] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 85–103, 1972.

[11] A. S. Kulikov. An upper bound O(20.16254n) for exact 3-satisfiability: A
simpler proof. Zapiski nauchnyh seminarov POMI, 293:118–128, 2002.
English translation is to appear in Journal of Mathematical Sciences.
Available at http://logic.pdmi.ras.ru/~kulikov/x3sat_e.ps.gz.

[12] O. Kullmann and H. Luckhardt. Deciding propositional tautologies: Al-
gorithms and their complexity, 1997. Available at http://www.cs.swan.
ac.uk/~csoliver/tg.ps.gz.

[13] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31(2):335–354, 1999.

[14] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes. Journal of Computing and System Sciences,
43:425–440, 1991.

19

[15] S. Porschen, B. Randerath, and E. Speckenmeyer. Exact 3-satisfiability
is decidable in time O(20.16254). Annals of Mathematics and Artificial
Intelligence. In press.

[16] J. M. Robson. Algorithms for maximum independent sets. Journal of
Algorithms, 7:425–440, 1986.

[17] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, pages
216–226, 1978.

[18] R. Williams. A new algorithm for optimal constraint satisfaction and its
implications. In Automata, Languages and Programming. 31st Interna-
tional Colloquium, ICALP 2004., volume 3142 of Lecture Notes in Com-
puter Science. Springer, 2004.

20

Recent BRICS Report Series Publications

RS-04-19 Bolette Ammitzbøll Madsen and Peter Rossmanith.Maximum
Exact Satisfiability: NP-completeness Proofs and Exact Algo-
rithms. October 2004. 20 pp.

RS-04-18 Bolette Ammitzbøll Madsen. An Algorithm for Exact Satis-
fiability Analysed with the Number of Clauses as Parameter.
September 2004. 4 pp.

RS-04-17 Mayer Goldberg. Computing Logarithms Digit-by-Digit.
September 2004. 6 pp.

RS-04-16 Karl Krukow and Andrew Twigg. Distributed Approximation
of Fixed-Points in Trust Structures. September 2004. 25 pp.

RS-04-15 Jeśus Fernando Almansa. Full Abstraction of the UC Frame-
work in the Probabilistic Polynomial-time Calculus ppc. August
2004.

RS-04-14 Jesper Makholm Byskov. Maker-Maker and Maker-Breaker
Games are PSPACE-Complete. August 2004. 5 pp.

RS-04-13 Jens Groth and Gorm Salomonsen.Strong Privacy Protec-
tion in Electronic Voting. July 2004. 12 pp. Preliminary ab-
stract presented at Tjoa and Wagner, editors,13th Interna-
tional Workshop on Database and Expert Systems Applications,
DEXA ’02 Proceedings, 2002, page 436.

RS-04-12 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2004. 34 pp. To appear inJournal of
Functional and Logic Programming. This report supersedes the
earlier BRICS report RS-03-36 which was an extended version
of a paper appearing in Hu and Rodŕıguez-Artalejo, editors,
Sixth International Symposium on Functional and Logic Pro-
gramming, FLOPS ’02 Proceedings, LNCS 2441, 2002, pages
134–151.

RS-04-11 Vladimiro Sassone and Paweł Sobociński. Congruences for
Contextual Graph-Rewriting. June 2004. 29 pp.

RS-04-10 Daniele Varacca, Hagen V̈olzer, and Glynn Winskel. Proba-
bilistic Event Structures and Domains. June 2004. 41 pp. Ex-
tended version of an article to appear in Gardner and Yoshida,
editors, Concurrency Theory: 15th International Conference,
CONCUR ’04 Proceedings, LNCS, 2004.

