
BRICS
Basic Research in Computer Science

Computing Logarithms Digit-by-Digit

Mayer Goldberg

BRICS Report Series RS-04-17

ISSN 0909-0878 September 2004

B
R

IC
S

R
S

-04-17
M

.G
oldberg:

C
om

puting
Logarithm

s
D

igit-by-D
igit



Copyright c© 2004, Mayer Goldberg.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/17/



Computing Logarithms Digit-by-Digit

Mayer Goldberg∗

September 2004

Abstract

In this work, we present an algorithm for computing logarithms of pos-
itive real numbers, that bares structural resemblance to the elementary
school algorithm of long division. Using this algorithm, we can compute
successive digits of a logarithm using a 4-operation pocket calculator. The
algorithm makes no use of Taylor series or calculus, but rather exploits
properties of the radix-d representation of a logarithm in base d. As such,
the algorithm is accessible to anyone familiar with the elementary prop-
erties of exponents and logarithms.

1 Radixes and Bases

The term base has two different meanings, both of which are used in this work,
and it is important to distinguish amongst them. The base of a number system
has to do with the power series representation of a number: If N is written
as a0a1 · · · ak in base d, then N =

∑k
j=0 ajd

k−j . The base of a logarithm has
to do with representing a number as the power of another: If logd x = y, then
dy = x. These two distinct meanings of the term base are related in this work,
so to prevent any ambiguity, we use the term radix-d to speak of the base-d
representation of a number. Throughout the remainder of this work the term
base will refer to the base of a logarithm.

2 The Algorithm

Let M be a positive real number. Let the radix-d representation of the logarithm
in base d of M be written as a0.a1a2 · · ·, then:

logd M = a0 +
a1

d
+

a2

d2
+

a3

d3
· · · (1)

Therefore

M = d
a0+

a1
d

+
a2
d2 +

a3
d3 ···

= d
a0 · d

a1
d

+
a2
d2 +

a3
d3 ···

∗Department of Computer Science, Ben Gurion University, P.O. Box 653, Beer Sheva 84105,
Israel.

1



The central observation is that when we work in the radix-d, the first digit in
the base-d expansion, or a0 in Equation (1), is always readily available. For
example, the first digit of log10 345 is 2, because 102 ≤ 345 < 103. Similarly,
the first digit of log10 2468 is 3, because 103 ≤ 2468 < 104.

Having extracted a0, we now divide both sides by da0 , giving

M

d
a0

= d
a1
d

+
a2
d2 +

a3
d3 ···

Raising both sides to the d-th power, we get

(
M

d
a0

)d

= d
a1+

a2
d

+
a3
d2 ···

(2)

We see from Equation (2) that a1.a2a3 · · · is the radix-d representation of
logd

(
M
da0

)d
, the first digit of which is a1. Note our previous observation that the

first digit of the radix-d representation of the logarithm in base d of some num-
ber is readily available, so the process of extracting the logarithm digit-by-digit
can proceed.

We presented the algorithm for any choice d of both radix and base of log-
arithm, in order to show how these two notions are related in the algorithm.
For all practical purposes, however, it would seem useful to consider the case
where d = 10, i.e., computing logarithms in base 10 in decimal notation, or
perhaps d = 2, where floating-point numbers would be represented in binary
notation. The base of the logarithm is not as significant a choice, because it is
a simple matter to convert logarithms from one base to another, by multiply-
ing by such constants as ln 10, log2 10, log2 e, etc. When computing logarithms
on a pocket calculator, it is practical to use rational approximations for such
constants. For example, ln 10 can be approximated within 1.58 · 10−9 by the
fraction 5377/12381.1

2.1 A worked-out example

In this section, we present a worked-out example of computing log10 1234.56 in
decimal (radix-10 notation). The various stages of the algorithm are tabulated
below. In computing the first digit of the logarithm of the value in the second
column, at each step of the algorithm, we need to count the number of digits to
the left of the decimal point, minus one. This figure corresponds to the number
of digits in the underlined portion of the value.

1A great way to arrive at such rational approximations is using regular continued
fractions.[1]

2



Expression Value Next Digit

M = 1234.56 a0 = 3

M1 =
(

M

10
a0 (=3)

)10

= 8.2247369382767 a1 = 0

M2 =
(

M1

10
a1 (=0)

)10

= 1416511689.4063 a2 = 9

M3 =
(

M2

10
a2 (=9)

)10

= 32.523825911294 a3 = 1

M4 =
(

M3

10
a3 (=1)

)10

= 132439.11735423 a4 = 5

· · ·

Hence log10 1234.56 = 3.0915 · · ·.

3 Using a pocket calculator

Adapting the algorithm for use on a pocket calculator requires that we address
three issues:

• The error involved in the computation

• Raising numbers to the 10-th power on a simple, 4-operation calculator

• Overflow

3.1 Accuracy and error

In theory, had we been able to maintain all the digits obtained from raising
numbers to the d-th power, we could have computed logarithms in base d with
no loss of accuracy, one digit at a time, to any number of digits. In practice,
though, calculators and computers will maintain only so many significant digits,
and will round off the rest. As we iterate over the digit-extraction process, the
roundoff error will propogate towards the more significant digits. After some
iterations, the accumulated error will affect the number of digits to the left
of the decimal point, and from that iteration onwards we will be “extracting”
incorrect digits. To see how the error builds up, suppose we are computing
logd M in radix-d, for some integer d > 1, and some positive real number M .
The error will increase as we raise numbers to the d-th power.

Consider f(x) = xd. For small ε, we have

f(x + ε) ≈ f(x) + εf ′(x)
= xd + εdxd−1

3



Hence for a small error, we have

(x + ε)d ≈ xd + εdxd−1

= xd(1 +
εd

x
)

≤ xd(1 + εd)

The upper bound on the error, the quantity εd, propogates the error one digit
to the left.

In practice, we can use this algorithm to compute 7-8 correct digits on an
8-digit pocket calculator.

3.2 Raising numbers to the 10-th power

Raising a number to the 10-th power on a simple 4-operation pocket calculator
can generally be done without re-entering the number, and without using the
memory functions. Most pocket calculators support a feature known as constant
operations, where given two arguments x, y, and one of the supported binary
operations ⊗ ∈ {+,−,×,÷}, we can compute the nested, right-associated ap-
plication

x⊗ (x⊗ · · · (x⊗︸ ︷︷ ︸
n times

y) · · ·)

The key sequence that computes the above operation on most calculators is
given by

key in x ⊗ ⊗ key in y = · · · =︸ ︷︷ ︸
n times

On many calculators, it is even unnecessary to press ⊗ twice. When y is not
given, the value for x, which appears on the display, is used.

Consequently, we raise a number x to the 10-th power by 9 successive mul-
tiplications of x by the constant x:

key in x × × = · · · =︸ ︷︷ ︸
9 times

3.3 Overflow

Computing the 10-th power of a number that is less than 10 requires at least
10 calculator digits to represent, possibly with roundoff errors, but without an
overflow error. Most 4-operation pocket calculators carry out calculations up to
8 digits, and hence overflow errors will occur. In this section, we discuss how to
resume calculations after such an error.

Most calculators do not clear their display upon overflow errors. Rather,
they display the correct digits, and shift the decimal point to the left by as

4



many digits as the display can handle. They would then turn on the error
annunciator (usually denoted by a small, capital E), and ignore all keyboard
input except for the clear error key (usually marked CE ). Pressing the clear
error key removes the error condition, and enables further clculations, including
constant operations.

For example, 12345672 = 1524155677489. The result has 13 digits (to the
left of the decimal point), so the calculation will cause an overflow error on
an 8-digit pocket calculator, and result in an error annunciator turned on, and
the display showing E 15241.556 . Note that an 8-digit calculator displays the
rounded answer with 13− 8 = 5 digits to the left of the decimal point.

In raising to the 10-th power numbers that are less than 10, there are two
kinds of overflow situations:

E d0.d1d2d3d4d5d6d7

E d0d1.d2d3d4d5d6d7

representing 9- and 10-digit numbers, the logarithms of which are 8, 9 respec-
tively. When such an overflow condition arises, we note either 8 or 0 in the
expansion of the logarithm, reset the decimal point to E d0.d1d2d3d4d5d6d7 ,
and continue with the algorithm.

4 Related Work

John P. Killingbeck, in his book The Creative Use of Calculators [2, Section 4.9],
uses probability theory to arrive at an algorithm that amounts to a special case
of the algorithm presented herein, where d = 2. The output of the Killingbeck’s
algortihm is a sequence of binary digits that are then converted to decimal
and multiplied by log 2 or ln 2 in order to convert the logarithm to a more
commonly-used base. The peculiar choice of d in Killingbeck’s algortihm may
have something to do with the probabilistic argument with which he arrives at
his algorithm, and is otherwise unmotivated. The choice of d = 2 does, however,
seem reasonable for working with representations of floating-point numbers on
digital computers.

5 Conclusion

Even though logarithms are taught and used in high school, students are gen-
erally unable to compute logarithms, in all but the simplest cases, e.g., when
the logarithm is a rational number. Only after they reach college, and study
calculus to Taylor series, are they be able to compute the logarithm of any real
number in any base. Luckily, this pedagogical wrinkle is easily ironed out, since,
as this algorithm shows, logarithms can be computed one digit at a time.

We note that this algorithm is essentially the same as the well-known elemen-
tary school algorithm for long-division, where each operation in the long-division
algorithm is replaced by a higher operation:

5



Long Division Finding a Logarithm
Finding the first digit of the inte-
ger quotient

Finding the first digit of the log-
arithm

Reducing the dividend by the
largest integer multiple of the di-
visor

Dividing the argument by the
largest power of d that is smaller
than the argument

Multiplying the difference by d,
and iterating

Raising the quotient to the power
d, and iterating

While the algorithm presented herein is not very efficient, it does offer several
pedagogical and computational advantages:

• It assumed no calculus, and rather relies on the most elementary properties
of powers and logarithms.

• The algorithm is easy to follow, especially since it is structurally similar
to the elementary school algorithm for long division.

• The algorithm lends itself to rapid calculations on a pocket calculator.

Acknowledgements

The author is grateful to BRICS2 for having hosted him and for providing a
stimulating environment. The author is particularly grateful to Saurabh Agar-
wal, Dani Berend, Olivier Danvy, Ted Eisenberg, Kim Skak Larsen, and Kiril
Morozov for their enthusiastic reception of the algorithm, and for their encour-
agement.

References

[1] Khinchin, Aleksandr Iakovlevich. Continued Fractions. Dover Publications,
1997.

[2] John P. Killingbeck. The Creative Use of Calculators. Penguin Books, 1981.

2Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

6



Recent BRICS Report Series Publications

RS-04-17 Mayer Goldberg. Computing Logarithms Digit-by-Digit.
September 2004. 6 pp.

RS-04-16 Karl Krukow and Andrew Twigg. Distributed Approximation
of Fixed-Points in Trust Structures. September 2004. 25 pp.

RS-04-15 Jeśus Fernando Almansa. Full Abstraction of the UC Frame-
work in the Probabilistic Polynomial-time Calculus ppc. August
2004.

RS-04-14 Jesper Makholm Byskov. Maker-Maker and Maker-Breaker
Games are PSPACE-Complete. August 2004. 5 pp.

RS-04-13 Jens Groth and Gorm Salomonsen.Strong Privacy Protec-
tion in Electronic Voting. July 2004. 12 pp. Preliminary ab-
stract presented at Tjoa and Wagner, editors,13th Interna-
tional Workshop on Database and Expert Systems Applications,
DEXA ’02 Proceedings, 2002, page 436.

RS-04-12 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2004. 34 pp. To appear inJournal of
Functional and Logic Programming. This report supersedes the
earlier BRICS report RS-03-36 which was an extended version
of a paper appearing in Hu and Rodŕıguez-Artalejo, editors,
Sixth International Symposium on Functional and Logic Pro-
gramming, FLOPS ’02 Proceedings, LNCS 2441, 2002, pages
134–151.

RS-04-11 Vladimiro Sassone and Paweł Sobociński. Congruences for
Contextual Graph-Rewriting. June 2004. 29 pp.

RS-04-10 Daniele Varacca, Hagen V̈olzer, and Glynn Winskel. Proba-
bilistic Event Structures and Domains. June 2004. 41 pp. Ex-
tended version of an article to appear in Gardner and Yoshida,
editors, Concurrency Theory: 15th International Conference,
CONCUR ’04 Proceedings, LNCS, 2004.

RS-04-9 Ivan B. Damg̊ard, Serge Fehr, and Louis Salvail. Zero-
Knowledge Proofs and String Commitments Withstanding Quan-
tum Attacks. May 2004. 22 pp.

RS-04-8 Petr Jaňcar and Jiř ı́ Srba. Highly Undecidable Questions for
Process Algebras. April 2004. 25 pp. To appear in Lévy, Mayr
and Mitchell, editors, 3rd IFIP International Conference on
Theoretical Computer Science, TCS ’04 Proceedings, 2004.


