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Distributed Approximation of Fixed-Points
in Trust Structures

Karl Krukow∗† Andrew Twigg‡

September 2004

Abstract

Recently, developments of sophisticated formal models of trust in large
distributed environments, incorporate aspects of partial information, im-
portant e.g. in global-computing scenarios. Specifically, the framework
based on the notion of trust structures, introduced by Carbone, Nielsen and
Sassone, deals well with the aspect of partial information. The framework
is “denotational” in the sense of giving meaning to the global trust-state as a
unique, abstract mathematical object (the least fixed-point of a continuous
function). We complement the denotational framework with “operational”
techniques, addressing the practically important problem of approximat-
ing and computing the semantic objects. We show how to derive from
the setting of the framework, a situation in which one may apply a well-
established distributed algorithm, due to Bertsekas, in order to solve the
problem of computation and approximation of least fixed-points of con-
tinuous functions on cpos. We introduce mild assumptions about trust
structures, enabling us to derive two theoretically simple, but highly useful
propositions (and their duals), which form the basis for efficient protocols
for sound approximation of the least fixed-point. Finally, we give dynamic
algorithms for safe reuse of information between computations, in face of
dynamic trust-policy updates.

1 Introduction
This paper completes a new model for trust in large distributed systems. The
model, introduced in papers by Carbone et al. [6] and Nielsen et al. [14], is
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aimed at global-computing environments, and is based on a domain-theoretic
modelling of trust information. More specifically, domain theory is applied to
give a denotational semantics to a collection of mutually referring so-called trust
policies. This provides for a set of principal identities P, each defining such a
trust policy, a unique global trust-state, which quantifies for any p and q in P, p’s
trust in q.

Formally, in the framework, trust is something which exists between pairs of
principals. Each instance of the framework defines a so-called trust structure,
which consists of a set X of trust values, together with two partial orderings
of X, the trust ordering (�) and the information ordering (v). The elements
s, t ∈ X express the levels of trust that are relevant for a particular application,
e.g. access-rights, and s � t then means that t denotes at least as high a trust-
level as s. In contrast, the information ordering introduces a notion of precision
or information. The key idea is that the elements of the set embody various
degrees of uncertainty, and s v t reflects that t is more precise or contains
more information than s. In simple cases the trust values are just symbolic, e.g.
unknown v low � high, but they may also have more internal structure. As a
simple example of a trust structure, consider the so-called “MN ” trust-structure
TMN [13]. In this structure, trust values are pairs (m, n) of natural numbers1,
where m denotes the number of “good” interactions and n the number of “bad”
interactions. The information-ordering is given by: (m, n) v (m′, n′) only if one
can obtain (m′, n′) from (m, n) by adding zero or more good interactions or zero
or more bad interactions, i.e. iff m ≤ m′ and n ≤ n′. In contrast, the trust
ordering is given by: (m, n) � (m′, n′) only if m ≤ m′ and n ≥ n′. Nielsen and
Krukow [13, 15], as well as Carbone et al. [6], have considered several additional
examples.

Given a fixed trust structure T = (X,�,v), a global trust-state of the system
can be described mathematically, simply as a function gts : P → P → X, with
the interpretation that gts(p)(q) denotes p’s trust in q, formalised as an element
of X. In order to uniquely define the gts function, an approach similar to that of
Weeks is adopted [17]. Each principal p ∈ P defines a trust policy (“license” in
the framework of Weeks), which is an information-continuous function πp of type
(P → P → X)→ (P → X). This function then determines p’s trust values, i.e.
gts(p), in the following way. In the simplest case, πp could be a constant function,
ignoring its first argument m : P → P → X. As an example, πp(m) = λq.t0
for some t0 ∈ X, defines p’s trust in any q ∈ P, as the value t0. In the general
case, πp may refer to other policies πz, z ∈ P, and the general interpretation of
πp is: given that all principals assign trust values as specified in the trust state,
m : P → P → X, then p assigns trust values as specified in function πp(m) : P →
X. For example, function πp(m) = λq ∈ P.(m(A)(q) ∨� m(B)(q)) ∧� medium,

1To be precise, the set N
2 is completed by allowing also value ∞ as “m” or “n” or both.
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represents a policy saying “for any q ∈ P, give the least upper-bound2 in (X,�)
of what A and B say, but not more than the constant medium ∈ X”.

The collection of all trust policies, Π = (πp : p ∈ P), thus “spins a global
web-of-trust” in which the trust policies mutually refer to each other, similarly
to a set of mutually recursive functions. A crucial requirement is that the in-
formation ordering makes (X,v) a cpo with bottom. Since all policies are
information-continuous, there exists a unique information-continuous function
Πλ = 〈πp : p ∈ P〉, of type (P → P → X) → P → P → X with the property
that Projp ◦ Πλ = πp for all p ∈ P, where Projp is the p’th projection3. This
means that for any collection of trust policies, Π, we can define the unique global
trust-state induced by that collection, as the least fixed-point of the function Πλ,
denoted gts(Π) = lfp Πλ : P → P → X. This unique trust-state thus satisfies
the fixed-point equation: for all p ∈ P

gts(Π)(p) = Πλ(gts(Π))(p)

= (Projp ◦ Πλ)(gts(Π))

= πp(gts(Π))

Reading this from the left to the right, any function m : P → P → X satisfying
this equation is consistent with Π. Consider now two mutually referring functions
πp and πq, given by πp = λm.Projq(m), and πq = λm.Projp(m). Intuitively, there
is no information present in these functions, they simply mutually refer to each
other. Thus, we would like the global trust-state induced by these function to
take the value ⊥v on any entry z ∈ P for both of p and q. This is exactly what
is obtained by choosing the least fixed-point of Πλ.

The trust-structure framework can express many interesting examples, but
one could argue against its usefulness as a basis for constructing concrete global-
computing trust-management-systems. In order to make security decisions, each
principal p will need to reason about its trust in others, that is, the values of
gts(p). When the cpo (X,v) is of finite height h, the cpo (P → P → X,v) has
height |P|2 · h. Letting v denote also the point-wise extension of v to the cpo
P → P → X, the least fixed-point can, in principle, be computed by finding the
first identity in the chain (λp.λq.⊥v) v Πλ(λp.λq.⊥v) v Π2

λ(λp.λq.⊥v) v · · · v
Π
|P|2·h
λ (λp.λq.⊥v). However, in the environment envisioned, such a computation

is infeasible. The functions (πp : p ∈ P) defining Πλ are distributed throughout
the network, and, more importantly, even if the height h is finite, the number of
principals |P|, though finite, will be very large. Furthermore, even if resources
were available to make this computation, we can not assume that any central
authority is present to perform it.

This paper argues, by complementing the denotational model with sound op-
erational techniques, that the situation is not as hopeless as we have suggested.

2Assuming that (X,�) is a lattice, which is often the case.
3Since the category of cpos and continuous functions has arbitrary products.
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Our work essentially deals with the operational problems left as “future work”
by Carbone et al. [6]. More specifically, this consists of three operational issues.
Firstly, actual computation of trust values over a global, highly dynamic, decen-
tralised network. Secondly, as pointed out previously [6], often it is infeasible and
even unnecessary to compute the exact denotation of a set of policies, instead,
a sound approximation of this value may be sufficient to make a trust-based de-
cision. Finally, the inherently dynamic nature of the envisioned systems require
algorithms and operational techniques that explicitly deal with the dynamic up-
dating of trust policies (rather than simply dealing with updates by doing a
complete re-computation of the trust-state).

Technically, we start by showing that although it may be infeasible to com-
pute the function gts : P → P → X, one can instead try to compute so-called
local fixed-point values. We take the practical point-of-view of a specific principal
R, wanting to reason about its trust value for another principal q. The basic idea
is that instead of computing the entire function gts, and then “looking up” value
gts(R)(q) to learn R’s trust in q, one may instead compute this value directly.
We derive from the setting of the model, a dependency graph which represents
just the policy dependencies that are relevant for the particular computation.
From there, we prove a convergence result that enables applicability of a ro-
bust totally-asynchronous distributed algorithm of Bertsekas [1] for fixed-point
computation. This is developed in Section 2. In Section 3 we take very mild
assumptions on the relation between the two orderings in trust structures. By
using standard, order-based proof-techniques in the new setting of two distinct
orderings, these assumptions allow us to derive two propositions. We present
two efficient, distributed algorithms, which, due to the propositions, allow safe
approximation of the fixed point. In some situations, this allows principals to
take security-decisions without having to compute the exact fixed-point. For ex-
ample, suppose we know a function, m : P → P → X, with the property that
m � gts. In this case, if m is sufficient to allow a given request, so is the actual
fixed-point. In Section 4, we address the problem dynamic policy-changes. We
give an algorithm which seeks to maximise the reuse of information from “old”
computations. For specific, commonly occurring, types of updates this is very
efficient. For general updates, we give an algorithm which is better than the
naive algorithm in many cases.

Related Work: Stephen Weeks has developed a mathematical framework
suitable for modelling many existing trust-management systems [17]. The frame-
work, which is a predecessor of the trust-structure framework, is based on defining
a global trust-state (“authorisation map” [17]) by existence of least fixed-points
of monotonic endo-functions on complete lattices.

The notion of trust structures [6,14] was developed to overcome the problems
of partial information in trust-based security decision-making, inherent in large
distributed systems, e.g. global-computing scenarios. It was argued that tradi-
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tional trust-management approaches (e.g. [2,3,7,9,11] and a survey by Grandison
et al. [10]) are sometimes too restrictive in environments of inherent partial in-
formation. The problem was addressed by introducing the notion of information
into a framework similar to that of Weeks. The primary difference between the
two frameworks is that in trust structures, least fixed-points are with respect to
information, whereas in Weeks’s framework they are with respect to trust (indeed,
there is no notion of information ordering, and “trust” is identified with authori-
sation [17]). Another important difference is that in Weeks’s framework, the trust
policies (licenses) are carried by clients, instead of being stored at the “issuing”
servers. This means that the operational approach is to let clients present along
with their request, a set of licenses, which together give rise to what corresponds
to function Πλ. It is now the job of the server to (locally) compute the fixed-point,
lfp Πλ, and decide how to respond. In contrast, in the trust-structure framework,
the trust policies are naturally distributed. Each principal p, autonomously con-
trols and stores its policy, πp. This leads naturally to a distributed approach to
computation of fixed-points, and this is indeed what we pursue in this paper.

The trust-structure framework has been further developed [13], providing a
categorical axiomatisation of trust structures, and providing an understanding of
the interval construction [6, 14] as a functor, which is the full and faithful left-
adjoint in a co-reflection of a new category of trust structures, in a category of
complete lattices. The trust-structure framework has a concrete instance in the
SECURE project [4,5] which deploys a specific class of trust structures, allowing
probabilistic information, in its modelling of trust [13, 15].

The idea of computing local fixed-points has been recognised also by Ver-
gauwen et al. in a non-distributed context of static program-analysis [16]. Dimitri
Bertsekas has developed a substantial body of work on distributed- and parallel
algorithms for fixed points, and this paper applies his asynchronous convergence
theorem [1] to prove correctness of a distributed fixed-point algorithm. Finally,
the EigenTrust system also defines its global trust-state by existence of unique
(non order-theoretic) fixed-points [12], and the basic EigenTrust algorithm is es-
sentially Bertsekas’s globally synchronous algorithm.

2 Distributed Computation of Least Fixed-Points
In the framework of trust structures, a collection Π = (πp | p ∈ P) of continuous
trust-policies defines a unique global trust-state, gts = lfp Πλ : P → P → X,
defining R’s trust in q as gts(R)(q). We show in the following, how to compute the
local fixed-point value, gts(R)(q), without having to compute the entire function
gts. The reason for computing local values is that although the semantics of
policies π : (P → P → X) → P → X allows policy πR to depend on the values
for all principals, we conjecture that, in practice, policies will not be written in
this way. Instead, policies are likely to refer to a few known, and, to some extent,
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“trusted” principals. For the particular principal R wanting to compute its trust
in another principal q ∈ P, the set of principals that R’s policy, πR, actually
depends on in its entry for q, is often a significantly smaller subset of P. The idea
is to compute, distributedly and dynamically, a dependency-graph which contains
only the dependencies relevant for the computation of gts(R)(q), thus excluding
a large set of principals that do not need to be involved in computation. Once
this graph has been set up, we proceed with computation of gts(R)(q) by showing
that the conditions of a general algorithmic convergence-theorem of Bertsekas [1]
are satisfied.

We present our problem in the abstract setting of a distributed computation
of the least fixed-point of a continuous endo-function on a cpo, and show then how
our practical scenario maps into the abstract setting. We are given a cpo (X,v) of
finite height h, and a natural number n ∈ N. Writing [n] for the set {1, 2, . . . , n},
we have also a collection of n continuous functions C = (fi : i ∈ [n]) of type
fi : X [n] → X. These functions induce a unique global continuous function
F = 〈fi : i ∈ [n]〉 : X [n] → X [n] with the property that Proji ◦ F = fi for all
i ∈ [n]. The function F then has a unique least-fixed-point, lfp F ∈ X [n]. We
shall overload the symbol v to denote the ordering on X as well as the point-
wise lifted ordering on X [n], i.e. X [n] 3 t̄ v s̄ ∈ X [n] iff for every i ∈ [n] we
have t̄(i) v s̄(i). Define a dependency graph GR = ([n], E), where [n] is the
set of nodes, and the edges, given as a function E : [n] → 2[n], model (possibly
an over-approximation of) the dependencies of the functions in C (i.e. we have
j 6∈ E(i) implies that function fi does not depend on the value of “variable” j).
We consider the nodes [n] as network nodes that have memory and computational
power, and where each node i ∈ [n] is associated with function fi. We assume
that each node knows all nodes that it depends on, i.e. node i knows all edges
E(i). The node R is called the root. The goal of the distributed algorithms
in this section is for the root node to compute its local fixed-point value lfp FR,
that is, the value (lfp F )(R). Note that one trivial “distributed algorithm” for
computing this is to send all the functions to the designated node R, and then let
R compute the sequence ⊥n, F (⊥n), F 2(⊥n), . . .. This may be acceptable in some
scenarios, however there are issues one must consider. Firstly, nodes [n] may not
be willing to reveal their entire functions fi. Secondly, we are not exploiting the
potential parallelisation of the computation which may give a significant speed-
up, and distribute the computational burdens. Thirdly, the encoding of a general
function of type Xn → X requires Θ(|X|n log2 |X|) bits.

We translate the trust-structure setting into our abstract setting by defining
function fR as policy πR’s entry for principal q. One then finds the dependencies
of fR by looking at which other policies this expression depends on4. If fR depends

4If policies are written in a language such as suggested by Carbone et al. [6] there is a
straightforward linear algorithm for computing the dependencies. In all cases, it is reasonable
to assume that any p ∈ P knows the dependencies of πp since p defines πp.
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on entry w in πz then z is a node in the graph, and the function fz is given by
πz’s entry for w, with the dependencies of fz given by the dependencies in the
expression for w in πz, and so on. From now on we shall work in the abstract
setting as it simplifies notation. Note, that this definition might lead to a node z
appearing several times in the dependency graph, e.g. with entries for principals
w and y in πz . We shall think of these as distinct nodes in the graph, although a
concrete implementation would have node z play the role of two nodes, zw and zy.
Note also, that the (minimal) dependency-graph is uniquely determined by the
node functions fi, and is not modelling any network topology. We will use phrases
like x sends a message “via” edge (x, y) or that a message “passes through” edge
(x, y). However, although the nodes of the graph represents concrete nodes in a
physical communication-network, its edges do not represent any communication-
links. We are thus assuming, in the spirit of global computing, an underlying
physical communication-network allowing any node to send messages to any other
node.

Throughout this paper, we use an asynchronous communication-model. The
nodes communicate by asynchronous message-passing: we assume no known
bound on the time it takes for a sent message to arrive. We assume that commu-
nication is reliable in the sense that any message sent eventually arrives, exactly
once, unchanged, to the right node, and that messages arrive in the order in which
they are sent. We assume that all nodes are willing to participate, and that they
do not fail. The assumptions of non-failure and correctness of delivery ease the
exposition, but we do not believe that they are essential, e.g. the asynchronous
algorithm is often very robust [1].

Our algorithm for fixed-point computation consists of two stages. In the first
stage, the dependency graph GR = ([n], E) is distributedly computed so that any
node i ∈ [n] knows i+ and i−. In the second stage, this information is used in a
very simple asynchronous algorithm, which is described in Section 2.2.

2.1 Computing Dependencies

In this sub-section, we describe how the nodes distributedly compute the depen-
dency graph described above. Two goals are to be fulfilled by the dependency
computation. First, each node must obtain a list of the nodes that depend on
it for the computation. Second, we want to compute a spanning tree TR ≤ GR

with root R, so that each node knows its parent and its children in this tree. We
denote TR = ([n], S), S : [n] → 2[n], with S(i) ⊆ E(i) for all i ∈ [n]. Note that
we are not making use of this tree until Section 3.

For any node i, we denote the set E(i) by i+, and the set of nodes k for which
i ∈ E(k) (i.e. E−1({i})), by i−. So to summarise, after the computation, any
node i knows i+ and i−, and it knows its parent pi and its children S(i) in a
spanning tree TR rooted at R. Node i will store i+ and i− in variables of the
same name, and will store pi and S(i) in variables i.p and i.S.
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The distributed algorithm for the dependency computation is described by
a process that runs at each node. We use syntax inspired by process calculi to
describe these processes. The semantics should be clear, perhaps except for the
two constructs ||I and join-then. Let L denote a set of labels (e.g. A,B,. . . ).
The construct ||I , for I ⊆ L, describes the parallel execution of |I| processes
(e.g. threads), where the behaviour of process i ∈ I is described by an expression
i : Proc, where Proc is a process. The construct join J then Proc, with J ⊆ L,
waits until each process j ∈ J has terminated, and then executes process Proc.
Note also that capital, italicised letters (e.g. X, Y, M , not i.S) are variables that
become bound at reception of a message, e.g. receive (mark) from X is executed
as soon as the reception of a mark message occurs, and in the following code, X
is bound to the sender of that message.

Non-root nodes run a process given by Figure 1. The root node runs a special
process which similar to that of Figure 1, but it has no parent, and it will initiate
the computation. One way to think of the algorithm is as a simple distributed
graph-marking algorithm: the initial message that a node i receives from a node j
“marks” the node i, and j is then the “marker” for i. The edges between “marker”
and “marked” nodes, will constitute the spanning tree TR. Furthermore, once a
node is marked it starts a “server” sub-process (labelled A) which accepts mark-
messages from any node Y , adds Y to its dependency set i−, and acknowledges
with an “ok” message. A sub-process running in parallel (B), notifies all nodes that
i depends on (i.e. i+) of this dependency, and waits for each node to acknowledge.
This acknowledgement is either “ok” in case i is not the marker, or “marker”
in case i is the marker. Finally, when an acknowledgement has been received
from each child, i acknowledges its “marker”. Once the root node has received
acknowledgement from each of its children, the algorithm terminates.

The following statements hold. The number of messages sent is O(|E|), each
message of bit length O(1). This follows from the observation that for each edge in
the graph there flows at most two messages, one mark and one acknowledgement.
When the root node R has received acknowledgement from all its children then
every node i, which is reachable from R, stores in the variable i−, the set i− (by
abuse of notation), stores in variable i.S, the children of i in TR, and in variable
i.p, i’s parent in TR. Note, that we only mark the nodes that are reachable from
R, which amounts to excluding any node that R does not depend on (directly or
by transitivity) for computing its trust value for q ∈ P.

2.2 Least-Fixed-Point Computation

For this section we assume that the dependency computation has already been
run. We show that we are now in a situation in which we can apply exist-
ing work of Bertsekas for computation of the least fixed-point. Bertsekas has a
class of algorithms, called totally asynchronous (TA) distributed iterative fixed-
point algorithms, and a general theorem, which gives conditions ensuring that
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Process: Dependency Algorithm for non-root node i
receive (mark) from X;
i− ← {X}; i.p ← X; i.S ← ∅
||{A,B}

A : replicate
[ receive (mark) from Y ;
i− ← i− ∪ {Y };
send (ack, ok) to Y ]

B : ||c∈i+

c : send (mark) to c;
receive (ack, M) from c;
if (M=marker) then i.S ← i.S ∪ {c}

|| join i+ then send (ack, marker) to X

Figure 1: Dependency Algorithm - Generic node behaviour

a specific TA algorithm will converge to the desired result. In our case, “con-
verge to” will mean that each principal i ∈ P will compute a sequence of values
⊥v = i.t0 v i.t1 v · · · v i.tk = (lfp F )i. The general theorem is called the “Asyn-
chronous Convergence Theorem” (ACT), and we use this name to refer to Propo-
sition 6.2.1 of Bertsekas’s book [1]. The ACT applies in any scenario in which
the so-called “Synchronous Convergence Condition” and the “Box Condition” are
satisfied. Intuitively, the synchronous convergence condition states that if algo-
rithm is executed synchronously, then one obtains the desired result. In our case
this amounts to requiring that the “synchronous” sequence ⊥v v F (⊥v) v · · ·
converges to the least fixed-point, which is true. Intuitively, the box condition re-
quires that one can split the set of possible values appearing during synchronous
computation into a product (“box”) of sets of values that appear locally at each
node in the asynchronous computation.

We show that, as a consequence of monotonicity, the conditions of the Asyn-
chronous Convergence Theorem are satisfied in our setting, and so, we can deploy
a TA distributed algorithm. The algorithm is very simple, and consists simply
of a process running at each node. Each process i will compute, asynchronously,
its function fi with respect to the best known estimates of the values of its de-
pendencies. If computation of function fi at node i results in a new “current”
value i.tcur ∈ X (which always satisfies i.tcur v (lfp F )i), then node i broadcasts
an update to all nodes that depend on this value. We show that the Asyn-
chronous Convergence Theorem ensures that this process converges towards the
right values at all nodes, and because of our assumption of finite height cpos,
the distributed system will eventually reach a state which is stable. In this state,
each node i will have computed (lfp F )i.

We will assume that after the dependency-graph algorithm has run, each node
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i allocates variables i.tcur and i.told of type X, which will later record the “current”
value and the last computed value in X. Each node i has also an array, denoted
by i.m. The array i.m is of type X array, and will be indexed by the set i+. The
following concept of an information approximation is central in our results.

Definition 2.1. Let F : X [n] → X [n] be continuous. Say that a value t̄ ∈ X [n], is
an information approximation for F if t̄ v lfp F and t̄ v F (t̄).

Proposition 2.1. Let t̄ be any information approximation for F . Assume that af-
ter running the dependency-graph algorithm, the arrays of the nodes are initialised
with t̄, i.e. for all i ∈ [n], and all j ∈ i+ i.m[j] = t̄j, and i.told = t̄i. Then the
Synchronous Convergence Condition and the Box Condition of the Asynchronous
Convergence Theorem are both satisfied.

Proof. Define a sequence of sets X [n] ⊇ · · · ⊇ X(k) ⊇ X(k + 1) ⊇ · · · by

X(k) = {m ∈ X [n] | F k(t̄) v m v lfp F}
Note that X(k + 1) ⊆ X(k) follows from the fact that F k(t̄) v F k+1(t̄) for any
k ∈ N, which, in turn, holds since t̄ is an information approximation. For the
synchronous convergence condition, assume that m ∈ X(k) for some k ∈ N. Since
F k(t̄) v m v lfp F , we get by monotonicity F k+1(t̄) v F (m) v F (lfp F ) = lfp F .
Let (yk)k∈ω be so that yk ∈ Xk for every k. Since X is of finite height there exists
kh ∈ N so that for all k′ ≥ kh, X(k′) = {lfp F}. Thus any such (yk)k∈ω converges
to lfp F . The box condition is also easy:

X(k) =
n∏

i=1

{m(i) ∈ X | m ∈ X [n], F k(t̄) v m v lfp F }

In this section, we shall invoke the proposition in the trivial case of the in-
formation approximation t̄ = ⊥n

v. Later, when considering dynamic algorithms
for policy updates, we invoke the proposition with more interesting information
approximations.

We briefly describe the asynchronous algorithm of Bertsekas. Each node i
has the lists i+ and i−, resulting from dependency computation, and has also the
variables i.m, i.tcur and i.told, mentioned earlier. Initially, i.tcur = i.told = ⊥v,
and the array is also initialised with ⊥v. For any i and j ∈ i+, when i receives
a message, which is always a value t ∈ X, from a node j ∈ i+, it stores this
message in i.m[j]. Any node is always in one of two states, sleep or wake. If
a node is in the sleep state, the reception of a message triggers a transition to
the wake state. All nodes start by making a transition from the sleep state to
the wake state. In the wake state any node i repeats the following: it starts by
computing its function with respect to the values in i.m. If there was no change
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in the resulting value (compared to the last value computed), it will go to the
sleep state unless a message was received since it was last sleeping. Otherwise,
if a new value resulted from the computation, this value is sent to all nodes in
i−. Concurrently with this, we run a termination detection algorithm, which
will detect when all nodes are in the sleep-state, and no messages are in transit.
Bertsekas has already addressed this problem [1], and his termination-detection
algorithm directly applies.

This simple asynchronous behaviour gives a highly parallel, robust algorithm
for which correctness follows from Proposition 2.1 and the Asynchronous Con-
vergence Theorem. Furthermore, we can prove that since any node i sends values
only when a change occurs, then by monotonicity of fi, i will send at most h · |i−|
messages5, each of size O(log2 |X|) bits. Node i will receive at most h · |i+| mes-
sages, and in the worst case it will do as many computations of fi. Globally, the
number of messages sent is O(h · |E|) each of bit size O(log2 |X|). The cost of
the termination-detection scheme must be added to this.

Note that a global invariant in this algorithm is that any value computed
locally at a node, i.e. by i.tcur ← fi(i.m), is a component in an information
approximation for F . That is, it holds everywhere, at any time, that (1) i.tcur v
(lfp F )i and (2) i.tcur v fi(i.m). To see this, note that (1, 2) hold initially,
and that both properties are preserved by the update i.tcur ← fi(i.m) whenever
i.m[y] v (lfp F )y for all y ∈ i+, which is always true. We state this fact as a
lemma, as it becomes very useful in later sections, where we consider fixed-point
approximation algorithms, and dynamics.

Lemma 2.1. Any value t ∈ X computed by any node i ∈ [n] at any time in
the algorithm by the statement i.tcur ← fi(i.m), is a part of an information
approximation, in the sense that i.tcur v (lfp F )i and told v tcur.

Finally, one might argue against doing trust computations in a distributed
manner. There are implicit trust implications induced by the algorithm, i.e. i
“trusts” j ∈ i+, not only in the sense of relying on its policy, but also to per-
form correctly in the algorithm. We believe that this is an inherent property
of the trust-structure model. We have argued that computing the fixed-point
non-distributedly is inefficient (high communication to send policies, and no par-
allelism), and in violation with the privacy of principals. One solution to this
could be something in between, in which some of the policies are sent to some
designated nodes which will serve as “trusted computation servers”, representing
some subset of [n], for the duration of the fixed-point computation.

5In fact, there will be only O(h) different messages, each sent to all of i−. Consequently, a
broadcast mechanism could implement the message delivery efficiently.
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3 Approximation techniques
In this section we develop two techniques for safe approximation of the fixed-
point. Consider a situation in which a client principal p wants to access a resource
controlled by server v. Assume that the access-control policy of v is that to allow
access, its trust in p should be trust-wise above some threshold t0 ∈ X, i.e. the
fixed-point should satisfy t0 � (lfp Πλ)(v)(p). The goal of the two approximation
techniques is to allow the server to make its security decision without having to
actually compute the entire fixed-point and then make the �-check. Instead, the
server is able to efficiently compute an element t̄ : P → P → X which is related
to the fixed point in such a way that the desired property can be asserted.

We need some preliminary terminology. Let T = (X,�,v) be a trust struc-
ture, i.e. (X,v) is a cpo with bottom ⊥v and (X,�) is a partial order (not
necessarily complete). We assume also that (X,�) has a least element, ⊥�.
Denote the v-lubs/glbs by t and u, and the �-lubs/glbs by ∨/∧.

If for any countable v-chain C = {xi ∈ X | i ∈ N} and any x ∈ X we have
(i) x � C implies x � ⊔

C and (ii) C � x implies
⊔

C � x, then � can be said
to be v-continuous.

3.1 Bounding “Bad Behaviour”

The first technique lets a client convince a server that its trust in the client is
trust-wise above some level. The technique is based on the following proposition.

Proposition 3.1. Let (X,�,v) be a trust structure in which � is v-continuous.
Let t ∈ X [n] and F : X [n] → X [n] be any function that is v-continuous and �-
monotonic. If t � λk.⊥v and t � F (t) then t � lfpvF .

Proof. We have t � λk.⊥v which implies F (t) � F (λk.⊥v) by �-monotonicity.
Since t � F (t), transitivity implies that t � F (t) � F (λk.⊥v). So again by
�-monotonicity of F and transitivity

t � F (t) � F 2(t) � F 2(λk.⊥v)

Now since for all i ≥ 0 we have t � F i(λk.⊥v), the fact that � is v-continuous
implies that

t �
⊔

i
F i(λk.⊥v) = lfpvF

This proposition is the basis of an efficient protocol for a kind of “proof-
carrying authorisation”. Consider for simplicity the “MN ” trust-structure TMN

[13], which satisfies the information-continuity requirement. Recall that, in this
structure, trust values are pairs (m, n) of natural numbers, with the orderings
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given by (m, n) v (m′, n′) ⇐⇒ m ≤ m′ and n ≤ n′, and (m, n) � (m′, n′) ⇐⇒
m ≤ m′ and n ≥ n′.

Suppose principal p wants to efficiently convince principal v that v’s trust
value for p is a pair, (m, n), with the property that n is less than some N ∈ N,
thus giving v an upper bound on the “bad behaviour” of p. Let us assume that
v’s trust policy πv depends on a large set S of principals. Assume also that it is
sufficient that principals a and b in S have a reasonably “good” value for p, to
ensure that v’s value for p is not too “bad”. An example policy with this property
could be written in the language of Carbone et al. [6] as

πv ≡ λx : P.(paq(x) ∧ pbq(x)) ∨
∧
s∈S

psq(x)

This policy, informally, says that any x should have “high” trust with a and b, or,
with all of s ∈ S, for the v to assign a “high” value to x.

If p knows that it has previously performed well with a and b, and knows also
that v depends in this way on a and b, it can engage in the following protocol.
Principal p sends to v the trust values t = [p 7→ (0, N), a 7→ (0, Na), b 7→ (0, Nb)].
Upon reception, v first extends t to a global trust state t̄, which is the extension
of t to a function of type P → P → TMN , given by

t̄ = λx ∈ Pλy ∈ P.




(0, N) if x = v and y = p

(0, Na) if x = a and y = p

(0, Nb) if x = b and y = p

(0,∞) otherwise

Principal p wants to verify that t̄(x)(y) � ⊥v = (0, 0) for all x, y. But this holds
trivially if y 6= p or x 6= v, a, b because then t̄(x)(y) = (0,∞) = ⊥�. For the
other few entries it is simply an order-theoretic comparison t̄(x)(y) � (0, 0). Now
v tries to verify that t̄ � Πλ(t̄ ). To do this, v verifies that (0, N) � πv(t̄ )(p).
If this holds then it sends the value t to a and b, and ask a and b to perform a
similar verification, e.g (0, Na) � πa(t̄ )(p). Then a and b reply with yes if this
holds and no otherwise. If both a and b reply yes, then p is sure that t̄ � Π(t̄):
by the checks made by v, a and b, we have that t̄(x)(y) � Πλ(t̄ )(x)(y) holds for
pairs (x, y) = (v, p), (a, p), (b, p), but for all other values it holds trivially since t̄
is the �-bottom on these. So by Proposition 3.1, we have t̄ � lfp Πλ, and so v is
ensured that its trust value for p is �-greater than (0, N).

We have illustrated the main idea of the protocol by way of an example. In
general, the proof t, may include a large number of principals, which would then
have to be involved in the verification process.

The approximation protocol has very much the flavour of a proof-carrying
authorisation: the requester (or prover) must provide a proof that its request
should be granted. It is then the job of the service-provider (or verifier) to check
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that the proof is correct. The strength of this protocol lies in replacing an entire
fixed-point computation with a few local checks made by the verifier, together
with a few checks made by a subset of the principals that the verifier depends on.
A nice property of this protocol is that part of the information that the prover
needs to supply should be available locally to the prover – it should already know
who it has performed well with in the past. There are, however, two important
restriction of this approach. First, as in the example, in order to construct its
proof, the prover needs information about the verifiers trust policy, and of the
policies of those whom the verifier depends on. If policies are secret, it is not clear
how the verifier would construct this proof. Secondly, because of the requirement
that t � ⊥v, the approach can usually only be used to prove properties stating
“not too much bad behaviour”, and not properties guaranteeing sufficient good
behaviour. Notice that the protocol for exploiting this proposition has a message
complexity which is independent of the height of the lattice. In contrast, the algo-
rithm for computing fixed-points has message complexity O(h · |E|). We present
now another approach which requires more computation and communication, but
does not have the two mentioned restrictions.

3.2 Exploiting Information Approximations

The approximation technique developed in this section is different from that of
the “proof-carrying authorisation”-protocol of the previous section. The protocol
of this section does not require the “prover” to provide any information. In-
stead, it can be seen as a merge between the fixed-point computation-algorithm
from Section 2.2, and the proof-checking technique from the previous section.
The technique of this section, allows for “verifiers” to compute an information-
approximation to the fixed point by finding a “snapshot” of the “current” values
in the fixed-point algorithm. The nodes then make a collection of local checks
on this snapshot, in order to infer that the fixed-point value must be trust-wise
above the current value.

Let F : X [n] → X [n] be v-continuous. Recall that a value t ∈ X [n], is an
information approximation for F , if t v lfp F and t v F (t). The following
proposition is the basis for our approximation protocol.

Proposition 3.2. Let (X,�,v) be a trust structure in which � is v-continuous.
Let t ∈ X [n] and F : X [n] → X [n] be any function that is v-continuous and �-
monotonic. Assume that t is an information approximation for F , and that
t � F (t), then t � lfp F .

Proof. Since t is an information approximation for F , we have by easy induc-
tion that for all k ∈ N, F k(t) v F k+1(t) v lfp F , and so by continuity of F ,⊔

k∈N
F k(t) = lfp F . Since t � F (t), an easy induction gives t � F k(t) for all k.

Then the information continuity of � implies that t � lfp F .
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This proposition gives the basis for exploiting values that are information
approximations for F . This is very useful because, by Lemma 2.1, a global
invariant in the asynchronous fixed-point algorithm is that all values computed,
and thus also values transmitted on communication channels, are information
approximations for F . This means that we can combine the algorithm with a
protocol that, intuitively, implements the check for the condition t � F (t) in the
above proposition.

Imagine that during the execution of the asynchronous algorithm, there is
a point in time in which no messages are in transit, all nodes have computed
their function, and sent the value to all that depend on it. Thus we have a
“consistent” state in the sense that for any node x and any node y ∈ x+ then
x.m[y] = y.tcur. In particular if x, z both depend on y, then they agree on y’s
value: x.m[y] = z.m[y] = y.tcur. In this ideal state, there is a consistent vector t,
which is an information approximation for F , containing the value tx for nodes
x ∈ [n], i.e. tx = x.tcur. If the state of the distributed system was frozen at this
point, and all nodes x, simultaneously make the check x.tcur � fx(x.m), then
vector t satisfies t � F (t). By Proposition 3.2, the root node R then knows
tR � lfp FR, which is what we want. Of course, this ideal situation would rarely
occur in a real execution, except for when the algorithm terminates, in which case,
the conclusion is trivial since t = lfp F . The aim of the algorithm is to enforce a
consistent view of such an ideal situation during execution of the asynchronous
algorithm, i.e. fix a vector t, ensure that this vector is consistent, and then
make all the checks x.tcur � fx(x.m) for all x ∈ [n]. This is a kind of so-called
snapshot-algorithm (see Bertsekas [1]), in which the (local views of the) global
state of the system is recorded during execution of an algorithm. It is slightly
less complicated since we are not interested in the status of communication links,
but slightly more complicated since each snapshot-value must be propagated to
a specific set of nodes.

We describe now a distributed algorithm implementing this. We assume that
the asynchronous algorithm is running, and at some point the root node decides
to run the approximation check (e.g. because it has computed a (non fixed-point)
value R.tcur which is sufficient to allow access). We assume that each node i ∈ P
has additional variables i.tapp : X and i.mapp : X array, indexed by i+. The array
will eventually store only consistent values. The algorithm, as usual, consists of a
special process run by the root, and another similar process running at non-root
nodes, given by Fig. 2.

Recall, that the dependency-graph algorithm has generated also a spanning
tree TR, rooted at R. The root initiates the approximation algorithm. It starts
by sending an init message to each of it’s children listed in R.S (Fig. 2, label
A1). Now it waits until it is in a locally consistent state (A2), which means that,
in the asynchronous algorithm, it has just computed R.tcur ← fR(R.m), and (if
necessary) has sent that value to each of R−. Once in such a state, R saves the
value by doing R.tapp ← R.tcur – this value will become the value for R in the
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Process: non-root nodes i
||{A,B,C}

A : receive (init);
||{A1,A2}

A1: ||c∈i.S c : send (init) to c;
A2: [ //wait until consistent state];

i.tapp ← i.tcur;
||j∈i− j : send (copy) to j;

B : ||{B1,B2}
B1: ||k∈i+

k : receive (copy) from k;
i.mapp[k]← i.m[k];

B2: join {B1, A2} then
i.b : bool← (i.tapp � fi(i.mapp));

C : ||{C1,C2}
C1: ||c∈i.S

c : receive (i.bc : bool) from c;
C2: join {C1, B2} then

send (i.b ∧ (
∧

c∈i.S i.bc)) to i.p;

Figure 2: Snapshot Algorithm - Generic node behaviour
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consistent vector we are seeking. R now sends a copy message to each node in
R− (A2). A node y ∈ R− which receives a copy message from R will copy the
last value received from R into its approximation array, i.e. y.mapp[R]← y.m[R]
(B1). Since we are assuming a reliable network, the copied value is R.tapp, and so
we are propagating consistent values. Root R now waits until each node z ∈ R+

has sent a copy message, and computes then R.tapp � fR(R.mapp) (B2). Finally,
the root waits for all children in the spanning tree to have replied with a boolean,
and if all of these are true and the check succeeded (C1, C2), then the root is
ensured that R.tapp � (lfp F )R. Non-root nodes i, once initiated, do almost the
same. The only difference is that after the check has been made, and all children
in the spanning tree have replied with a boolean, i sends value true to its parent
i.p only if all i.S sent true and i’s own check succeeded.

Since there is a constant number of messages sent for each edge in GR, the
message complexity of the snapshot algorithm is O(|E|) messages, each of size
O(1) bits.

A useful property of this algorithm is that it can be run concurrently with the
asynchronous fixed-point algorithm - there is no reason to stop! One may simply
allocate a thread implementing the approximation-check, which runs concurrently
with the asynchronous fixed-point algorithm.

Note that, the style of this protocol is different than that of the previous
section. In the previous protocol the client presents a “proof” t which the servers
then verifies. It is not clear how one could use Proposition 3.2 in this style. In
particular, if a client presented a “proof” t, then it is not clear how the servers
would check that t v lfp F without already knowing lfp F .

3.3 Dual Propositions and Generalisation

Note that both the propositions in this section have “dual” versions.

Proposition 3.3. Let (X,�,v) be a trust structure in which � is v-continuous.
Let t ∈ X [n] and F : X [n] → X [n] be any function that is v-continuous and �-
monotonic. If ⊥v � t and F (t) � t then lfp F � t.

Proposition 3.4. Let (X,�,v) be a trust structure in which � is v-continuous.
Let t ∈ X [n] and F : X [n] → X [n] be any function that is v-continuous and �-
monotonic. Assume that t is an information approximation for F , and that
F (t) � t. Then lfp F � t.

We can deploy similar algorithms for the duals. At first sight, Proposition 3.3
does not seem as useful as its dual. The conclusion lfp F � t can usually only be
used to deny a request, and a prover in the protocol for Proposition 3.3 would
probably not be interested in supplying information which would help “refuting”
its claim. However, this is not always so. For example, if one is using trust
structures conveying probabilistic information (e.g. [4, 15]), an assertion of the
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form lfp F � m, can convince the verifier that when interacting with the prover
the probability of a “bad” outcome is below some threshold.

We can use essentially the same algorithm as that of Section 3.2, for exploiting
Proposition 3.4. Servers could incorporate the check F (t) � t together with the
dual check t � F (t). Thus, the root could fairly refute a request without actually
computing the fixed point. Note the particular case in which both checks are
satisfied. Since � is a partial ordering of X, this will occur just in case t = lfp F,
and so could serve as an alternative termination-detection mechanism.

One can note that the two approximation techniques are merely instances of
the same general proposition.

Proposition 3.5. Let (X,�,v) be a trust structure in which � is v-continuous.
Let p̄ ∈ X [n] and F : X [n] → X [n] be any function that is v-continuous and �-
monotonic. Assume that p̄ satisfies p̄ � F (p̄). If there exists an information
approximation t̄ ∈ X [n] for F , with property that p̄ � t̄, then p̄ � lfp F .

Proof. The proof of Proposition 3.5 is similar to that of Proposition 3.1. We use
the diagram:

p̄ � F (p̄) � . . . � F i(p̄) � . . .

� � � . . .

t̄ v F (t̄) v . . . v F i(t̄) v . . .

By continuity of � we have p̄ � ⊔
i F

i(t̄).

Note that one obtains Proposition 3.1 with the trivial information approxi-
mation t̄ = ⊥v, and Proposition 3.2 by taking the proof to be the approximation,
i.e. p̄ = t̄.

We note finally, that the v-continuity property, required of � in Proposition
3.5, is satisfied for all interesting trust-structures we are aware of: Theorem 3 of
Carbone et al. [6] implies that the information-continuity condition is satisfied
for all interval-constructed structures. Furthermore, their Theorem 1 ensures
that interval-constructed structures are complete lattices with respect to � (thus
ensuring existence of ⊥�). Several natural examples of non-interval domains can
also be seen to have the required properties [13]. The requirement that all policies
πp are monotonic also with respect to � is reasonable. Intuitively, it amounts to
saying that if everyone raises their trust-levels in everyone, then policies should
not assign lower trust levels to anyone.

4 Dynamics
In this section, we consider what one might do in case of some function fi, dy-
namically changing to f ′

i , denoted fi 7→ f ′
i .
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Suppose that the fixed-point computation has terminated, i.e. each node x
knows its value tx along with values ty for y ∈ x+, so that for all x, tx = (lfp F )(x).
Suppose now that some i makes a policy update, i.e. changes its function
fi to f ′

i , e.g. due to new information being available. One could now let fi

broadcast a “reset”-message to all nodes and computation (including dependency
graph discovery) could restart. However, in this approach there is a lot of in-
formation which is unnecessarily discarded. For some special (and commonly
occurring) types of updates one can be more efficient in the reuse of informa-
tion. A very simple example of this is when the update is information increas-
ing and doesn’t change the structure of the dependency graph. By informa-
tion increasing, we mean that fi v f ′

i . In this case, denoting F ′ = F [f ′
i/i] =

〈f1, f2, . . . , fi−1, f
′
i , fi+1, . . . fn〉, we have F v F ′, and so lfp F v lfp F ′. It is easy

to see that the values (tx)x∈[n] are an information approximation also to F ′. This
means that one can invoke Prop. 2.1, and so the algorithm can continue with the
old values.

In many systems, it is likely that observing interactions between principals
will cause information-increasing changes in policies [13,15]. However, also more
general types of updates will occur, but we conjecture that in many systems
they will be less frequent, i.e. policy changes are rare whereas obtaining new
information about behaviour is not, but both trigger a change in the trust-policy
function. None the less, occasionally these non-increasing changes will occur, and
so they must be handled as efficiently as possible.

4.1 Non Edge-deleting Updates

Consider an update, fi 7→ f ′
i , where the dependencies of fi are contained in the

dependencies of f ′
i , i.e. node i adds additional edges to the dependency graph,

but deletes none. Clearly, one must extend the current dependency graph to
a larger graph in order to proceed with computation. Furthermore, since func-
tion fi has changed, any node j that depends on i, either directly or indirectly,
will have inconsistent values in their arrays j.m. The idea in our algorithm is
for those nodes (and only those nodes!) to take on a safe approximation to the
updated function. Since the update can be arbitrary, we choose value ⊥v as
our approximation, to ensure that this value is, in fact, an information approx-
imation. Once all these nodes have taken a safe approximation, we can invoke
our Proposition 2.1, to ensure that the Asynchronous Convergence Theorem is
satisfied, and computation can proceed in the updated graph.

Concretely, node i will now run two algorithms concurrently. Firstly, i will
run, in the role of a root node, a generalised version of the dependency-graph
algorithm from Section 2. More specifically, it is the same algorithm, except that
we allow generalised acknowledgement-messages which carry values from X. The
reason is that i might initiate a new node j, which has an edge to a node k, which
was already in the old dependency graph (see Figure 3). In this case, there is no
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Figure 3: Situation where a new node i has an edge back to an old node k. Old
nodes are black and new nodes white. Edges in the new graph are full lines,
whereas dotted lines denote paths in the old graph.

reason for j to assume ⊥v for k, instead, k acknowledges and sends its current
value, k.tcur. This leads to a sound approach when combined with the second
algorithm.

In the second algorithm, the node i ensures that all nodes that depend on it,
either directly or indirectly, take on a safe approximation to the new function.
This algorithm is given by Figure 4. Node i will set i.tcur ← i.told ← ⊥v, while
leaving its array i.m unchanged. The algorithm will terminates by a principle
similar to that of the dependency-graph algorithm. In contrast to that algorithm,
the messages “flow” in the opposite direction of the edges, e.g. from i to i−. Node i
starts by sending reset messages to each node j ∈ i−. It expects to receive a reply
from each of these nodes, and once received, the algorithm is terminated. Any
node j (including possibly i itself) which receives a reset message from a node k,
starts by setting its entry for k, j.m[k]← ⊥v. It then sets j.told ← j.tcur ← ⊥v,
which is a safe approximation of its value, with respect to the updated fixed
point. Unless i = j, node j then propagates the reset message to each j′ ∈ j−.
The propagation is only done for the first reset message received. Subsequent
message are simply acknowledged immediately after the array entry has been
updated. Once j has received acknowledgements from each of its “parents” (i.e.
j−), it either sends an acknowledgement to the first node which sent it the reset
message, or, in case of i = j, it stops. The effect of this algorithm is the following.
For each node j ∈ [n], j will receive a reset message from each l ∈ j+ which has
a path to i. Each of the array entries for these nodes, j.m[l], is set to ⊥v in order
to take a safe approximation to the updated fixed point. Note however, that any
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Process: nodes j(6= i)
receive (reset) from X;
j.told ← j.tcur ← j.m[X] ← ⊥v;
||{A,B}

A : replicate
[ receive (reset) from Y ;
j.m[Y ] ← ⊥v;
send (ack) to Y ]

B : ||k∈j−

k : send (reset) to k;
receive (ack) from k;

|| join j− then send (ack) to X

Figure 4: Reset Algorithm - Generic node behaviour

node n which does not have a path to i, will never receive a reset message, and
thus any n′ ∈ n− which depends on n, will not reset its entry for n.

Finally, one must consider how the two algorithms work concurrently. Say
that a node is “new” if it is in the dependency graph for the updated function F ′

but not in that for F . Similarly an “old” node is one that is in the dependency
graph for F . Suppose first that i initiates a new node j, which depends on an
old node k. If j informs k of the dependency before k “is reset” (receives a reset
message), then j will receive the current value of k, which can later be reset to
⊥v if the reset-algorithm requires it (see Figure 3). Suppose instead that k has
received its reset message before it is informed of j’s dependency. In this case j
will receive ⊥v. In either case, when both algorithms have terminated, then we
have extended the dependencies to the new dependency graph, and furthermore,
any node j in the extended graph stores in its current value, and in its array j.m
only information approximations to the fixed point value. In this case, by Prop.
2.1 the conditions of the Asynchronous Convergence Theorem are satisfied, and
computation with respect to the new function F ′ = F [f ′

i/fi] can proceed.
In the worst case, in which every other node depends on i, this algorithm will

reduce to the trivial “reset” algorithm, in which the reset message is broadcast
to all nodes. Is not hard to see that the global number of messages sent in this
algorithm is O(|E ′|), where E ′ denotes the edges in the extended graph. Each
message has bit-size O(1), or O(log2 |X|) in case of generalised acknowledgements.

4.2 Non Edge-adding Updates

Consider an update, fi 7→ f ′
i , where the dependencies of fi are a super set of

the dependencies of f ′
i , i.e. node i deletes edges, but adds none. In some ways,

this case is simpler. One could just let i send a delete message to each j that
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“was deleted”. Then i simply runs the “reset”-algorithm described in the previous
section. This is safe, but one might argue that we might still have redundant
“dangling” edges in the graph. This occurs in the case where a deleted edge
ij disconnects from the root node, a set of nodes k, which are reachable only
from j. If such disconnected k has a dependency back to a node l, which is still
reachable from the root, then l will be sending values to k even though k is really
not needed in order for the root to compute its value. It is not clear, short of a
complete re-computation of the dependency graph (which could be acceptable),
how to efficiently (dynamically) deal with this problem.

4.3 General Updates

It should be clear that a combination of these two algorithms can be used to re-
cover from arbitrary updates, leaving still the problem of “dangling” edges. One
simply initiates, a concurrent execution of the algorithms for updating the depen-
dency graph (deletion and addition of edges), together with the reset-algorithm
described previously.

5 Conclusion
We have presented concrete algorithmic techniques for computation and approx-
imation of the least fixed-point of a collection of continuous functions on trust
structures. We have shown that the assumptions of the Asynchronous Con-
vergence Theorem of Bertsekas are satisfied if one initiates computation with a
consistent information-approximation, which means that we can apply a well-
established asynchronous fixed-point algorithm for both approximation and com-
putation of the least fixed-point. We have considered trust structures in which
the two orderings are related in that the information ordering is continuous with
respect to the trust ordering. For these trust structures, we have proved two
propositions which relate the two orderings, allowing one to reason about the least
fixed-point of continuous functions that are also monotonic with respect to the
trust ordering. The propositions are theoretically simple, but their novelty lies in
that we are relating the two different orderings in a way that gives rise to efficient
protocols that allows principals to reason about the fixed-point values without
having to compute the exact fixed-point. The second approximation technique
(Prop. 3.2) relies on an algorithm which supplies an information approximation.
This is used to reason about the trust-relation between the current value (i.tcur)
and the actual fixed-point value (lfp F )i. This gives a nice connection between
the asynchronous fixed-point algorithm, which automatically provides informa-
tion approximations, and the idea of safe fixed-point approximation. In the final
section, we have presented techniques to deal with dynamic updates of the pol-
icy functions, fi. For information-increasing updates, this is very efficient as all
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current estimates are still valid (invoking Prop. 2.1), in the sense that that the
asynchronous algorithm will converge to the correct value. For completely gen-
eral updates, we have given an algorithm which does not discard the information
that is definitely not affected by the update.

One can imagine the system starting from scratch, i.e. there is a collection of
nodes, each with a trivial policy π = ⊥v, implying that no nodes are connected
in the dependency graph. As the system evolves, edges are added, reflecting cre-
ation of new trusting relationships. One runs the dynamic algorithms for policy
updates to ensure that the computations are always consistent. The techniques
are dynamic, which allows new nodes to enter and leave the network, without
affecting the algorithms.

Apart from its application in implementing trust-structure-based systems, the
technique for fixed-point computation presented in this paper is general enough
to be used for order-theoretic fixed-point computation in any cpo with bottom, or
complete lattice. In particular, the techniques could be the basis of a distributed
implementation of a variant of Weeks’s model of trust-management systems [17],
in which credentials are stored by the issuing authorities instead of being pre-
sented by clients. This would allow also for revocation, implemented simply as a
trust-policy update at the authority revoking the credential.

Interesting future work is to explore to which extent the area of abstract inter-
pretation [8] can be applied for trust-structure fixed-points, e.g. using widening
and narrowing to speed up computation, and allow possibly infinite height cpos.
Also, it could be interesting to try and analyse the amortized complexity of our
system. For example, if principal R wants to know its trust in q, it can run
the algorithm presented in this paper to compute this value. Now, after some
time has passed, principals might have made additional observations about q.
Supposing that R at some point later wants to compute its trust in q, then
since one reuses the information gained from the last computation, the second
re-computation would be significantly faster. In general, one might consider the
amortized cost of a sequence of operations which are either ’computation of the
fixed-point value’, or ’policy update’.
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