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The Full Abstraction of the UC Framework

Jesús F. Almansa
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Abstract

We prove that security in the Universal Composability framework
(UC) is equivalent to security in the probabilistic polynomial time calcu-
lus ppc. Security is defined under active and adaptive adversaries with
synchronous and authenticated communication. In detail, we define an
encoding from machines in UC to processes in ppc and show it is fully
abstract with respect to UC-security and ppc-security, i.e., we show a
protocol is UC-secure iff its encoding is ppc-secure. However, we restrict
security in ppc to be quantified not over all possible contexts, but over
those induced by UC-environments under encoding. This result is not
overly-simplifying security in ppc, since the threat and communication
models we assume are meaningful in both practice and theory.

∗Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation
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1 Introduction

For as long as at least two decades there has been a gap in the analysis
of security protocols as approached by different research communities with
distinct methods: notably process calculi and (probabilistic) machine-based.

Calculi appeal especially because they are susceptible to automated proof-
construction or at least automated proof-validation. However, they have tradi-
tionally fallen short of modeling realistic adversarial behaviours, thus disabling
them as frameworks for reasoning about general security.

In contrast, probabilistic machine-based methods have traditionally better
captured realistic adversarial threats. However, proofs are by nature hand-
made, thus error-prone when applied to challenging scenarios like large dis-
tributed systems.

Because security-reasoning is subject to specifying an (realistic as it can be)
adversarial model, given the above said, it seems natural to look for bridging
the gap in the direction from calculi to the machine-based field, aiming at
soundness and completeness results. Nonetheless, several attempts in this line
have focused on specific security concerns, mainly secure message transmission,
and/or on restricted adversarial models, mainly passive adversaries.

In this document we take the other direction for bridging the gap and
show the existence of a fully-abstract encoding of a machine-based framework
into a process-calculus framework, under active and adaptive adversaries, with
authenticated and synchronous communication.

We emphasize these are frameworks for reasoning about any protocol-
security concerns. The term fully-abstract refers to the soundness and com-
pleteness of the notion of security in the calculus with respect to that in
the machine-based framework. The adversarial model is active and adaptive,
meaning respectively that a corrupt party can arbitrarily deviate from the
protocol and corruptions can occur at any point of the computation.

The machine-based framework is that introduced by Canetti in [Can01],
where secure protocols enjoy general concurrent composition or, as it is called
there, Universal Composability (UC). All computing entities are modeled as
probabilistic polynomial time (PPT) Interactive Turing Machines (ITM’s),
which are basically PPT multi-tape Turing machines, that can exchange data
by sharing some of their tapes. It adopts the simulatability paradigm to define
security, where a protocol-run is compared to a simulated-run that has access
to an ideal functionality (another ITM) defining the input/output behaviour
of the protocol. The security definition states a protocol realizes the ideal
functionality if no adversarial environment can tell apart interactions with the
protocol and those with the simulation that uses the ideal functionality.

The calculus is the probabilistic polynomial-time process calculus ppc
by Mateus, Mitchell and Scedrov in [MMS03], preceded by [LMMS99] and
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[LMMS98], where a compositional property is derived. It adopts the simu-
latability paradigm to define security, where a real-process is compared to an
ideal-process that simulates its data-exchange behaviour. The security defi-
nition states that real and ideal process are equivalent if no context can tell
apart data-exchange with the real process and that with the ideal process.

In [Can01] it had already been stated how that framework could serve as
a computationally-sound basis for automated analysis with formal methods.
With the advent of [MMS03] it was left open the question whether there was
a correspondence between their PPT process calculus and the UC framework.
We therefore answer this question in affirmative and moreover prove that a
protocol is UC secure if and only if its encoding is ppc secure, subject to the
adversarial model mentioned above.

We observe that to that end we restrict security in ppc to contexts in-
duced by UC environments under encoding, instead of quantifying over any
context. But we argue that this is a natural restriction to make due to our
basic assumptions on the adversarial and computation models.

An Intuition The interactive setting of the UC framework can be thought
of as a laboratory we use to carry out our experiments under controlled and
unbiased conditions. In particular, it relies on an interleaving mode of concur-
rency. Similarly, linking tapes do not model communication channels of real
protocols.

This is an importan clarificatory observation since it is this interactive
setting what we encode in the ppc calculus. As an effect, we separate from
the traditional notion of attacks over channels on process calculi, in order to
introduce that of corruption of parties.

We believe this is a major step towards automation of security proofs in
the UC framework. Having translated the framework once and for all, protocol
design reduces to providing the code of parties, and security analysis reduces to
study patterns of observable traces with the existent tools for process calculi.

Related Work Many research efforts stemmed from the process calculus
approach. Among the most relevant is the project in [MMS98, LMMS98,
LMMS99, MMS03], where PPT processes are considered. This is the source
of the calculus we base our result on.

A parallel and independent work to ours is that in [DKM+04, DKMR04,
DKMR05], where they prove the equivalence of several simulatability-based
security definitions in any process calculus satisfying certain axioms. Their
result concentrates on three essential aspects of the simulatability paradigm
when aiming at composition-preserving properties: The logical structure of
security definitions (or the order of quantifiers), the scheduling or timing as-
sumptions of adversaries and the adversarial attributes of distinguishers (or
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separation between adversaries and distinguishers). Although they relate their
results to machine-based models in terms of expressivity they do not formally
provide an evidence1.

Their work and ours are thus complementary in that we treat explicitely
the three above mentioned aspects, while crossing from a PPT machine-based
model to a process-calculus approach, thus closing a gap up to now existing
in literature.

Finally, the work by Backes, Pfitzmann and Waidner [PW00, BPW04],
stands out as an alternative model for simulatability-based security analysis.
By formalizing the notion of a reactive system using input/output automata,
they have also achieved general concurrent composition properties while at
the same time already provided tools for automated reasoning.

Organization The rest of this document is organized as follows. Section
2 begins with a general discussion about ITM’s and proceeds by describing
the UC framework and its security definition. Section 3 describes the process
calculus ppc and its security definition. Section 4 introduces an encoding
from UC machines into ppc processes and ends by stating our main result and
providing its proof.

Acknowledgments The author would like to thank Marco Carbone, Ivan
Damg̊ard, Karl Krukow, Peter D. Mosses, and Mogens Nielsen for numerous
discussions and invaluable suggestions and insights. Likewise, I express my
gratitude to Frank Valencia and Daniele Varacca for their comments on early
versions or this document.

2 UC framework

2.1 Interactive Setting

Following [Can01], we adapt the notion of ITM from [GMR89, Gol01] to the
multiparty case. An ITM E is a PPT multi-tape Turing Machine that interacts
by sharing some of its tapes. We use !tapeE,E′ v to indicate the action of writing
v on the (write-only) tape named tapeE,E ′ . Similarly, we use ?tapeE′′,E v to
indicate the action of reading v from the (read-only) tape named tapeE ′′,E .

We say E1, E2 are linked by (linking) tapes tapeE1,E2 and tapeE2,E1 , if when-
ever E1 executes !tapeE1,E2

v then E2 will execute ?tapeE1,E2
v, and vice-versa

with the other tape. A machine’s signature is the set of its linking tapes.
The execution-mode is interleaving, i.e., only one machine is activated at a

time. This is modeled by a tape activate shared by all machines and containing
1To the best of the author’s knowledge, this is still the case when [DKMR04] made transit

to [DKMR05].
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the identity of the currently running machine. A machine that is not activated
is said to be waiting.

The behaviour of an ITM E is defined by its associated interactive function
(~v′, ς ′)← E(~v, ς). It takes (~v, ς) as argument, formed by the vector of received
values found at the moment of its activation, and its current state. It computes
(~v′, ς ′), consisting of the values to be sent at the end of its activation, and its
next state. The initial state contains only the system’s security parameter,
the machine’s random tape and possibly some auxiliary input.

We define E(~v, ς) as a (finite) set of interactive rules of form

?rtape1,...,rtapeR
v1, . . . , vR

(~v′,ς′)←E(~v,ς)

!wtape1,...,wtapeW
v′1,...,v′W

,

according to the values ~v can take. Such a rule is read: Upon activation,
if E has received values ~v = v1, . . . , vR, with vi on rtape i, i = 1, . . . , R, and
has current state ς, then compute E(~v, ς), to result in values ~v′ = v′1, . . . , v

′
W

and new state ς ′, write v′j on wtape j sequentially, and pick machine Ej, j =
1, . . . ,W , to be activated next.

Thus, to describe an ITM E is sufficient to provide its signature and its set
of interactive rules.

We define an n-party interactive protocol as consisting of n ITM’s P1, . . . , Pn

having distinct id’s, that are not linked among them. Such protocol is geared
towards holding an ongoing interaction with an environment, which is ex-
plicitely modeled by an ITM Z that is linked to each party. With this definition
we are to embed communication between each two parties through interactions
with the environment. This setting shows particularly useful when providing
adversarial attributes to the environment.

2.2 Security Definition

Security is defined by comparing a protocol execution with an ideal process
that specifies its input/output (I/O) interaction with the environment. We
declare security if no environment can distinguish interactions with the real
protocol from those with the ideal process.

2.2.1 The Hybrid Model

We adopt the activation model of [DN03, Nie04], which is a specialization of
the UC framework to synchronous networks. For space reasons we consider
only the ∅-hybrid model or real-life model, but we observe that our result
holds straightforwardly in the more general case.

The model consists of an n-party interactive protocol π, where Pi is the
identity of the i-th machine running in π. The environment Z provides inputs
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to and receives outputs from the parties. Furthermore, it models point-to-
point open but authenticated channels between each pair of parties and is
assumed to provide (partially) synchronous communication.

This entity also models the adversary and so it schedules the order of
activation of parties, and breaks into parties actively and adaptively. We
emphasize that although Z reads the messages exchanged between parties, it
is not allowed to inject, delete or modify any message.

Definition 1 The signature Σ(E) of E ∈ {Z, Pi}, i = 1, . . . , n, in the ∅-hybrid
model is defined as follows, where -r-,-w- stand for read-only and write-only:
Σ(Z) def= { -r-outByPi, -w-inToPi,

-r-msgByPi, -w-msgToPi,
-r-corrByPi, -w-corrToPi }

Σ(Pi)
def= { -r-inToPi, -w-outByPi,

-r-msgToPi, -w-msgByPi,
-r-corrToPi, -w-corrByPi }

The environment is activated first and the execution proceeds by rounds, where
Z runs commands (beg rnd) and (end rnd), to begin and end a round, respec-
tively. It can also run commands (corrupt ) and (guess), to corrupt some party
and to decide its observation of the execution and halt, respectively. The out-
put of the ∅-hybrid execution is a bit b output by Z. The interactive rules
appear in Fig 2 in Appendix, where it is formally defined how Z runs com-
mands, how parties respond to them, and what linking tapes are used.

Notation 2 We denote HYB∅

π,Z(k, z,~r), the bit output by Z on security pa-
rameter k, auxiliary input z to Z and random input ~r = rZ , r1, . . . , rn. This
gives rise to a random variable HYB∅

π,Z(k, z), when ~r is uniformly chosen. We
denote HYB∅

π,Z the ensemble {HYB∅

π,Z(k, z)}k∈N,z∈{0,1}∗ .

2.2.2 The Ideal Process

As mentioned in the begining of this section, security is defined with respect to
an ideal functionality, ITM F , that specifies the I/O behaviour of the protocol.
It also specifies information allowed to be leaked from the protocol.

We can think of F as all Pi’s comprised in one single machine. In fact,
there are no parties in the ideal process. A special ITM T called interface is
introduced to respond on behalf of parties to commands by Z.

We say π is secure if there exists an interface T capable of simulating a
run of π maintaining its I/O behaviour having access to F . However, we note
the interface works by being given solely the corrupt parties’ inputs as well as
all leaked information from F . This captures both secrecy and correctness of
the protocol.

5



The signature of Z is the same as in the ∅-hybrid model, but we include
it in the next definition for the sake of completeness.

Definition 3 The signature Σ(E) of E ∈ {Z,F ,T } in the ideal process is
defined as follows, where -r-,-w- stand for read-only and write-only, and i =
1, . . . , n:
Σ(Z) def= { -r-outByPi, -w-inToPi,

-r-msgByPi, -w-msgToPi,
-r-corrByPi, -w-corrToPi }

Σ(T ) def= { -r-msgToPi, -w-msgByPi,
-r-corrToPi, -w-corrByPi,
-r-leaked , -w-probe }

Σ(F) def= { -r-inToPi, -w-outByPi,
-r-probe , -w-leaked }

The output of the ideal process is a bit b output by Z. Fig. 3 in Appendix
formally describes the simulation.

Notation 4 We denote IDEALF ,T ,Z(k, z,~r), the bit output by Z on security
parameter k, auxiliary input z to Z and random input ~r = rZ , rT , rF . This
gives rise to a random variable IDEALF ,T ,Z(k, z) when ~r is uniformly chosen.
We denote IDEALF ,T ,Z the ensemble {IDEALF ,T ,Z(k, z)}k∈N,z∈{0,1}∗ .

In our next definition,
c≈ stands for computational indistinguishability.

Definition 5 (UC Security) A protocol π t-securely realizes a functionality
F (in the ∅-hybrid model) if there exists an interface T such that for all en-
vironments Z corrupting at most t parties it holds that IDEALF ,T ,Z

c≈ HYB∅

π,Z .

We finish this section by stating two properties about the interactive pattern
of machines in the UC framework.

Proposition 1 In both the ∅-hybrid model and the ideal process it holds that:

i) No execution leads to a deadlock.

ii) For each machine other than Z, there is one and only one interactive
rule to be applied upon activation. For Z this is also the case except for
the corruption rule and the guessing rule which can always be applied.

3 Probabilistic calculus ppc

We provide an overview of the probabilistic polynomial-time calculus ppc. The
reader is referred to [MMS03] for full details.
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The calculus is given a security parameter k and sets Var , Chan of vari-
ables and channels. Its set Term of terms represents all PPT functions on k,
PPT (k), and only these. Moreover, if tf ∈ Term corresponds to f ∈ PPT (k),
then the probability that tf (x) evaluates to some a is defined as the probabil-
ity that the associated machine Mf computing f converges to a on input x,
i.e., P (tf (x)→ a) def= P (a←Mf (x, k)).

In addition, there is a bandwidth map w : Chan → q, where q is the set
of all N-valued polynomials in one variable. This map bounds the length of
data sent through channels and guarantees that computations are polynomial
time.

We use the synchronous version of ppc with input choice. Its expressions
are of the following kind: Inaction 0, private channel νc.Q, output 〈t〉c.Q, input
(x)c.Q, matching [t1 = t2].Q, parallel Q1|Q2, input-choice 〈t1〉c1 .Q1+〈t2〉c2 .Q2,
and replication !qQ, where q is a polynomial in |k|, and the expression is
expanded to polynomially in |k| many copies of Q. An expression Q where
the security parameter takes a fix natural number m is called a process and
denoted Qm.

A free variable is one not in the scope of any (·)c. A process is closed if it
has no free variables.

It is customary to assume that private channels are named apart from
other called public. Typically, private channels are used for modeling internal
data exchange in a single machine, hence it is considered an unobservable
behaviour. In contrast, data exchange through public channels models the
observable behaviour. We will come back to this later.

The meaning of a process Q is a Markov chain over multisets of subpro-
cesses of Q without parallel operator. Recall a Markov chain can be modelled
as a state machine, where transiting from one state to another is assigned a
probability and where the fan-out probabilities for each state sum up to one.
Thus, the intuition for the Markov chain of a process is that states are stages
of reduction and transitions are probabilistic choices between reductions.

The only two sources of probabilities in ppc are evaluation of terms and
selection among simultaneous process reductions. The first case was already
mentioned above. For the second case, a policy of reduction has to be fixed,
so that the next process to be reduced can be selected probabilistically.

Given a process Q, a Markov chain S(Q) where a policy of reduction has
been fixed is called a scheduler. The initial multiset (state) is obtained from Q
by expanding all replications and next removing all parallel operators. Private
channel operators are also removed by renaming private channels with fresh
channels, from a set distinct to Chan , that conserve the bandwidth. In the
sequel, unless the contrary is indicated, we will assume all replication and
private operators have been removed.

The elegible processes for reduction are terms, matchings (mismatchings)
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and communications, in this order. It is defined that only communications
over public channels are observable. They are pairs 〈c, v〉 of public channels
and values. Any other reductions are silent actions and are modeled by τ .
Private communications thus are silent. The set Ob includes both τ and all
observable communications.

By establishing that τ actions have higher priority of reduction than pub-
lic communication, it is ensured that an adversary will not distinguish two
processes by sampling their internal (unobservable) behaviour.

Finally, in order to determine which observations take place in a process
(out of the set Ob of all possible observations), a modulated Markov process
K(Q) = (S(Q), O(Q)) is given, where S(Q) is a fix scheduler and O(Q) is the
stochastic process of observations of Q over Ob. Roughly, K(Q) is like S(Q),
but assigns probability zero to any other observation in Ob not ocurring in
S(Q). Details on this are out of the scope of this document and can be found
in [MMS03].

Given K(Q), the probability of observing some o ∈ Ob at any point of
the reduction trace is written P (Tr (Q)S

k = o). It is an infinite series indexed
i = 1, 2, . . ., where series-term i is the probability that o is output for the first
time at the i-th reduction step. Notice random variable Tr is parameterized
with the security parameter k and scheduler S. We abbreviate Tr (Q) the
random ensemble {Tr (Q)Sk }k∈N,S .

For the next definition recall contexts are processes with holes.

Definition 6 A closed process Q1 is observationally equivalent to another Q2,
written Q1 ' Q2, iff for all schedulers and for all contexts C[ ] it holds that
Tr(C[Q1])

c≈ Tr(C[Q2]).

The definition of protocol security follows by relating a protocol with an ideal
specification and showing they are observationally equivalent, with respect to
classes A,B of contexts modeling real-process and ideal-process adversaries,
respectively.

Definition 7 ([MMS03]) A closed process Q emulates an ideal specification
closed process I with respect to sets of contexts A and B, written Q ≡A,B I,
iff for all A[ ] ∈ A there exists B[ ] ∈ B such that A[Q] ' B[I].

We note definition 7, seems to demand the class B of ideal-specification ad-
versaries is defined independently from the class A of real-process adversaries.
In fact, it does not really make sense to reason about an a priori class of
ideal-process adversaries. While it is true that the specification I of a crypto-
graphic task is provided with respect to and adversarial model, this model is
but a generic description of threats (to later prove the attacks can be thwarted)
that the calculus should be able to express but independently on whether they
mean ideal-process attacks or real-process attacks.
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For instance, an adaptive adversary is one that can make a corruption at
any point of the reduction (execution). The term “at any moment” is what
defines adaptiveness and should be expressed by the calculus, but it does not
depend on whether the reduction is in an ideal or a real process. Clearly, “to
make a corruption” is something to be defined too.

Only once the threat model is set, the notion of security is captured by
taking any real-process adversarial strategy (constrained to the threat model)
and proving there is some ideal-process adversarial strategy (constrained to the
same threat model) but deemed unsuccessful in the ideal-process reduction,
hence showing that a real-process is as secure as the ideal-process specification
it emulates. As we will see later, a technical contribution of our work shows
that different threat models can be expressed in the calculus, since they can al-
ready be expressed as (adversarial) machine behaviours that can be translated
via encoding.

Under the above considerations, it would just suffice to drop A,B in defi-
nition 7:
Definition 7’ (Revised) Fix a threat model. A closed process Q emulates
an ideal specification closed process I, written Q ≡ I, iff for all A[ ] bound
to the threat model there exists B[ ] bound to the same threat model such that
A[Q] ' B[I].

One has to be careful with the meaning of quantifying over all contexts C[ ]
in definition 7’. There, adversaries are separate entities from distinguishers,
and so the process-interaction a context C[ ] sustains is limited to (public data-
exchange) providing inputs and receiving outputs but without the capability
of corrupting.

We are precisely now in a position similar to that in [Can01]2 where it
could be argued there is not loss of generality in allowing distinguishers model
adversaries too, since they both are contexts. Let us present the alternative
security definition before resuming our discussion.

Definition 8 Fix a threat model. A closed process Q emulates an ideal speci-
fication closed process I iff there exists a context D[ ] bound to the threat model
such that Q ' D[I], where observational equivalence is defined with respect to
all contexts whose corrupting capabilities are bound to the threat model.

Contexts C[ ] in the definition above could be thought of as having the form
C ′[A′[ ]] where A′[ ] models its corrupting capabilities (bound to the underlying
threat model) and C ′[ ] models its reactive feature (of providing inputs and
receiving outputs).

Notice well here that definitions 7’ and 8 are essentially swapping the order
2See Definition 4 in [Can01], where environments play also the role of adversaries.
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of quantifiers, from ∀A[ ] ∃B[ ] to ∃D[ ] ∀A′[ ], respectively3. It follows the
natural question of under which conditions the two definitions are the same.

One direction is obvious4. The implication from definition 7’ to definition
8 is not immediate. At its core lies what black-box simulatability is, which is
the most-known form of simulatability so far in the literature.

For concreteness, we mention two ways to get around this implication: We
could in the first place prove our result of full abstraction of UC in ppc, with
respect to both definition 7’ and 8 separately, and then use the fact that in the
UC framework the corresponding two definitions are equivalent. But deriving
the equivalence of the two definitions of security in ppc is not our goal. We aim
at showing there is a correspondence between security in the UC framework
and security in a non-machine-based framework as ppc.

An alternative is to directly use the result in [DKM+04, DKMR04], where
it is proved definitions 7’ and 8 are equivalent for any process calculus whose
notion of process-equivalence satisfies certain axioms, and apply it in particular
to ppc.

In the remaining of this document we will make use of definition 8. Our
choice is motivated by the belief this definition is technically simpler and
intuitively well justified, although arguably less pedagogical.

Finally, it is worth noticing the compositional-security guarantee of ppc in
terms of definition 8 also holds (See section 5.6 in Appendix).

4 Encoding and Main Result

We define an encoding that translates the ITM’s of UC into processes in ppc.
Since we are interested in transporting the interactive setting of UC, for an
encoding to be “reasonable” we require it to preserve: machine signatures,
interleaving mode, activation orders, and probability distributions over linking
tapes.

Intuitively, a machine’s encoding consists of a choice of (the encoding of) its
interactive rules wrapped up by a bigger process reminiscent of the machine’s
shell.

A salient disctinction, however, is that while the premise of a rule is a
predicate for a machine, the same premise is actually a prefix of inputs on
channels for the machine’s encoding. This poses a challenge when encoding,
in the case there are two intersecting rules, i.e., there is a tape in the premises
of two rules from where they expect different values.

One solution is to group intersecting rules into a single one by prefixing
with the common input channel (tape) and then branching according to the

3To see why, develop in both definitions the meaning of observational equivalence and
use the fact that C[ ] = C′[A′[ ]] in definition 8.

4Simply take B[ ] = A[D[ ]].
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values they expect.
We observe the only difference between encodings of intersecting and non-

intersecting rules is their input prefixes. But this does not affect the interactive
pattern of the machine under encoding.

For simplicity, our definition of encoding does not consider intersecting
rules, and we postpone encoding non-intersecting rules to section 5.2 in Ap-
pendix.

Definition 9 Let n ∈ N and k ∈ N be a security parameter. Let E ∈ {Pi,F},
i = 1, . . . , n, having l pairs of linking tapes5, and m non-intersecting interac-
tive rules of form

?rtapes1,...,sRi

vs1 , . . . , vsRi

(~v′t, ς
′)← E(~vs, ς)

∀t1,...,tWi
!wtapet.

v′t.
!activate Ea
waiting

,

where s1, . . . , sRi , t1, . . . , tWi ∈ {1, . . . , l}, and a ∈ {t1, . . . , tWi}. The encoding
JEK is defined as:
JE(k)K = !q(k)( )unblockE .( )activate . ( 〈 〉isToDeliver

| (b)deliverySet . (
[b = empty ]. ( 〈 〉getStateE |Rules)
| [b = notempty ].〈 〉deliver ))∣∣!q(k)StoreE

with Rules = (ς)currentStateE . (Rule1 + · · ·+ Rulem), and
Rulei = (vs1)rtapes1

. · · · .(vsRi
)rtapesRi

.(
〈proj 1(E)(~vs, ς)〉wtape t1

| · · · |〈proj Wi
(E)(~vs, ς)〉wtape tWi

|
〈proj Wi+1(E)(~vs., ς)〉updateStoreE .〈 〉unblockE .〈Ea〉activate

)
where proj j(E) is the j-th projection of E, j = 1, 2, . . . ,Wi.
Subprocess StoreE encodes E’s state. Channels ( )rtapes.

, 〈 〉wtape t.
are public

and encode E’s linking tapes; channel ( )activate is private to the system and
encodes its activation tape. All other channels are private to E but accessible
to subprocess StoreE .
We define the encoding of n ITM’s E1, . . . , En, as JE1, . . . , EnK

def= JE1K| . . . |JEnK .

Since PPT (k) and Term are in one-to-one correspondence, we use the same
expression for denoting functions proj j(E) and its terms.

Even though a key element of our encoding is a heavy use of updatable
storage cells in order to model machines’ states, the definition of StoreE is
left out from this document. Encoding states does not require more than

5For an n-party protocol, lPi = 3 and lF = n + 1.
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what is known in the literature for encoding data structures. On the other
hand, this is a laborious effort that does not add clarity to our discourse.
Nevertheless, we can informally specify what StoreE does and we observe its
tasks are exclusively performed through private channels.

Several remarks justifying E ’s encoding are in place: First, the replication
operator ensures the encoding is polynomial-time in the same security param-
eter k. Also, the reduction of terms proj j(E) on arguments (vs1 , . . . , vsWi

, ς)
has the same distribution as E ’s computation on those arguments6. Finally,
E ’s linking tapes with the environment are the only public channels, on which
data-exchange is to be observed.

We recall a feature of ppc is that private data-exchange has higher prior-
ity than the public one. This is exploited to enforce some computations in
sequence without altering the probability distributions of public events.

Process E = JEK computes by activations turns, where there is one copy
of its replicator per activation. Observe all copies of E are blocked. Each
activation turn finishes with two actions: First, it releases a new copy of itself
through private channel 〈 〉unblockE and second, it activates another process Ea

through public activation channel 〈Ea〉activate . This guarantees that only one
copy of a process is available per activation.

When E is activated, it first asks through 〈 〉isToDeliver whether there is any
data to deliver. Subprocess StoreE answers through ( )deliverySet , based on a set
containing the identities of processes for which there is data to deliver. If this
set is not empty, then StoreE chooses a new process and activates it through
its activation channel, and also releases a new copy of E. If the delivery-set
is empty, StoreE is then asked to send E’s current state and next one of the
encoded interactive rules will be used.

Process Rules receives first E’s state and then, in virtue of Proposition 1,
reduces through the only rule whose input prefix is valid. Let Rulei be this
rule. It then computes the function E(vs1 , . . . , vsRi

, ς), by using the projection
functions proj j , j = 1, . . . ,Wi, in order to write each of the resulting values
(v′t1 , . . . , v

′
tWi

) in the corresponding public channels for processes Et., as well
as writing its next state ς ′ to StoreE .

Notice that writing 〈vt.〉wtapet. does not activate processes Et.. First, StoreE
constructs the delivery set with the identities of processes Ej to be activated
in sequence, one at a time. Only then a new copy of E is released, exhausting
the current one, and the activation is handed over to Ea.

Furthermore, at the end of an activation there are not dangling subpro-
cesses of the current activated copy, since all possible simultaneous alternatives
are exhausted either by matchings or input choices.

6Consider e.g. the PPT machine that on input (~v, ς) computes (~v′, ς ′) like E , but then
discharges say ς ′.
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JZ(k, z)K = !q(k)( )unblockZ .( )activate . (
〈 〉corrupt |( )corruptdone . (

〈 〉guess |( )noguess . (
〈 〉isToDeliver |(b)deliverySet . (

[b = empty ]. (〈 〉getStateZ | Rules)
| [b = notempty ].〈 〉deliver ))))

| !q(k)StoreZ
| !q(k)Corrupt
| !q(k)Guess

with Rules = (ς)currentStateZ . (( )beg rnd .Rule BgnRnd + ( )end rnd .Rule EndRnd)

Figure 1: Definition of Process Environment

4.1 Encoding Environments

Crucially, we can also encode both interfaces and environments, hence adver-
sarial behaviours. Here we examine only the case of environments, but observe
that the other case uses similar ideas.

The translation is somewhat different to that in definition 9, since an
environment can corrupt a party at any moment or decide its guess on the
execution and halt. Concretely, by the definition of an environment ITM
in Fig. 2, its encoding has rules Rule BegRnd , Rule EndRnd , modeling Z’s
behaviour when receiving messages or outputs from parties, respectively. In
contrast, both the corruption case and the guessing case are not just rules,
but replicated subprocesses Corrupt and Guess , which are at the same level
of Z’s state. Figure 1 formally defines an environment.

We describe only Rule BegRnd , but observe that Rule EndRnd is similar.
This rule is valid when a new round of computation is to begin and this
happens when all honest parties have sent their previous-round outputs:
Rule BegRnd = 〈P1〉inHonest |(a)isHonest ([a = no].0 |

[a = yes ].(v1)msbByP1 .〈v1〉fwdmsgByP1.
(〈P2〉inHonest . . . (J(·)← ZK) . . .))

We have written J(·) ← ZK to abbreviate Z’s actions in that point of the
rule. It consists in sending in parallel the new-round messages and inputs for
each honest party through corresponding channels 〈 〉msgToPi and 〈 〉inToPi , by
using the projections functions of Z.

This rule simply reads party Pi’s channel as long as this party is honest, and
if so, forwards the value through a private channel to its inner-most process
J(·)← ZK.

When process Corrupt is called, it reduces just like defined in Fig. 2, by
modifying Z’s state. Given the current state, this process may corrupt up to
t parties, one at a time. It selects a party Pj to corrupt and activates Pj ’s
store, StorePj , through public channel 〈 〉corrToPj . It then receives Pj ’s state
back through public channel ( )corrByPj , and updates Z’s store, StoreZ , which
also updates sets C := C ∪ {j},H := H \ {j} of corrupt and honest parties,

13



respectively. From this moment on, party Pj will not be activated any more,
since in J(·) ← ZK above, new-round messages and inputs are computed and
sent only to honest parties.

Encoding environments gives rise to a prominent set of processes in ppc:

Definition 10 Let n ∈ N. We let ZUC(n, k, z) be the image under encoding
of the set of all UC environments modeling threshold, active and adaptive ad-
versaries with synchronous and authenticated communication, that interact in
n-party protocols with variable security parameter k ∈ N and variable auxiliary
input z ∈ {0, 1}∗. i.e., ZUC(n, k, z) def= {JZ(k, z)K : Z ∈ UC}.

We intend to use these processes as distinguishers in ppc. In order to do so, we
restrict observational equivalence to the class of contexts of form Z|[ ], where
Z ∈ ZUC(n, k, z). More precisely,

Definition 11 A closed process Q1 is UC-observationally equivalent to an-
other Q2, written Q1 'UC Q2, iff for all schedulers and for all Z ∈ ZUC(n, k, z)
it holds that Tr(Z|[Q1])

c≈ Tr(Z|[Q2]).

Consequently, we redefine the notion of secure processes:

Definition 12 A process Q UC-emulates an ideal specification process I, writ-
ten Q ≡UC I, if there exists a context D[ ] such that Q 'UC D[I].

An important observation is that if Q1, Q2 are processes whose public data-
exchange is exclusively with UC contexts7, then the quantification over sched-
ulers is virtually useless for the overall distribution, or in other words, distin-
guishing two processes is independent on any external scheduler. This is so
because UC contexts (probabilistically) decide which process to send data to
(activate) next, and choose one at a time. Hence, the only kind of simulta-
neous data-exchange are private, but these are silent actions, and therefore
should not affect indistinguishability of processes. This reasoning is a direct
consequence of the following:

Lemma 1 Let n ∈ N. Let Q be a closed process whose public channels are
contained among the public channels of ZUC(n, ·, ·). Then, for any scheduler
the transition probability on any public data-exchange is equal to one.

A second implication of interacting with UC contexts is that the probability
distribution of values transmitted through public channels is preserved up to a
factor dependable exclusively on the probability distribution for private data-
exchange.

7This is precisely the case of the encodings of machines Pi, F , and T .
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Lemma 2 Let n ∈ N. Let Z, E be linked, and let E compute v′ ← E(v, ς),
on value v and current state ς, and send v′ to Z through tapeE,Z . Then,
pv′ = P (v′ ← E(v, ς)) iff P (〈tapeE,Z , v′〉 ∈ Tr(Z|Q)Sk ) = pv′ · uS, where Q has
E = JEK as a subprocess.
When private data-exchange is sequentialized, then uS is always one.

Our last observation is that UC-equivalence is weaker than that in defi-
nition 6, i.e., Q1 'UC Q2 does not necessarily imply Q1 ' Q2, or colloqui-
ally, quantification over the class of UC-adversaries does not necessarily imply
quantification over all contexts.

This is an expected effect, since the environments we are considering are
constrained to the assumptions of the adversarial and communication mod-
els, e.g., activation of all parties once per round, message-delivery guaranteed,
authenticated channels, threshold corruptions, etc. Nonetheless, this defini-
tion of security is not trivial at all, since useful realizations can be proved
secure under such assumptions. Hence, by defining equivalence of processes
in ppc restricted to the contexts induced by UC environments, we are not
over-simplifying the notion of security in ppc.

4.2 Main Result

We can now prove a correspondence between the UC framework and the pro-
cess calculus ppc under UC-observational equivalence:

Theorem 1 (Full Abstraction) Let n ∈ N and t < n. Let π be a n-party
reactive protocol, F be an ideal functionality, and T be an interface.

1. (Soundness) If JπK ≡UC JT K | JFK then T proves π t-realizes F ; and
reciprocally,

2. (Completeness) If T proves π t-realizes F , then JπK ≡UC JT K | JFK.

Proof:

1. If it was not the case, there would exist an environment Z negating
indistinguishability in UC. But this would refute the validity of JT K|[ ]
in the hypothesis, since the context JZK|[ ] induced by Z would also
negate indistinguishability in ppc. Indeed, by lemma 2, both Z and Z
would observe 〈guess , b〉 with comparable probabilities, and this would
be sufficient, according to lemma 1 to call for distinguishability in ppc.

2. If T is an interface proving π t-realizes F , then it should hold that
JπK 'UC JT K| [JFK], since otherwise, there would exist according to lemma
1 JZK|[ ] ∈ ZUC negating indistinguishability in ppc, and consequently
inferring that Z would negate indistinguishability in UC. Indeed, if Z
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observes 〈public tape , v〉 with overwhelming distinct probabilities, then
by lemma 2 Z does so too and at that point can halt and output the
guessing bit b. ♦
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5 Appendix:

5.1 ∅-hybrid Model and Ideal Process

Figures 2 and 3 define the ∅-hybrid model and the ideal process, respectively.
The code of each rule should be self-explanatory. The piece of code under the
horizontal line is to be executed indivisibly, as a single transition.

However, we allow nested rules, hence, we assume resumption: If there is
a point where the activation is handed over to another machine, then once
recovered the execution resumes at the point it was left before.

We could be more succinct to the expense of rigorousity in regard to ma-
chines’ states. Our main purpose is to illustrate the interactive pattern of the
UC model by means of our notation. In constrast, we have to prevent our-
selves of this relaxation in a full translation from machines into processes. As
an example, the first rule for Z reads: Upon activation in round r, check the
condition whether all honest parties i ∈ H have sent their round r − 1’s out-
puts yi,r. If it holds, then pick an honest party i, compute his round r’s input
xi,r and round r − 1’s messages from corrupt parties {mj,i,r−1}j∈C . Observe
messages {mj,i,r−1}j∈H where sent by honest parties in the previous round.
Write xi,r on tape inToPi, and (bgn rnd , i, {mj,i,r−1}j∈C∪H) on tape msgToPi.
Activate this party by writing Pi on tape activate , and switch to control state
waiting .

This rule is to be executed as long as there are honest parties to be
activated with command beg rnd . To do so, we use a variable com(r) ∈
{beg rnd , end rnd} that indicates which command is to be executed next. In
addition, a set I contains the indices of remaining honest parties to be acti-
vated.

Note well that on every new activation of Z, the set I, from where an
honest party is picked, may have changed, since Z may decide first to corrupt
a party before executing this rule.

5.2 Encoding of Interactive Rules

Figures 4 and 5 define the encodings of the interactive rules for a party Pi and
a functionality F , respectively.

5.3 Proof Proposition1

Proof: In UC framework deadlock is prevented because parties are linked
only to the environment, and the environment is assumed not to activate
two machines at a time. The remaining properties follow by checking the
conditions of the interactive rules of each machine. ♦
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5.4 Proof Lemma 1

Proof: Let S be any scheduler over multisets M of subprocesses of Z|Q.
Then, given that S is a Markov chain and since data-exchange over public
channels occur one at a time, it holds that S(M1,M2) = 1, where

i. {〈v〉c, (x)c.X} ⊂ M1 and there are no other probable transitions inM1;

ii. M2 = (M1 \ {〈v〉c, (x)c.X}) ∪MXx
v

and Xx
v is the process obtained by

substituting all free occurrences of x by v in X; and

iii. c ∈ {inToPi, outByPi,msgToPi,msgByPi, corrToPi, corrByPi}. ♦

5.5 Proof Lemma 2

Proof:(Sketch) The proof proceeds by induction on the number of activations
in the execution. The key fact is that machines and processes are scheduled
in the same order by Z and its encoding Z. Thus, when machine E is acti-
vated with input value v, its corresponding process E is activated with the
same input value and having, by induction hypothesis, the same state ς as E .
Then, in virtue of our encoding, process E would initiate a tree of reduction
involving solely private data-exchange in order to update its state. Assume the
chosen branch in this tree has probability uS. The branch ends at the point
value v′ is computed by sending 〈E(v, ς)〉tapeE,Z , with probability pv′ . Finally,
the sent value is actually observed with probability one, as it is the unique
public data-exchange at this point of the computation (reduction). Therefore,
P (〈tapeE,Z , v′〉 ∈ Tr(Z|Q)Sk ) = pv′ · uS · 1. ♦

5.6 ppc-Composition Theorem

We provide a prove of the compositional theorem in ppc with respect to defi-
nition 8. In what follows we use ≡ to stand for protocol emulation.

Proposition 2 (Composition) Let Q ≡ I and R[I] ≡ J . Then R[Q] ≡ J .

Proof: The hypotheses can be rephrased as:

∃ D[ ] Q ' D[I] (1)

∃ E[ ] R[I] ' E[J ] , (2)

where ' means observational equivalence (cf. Definition 6). We will prove
that D[E[ ]] is a context such that R[Q] ' D[E[J ]], i.e., for all schedulers and
for all contexts C[ ] it holds that

Tr(C[R[Q]])
c≈ Tr(C[D[E[J ]]]) .

Indeed, since
c≈ is transitive, it follows that
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Tr(C[R[Q]])
c≈ ( (1) with C[R[ ]] )

Tr(C[R[D[I]]])
=

Tr(C[D[R[I]]])
c≈ ( (2) with C[D[ ]] )

Tr(C[D[E[J ]]])

The second step above holds as long as contexts R[ ] and D[ ] are of form X|[ ]
or ( )c.[ ] and there is no clash of free-names. We claim, albeit without further
evidence here, this kind of composition is sufficient for modelling the inter-
action of ITM’s where linking tapes do not stand for actual communication
devices. ♦
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Init: Z(k, z, rZ ), Pi(k, ri). Set r := 0, C := { }, H
def
= [n]− C, I := H .

Environment Z: Party Pi:

∀i∈H ?outByPi
yi,r−1

precondition: comand(r)=beg rnd

precondition:{I ⊇ H –1st call: =–}
I := I \ C
i∈I ← Z
I := I \ {i}
if I = { } then

com(r) := end rnd
I := H

({mj,i,r−1}j∈C , xi,r)← Z
!inToPi

(i, xi,r)
!msgToPi

(beg rnd , i, {mj,i,r−1}j∈C∪H)
!activate Pi
waiting

?inToPi
(i, xi,r)

?msgToPi
(beg rnd , i, {mj,i,r−1}j∈C∪H)

({mi,j,r}, yi,r) = Pi({mj,i,r−1}, xi,r)
!msgByPi

{mi,j,r}j 6=i
waiting

∀i∈H ?msgByPi
{mi,j,r}j 6=i

precondition: comand(r) = end rnd

precondition:{I ⊇ H –1st call: =–}
I := I \ C
i∈I ← Z
I := I \ {i}
if I = { } then

r := r + 1
com(r) := beg rnd
I := H

!msgToPi
(end rnd)

!activate Pi
waiting

?msgToPi
(end rnd)

!outByPi
yi,r

!activate Z
waiting

if |C| < t then
i∈H ← Z
C := C ∪ {i}
I := I \ C
if I = { } then

com(r) := 1− com(r)
I := H

!corrToPi
(corrupt i)

!activate Pi
waiting

?corrToPi
(corrupt i)

!corrByPi
ri

!activate Z
waiting

b← Z
!guess b
halt

Figure 2: Order of activations in ∅-hybrid model
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Init: Z(k, z, rZ), T (k, rT ), F(k, rF ). Set r := 0, C := { }, H
def
= [n] − C, IT := H ,

IF := H .

Interface T : Functionality F:
?msgToPi

(beg rnd , i, {mj,i,r−1}j∈C∪H)

precondition:{IT ⊇ H –1st call: =–}
IT := IT \ {i}
!activate F

?leaked vinleak
F ,i

({mi,j,r}j∈[n])

← T (k, {mj,i,r−1}j∈C,i∈H , vinleak
F ,i ; rT )

if IT = { } then
!probe (beg rnd , v′)
!activate F

true

IT := H
!msgByPi

{mi,j,r}j 6=i
!activate Z
waiting

?inToPi
(i, xi,r)

vinleak
F ,i ← F(k, xi,r; rF )

!leaked vinleak
F ,i

!activate T
waiting

?probe (beg rnd , v′)

({yi,r}i∈H , voutleak
F )

← F(k, {xi,r}i∈H , v′; rF )
!activate T
waiting

?msgToPi
(end rnd)

!probe (end rnd , i)
!activate F

true

!activate Z
waiting

?probe (end rnd , i)

precondition:{IF ⊇ H –1st call: =–}
IF := IF \ {i}
!outByPi

yi,r
if IF = { } then

!leaked voutleak
F

IF := H
!activate T
waiting

?corrToPi
(corrupt i)

IT := IT \ {i}
if IT = { } then

!probe v′

!activate F
true

IT := H
!probe (corrupt i)
!activate F
?leaked vcorrleak

F ,i

ri ← T
!corrByPi

ri
!activate Z
waiting

?probe (corrupt i)

IF := IF \ {i}
if IF = { } then

!leaked voutleak
F

IF := H

vcorrleak
F ,i ← F(k, i; rF )

!leaked vcorrleak
F ,i

!activate T
waiting

Figure 3: Order of activations in ideal process
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Rule Rnd =

(t)msgToPi

[t = (beg rnd , v′)]

( )msgToPi

〈{mi,j,r}j 6=i〉msgByPi
〈 〉updateStorePi

〈 〉unblockPi

〈Z〉activate

[t = (end rnd)]

〈yi,r〉outByPi
〈 〉updateStorePi

〈 〉unblockPi

〈Z〉activate

Rule Corrupt =

(t)corrToPi

〈ri〉corrByPi
〈 〉updateStorePi

〈 〉unblockPi

〈Z〉activate

Figure 4: Enconding of Pi’s Interactive Rules

Rule Input =

( )inToPi

〈vinleak
F ,i 〉leaked 〈 〉updateStoreF

〈 〉unblockF

〈T 〉activate

Rule Probe =

(t)probe

[t = (beg rnd , v′)]

〈 〉updateStoreF

〈 〉unblockF

〈T 〉activate

[t = (end rnd , i)]

〈yi,r〉outByPi
〈 〉updateStoreF

〈 〉unblockF

〈T 〉activate

[t = (corrupt , i)]

〈vcorrleak
F ,i 〉leaked 〈 〉updSt.F

〈 〉unbl.F

〈T 〉act.

Figure 5: Enconding of F ’s Interactive Rules
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