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Abstract

We show that the problems of deciding the outcome of Maker-
Maker and Maker-Breaker games played on arbitrary hypergraphs
are PSPACE-complete. Maker-Breaker games have earlier been
shown PSPACE-complete by Schaefer (1978); we give a simpler
proof and show a reduction from Maker-Maker games to Maker-
Breaker games.

1 Introduction
Maker-Maker and Maker-Breaker games are finite two-player perfect-
information games played on a hypergraph G = (V, E). The players take
turns in playing an unplayed vertex. In Maker-Maker games, the first
player, Maker1, wins if he plays all vertices in one edge, and the other
player, Maker2, also wins if he plays all vertices in one edge. One example
of a Maker-Maker game is Tic-Tac-Toe. A player has a winning strategy
if he can win the game no matter how the other player plays. Given a
hypergraph G it will always be the case that either one of the players
has a winning strategy, or both have a drawing strategy meaning that
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they can both force the game to end in a draw, which is what happens
if all vertices have been played and none of the players have won. By an
argument known as the strategy-stealing argument, Maker2 cannot have
a winning strategy: suppose he has, then since having played an extra
vertex will never do you any harm, Maker1 can just play any vertex v
first and then play according to Maker2’s winning strategy as though
v had never been played. Maker-Breaker games are played similarly
and the first player, Maker, also wins by playing all vertices of an edge.
The second player, Breaker, however, wins by preventing Maker from
winning. Thus, there are no draws and one of the players will have a
winning strategy. Maker-Breaker games have the property that a game
where both players have played some vertices can easily be transformed
to a game with no played vertices by simply removing all played vertices
and removing all edges containing at least one of the vertices played
by Breaker. For simplicity, we always reduce Maker-Breaker games in
this way. We can also easily transform between a Maker-Breaker game
in which Maker starts and one where Breaker starts and vice versa by
either adding a single vertex and an edge containing only this vertex
(which Breaker will then have to play) or a single vertex which is added
to all edges (which Maker will then have to play).

Definition 1. Maker-Maker is the problem of given a hypergraph G
to decide if Maker1 has a winning strategy or Maker2 has a drawing
strategy in the Maker-Maker game on G.

Definition 2. Maker-Breaker is the problem of given a hypergraph G
to decide if Maker or Breaker has a winning strategy in the Maker-Breaker
game on G.

2 Results
Theorem 3. Maker-Breaker reduces to Maker-Maker.

Proof. Let G = (V, E) be an instance of Maker-Breaker and let
d1 and d2 be two vertices not in V . Then we let V ′ = V ∪ {d1, d2},
E′ = {d1} × E ∪ {(d1, d2)} and G′ = (V ′, E′). Now, G′ is an instance of
Maker-Maker in which Maker1 has a winning strategy if Maker has
one on G and both players have a drawing strategy on G′ if Breaker has
a winning strategy on G: in any game, Maker1 has to play d1, since it is
contained in all edges. Now, Maker2 cannot win and he has to play d2,
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or Maker1 would win by playing it. Then the rest of the game can be
played according to the strategies for Maker and Breaker on G, since
Maker2 cannot win. If Maker has a winning strategy Maker1 can also
win, and if Breaker has a winning strategy Maker2 can make the game
draw.

Schaefer [1] shows several games PSPACE-complete, among which are
Gpos(POS DNF) which is equivalent to Maker-Breaker where Maker
starts and Gpos(POS CNF) which is equivalent to Maker-Breaker
where Breaker starts. We provide a simpler proof below.

Theorem 4. Maker-Breaker is PSPACE-complete.

Proof. Maker-Breaker is clearly in PSPACE. To show completeness,
we will reduce QBF to it. Let ∀x1∃y1 . . .∀xn∃yn C1 ∧ · · · ∧ Cm be
an instance of QBF. We construct an instance of Maker-Breaker
in which Breaker plays the role as satisfier meaning that he has to
play one variable from each clause. We will slightly abuse notation
and use xi and yj as both variables in the formula and vertices in the
game and Cj for both clauses in the formula and vertices in the game.
We let V = {u1, u

′
1, . . . , un, u

′
n} ∪ {e1, . . . , en} ∪ {x1, x̄1, . . . , xn, x̄n} ∪

{y1, ȳ1, y
′
1, ȳ

′
1, . . . , yn, ȳn, y

′
n, ȳ

′
n} and E =

⋃n
i=1(Xi ∪ Ui ∪ Yi) ∪

⋃m
j=1 Cj ,

where

Xi ={(u1, e1, . . . , ui−1, ei−1, xi, x̄i)},
Ui ={(xi, u1, e1, . . . , ui−1, ei−1, ui, u

′
i), (x̄i, u1, e1, . . . , ui−1, ei−1, ui, u

′
i)},

Yi ={(xi, u1, e1, . . . , ui, ei, yi, ȳi), (x̄i, u1, e1, . . . , ui, ei, yi, ȳi)}∪
{(xi, u1, e1, . . . , ui, ei, yi, ȳ

′
i), (x̄i, u1, e1, . . . , ui, ei, yi, ȳ

′
i)}∪

{(xi, u1, e1, . . . , ui, ei, y
′
i, ȳi), (x̄i, u1, e1, . . . , ui, ei, y

′
i, ȳi)},

Cj ={(u1, e1, . . . , un, en, lj1, . . . , lj|Cj|}

and ljk is the vertex corresponding to the kth literal in the clause Cj.
The idea is that the game is played in n rounds, each round consisting

of the moves depicted in Table 1. If the game is played according to
Table 1, Breaker will play a vertex from each of the Xis, Uis and Yis so
Maker cannot win with any of those, and he has to win by playing all
vertices from one of the Cjs. If the formula is satisfiable, no matter if
Maker chooses xi or x̄i, Breaker can choose yi or ȳi so that the formula is
satisfied meaning that he will have played a vertex from each edge Cj. If
the formula is unsatisfiable there must be at least one clause that Breaker
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Move Player Choice
1 Maker xi or x̄i

2 Breaker the other
3 Maker ui

4 Breaker u′
i

5 Maker ei

6 Breaker yi or ȳi

7 Maker the other
8 Breaker y′i or ȳ′i, same as in round six

Table 1: Normal play in round i.

has not played any vertex from, but then Maker has played them all, so
he wins.

We now argue that none of the players gain anything from not playing
according to Table 1. Assume that the game is played according to
Table 1 for the first i− 1 rounds. Then Breaker has played at least one
vertex in Xj, Uj and Yj for j < i and Maker has played u1, . . . , ui−1

and e1, . . . , ei−1. Let us first assume that Maker plays the first move
according to Table 1, i.e., he plays either xi or x̄i. Then Breaker has to
play the other or Maker will win with the edge in Xi. Now, ui is contained
in all remaining edges, so Maker has to play it. Then as before, Breaker
will have to play u′

i or Maker will win with one of the edges in Ui. Now,
ei is contained in all remaining edges, so Maker has to play it. In move
six, Maker has played u1, . . . , ui, e1, . . . , ei and xi or x̄i, so he has all but
two of the vertices in three of the edges in Yi. Now, Breaker has to play
either yi or ȳi, or Maker can play one of them so that he only needs to
play one vertex in two edges. In move seven, Maker is not forced to pick
the other vertex, but since this forces Breaker to play the primed version
of the variable he picked in move six, and the primed variables occur in
no other edges, Maker loses nothing by picking the other vertex.

We only need to argue that Maker might as well play either xi or x̄i

in his first move. Suppose that he does not play either. The only other
vertex he can play is ui, since it is in all the remaining edges. Then
Breaker plays xi. Now, ei is in all remaining edges, except the second
edge in Ui, so Maker has to play ei, x̄i or u′

i. If he plays x̄i, the players have
the same vertices as they would have from a normal play in the first three
moves, except that Breaker got to choose which of xi and x̄i he wanted,
so this is not an advantage for Maker. If he instead plays u′

i, Breaker
plays x̄i and then Maker will have to play ei and the play continues
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according to normal play from move five. This means that Maker neither
got xi nor x̄i, and u′

i is in no more clauses than the ones in Ui so this is
not advantageous either. Finally if Maker plays ei, Breaker just continues
play from move six as if Maker had played x̄i. Maker can at any point
play x̄i in which case Breaker plays u′

i, but otherwise, play continues
normally. Thus, Maker gains no advantage from not playing according
to Table 1 in his first move.

Corollary 5. Maker-Maker is PSPACE-complete.

Proof. Maker-Maker is clearly in PSPACE, and completeness follows
from Theorems 3 and 4.
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