
B
R

IC
S

R
S

-03-6
M

ilicia
&

S
assone:

Jeeg:
Tem

poralC
onstraints

for
the

S
ynchronization

ofC
oncurrentO

bjects

BRICS
Basic Research in Computer Science

Jeeg: Temporal Constraints for
the Synchronization of Concurrent Objects

Giuseppe Milicia
Vladimiro Sassone

BRICS Report Series RS-03-6

ISSN 0909-0878 February 2003

Copyright c© 2003, Giuseppe Milicia & Vladimiro Sassone.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/6/

Jeeg: Temporal Constraints for the Synchronization

of Concurrent Objects

Giuseppe Milicia, Vladimiro Sassone
milicia@brics.dk, vs@cogs.susx.ac.uk

BRICS
Aarhus University

Abstract

We introduce Jeeg, a dialect of Java based on a declarative replace-
ment of the synchronization mechanisms of Java that results in a com-
plete decoupling of the ‘business’ and the ‘synchronization’ code of classes.
Synchronization constraints in Jeeg are expressed in a linear temporal
logic which allows to effectively limit the occurrence of the inheritance
anomaly that commonly affects concurrent object oriented languages.
Jeeg is inspired by the current trend in aspect oriented languages. In a
Jeeg program the sequential and concurrent aspects of object behaviors
are decoupled: specified separately by the programmer these are then
weaved together by the Jeeg compiler.

1 Introduction

In the late eighties, the first experiments in mixing object oriented program-
ming languages and concurrency unveiled serious difficulties in merging the
two concepts [1, 3]. Typically, the code for concurrency control, interwoven
in the business code of classes, represented an obstacle to code inheritance,
making it essentially impossible even in simple, common situations. The term
inheritance anomaly [19] was coined to refer to the issue. Indeed, the problems
arising from the interaction of inheritance and concurrency were considered
so severe as to suggest removing inheritance from concurrent object oriented
languages entirely [1].

Commonly, in object oriented code, the set of messages accepted by an
object is not uniform in time. Depending on the object’s state, some of its
methods will be unavailable, as e.g., pop from a empty stack, or put on a full
buffer. In sequential situations, it is sometimes conceivable for clients to keep
track of which methods are enabled and which are not. For instance, it could be
required of the stack user to know at any given point in time whether or not the

1

stack is empty. In a concurrent scenario, however, this is clearly not an option.
Clients have no way of knowing about other clients, and any cooperation in this
respect requires non-trivial, specific protocols. Our only option is to interweave
the stack code with code that controls access from clients. Concurrent objects
must take direct control of their synchronization code, and the phenomenon of
inheritance anomaly sets in, forcing programmers to override inherited code
in order to refine the synchronization code therein. The situation can be
exemplified in a simple case by the following idealized pseudo-code of a buffer.

class Buffer {
...
void put(Object el) {
if ("buffer not full ") ...

}

Object get() {
if ("buffer not empty") ...

}
}

Suppose now that to enhance Buffer we wish to add, for instance, method
freeze that makes it read-only. Whatever the original chunks of code for
"buffer not ...", chances are that they must be totally rewritten to take
into account the new enabling condition.

Generally speaking, the inheritance anomaly has been classified in three
broad varieties [19] that we review below.

Partitioning of states. Inspired by the example above, one may disen-
tangle code and synchronization conditions by describing methods’ enabling
according to a partition of the object’s states. To describe the behavior of
class Buffer, for instance, the state can be partitioned in three sets: empty,
partial, and full, the former containing the states in which the buffer is
empty – so that get is inhibited – the latter those in which it is full – so that
is put to be disallowed. One can then specify

put: requires not full
get: requires not empty

and refine the code of get and put to specify the state transitions. For in-
stance, get would declare the conditions under which the buffer becomes empty
or partial:

Object get() {
...
if ("buffer is now empty ") become empty;

2

else become partial;
}

The inheritance anomaly here surfaces again, as derived classes may force a
refinement of the state partition. As an example, consider adding a method
get2 that retrieves two elements at once. Alongside empty and full, it is
necessary to distinguish those states where the buffer contains exactly one
element. Clearly, the state transitions specified in get and put must be re-
described accordingly.

History-sensitiveness of acceptable states. When method enabling
rather than depending on the object’s state, as above, depends on its past
history, a different form of inheritance anomaly occurs. Suppose for instance
that we want to refine our buffer with a method gget that works like get but
that cannot be executed immediately after a get. Clearly, that can only be
achieved in Java adding code to get to keep track of its invocations. That is,
we have to rewrite the entire class. We will revisit this problem later on.

Modification of acceptable states. A third kind of anomaly happens
with mix-in classes, that is classes created to be mixed-into other classes to
add to their behavior. The typical situation arises when one wishes to enrich a
class with a method that influences the acceptance states of the original class’
methods. Our previous example of the method freeze belongs essentially to
this category of anomaly. Similarly, it is reasonable to expect to be able to
design a

class Lock {
...
void lock() { ...; }
void unlock() { ...; }

}

to be used to add lock capabilities to clients classes by means of the stan-
dard inheritance mechanism. But, clearly enough, (multiple) inheritance of
Lock and Buffer does nothing towards creating a lockable buffer, unless we
completely recode get and put to keep into account the state of the Lock
component of the object.

Although modern programming languages provide concurrency and inher-
itance, the inheritance anomaly is most commonly ignored. Indeed, Java and
C# are mainstream concurrent object oriented languages whose synchroniza-
tion primitives are based exclusively on (a non declarative use of) locks and
monitors.

Although no generally accepted solution has emerged so far, several ap-
proaches have appeared in the literature that mitigate the inheritance anomaly.
Our proposal, Jeeg, focuses on Java. Jeeg is a dialect of Java based on method
guards whose particularity is to address history-sensitive inheritance anomaly.

3

As in guard based languages, methods are labeled by formulae that describe
their enabling condition. The novelty of the approach is that we use (a ver-
sion of) Linear Temporal Logic [24] (LTL), so as to allow expressing properties
based on the history of the computation. Exploiting the expressiveness of LTL,
Jeeg is able to single out situations such as those described in the examples
above, thus ridding the language from the corresponding anomalies. Due to
the nature of the problem, it is of course impossible to claim formally that
a language avoids the inheritance anomaly or solves it. The matter depends
on the synchronization primitives of the language of choice, and new practice
in object oriented programming may at any time unveil shortcomings unno-
ticed before and leading to new kinds of anomalies. Nevertheless, since the
expressive power of LTL is clearly understood, one of the pleasant features
of Jeeg is to come equipped with a precise characterization of the situations
it can address. More precisely, we will see that all anomalies depending on
sensitivity to object histories expressible as star-free regular languages can, in
principle, be avoided in Jeeg.

The current implementation of Jeeg relies on the large body of theoretical
work on LTL, that provides powerful model checking algorithms and tech-
niques. Currently, each method invocation incurs an overhead that is linear
in the size of the guards appearing in the method’s class. Also, the evalua-
tion of the guards at runtime requires mutual exclusion guarantees that have
a (marginal) computational cost. When compared with the benefit of a sub-
stantially increased applicability of inheritance, we feel that this is a mild price
to pay, especially in the common practical situations where code overriding is
infeasible or cost-ineffective. At the same time, we are working on alternative
ways to implement the ideas of Jeeg, aiming both at a lower computational
overhead and at more expressive logics.

Jeeg is an aspect oriented language. Synchronization constraints, expressed
declaratively, are totally decoupled from the body of the method, so as to
enhance separation of concerns. The structure of the paper is as follows: §2
presents the language, while §3 cures the classical inheritance anomalies with
it; §4 treats the expressive power of Jeeg. More details on the language and
its current implementation are provided respectively in §5 and §6. In §7 we
discuss the performance overhead brought forth by the Jeeg methodology.
Finally, we discuss related and further work. The appendices provide some
optional material, most notably an example of Jeeg to Java translation.

2 A taster of Jeeg

Jeeg differs from Java for the use of new synchronization primitives which
replace the wait(), notify(), and notifyAll() constructs. In Jeeg the syn-
chronization code of a class is not inlined in its methods; rather it is specified

4

separately. This can be done either via a sync section of the class definition
or via an XML file associated with the class. In the former case, a Jeeg class
has the following structure:

public class MyClass {
sync {

....
}
// Standard Java class definition

...
}

The sync section consists of a sequence of declarations of the form:

m : φ;

where m is a method identifier and φ, the guard, is a formula in a given con-
straint language to be described shortly. Methods associated with a guard
are said guarded. Intuitively, m : φ means that at a given point in time a
method invocation o.m() can be executed if and only if the guard φ evaluated
on object o yields true. Otherwise, the execution of m is blocked until φ be-
comes true. Then, the resumption of m follows the familiar rules of the Java
notifyAll primitive. Guarded methods are executed in mutual exclusion at
the level of objects. Indeed, from a Java perspective, every guarded method
is implicitly synchronized. Synchronization constraints in Jeeg are thus exclu-
sively at the method level : there is no synchronized keyword and it is not
possible to define guarded regions.

The XML description of synchronization complies with the DTD of Ap-
pendix A and is described later in §5.

The expressive power of this model of synchronization depends of course
on the choice of the constraint language. Indeed, if we limit φ to Java boolean
expressions we obtain a declarative version of the standard synchronization
mechanism of Java.

2.1 The constraint language

Choosing the constraint logic is a trade-off between expressiveness and effi-
ciency, as the truth of formulae must be verified at every method invocation.
We need a logic more expressive than Java boolean expressions that, however,
does not substantially worsen the computational cost of formula evaluation, so
that the computational overhead does not overcome the expressiveness bene-
fits. A logic that suits our purpose is linear temporal logic (LTL) [24]. As we
shall see, (a variation of) LTL used in the context of Jeeg gives a substantial
improvement on the expressiveness of Java boolean expressions, allowing in

5

particular the vanishing of history-sensitive inheritance anomaly, and at the
same time keeps the overhead on evaluation time on the linear scale.

LTL introduces time in propositional and first order logic. It becomes
possible to reason about dynamic, evolving systems by expressing properties
referring to what happened in the past or to what will happen in the future.
For example, one can write:

Previous x > 0

which holds of those system states whose preceding state validates the propo-
sition ‘x is greater than 0.’ Or also:

x > 0 Since y < 0,

true if at some point in time y was less than 0 and at all subsequent instants
(that is since then) x has been positive.

The syntax of our constraint language of choice, CL is as follows.

φ ::= AP | !φ | φ && φ | φ || φ | Previous φ | φ Since φ

A formula φ of CL is defined starting from atomic formulas AP, denoted by
p, q, . . ., which are Java boolean expressions. We consider exclusively pure
boolean expressions, with no side-effects, method invocations, or references
to objects (other than the implicit references to self); also, φ can only re-
fer to private/protected fields of the class it belongs to. Note that we could
allow particular methods which can be assumed to have no side-effects, e.g.
Object.equal(), in an ad-hoc manner. CL has the obvious conjunction &&,
disjunction || and negation ! connectives. In addition to these, it provides
two temporal past operators: previous and since, whose informal meaning
we described before. This logic is a variation of LTL known as past tense
LTL [16]. By combining the basic operators it is possible to define two
interesting, self-explanatory, auxiliary ones: always, sometime. Formally,
Sometime φ , true Since φ and Always φ , !Sometime !φ. For the user’s
convenience, these operators are predefined in the Jeeg implementation.

All this would not be very helpful in our attempt to tackle the history-
sensitive anomaly without a way to refer to the history of object method
invocation. The notion of event introduced below serves this purpose.

Definition (Event). An event for object o is the execution of one of its
methods.

From this basic notion we can define Hπ(o), the history of object o in (a
concurrent) computation π. Informally, this is the sequence of the events of o
in π, in the order they occur, together with the states they connect. In order
to make this precise, observe that thanks to our assumption that guarded

6

public class Counter {

private int n = 0;

public void inc() {
n++;

}
public void dec() {

n--;
}

}

Figure 1: A simple counter

methods run in mutual exclusion, each computation unambiguously defines a
sequence of method invocations for each object involved. So, without loss of
generality, as far as o is concerned, the generic computation π will have the
shape

h0
0 · · · h0

j0o.m1h
1
0 · · · h1

j1o.m2h
2
0 · · · h2

j2 . . .

where mi’s are all the activations of a guarded methods of o in π and hi
0 · · · hi

ji

are sequences of Java heaps. (Such sequences arises by assignments to pub-
lic variables or method invocations – either of unguarded and other objects’
methods). Formally, Hπ(o) can then be defined by induction on k, the number
of o’s guarded methods in π,

Hπ(o) =
{
h0

j0
for k = 0,

Hπk
(o) mkh

k
jk

for k > 0

where πk is the subcomputation of π terminating just before the invocation
on o.mk.

Notice that such a definition makes perfect sense under our hypothesis.
As guards may only refer to private/protected variables, their value can only
be affected by invocation of methods of o. It is therefore a sensible choice
to assume h0

j0
h1

j1
h2

j2
· · · as the sequence of states of o for the evaluation of

temporal guards. Notice also that only the part of hk
jk

containing the values
of non-reference private/protected variables of o, say σk, is needed for that.
We therefore represent object histories by sequences such as

Hπ(o) ≡ σ0
m1→ σ1

m2→ σ2
m3→ σ3 . . .

where the computation π will most often remain implicit. To exemplify the
definition consider the simple counter class in Figure 1.

If we execute

7

n=0
inc ()

n=1
dec ()

n=2n=1
inc ()

Figure 2: History

n =2
inc()

n =0 n =0n =1
inc() dec()

n =0 n =1
inc()

C1

C2

C1

n=0

C1

n=1
C1

n=2

C2

n=0

C1

n=1

C2

n=0

C1

n=1

C2

n=1

C1

n=1

C2

n=0

Figure 3: Extracting the history

Counter c = new Counter();
c.inc();
c.inc();
c.dec();

we obtain the history in Figure 2. Interwoven executions in the presence of
concurrent objects easily get way more complex. Nevertheless, the notion of
history of each single object remains relatively simple. Figure 3, for instance,
illustrates histories in the case of two concurrent threads executing the code
above on two distinct counters.

For practical convenience we will think of event mi as a reference to a special
identifier event in σi. So, we will write

H(o) ≡ σ0σ1σ2σ3 . . .

with the understanding that σi binds the identifier event to (a value represent-
ing method) mi. (References to event are undefined in σ0.) For example, in
the third state in Figure 2, event yields inc. Identifier event can be used by
CL. In this way history information finds its way into our constraint language.

8

Next, we give a formal semantics to CL by defining the relation Hπ(o) |= φ
expressing that property φ holds of object o after a computation π. Let Σ
denote Hπ(o). For all indexes k in Σ, we define Σk |= φ, that is φ holds at
time k, by structural induction on φ as follows.

Σk |= p iff σk |= p (p is true at σk)

Σk |= !φ iff not Σk |= φ

Σk |= φ || ψ iff Σk |= φ or Σk |= ψ

Σk |= Previous φ iff k > 0 and Σk−1 |= φ

Σk |= φ Since ψ iff Σj |= ψ for some j ≤ k,

and Σi |= φ for all j < i ≤ k

Finally, we convene that Σ |= φ iff Σ0 |= φ.

3 The inheritance anomaly

A striking example of inheritance anomaly, borrowed from [19] and already
mentioned in the Introduction, applies to the class Buffer in Figure 4, a simple
implementation of a bounded buffer in Java. Consider defining a subclass of
Buffer that provides an additional method gget that removes an element from
the buffer only if the last operation performed by the buffer was not a get.
The class HistoryBuffer in Figure 5 is a possible solution. It illustrates a
characteristic occurrence of the inheritance anomaly. Ideally, we would expect
method gget to be independent from the methods defined in the parent class.
A deeper analysis shows that gget can only be implemented if both inherited
are redefined, resulting in the loss of any code reuse that inheritance should
have provided.

The example in Figure 5 follows closely the original presentation seen
in [19]. However, it is possible to minimize the amount of code rewriting
relying on the implementation of the methods get and put found in the super-
class. We could write:

public class HistoryBuffer extends Buffer {

boolean afterGet = false;

public HistoryBuffer(int max) {super(max);}

9

public class Buffer {

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];

}

public synchronized Object get() throws Exception {
while (current<=0) {

wait();
}
current--;
Object ret = buf[current];
notifyAll();
return ret;

}

public synchronized void put(Object v) throws Exception {
while (current>=MAX) {

wait();
}
buf[current] = v;
current++;
notifyAll();

}
}

Figure 4: Concurrent bounded buffer in Java

10

public synchronized Object gget() throws Exception {
while ((current<=0)||(afterGet)) {

wait();
}
afterGet = false;
return super.get();

}
public synchronized Object get() throws Exception {

Object o = super.get();
afterGet = true;
return o;

}
public synchronized void put(Object v) throws Exception {

super.put(v);
afterGet = false;

}
}

This comes at the price of some redundant synchronization. Nevertheless, the
problem remains. The addition of the method gget forces us to revise the
implementation of seemingly unrelated inherited methods.

This kind of anomaly arises from the fact that gget is a history-sensitive
method. Generally speaking, the inheritance anomaly depends on the syn-
chronization primitives present in the language, and different primitives re-
sult in different varieties of anomaly [19]. In particular, languages based on
method guards and their cousin technologies run the risk of suffering from
history-sensitiveness of acceptable states. This is indeed the case of Jeeg, as
its synchronization mechanisms are based on a variation of method guards.
Therefore, a good test of expressiveness for Jeeg is given by handling subclass-
ing by history sensitive methods, and gget above. It should not come as a
surprise now that the additional expressive power added to method guards by
the temporal aspects of CL suffices to solve several occurrences of the inheri-
tance anomaly. In this section we exemplify such expressiveness, while in the
following one we try to quantify it formally.

Consider the Jeeg version of the class Buffer as defined in Figure 6. We
can define a class HistoryBuffer in Jeeg as in Figure 7. This example shows
how the use of the temporal operator Previous avoided the occurrence of the
inheritance anomaly. We no longer need to introduce an instance variable
to keep track of the last operation performed. CL gives us enough expressive
power to do without.

As already discussed in the Introduction, a different kind of inheritance

11

public class HistoryBuffer extends Buffer {

boolean afterGet = false;

public HistoryBuffer(int max) {super(max);}

public synchronized Object gget() throws Exception {
while ((current<=0)||(afterGet)) {

wait();
}
current--;
Object ret = buf[current];
afterGet = false;
notifyAll();
return ret;

}
public synchronized Object get() throws Exception {

while (current<=0) { wait(); }
current--;
Object ret = buf[current];
afterGet = true;
notifyAll();
return ret;

}
public synchronized void put(Object v) throws Exception {

while (current>=MAX) { wait(); }
buf[current] = v;
current++;
afterGet = false;
notifyAll();

}
}

Figure 5: The class HistoryBuffer in Java

12

public class Buffer {

sync {
put : (current < MAX);
get : (current > 0);

}

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];

}

public Object get() throws Exception {
current--;
Object ret = buf[current];
return ret;

}

public void put(Object v) throws Exception {
buf[current] = v;
current++;

}
}

Figure 6: The Buffer class in Jeeg

13

public class HistoryBuffer extends Buffer {

sync {
gget: (Previous (event != get)) && (current > 0);

}

public HistoryBuffer(int max) {
super(max);

}

public Object gget() throws Exception {
current--;
Object ret = buf[current];
return ret;

}
}

Figure 7: The HistoryBuffer class in Jeeg

anomaly that plagues guard-based languages arises in the case of mix-in classes.
In [19], the authors use multiple inheritance to show this variant of the inher-
itance anomaly. Java and Jeeg do not provide multiple inheritance, but the
use of interfaces results in similar problems. Consider the class LockBuf in
Figure 8. This is a subclass of the class Buffer that implements the Lock
interface resulting in a lockable buffer. A locked buffer must not accept any
other message than unlock. One would expect the newly introduced methods
to be orthogonal to the inherited ones (this would seem even more natural if
they were inherited by multiple inheritance). Naturally, in Java, we cannot
simply implement the Lock interface to have a lockable buffer, as methods
put and get need to be redefined to account for the new locked and unlocked
states, possibly introducing a new boolean variable locked to distinguish the
two states the buffer can be into. Jeeg solves the problem elegantly, as can be
seen in Figure 8, again by exploiting the temporal operators of the constraint
language. Indeed, lock and unlock are history-sensitive methods. Note that
the synchronization constraints of the inherited methods are overridden, while
the method definitions are not. As explained in §5 below, in Jeeg method
definitions and their synchronization constraints are orthogonal and can be
overridden/inherited separately. As expected, the syntax super.getConstr
allows us to refer to the synchronization constraint of a given method, get in
this case, as defined in the super class. In general, for the constraint attached
to method m in the super class, we write super.mCostr.

14

public interface Lock {
public void lock();
public void unlock();

}

public class LockBuf extends Buffer implements Lock {

sync {
get : (super.getConstr) &&

(! Previous (event==lock));
put : (super.putConstr) &&

(! Previous (event==lock));
lock : (! Previous (event==lock));
unlock : true;

}

public LockBuf(int max) {
super(max);

}

public void lock() { }

public void unlock() { }
}

Figure 8: A lockable buffer

4 Expressiveness of Jeeg

When introducing a new synchronization primitive in a concurrent object ori-
ented language, it is often difficult to assess its impact on the inheritance
anomaly in a quantitative manner. Building on the large body of results on
LTL, such analysis is however possible for Jeeg. In particular, we will adapt
to our context a characterization of LTL expressiveness in term of ‘star-free’
regular languages. (For a thorough introduction to LTL the reader is referred
to [6].)

The question we are interested in is: to what degree does Jeeg solve the
inheritance anomaly? According to [19], in a language like Java the anomaly
arises when the observable behavior of an object is more complex than what
can be ascertained from its internal state. For instance, the internal state
of a Buffer object cannot account for the information of whether or not the

15

last method to be executed was a get. Therefore, in order to define gget,
we need to refine the internal state of the object, which comes at a heavy
price. The constraint language of Jeeg, however, allows to describe sequences
of events and so to ascertain more behaviors from the same state. As long as
CL can describe a certain sequence, we can write a constraint that avoids the
need of state refinement. A measure of how much of the inheritance anomaly
disappears in Jeeg can thus be obtained by measuring which sequences of
states are definable in CL. For the purpose of this section, we assume AP finite.

Definition (General Regular Expressions). Given a finite alphabet
A, the regular expressions over A∪ {ε}, where ε is a special symbol such that
ε 6∈ A, are defined by the following grammar.

re ::= ε | a | re · re | re+ re | ¬r | re∗
where ε denotes the empty word, a ∈ A denotes the language consisting of a
single string a, and ·, +, ¬ and ∗ represent respectively language concatenation,
union, negation with respect to A∗ and Kleene closure. The star-free regular
expressions are the regular expressions with no occurrence of ∗.

A classical result about LTL says that the sets of state sequences definable
by LTL formulae on atomic propositions AP coincide with the star-free regular
languages on the alphabet ℘(AP), the powerset of AP. Spelling this out, a set
of state sequences X is the set of all Σ that satisfy a given φ of LTL if and
only if X is a star-free regular language. (The reader is referred to [28] for the
details.)

Applied to our framework, this result gives a first answer to our question
above: CL can define the sets of sequences of states that are star-free regular
languages on finite subsets of AP. To refine this statement, let us observe that
we can identify a certain state of an object (or better, its part expressible in
CL), by a boolean formula on its (private/protected) field’s values. Let Ac

be the set of these boolean expressions. It follows that a certain sequence of
states can be identified by a set of formulae P in Ac. Note that, in general,
P will denote a set of sequences of states, that is, all the sequences such
that Σ |= P (meaning σi |= pi, for every i). In this context, the following
theorem formalizes the correspondence (from the point of view of the class C)
between sequences of states denoted by CL formulae and sequences of states
corresponding to star-free regular expressions on Ac.

Theorem (Characterizing CL). Let C be a class and X a set of state
sequences. Then, for a given CL formula φ on C, X = {Σ | Σ |= φ} if and
only if there exists a star-free regular expression re on AC such that Σ ∈ X iff
Σ |= P for some P ∈ re.

It is interesting to specialize this result when AP is restricted to conjunc-
tions of atomic formulae of the kind event == m. In such case, CL expresses

16

properties of sequences of events – as states are only distinguishable in that
respect – and captures precisely those sets of sequences of events that are
star-free regular languages on the alphabet of method identifiers.

The characterization in terms of regular languages provides also intuition
about what cannot be expressed in CL and, therefore, will result in the oc-
currence of inheritance anomalies. We show an admittedly contrived example
below.

Example. Consider a class representing a simple shared resource which
can be simultaneously held by multiple clients:

public class SharedResource {
sync {

request: true;
release: true;

}
public void request() {

...
}
public void release() {

...
}
...

}

Before using the resource, clients are supposed to call the method request.
When the client does not need the resource anymore, it should call the method
release. To keep the example simple, we assume clients to respect this pro-
tocol.

Suppose we want to define a class SeizableResource which allows clients
to gain exclusive access to the shared resource. This can be accomplished
by providing an additional method exclusiveRequest. Clearly, this method
should be allowed to execute only when no other client is using the resource.
To accomplish this we must make sure that any call to the method request
was followed by a call to the method release. Unfortunately this constraint
cannot be expressed by LTL. Indeed from a language point of view, we want
to know whether the history of the object is a word in the language:

M ::= request M release | MM | ε | ...

where the dots stand for any method identifier in the class SharedResource.
It is well known that this language, a language of balanced parentheses, is
not star-free nor regular. As a consequence, it is not possible to write a
synchronization constraint for the method exclusiveRequest in CL, that is
to find a formula that describes the states where exclusiveRequest is enabled.

17

What we need to do is to keep track manually of whether the resource is being
used or not:

public class SeizableResource extends SharedResource {
sync {
request : !(Previous (event==exclusiveRequest));
exclusiveRequest : (!(Previous (event==exclusiveRequest)))

&& (count==0);
}

int count = 0;

public void request() {
count++;
...

}

public void release() {
count--;
...

}

public void exclusiveRequest() { ... }
}

The derived class uses one counter count to ascertain whether the resource is
currently used by any client. To accomplish this book-keeping it is necessary
to redefine the base-class methods request and release.

The example above is typical. A constraint which cannot be expressed in
LTL must involve some form of recurrent counting. (For an in depth discussion
on these issues we refer again to [6, 27].)

Example. The classic HistoryBuffer example has been solved using Jeeg
in Figure 6. It is interesting to analyze the (simple) temporal constraint used
in the example in terms of star-free regular expressions. The constraint relative
to the gget method is the following:

(Previous (event != get)) && (current > 0);

For simplicity let us restrict ourselves to its temporal component:

(Previous (event != get))

In light of the previous discussion on the equivalence of (Past) LTL formulae
and star-free regular expressions we shall give the same constraint in its regular

18

expression form. Intuitively, the language the formula describes is that of ‘all
the words in the trace alphabet not ending with the symbol get’. We can
define A∗ ≡ ε + ¬ε. With abuse of notation we shall denote the formula
(event == get) simply as get. In this manner occurrences of the event get
in the history of the object could be recorded simply as get. The corresponding
(star-free) regular expression is:

¬(A∗ · get)
Which formalizes the intuitive set of all the words which do not end with the
symbol get.

5 Digging deeper into Jeeg

In this section we look deeper into the interaction between Jeeg synchroniza-
tion primitives and the other available language features.

Synchronized and unsynchronized methods

In Jeeg, methods for which a synchronization constraint is specified are ex-
ecuted in mutual exclusion. In Java terms, they are synchronized. On the
other hand, methods for which no synchronization constraint is specified have
no mutual exclusion guarantee. Clearly, an undisciplined use of unsynchro-
nized methods may lead to mutual exclusion problems. This is particularly
relevant in our setting as the evaluation of a guard must be atomic in order
to be meaningful. If an unsynchronized method attempts to modify an at-
tribute of the object while a guard is being evaluated we may end up with an
inconsistent result. A trivial example will clarify the situation.

public class Counter {
sync {

process : count%20==0;
}
protected count=0;
...
public inc() { count++;...}
public process() {...}

}

In the example above the method inc is not executed in mutual exclusion, as
a consequence it can modify the value of count during a call to the method
process and the evaluation of its guard. Naturally, a call to inc can change
the value of the guard for process after its evaluation, and this would leave the
method process to be executed in an inconsistent state. A similar situation

19

would occur if guards were allowed to use public attributes. To avoid these
situations, the attributes occurring in a guard must be accesses in mutual
exclusion with the evaluation of the guard. Therefore in Jeeg attributes used
in guards can only be modified by synchronized methods.

Java (and consequently Jeeg) allow methods and attributes to be declared
static. Static fields and methods are common to a class rather than to each of
its instances. To access a static attribute it is, therefore, not enough to own
the lock for a certain object instance. Indeed, such lock does not guarantee
mutually exclusive access to static attributes. The lock needed to obtain such
access must be on the class rather than on the object. As a consequence, static
fields can be only modified by static synchronized methods. Conversely static
synchronized methods own a lock on the class rather than on a specific object
instance. For this reason such methods are forbidden to modify non-static
object fields.

Another issue related to unsynchronized methods is that the step-wise
history of the object is not well defined as regards to their execution order.
Indeed, there can be two methods active at the same time. To force an order-
ing between unsynchronized methods we adopt the policy of accounting for
methods in the history according to the moment their execution finishes. No-
tice however that in a multiprocessor system, this notion is not well-defined. It
is therefore bad programming practice in such systems to rely on guards whose
truth values depend on the relative ordering of unsynchronized methods.

Method overloading

From a synchronization point of view Jeeg does not distinguish between differ-
ent versions of an overloaded method. The synchronization granularity stops
at the method identifier level.

In the example in Figure 9, the synchronization constraint applies to both
definitions of the overloaded method m. This choice is motivated by the fact
that synchronization constraints relate to the essential behavior of a method
which we feel should not be changed by overloading. One could certainly define
an overloaded method m whose definitions access the shared attributes of the
object in a completely different manner. It would not be difficult to support
these situations by basing synchronization constraints on method signatures
rather than identifiers.

Inheritance and method overriding

Consider a subclass Xbuf of Buffer as defined in Figure 10. There we assume
the existence of a support class Couple which only wraps up two values as an
object. The new class does not override any method of its base class, therefore

20

public class C {
int i = 0;

sync {
m : (event != m) since (i>0);

}

public void m(Object o) {
....

}

public void m(int i) {
....

}
}

Figure 9: Method overloading

the methods are inherited together with their synchronization constraints. The
additional constraint for the new method is independent of the existing ones.

In Jeeg method definitions and their synchronization constraints are com-
pletely decoupled. This scales up to method overriding and indeed it is possible
to selectively override the method definition, its synchronization constraint, or
both.

In Figure 8 we show an example of a class which does not override the
bodies of its get and put methods but overrides their synchronization con-
straints making them stricter. In this case we say that the synchronization
constraint for the super-class has been covariantly redefined. In [7], the au-
thor favors this manner of synchronization overriding. There is, however, no
general agreement on this issue. As an example the language Rosette [26] is
based on making synchronization constraints less strict in the derived classes,
and other authors argue in favor of this choice [23, 22]. In Jeeg both man-
ners of synchronization overriding are possible, indeed we believe that both
techniques have their use in different situations. As an example of a derived
class which makes the synchronization constraints of the parent less stringent
consider the a simple class representing a resource (Figure 11). The base class
Resource allows the acquire method to be called only when the resource is
not already taken. The derived class ReadOnlyResource must adopt a less
stringent policy, it models a read-only resource, as a consequence it can be
shared without mutual exclusion problems. For this reason it makes sense to
allow multiple clients to share the resource, to accomplish this the synchro-

21

public class Xbuf extends Buffer {

sync {
get2 : (current > 1);

}

public Couple get2() {
current--;
Object ret1 = buf[current];
current--;
Object ret2 = buf[current];
return new Couple(ret1, ret2);

}
}

Figure 10: Inheriting synchronization constraints

nization constraint of the method acquire is made less stringent than in the
parent class.

In Figure 12 we see the other extreme, a class which overrides a method
but does not override its synchronization constraint which remains the one
inherited. Its semantics is straightforward, the method get returns the ob-
ject stored in the buffer as a chunk of bytes. Clearly this does not affect
its concurrent behavior and it is safe to keep its synchronization constraint
unchanged.

Jeeg and Exceptions

Method execution might be stopped by the occurrence of a unhandled excep-
tion. With respect to the object history two possibilities arise. We could
choose to keep the method in the history or to ignore it. It is possible to
provide examples favoring one or the other approach. Both solutions pose no
implementation challenges. In the current implementation, we chose to put in
the history only methods which completed their execution.

XML constraints

In order to favor the separation between method definitions and synchro-
nization code, Jeeg allows for the synchronization constraints to be specified
separately in a XML file. When the Jeeg compiler processes a source file
ClassName.j1 it looks for a XML file named ClassName.xml. If it finds the
file then it validates it against the relevant document type definition (DTD),

22

public class Resource {
int ownerID;
boolean busy;
....
sync {

acquire : ! busy;
release : true;

}
public void acquire(int ID) {

ownerID = ID;
busy = true;

}
public void release() {

busy = false;
}

}

public class ReadOnlyResource extend Resource {
sync {

acquire : true;
}

}

Figure 11: A resource hierarchy

which can be found in Appendix A. If the validation is successful the synchro-
nization constraints it describes are weaved into the resulting class file. If a
sync section is present in the class definition, it is overridden by the external
constraints in the XML file.

To give a quick taste of how to define synchronization constraints using a
XML file, consider the bounded buffer example in Figure 7. Its sync section
is equivalent to the following XML description:

<?xml version=’1.0’ ?>
<!DOCTYPE Jeeg SYSTEM "Jeeg.dtd">

<Jeeg>
<Class name="HistoryBuffer" super="Buffer" version="j1">

<Method name="gget">
<And>
<Arg>

23

public class SerBuf extends Buffer {

public Object get() {
current--;
// A byte representation of buf[current]
byte[] b = ...
return b;

}
}

Figure 12: A serializing buffer

<Previous>
<BooleanExpression>

event != get
</BooleanExpression>

</Previous>
</Arg>
<Arg>
<BooleanExpression>

current > 0
</BooleanExpression>

</Arg>
</And>

</Method>

</Class>
</Jeeg>

6 Implementation

The current Jeeg implementation1 is a pre-processor which, given a Jeeg source
file, generates an equivalent .java file and compiles it to byte-code. The result-
ing class files rely on a runtime system which must be in the CLASSPATH of
the Java Virtual Machine (JVM). A requirement on the JVM is that it must
be Java 2 compliant.

The purpose of the runtime system is to implement a run-time evaluator
for the CL formulae used in the program.

1Available from www.brics.dk/~milicia/Jeeg/

24

www.brics.dk/~milicia/Jeeg/
http://www.brics.dk/~milicia/Jeeg/

Run time evaluation of CL Expressions

The CL language is essentially a variation of LTL based on past-tense temporal
operators. Every time a guarded method is called its execution depends on the
truth value of a certain temporal formula: its synchronization constraint. If
the constraint evaluates to true the method is executed, otherwise it is blocked
until the condition becomes true.

Run-time evaluation of LTL formulae is a recurrent problem. In an wider
context the problem can be stated as follows:

Given a finite trace Σ and a LTL formula φ, does Σ |= φ ?

This problem appears frequently when trying to apply model checking tech-
niques to the verification of Java or C++ programs [11, 25, 8, 10, 5, 15].

Traditionally, LTL model checking is accomplished by first translating the
LTL formula in a Büchi automata [4] and then proving properties on them [13,
4]. Although in [25, 11] the authors discuss why such a solution is not ideal
to the runtime verification on finite traces, this approach is nevertheless used
by the JPaX runtime analysis tool [8].

Dealing with past tense operators gives us an advantage. The dynamic
programming algorithm presented in [25] requires as input the trace of the
program to evaluate a certain formula, indeed it traverses the program trace
backwards. This implies that the algorithm is not ‘online’, i.e. it cannot
be executed at the same time as the program it refers to. By duality, the
same algorithm becomes online for the past fragment [9]. The algorithm has
complexity O(m) where m is the size of the LTL formula. An alternative
approach would rely on modifying the automata-based algorithm proposed
in [8] to adapt them to past tense operators.

An implementation has thus at least two choices available. The current
Jeeg implementation relies on a variation of the dynamic programming algo-
rithm. We found this choice to be the most natural. The algorithm is efficient,
indeed weakening the logic would not result in a faster algorithm. Intuitively,
given a Jeeg program and its set of synchronization constraints the compiler
generates a run-time evaluation algorithm for them and weaves it into the
business code of the program. At every step in the object history, i.e. method
execution, the evaluator updates the truth values of the synchronization con-
straints.

The evaluation algorithm consists of (repeated) visits to the syntax tree of
the formula.

To focus the ideas, let us consider the example of the temporal formula

(Previous(x > 0)) && !(y < 0)

and its corresponding tree:

25

And

Previous

x>0

Not

y<0

Every node of the tree represents a subformula of the original temporal formula
and is labeled by two attributes, now and before which respectively hold the
truth value of the corresponding sub-formula at the current time and one step
before. The task of the algorithm is to visit the tree and update the values of
the two attributes for every node.

In §2.1 we adopted a strong semantics for our temporal operators, that is
we assumed that Previous can only be applied at times greater than zero. As
a consequence, at the initial instant the before attribute of every sub-formula
is set to false. The truth value of the now attribute is initialized when the
object is created and depends on the initial state of the object. For every
node φ we use the notation φ0 to refer to its first (left-wise) child and φ1

to its second child, if the node represents a binary operator. Attributes of
the children are denoted by φi.now and φi.before. The algorithm performs a
simple depth first visit of the tree and for every node φ updates the value of
the before and now fields. First we perform the assignment φ.before = φ.now,
then, depending on the node type, we updated the now field according to the
following rules:

previous now = φ0.before
always now = before and φ0.now
sometimes now = before or φ0.now
since now = φ1.now or (before and φ0.now)
and now = φ0.now and φ1.now
or now = φ0.now or φ1.now
not now = not φ0.now
AP now = eval(φ)

To clarify the working of the algorithm, consider a simple formula:

Previous(x == 1)

and a trivial counter class as the one we presented in Figure 1. Suppose we
execute the code:

26

n=0 n=1
inc () inc ()

Previous

now=false
before=false

x==1

now=true
before=false

n=2
dec ()

n=1

Previous

now=true
before=false

x==1

now=false
before=true

Previous

now=false
before=true

x==1

now=true
before=false

Previous

now=false
before=false

x==1

now=false
before=false

Figure 13: History

Counter c = new Counter();
c.inc();
c.inc();
c.dec();

then Figure 13 shows how the attributes in the formula tree evolve with respect
to the history of the object c.

It is easy to see that the complexity of the run-time evaluation algorithm
is linear in the size of the formula tree. The run-time overhead involved is
thus linear in the size of the synchronization constraints.

Synchronization Manager

For the evaluation algorithm to be sound, formulae must be evaluated at ev-
ery step in the program history, i.e. after every method execution. This is
accomplished by a synchronization manager through a mechanism of method
call interception (MCI), typical of the implementation of aspect oriented lan-
guages.

The synchronization manager takes control after a method call. Then
it checks whether the synchronization constraint for the method is verified.
Note that the constraint must not be evaluated at this stage, its truth value
is already available. This is the case as the truth value of synchronization
constraints is updated after the execution of a method. If the constraint is
true the control goes back to the method code, otherwise the synchronization
manager performs a wait() and put the method on hold. After the execution
of a method is accomplished, the control shifts back to the synchronization
manager. At this point the synchronization constraints are evaluated. Since
the execution of a method may change the state of the object, after updating

27

the value of the synchronization constraints the manager issues a notifyAll()
statement. Blocked methods may then attempt to proceed again.

To perform its tasks the synchronization manager must have access to the
private/protected fields of the object. To accomplish this we chose to make
the synchronization manager an inner class of the object it manages.

A complete example showing the Java code generated from a Jeeg source
file can be found in Appendix B.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

Constraint Size

T
im

e
in

 m
s

Machine 3
Machine 2

Machine 4
Machine 1

Figure 14: Object creation overhead

7 Benchmarks

To assess the feasibility of our approach we performed some targeted bench-
marking on the current prototype implementation of the Jeeg compiler. In
this section we outline our results.

7.1 General setting

When benchmarking code running in a JVM care must be taken to avoid
interference from the garbage collector. Furthermore a single measurement
is no valid indication of the actual time spent during an operation. Multiple
measurement of the same experiment must be performed instead. We take
their average as a fair result of our experiment.

28

Although Java is designed to be platform independent, different implemen-
tations of the virtual machine for different operating systems might perform
differently. We chose to perform our tests on two popular operating systems:
Linux and Windows 2000.

We chose to run the virtual machine with no optimizations, in particular
the code was only interpreted, the just in time compiler was turned off. In
this manner we could run the same tests a number of times without speed-
ups. Our benchmarks are thus a measure of the worst case scenario, when the
code is executed only once and thus no gain is to be expected by just-in-time
compilation. All the programs were compiled and run using the J2SE 1.4 and
the -Xint option.

To have a better feel of the performance impact in a realistic setting we
performed our tests on low-end and high-end machines. Below we list the
machines we used:

Machine 1 AMD 1800+XP 256MB Windows 2000 Jdk 1.4
Machine 2 AMD 1800+XP 256MB Linux RedHat 6.2 Jdk 1.4
Machine 3 Celeron 300Mhz 192MB Windows 2000 Jdk 1.4
Machine 4 Pentium 4 1,6 Ghz 512MB Linux 2.4.18 Jdk 1.4

The code used for the benchmarks is available on the web at: www.brics.dk/
~milicia/Jeeg.

7.2 Benchmark results

The overhead introduced by our methodology is felt first at the time of object
creation, and then, whenever a call to a synchronized method is performed.
We begin by showing the test results in these two situations and conclude with
an evaluation of the performance impact of the Jeeg methodology.

Object creation

At object creation time the structures representing the (temporal) formulae of
the synchronization constraints must be built. This results in the creation of as
many objects as logic operators present in the formulae. As a consequence we
expect object creation to become slower as synchronization constraints grow
more complex. To quantify the overhead we timed the creation of objects with
increasing complex synchronization constraints (in the size of the formulae
involved). The constructor of the object was otherwise empty. The results of
our tests can be found in Figure 14.

29

www.brics.dk/
http://www.brics.dk/~milicia/Jeeg
~milicia/Jeeg
http://www.brics.dk/~milicia/Jeeg

0

20

40

60

80

100

120

140

160

0 50 100 150 200

Constraint Size

Ti
m

e
in

 m
s

Machine 2

Machine 3

Machine 4

Machine 1

Figure 15: Method call overhead

Method call

Every time a (synchronized) method is called the algorithm described in § 1
must be performed. This results in the evaluation of all synchronization con-
straints. The overhead we face is thus proportional to the sum of the sizes of
the logic formulae describing the constraints. Clearly every method call will
incur in the same overhead regardless of the size of its own synchronization
constraint.

To measure the overhead involved in our technique we tested method calls
on objects with increasing complex synchronization constraints. We made
sure, to avoid any biased result, that the constraints would always evaluate to
true. Method calls performed no function, in this way we made sure that we
only measured the unavoidable overhead brought up by our technique. The
results of our tests can be seen in Figure 15.

A different performance problem could result from the fact that the syn-
chronization constraints must be evaluated in mutual exclusion. The object
will be locked during the evaluation. If a number of threads are actively ac-
cessing the object this could slow down the method calls sensibly. To evaluate
this issue we performed the test above with an increasing number of threads.
The results can be found in Figure 16. We can see that in the presence of large
constraints and over 50 threads actively using the objects we face a sensible

30

1
30

50
73

122

1248163264
0

200

400

600

800

1000

1200

Ti
m

e
in

 m
s

Con
str

ain
t S

ize

Threads

Machine 2 Machine 3

1
30

50
73

122

1248163264
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
in

 m
s

Con
str

ain
t S

ize

Threads

Figure 16: Method Call Overhead

slow-down.
We wish to remark that Jeeg takes care of all the synchronization con-

straints of the object. An equivalent Java program must accomplish the same
results in a different fashion, for example using boolean variables to keep
track of its state. An interesting experiment is thus, the comparison of two
semantically equivalent Jeeg and Java programs. We use as our test-bed the
HistoryBuffer example of §3. Figure 17 compares the execution time for a
method call to a Java implementation of the class HistoryBuffer (as seen in
Figure 5) and its Jeeg counterpart (as seen in Figure 7). The high-end ma-
chines feel almost no performance loss, on the other hand if many threads are
active at the same time, the low-end machine suffers from sever performance
losses. However even the low-end machine performs well in the presence of as
many as 64 active threads, as Figure 18 shows.

7.3 Evaluation

Our tests show that under low-load (below 70 threads) even the most com-
plex synchronization constraints yield little performance overhead. Low-end
machines face worse scalability problems due to the additional time the object
is kept locked. If the machine cannot perform the evaluation algorithm fast
enough a number of threads will be kept waiting.

Experience shows that the synchronization constraints of an object seldom
reach a length of over 10 or 20 logical connectives. Our benchmarks show that
for such objects the performance loss is negligible even in case of high-load
(> 200 active threads).

31

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Threads

T
im

e
in

 m
s Machine 3

Java

Machine 1

Figure 17: HistoryBuffer performances

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60

Threads

T
im

e
in

 m
s

Java

Machine 3

Figure 18: HistoryBuffer performances (details)

32

We are currently evaluating possible optimization strategies for the formu-
lae evaluation algorithm.

8 Related work

The idea of specifying synchronization constraints in programming (as opposed
to verifying) using a temporal logic has, to the best of our knowledge, not been
explored before. Indeed, only recently the problem of run-time evaluation of
LTL formulae has come to the attention of the research community [5, 11].

The idea of a complete separation between the definition of a method
and its synchronization constraints is known to be helpful in avoiding the
inheritance anomaly [19, 18, 17]. In this work, we uphold the concept by
making synchronization code and method definitions totally independent, to
the degree that they need no be specified in the same file. In this regard
Jeeg is inspired by the current trends in component based and aspect oriented
programming [14].

Frølund proposed a methodology for selective inheritance of synchroniza-
tion constraints [7]. His proposal, based on method guards, favors the co-
variant redefinition of synchronization constraints in derived classes. As we
pointed out in §5, this manner of synchronization redefinition is not universally
accepted. Indeed, some languages [26, 20] take the opposite view and allow
the derived class to make the synchronization constraints less stringent, that
is contravariant. Examples exist in favor of both approaches; as a consequence
we decided to allow both manners of overriding. From the point of view of the
inheritance anomaly, Frølund’s methodology is subject to the usual problems
related to method guards, i.e. the history dependent variants of the anomaly.

Meseguer [20], analyzed the problem of the inheritance anomaly in the
context of his rewriting logic based language Maude [21]. Meseguer’s work
aimed at removing the need for synchronization code in the first place. This
technique, based on rewriting logic, is closely tied to the Maude system and
we are not aware of any adaption to imperative object oriented languages such
as Java.

Different lines of work were taken by Matsuoka and Yonezawa: the first
based on the notion of reflection [19], the second aiming at reducing the
amount of synchronization code to a minimum [19].

An approach more in line with aspect oriented programming is presented
in [2]. Although their use of Abstract Communication Types (ACT) does
provide a way to tackle the history sensitive anomaly in a modular fashion,
it is still based on ad-hoc coding. Every instance of the anomaly requires
the programmer to write a specific ACT to solve it. The problem is thus
moved from the object to the ACT rather than solved. Similar results were

33

obtained using the synchronization patterns [17] and synchronization rings [12]
methodologies.

9 Conclusions

We introduced Jeeg, a dialect of Java were synchronization constraints are
written in linear temporal logic and are specified in a declarative manner. We
showed by examples that the additional expressive power of our synchroniza-
tion language, CL, is helpful in treating the inheritance anomaly. Also, we
provided a characterization of the expressiveness of CL in terms of regular
languages that yields a precise description of the sequences of events we can
express. Finally, we described the current implementation of Jeeg.

Propositional linear temporal logic seems to us to offer an excellent balance
between expressiveness and computational overhead. It would indeed be in-
teresting to base Jeeg on quantified linear temporal logic (QLTL) or monadic
second order logic (MSOL), ‘second order’ variations of LTL of greater expres-
siveness. In particular, QLTL and MSOL stay to regular languages as LTL
stays to star-free regular languages. However, while giving us the power to ex-
press synchronization policies as complex as regular languages or more, these
options would present an increased computational cost that we are currently
investigating.

With regards to the Jeeg compiler, we are exploring the possibility of
optimizing the LTL evaluation procedure by using ad-hoc static-analysis tech-
niques.

The current implementation of the Jeeg compiler is available online at
www.brics.dk/~milicia/Jeeg/.

Acknowledgements

We would like to thank Oliver Möeller who extensively reviewed an early
version of the paper and answered all our questions about LTL model checking.
Thanks to Luigi Santocanale for the early discussions on object traces. A
number of people read the original manuscript, we are grateful to all of them
for their feedback.

References

[1] P. America. POOL: Design and experience. OOPS Messenger, 2(2):16–
20, Apr. 1991.

[2] L. Bergmans. Composing Concurrent Objects. PhD thesis, University of
Twente, 1994.

34

www.brics.dk/~milicia/Jeeg/
http://www.brics.dk/~milicia/Jeeg/

[3] J.-P. Briot and A. Yonezawa. Inheritance and synchronization in con-
current OOP. In European Conference on Object-Oriented Programming
(ECOOP’87), volume 276 of Lecture Notes in Computer Science, pages
32–40. Springer-Verlag, 1987.

[4] E. Clarke, O. Grumberg, and S. Peled. Model Checking. The MIT press,
1999.

[5] D. Drusinsky. The temporal rover and the atg rover. In SPIN Model
Checking and Software Verification, volume 1885 of Lecture Notes in
Computer Science, pages 323–330. Springer-Verlag, 2000.

[6] E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 996–1072,
Amsterdam, 1990. Elsevier Science Publishers.

[7] S. Frølund. Inheritance of synchronization constraints in concurrent
object-oriented programming languages. In ECOOP ’92, European Con-
ference on Object-Oriented Programming, volume 615 of Lecture Notes in
Computer Science, pages 185–196. Springer-Verlag, 1992.

[8] D. Giannakopoulou and K. Havelund. Automata-based verification of
temporal properties on running programs. In Automated Software En-
gineering 2001 (ASE’01), San Diego, California, November 2001. IEEE
Computer Society.

[9] K. Havelund and G. Rosu. Monitoring java programs with java pathex-
plorer. In First Workshop on Runtime Verification (RV’01), volume 55
of Electronic Notes in Theoretical Computer Science, July 2001.

[10] K. Havelund and G. Rosu. Monitoring programs using rewriting. In
Automated Software Engineering 2001 (ASE’01), San Diego, California,
November 2001. IEEE Computer Society.

[11] K. Havelund and G. Rosu. Testing linear temporal logic formulae on finite
execution traces. Technical Report TR 01-08, RIACS, May 2001.

[12] D. Holmes. Synchronization Rings – Composable Synchronization for
Object-Oriented Systems. PhD thesis, Macquarie University, 1999.

[13] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997. Special Issue: Formal Meth-
ods in Software Practice.

35

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In ECOOP’97—
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer, 1997.

[15] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime
assurance based on formal specifications. In Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and
Applications, 1999.

[16] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In
R. Parikh, editor, Proceedings 3rd Workshop on Logics of Programs,
Brooklyn, NY, USA, 17–19 June 1985, volume 193 of Lecture Notes in
Computer Science, pages 196–218. Springer-Verlag, Berlin, 1985.

[17] C. V. Lopes and K. J. Lieberherr. Abstracting process-to-function rela-
tions in concurrent object-oriented applications. Lecture Notes in Com-
puter Science, 821:81–99, 1994.

[18] S. Matsuoka, K. Wakita, and A. Yonezawa. Synchronization constraints
with inheritance: What is not possible — so what is? Technical Report
TR 90-10, Department of Information Science, the University of Tokyo,
1989.

[19] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-
oriented concurrent programming language. In A. Gul, W. Peter, and
Y. Akinori, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 107–150. MIT Press, 1993.

[20] J. Meseguer. Solving the Inheritance Anomaly in Concurrent Object-
Oriented Programming. In Proceedings of the ECOOP ’93 European
Conference on Object-oriented Programming, LNCS 707, pages 220–246.
Springer-Verlag, July 1993.

[21] J. Meseguer and T. Winkier. Parallel programming in maude. In Pro-
ceedings of Research Directions in High–Level Parallel Programming Lan-
guages, volume 574 of Lecture Notes in Computer Science, pages 253–295,
Berlin, Germany, June 1992. Springer.

[22] O. Nierstrasz and M. Papathomas. Viewing Objects as Patterns of Com-
municating Agents. In Proceedings of the OOPSLA/ECOOP ’90 Con-
ference on Object-oriented Programming Systems, Languages and Appli-
cations, pages 38–43, Oct. 1990. Published as ACM SIGPLAN Notices,
volume 25, number 10.

36

[23] O. Nierstrasz and M. Papathomas. Towards a type theory for active ob-
jects. ACM OOPS Messenger, Proceedings OOPSLA/ECOOP 90 Work-
shop on Object-Based Concurrent Systems, 2(2):89–93, Apr. 1991.

[24] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77),
pages 46–57. IEEE Computer Society Press, Oct. 31–Nov. 2 1977.

[25] G. Rosu and K. Havelund. Synthesizing dynamic programming algo-
rithms from linear temporal logic formulae. Technical Report TR 01-15,
RIACS, May 2001.

[26] C. Tomlinson and V. Singh. Inheritance and synchronization with
enabled-sets. In Proceedings of the OOPSLA ’99 Conference on Object-
oriented Programming Systems, Languages and Applications, 1989.

[27] Wolfgang Thomas. Languages, automata and logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, Amster-
dam, 1990. Elsevier Science Publishers.

[28] L. Zuck. Past Temporal Logic. PhD thesis, Weizmann Institute, 1986.

37

A The Jeeg Document type definition (DTD)

<!ELEMENT Jeeg (Class)>
<!ELEMENT Class (Method*)>
<!ATTLIST Class

name CDATA #REQUIRED
super CDATA #IMPLIED
version CDATA "j1"

>
<!ELEMENT Method (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ATTLIST Method name CDATA #REQUIRED>
<!ELEMENT Constraint (#PCDATA)>
<!ELEMENT BooleanExpression (#PCDATA)>
<!ELEMENT Previous (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ELEMENT Sometime (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ELEMENT Always (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ELEMENT Since (Arg, Arg)>
<!ELEMENT And (Arg, Arg)>
<!ELEMENT Or (Arg, Arg)>
<!ELEMENT Implies (Arg, Arg)>
<!ELEMENT Arg (Previous | Sometime | Always | Since |

And | Or | Implies | BooleanExpression)>

B The Java code generated from the Buffer exam-
ple

In this section we show the code generated by the Jeeg compiler from the
Buffer example presented in §3. Interface and class names referring to the
Jeeg runtime-system are normally fully qualified. However, to keep names
short here we write, for instance, PropositionalFormula instead of the fully
qualified org.brics.gm.jeeg.formulae.PropositionalFormula.

38

import org.brics.gm.jeeg.formulae.*;
import org.brics.gm.jeeg.events.*;

The include statements above
refer the Jeeg run-time sys-
tem.

public class Buffer {

protected SyncManager _sync = null;
protected void
_registerSyncManager(SyncManager s) {

this._sync = s;
s.makeStep();

}

Every Jeeg class requires a
synchronization manager as
described in §1. The method
_registerSyncManager is
used at object creation time
to specify which
synchronization manager will
take care of the class.

protected class SyncManager {

public SyncManager() {
}

The synchronization manager
is inserted as an inner class.

protected class BufferputProp1
implements PropositionalFormula {
public boolean eval() {
return (current <= MAX);

}
}

Propositional formulae
(p ∈ AP), are wrapped into
classes. Observe that the Java
inner class mechanism grants
the synchronization manager
full access on the
private/protected attributes
of the surrounding class.

protected class BuffergetProp1
implements PropositionalFormula {
public boolean eval() {
return (current > 0);

}
}

protected TemporalPropositionalFormula
TBufferputProp1 =
new TemporalPropositionalFormula(
new BufferputProp1());

protected TemporalPropositionalFormula
TBuffergetProp1 =
new TemporalPropositionalFormula(
new BuffergetProp1());

protected TemporalFormula
getConstr = TBuffergetProp1;

Appropriate temporal
formulae representing the
synchronization constraints of
the object are instantiated.
The classes used are taken
from the Jeeg run-time
system.

39

protected TemporalFormula
putConstr = TBufferputProp1;

protected int UNKNOWN = -1;
protected int get = 1;
protected int put = 2;
protected Event event =

new Event(UNKNOWN);

An unique identifier is gener-
ated for each method. This is
used to identify the events. At
object creation time, when the
history of the object is empty
the event variable takes the
UNKNOWN value.

public void makeStep() {
getConstr.eval();
putConstr.eval();

}

The makeStep method evalu-
ates the synchronization con-
straints. This is done using the
algorithm described in §1 after
every method execution.

public boolean getpre() {
return getConstr.getCurrentValue();

}
public void acquireget()
throws Exception {
while (! getpre()) {
Buffer.this.wait();

}
event = new Event(get,
System.currentTimeMillis());

}

public void releaseget()
throws Exception {
event.setEndTime(
System.currentTimeMillis());

makeStep();
Buffer.this.notifyAll();

}

For every method M the
synchronization manager has
two methods acquireM() to
be called before the execution
of M’s actual code and
releaseM() to be called when
M’s execution is completed.

public boolean putpre() {
return putConstr.getCurrentValue();

}

public void acquireput()
throws Exception {
while (! putpre()) {
Buffer.this.wait();

}
event = new Event(put,
System.currentTimeMillis());

}

Synchronization constraints
are wrapped into functions
name Mpre() where M is the
method the constraint refers
to. The conditions are
evaluated in the acquireM()
method.

40

public void releaseput()
throws Exception {
event.setEndTime(
System.currentTimeMillis());

makeStep();
Buffer.this.notifyAll();

}
} //SyncManager

The releaseM() method
takes care of issuing the
notifyAll() to wake up any
thread waiting. A call to the
makeStep() method takes
care of evolving the object’s
history.

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];
this._registerSyncManager(

new SyncManager());
}

When the object is created a
new synchronization manager
is registered. The call to
_registerSyncManager will
take care of initializing the
history of the object as well.

public synchronized Object get()
throws Exception {

((SyncManager) _sync).acquireget();
current--;
Object ret = buf[current];
((SyncManager) _sync).releaseget();
return ret;

}

Calls to the acquire and
release methods are inserted
respectively at the beginning
and at the end of the method
code. This implements a
simple mechanism of method
call interception.

public synchronized void put(Object v)
throws Exception {

((SyncManager) _sync).acquireput();
buf[current] = v;
current++;
((SyncManager) _sync).releaseput();

}
}

41

Recent BRICS Report Series Publications

RS-03-6 Giuseppe Milicia and Vladimiro Sassone.Jeeg: Temporal Con-
straints for the Synchronization of Concurrent Objects. Febru-
ary 2003. 41 pp. Short version appears in Fox and Getov, edi-
tors, Joint ACM-ISCOPE Conference on Java Grande, JGI ’02
Proceedings, 2002, pages 212–221.

RS-03-5 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise Analysis of String Expressions. Febru-
ary 2003. 15 pp.

RS-03-4 Marco Carbone and Mogens Nielsen.Towards a Formal Model
for Trust. January 2003.

RS-03-3 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. On the Computational Collapse of Quantum Informa-
tion. January 2003. 31 pp.

RS-03-2 Olivier Danvy and Pablo E. Mart́ınez López. Tagging, En-
coding, and Jones Optimality. January 2003. To appear in
Degano, editor,Programming Languages and Systems: Twelfth
European Symposium on Programming, ESOP ’03 Proceed-
ings, LNCS, 2003.

RS-03-1 Vladimiro Sassone and Pawel Sobocinski.Deriving Bisimu-
lation Congruences: 2-Categories vs. Precategories. January
2003. To appear in Gordon, editor,Foundations of Software
Science and Computation Structures, FoSSaCS ’03 Proceed-
ings, LNCS, 2003.

RS-02-52 Olivier Danvy. A New One-Pass Transformation into Monadic
Normal Form. December 2002. 16 pp. To appear in Hedin,
editor, Compiler Construction, 12th International Conference,
CC ’03 Proceedings, LNCS, 2003.

RS-02-51 Gerth Stølting Brodal, Rolf Fagerberg, AnnaÖstlin, Christian
N. S. Pedersen, and S. Srinivasa Rao.Computing Refined Bune-
man Trees in Cubic Time. December 2002. 14 pp.

RS-02-49 Mikkel Nygaard and Glynn Winskel. HOPLA—A Higher-
Order Process Language. December 2002. 18 pp. Appears
in Brim, Jan čar, Křetı́nský and Antonı́n, editors, Concurrency
Theory: 13th International Conference, CONCUR ’02 Proceed-
ings, LNCS 2421, 2002, pages 434–448.

	Introduction
	A taster of Jeeg
	The constraint language

	The inheritance anomaly
	Expressiveness of Jeeg
	Digging deeper into Jeeg
	Implementation
	Benchmarks
	General setting
	Benchmark results
	Evaluation

	Related work
	Conclusions
	The Jeeg Document type definition (DTD)
	The Java code generated from the Buffer example

