
B
R

IC
S

R
S

-03-53
D

oh
&

M
osses:

C
om

posing
P

rogram
m

ing
Languages

by
C

om
bining

A
ction-S

em
antics

M
odules

BRICS
Basic Research in Computer Science

Composing Programming Languages by
Combining Action-Semantics Modules

Kyung-Goo Doh
Peter D. Mosses

BRICS Report Series RS-03-53

ISSN 0909-0878 December 2003

Copyright c© 2003, Kyung-Goo Doh & Peter D. Mosses.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/53/

Composing Programming Languages by

Combining Action-Semantics Modules 1

Kyung-Goo Doh 2,3

Department of Computer Science and Engineering
Hanyang University, Ansan, South Korea

Peter D. Mosses 4,5

BRICS & Department of Computer Science
University of Aarhus, Denmark

Abstract

This article demonstrates a method for composing a programming language by
combining action-semantics modules. Each module is defined separately, and then
a programming-language module is defined by combining existing modules. This
method enables the language designer to gradually develop a language by defining,
selecting and combining suitable modules. The resulting modular structure is sub-
stantially different from that previously employed in action-semantic descriptions.

It also discusses how to resolve the conflicts that may arise when combining mod-
ules, and indicates some advantages that action semantics has over other approaches
in this respect.

Key words: action semantics, modularity, Asf+Sdf

1 Published in Science of Computer Programming, 47(1):3–36, 2003.
2 This work was supported by grant No.R01-2000-00287 from the Basic Research
Program of the Korea Science & Engineering Foundation.
3 Email: doh@cse.hanyang.ac.kr
4 Supported by BRICS: Basic Research in Computer Science, Centre of the Danish
National Research Foundation.
5 Email: pdmosses@brics.dk

1 Introduction

Hoare noted in his POPL’73 paper [1] that much of programming language
design is consolidation, not innovation. In other words, a language designer
should largely utilize constructions and principles that have worked well in
earlier design projects and experiments [2]. (cf. the evident close relationship
between C and C++, C and Java 6 , and Java and C# 7). To this end, lan-
guage definitions should be modularized. Then, a language designer’s job may
involve the definition or reuse of many different alternative language modules,
to choose the best combination of them based on language-design principles,
and to reject any that show mutual inconsistencies. Any remaining minor
inconsistencies or overlaps may be reconciled by applying good engineering
principles. A semantic framework must provide a high degree of modularity so
that the designer can build up a language description smoothly and uniformly.
For defining (concrete or abstract) context-free syntax, BNF grammars have
excellent modularity: the union of two BNF grammars (without start symbols)
is always well-formed, and specifies the language with all the constructs spec-
ified by the two grammars separately; for defining semantics, the framework
of action semantics appears to offer similar advantages.

Action semantics has been developed by Mosses and Watt [3–7]. The motto of
action semantics is to allow useful semantic description of realistic program-
ming languages [3]. The potential uses of action semantic descriptions include
documentation of decisions during language design, language standardization,
guidance for implementors, compiler and interpreter generation, and formal
reasoning about programs; Mosses [4] gives a survey of some actual uses.

In action semantics, a high-level notation called action notation is used to
describe the meaning of a programming language. Primitive actions exist for
the fundamental behaviours of information processing: value passing, arith-
metic, binding creation and lookup, storage allocation and manipulation, and
so on. Actions are composed into a combined action with combinators con-
trolling the flow of information. Actions have semi-descriptive English names,
which gives a novice reader hints of the intuition behind them. Furthermore,
action semantics specifications are inherently modular. Hence, they can be
straightforwardly extended and modified to reflect language design changes,
and to reuse parts of an existing language definition for specifying similar,
related languages. In fact, some real-world programming languages, such as
Pascal [8], and Standard ML [9,10], have been successfully described in action
semantics.

6 Java is a trademark of Sun Microsystems Inc.
7 C# is a trademark of Microsoft Corporation.

2

1.1 This work

This article demonstrates a method for composing a programming language
by combining action-semantics modules. There are three kinds of modules:

semantic functions modules, which merely declare the names and types of
semantic functions (without any semantic equations);

semantic equations modules, each of which declares the syntax of, and de-
fines the semantics of, a single language construct; and

semantic entities modules, which declare the standard notation for actions,
and define further auxiliary sorts and operations.

Each module is specified separately, and then a complete programming-language
module is defined by properly combining existing modules. This method en-
ables the language designer to gradually develop a language by defining, se-
lecting, and combining suitable modules. The size of each module is extremely
small compared to those previously employed in action-semantic descriptions,
and their overall organization is significantly different: the original style was
to specify abstract syntax in one module, and to have a separate module for
each syntactic sort, specifying the semantic functions and equations for all the
syntactic constructs of that sort together. The novel style of modularization
proposed here greatly facilitates the direct reuse of entire modules in action
semantics.

When combining modules, conflicts may occur in the definition of a combined
module. This article suggests how to resolve the problem of conflicts, exploiting
several key features of the action semantics framework. Modules for constructs
stemming from the so-called Landin-Tennent design principles (the principles
of abstraction, parameterization, correspondence, and qualification) [2,11] are
particularly uniform, and straightforward to combine.

Note that only dynamic semantics is considered in this article, since the main
focus here is to illustrate the good modularity and extensibility of action
semantics. Static semantics (e.g., type-checking semantics) can be defined in
inference-rule format as in Plotkin’s lecture notes on SOS [12] and in Schmidt’s
textbook on typed programming languages [2], or in action notation as in
Watt’s work [9,10], becoming an essential part of a language specification.

1.2 Road map

The rest of the article is organized as follows: Section 2, briefly introduces
how to specify action semantics in a specification framework called Asf+Sdf.
Section 3 defines modules necessary to compose a simple expression language.

3

Section 4 presents modules for expression bindings, expression blocks, expres-
sion parameters, and expressions with effects. Section 5 shows how a language
module can be composed by combining related modules, and discusses how to
resolve conflicts between combined modules. Section 6 concludes, also consid-
ering some other semantic frameworks that aim to support modularity.

2 Action Semantics

Action semantics uses context-free grammars to define the structure of abstract-
syntax trees, and inductively defined semantic functions to give semantics to
such trees. Each semantic equation is compositional and maps an abstract-
syntax tree to an action representing the meaning of the tree. In this section,
we briefly review the notation for actions, and then illustrate how to specify
action semantics descriptions in Asf+Sdf.

2.1 Action Notation

Actions are semantic entities that represent implementation-independent com-
putational behaviour of programs. The performance of an action, which may
be part of an enclosing action, either terminates normally (the performance of
the enclosing action continues normally); or terminates exceptionally (the en-
closing action is skipped until the exception is handled); or fails, corresponding
to abandoning the current alternative of a choice (any remaining alternative
is tried); or diverges, never terminating (the enclosing action also diverges).

The performance of an action processes transient data; it creates and accesses
bindings of token to data; it allocates and manipulates primary storage; and
it communicates between distributed agents. Actions have various facets. The
basic facet processes independently of information, focusing on control flow;
the functional facet processes transient information, including actions oper-
ating on data; the declarative facet processes scoped information, including
actions operating on bindings; the imperative facet processes stable informa-
tion, including actions operating on storage cells; and the communicative facet
processes permanent information, including actions operating on distributed
systems of agents. Actions with different facets can be freely combined to
form multi-faceted actions. So-called yielders are used to inspect the current
information (without changing it).

Some action notation important to understand the underlying concepts of
defined languages is explained along with the semantic descriptions below.
However, some highly suggestive data notations are not explained, for brevity.

4

Note that despite its verbose and casual appearance, action notation is com-
pletely formal; a list of all the symbols used in the present paper is provided
in an appendix. A full, formal description of action notation can be found in
Mosses’s book on action semantics [3], and in a more recent Modular SOS
definition [6].

This paper uses a new version of action notation (AN-2) [13], which has a sig-
nificantly simpler kernel than the original version, but which is otherwise quite
similar in use. The differences between the two versions do not substantially
affect the modularity issues addressed in the present paper.

2.2 Action semantics in ASF+SDF

In this paper, we use the Asf+Sdf formalism [14,15] to express action se-
mantics descriptions. Asf+Sdf differs somewhat from the meta-notation
usually employed in action semantics [3], but it has the advantage that the
modules can be checked for well-formedness using the current version of the
Asf+Sdf Meta-Environment. 8 Moreover, Asf+Sdf is a well-established for-
malism that may already be familiar to many readers. In fact it is the result of
the marriage of two formalisms: Asf (Algebraic Specification Formalism) and
Sdf (Syntax Definition Formalism). Asf is based on the notion of a module
declaring a signature (sorts, function symbols, and variables) and giving a set
of conditional equations defining their properties. Modules can be imported
into other modules. Sdf allows the definition of concrete (lexical and context-
free) syntax for operations and variables. The following overview indicates how
action semantics descriptions are written in Asf+Sdf; for further details of
Asf+Sdf, the reader is referred to [14,15].

With the novel modular structure for action semantics descriptions proposed
here, a description is divided into the following kinds of modules:

Semantic Functions: Each such module declares a single semantic function,
say f, for a particular sort of syntax, say s:

"f" "[[" s "]]" -> t

where t is some sort of semantic entities—usually the sort Action of all
possible actions. It imports the semantic entities modules that are needed
to express entities of sort t. The double brackets [[...]] are included as
part of the (mixfix) notation for each semantic function (they have to be
quoted in declarations, but not when they are used).

8 The ASD Tools [16], previously developed to generate Asf+Sdf modules from a
notation similar to the original meta-notation of action semantics, are incompatible
with the new modular structure proposed here.

5

The module also declares variables ranging over s, for instance:

"S"[1-9]? -> s

declares S, S1, . . . , S9 as variables.
Semantic Equations: Such a module declares an abstract syntax construc-

tor operation, and gives a semantic equation defining the result of applying
a particular semantic function to abstract syntax trees constructed by this
operation—generally applying other semantic functions to components.

Suppose each symbol w1, . . . , wn is either a quoted symbol "..." or a
syntactic sort symbol. Then if s is also a syntactic sort symbol,

w1 ... wn -> s

declares an abstract syntax constructor with the indicated argument sorts
(distinguished from other constructs partly by the quoted symbols). The
semantics of all trees thus constructed is specified by a semantic equation
written:

f [[v1 ... vn]] = T

where each vi is either an (unquoted) symbol wi or a variable ranging over
a sort wi, and T is a term of sort t specifying how the semantics fi[[vi]]

of the components are combined.
The module imports the semantic functions modules for all the syntactic

sorts and semantic functions involved, and any required semantic entities
modules that are not already indirectly imported.

Semantic Entities: These modules may specify new sorts of data with con-
structors and selectors, include these sorts into previously-declared sorts,
and define derived operations. The standard semantic entities module AN

declares all the symbols provided by (the new version of) action notation
for expressing actions, data, and yielders. (In fact AN itself has an interesting
internal modular structure, but it is irrelevant to our main purpose in the
present paper, and not discussed further here.)

To specify a sort s with constructor operation f and argument sorts s1,
. . . , sm, we generally keep to prefix notation and declare the operation thus:

f(s1,...,sm) -> s

where s1,...,sm are the argument sorts and s the result sort. For per-
spicuity we shall also label the component sorts with the names of the
corresponding selector operations, e.g.:

f(g1:s1,...,gm:sm) -> s

However, such labels do not (presently) give rise to operation declarations
in Asf+Sdf, so a separate declaration of each selector (of the form "gi"

s -> si, for prefix notation gi(S)) has to be given. Derived operations are
defined straightforwardly by equations.

6

To compose a language, one simply imports the semantic equations modules
for all the desired constructs (the relevant semantic functions and semantic
entities modules are imported indirectly). Note that different semantic equa-
tions modules for the same abstract syntax construct should not be imported
together: their inconsistency has to be removed first, as described in Section 5.

Concrete illustrations of how action semantic descriptions are formulated in
Asf+Sdf are given in Sections 3 and 4. The full Asf+Sdf sources of all
the examples are available from http://www.brics.dk/∼pdm/LDTA-01/.

3 Action-Semantics Modules for an Expression Language

In this section, we define, in Asf+Sdf, action-semantics modules that allow us
to compose an expression language, as an illustration of the general approach.
We start with a semantics entities module named Values as follows: 9

module Values
imports AN
exports
sorts Value
context-free syntax

Value -> Datum

The module Values above imports the predefined module AN, which specifies
the entire action notation (version 2, referred to as AN-2 [13]). Value, a new
sort of data, is merely declared to be a subsort of Datum, which is the sort
of all individual items of data in action notation; exactly which values are in
Value is left to be further specified in other modules.

Next, a semantic functions module Exp for expressions is specified as follows:

module Exp
imports Values
exports
sorts Exp
context-free syntax

"evaluate" "[[" Exp "]]" -> Action %% giving Value
variables "E"[1-9]? -> Exp

In action semantics, a semantic function maps an abstract-syntax tree to an
action representing its computational meaning. The module Exp declares the
semantic function evaluate and its functionality, leaving its meaning to be

9 Some lines of SDF, necessary for the implementation but otherwise of no real
interest, have occasionally been elided from the examples.

7

defined by semantic equations modules. The line declaring evaluate indicates
that for every abstract-syntax tree E in the abstract-syntax domain Exp, the
semantic entity evaluate [[E]] is an action. The comment at the end of the
line (starting %%) indicates that evaluate [[E]] gives a result of sort Value

(on normal termination), i.e. Value is the sort of expressible values. 10 The
last line of the module declares variables ranging over Exp, for use in semantic
equations modules that involve expressions.

The following module declares a semantic function for binary operators:

module Op2
imports Values
exports
sorts Op2
context-free syntax

"operate2" "[[" Op2 "]]" -> Action %% taking (Value,Value)
%% giving Value

variables "O2" -> Op2

The following module defines the syntax and semantics of expressions with bi-
nary operators. Note again that the specifics of what kinds of binary operators
may be used is left to be specified separately.

module Exp/binary
imports Exp Op2
exports
context-free syntax

Exp Op2 Exp -> Exp
equations
[1] evaluate [[E1 O2 E2]] =

(evaluate [[E1]] and evaluate [[E2]])
then operate2 [[O2]]

The notation Exp Op2 Exp -> Exp above is equivalent to the usual BNF no-
tation Exp ::= Exp Op2 Exp. The variables used in the above module are de-
clared in the modules Exp and Op2.

The meaning of evaluate [[E1 O2 E2]] can be explained informally as fol-
lows: both E1 and E2 are evaluated to give values, and then the values are
passed to be operated upon by O2. Notice how close this informal explanation
is to Equation [1] of the module Exp/binary above (which is completely for-
mal, despite its “natural” appearance). As the reader might have noticed, the
semantic equations in action semantics are compositional, as in Scott-Strachey
style denotational semantics [17,18]: the semantics of any compound phrase is

10 The AN-2 notation for formally specifying such properties of actions has not yet
been settled.

8

determined in terms of the semantics of its subphrases.

The action combinator and is a basic combinator that represents implementation-
dependent order of performance; when there is no interference between the two
sub-actions of and, the order of evaluation is not significant. The and combi-
nator makes a tuple of transient values given by its sub-actions. The then

combinator passes transient values from the left sub-action to the right sub-
action.

Each specific binary operator can be defined in a separate module as follows:

module Op2/plus
imports Op2
exports
context-free syntax

"+" -> Op2
Int -> Value

equations
[2] operate2 [[+]] = give (the int #1 + the int #2)

The inclusion of Int in Value is clearly needed when integer addition is allowed
in expressions, so it is specified above. (An alternative style would be to defer
all specifications of sort inclusions until after the composition of a language
has been decided.)

Lowercase constant symbols are used in action notation to indicate sorts of
data, e.g. int indicates the sort Int. When ds indicates any sort of data, the
data operation the ds projects its argument onto that sort, the result being
undefined if the argument is not in the sort. For any (positive) numeral n,
the data operation #n selects the n’th component from any data tuple having
at least that many components. The composition the ds #n of these data
operations is a yielder that first selects the n’th component then checks that it
is of the sort indicated by ds. Hence above, the int #1 + the int #2 yields
the sum of the first two components of the given data tuple, provided that
they are both of sort Int. For any yielder Y , the action give Y simply gives
the value yielded by Y (an item of data is a special case of a yielder).

Expression grouping, can be specified as follows:

module Exp/group
imports Exp
exports
context-free syntax

"(" Exp ")" -> Exp {bracket}

By declaring the syntax above as a bracketing construct, no node is generated
for it in the abstract syntax tree, so no semantic equation for evaluate [[(E)]]

9

is needed.

The module Lit below declares value to be a semantic function for the syntac-
tic sort Lit of literal constants. The semantics of literal constants is assumed
to be not only inherently “mathematical” but also independent of the context,
and it is taken to be an item of data (rather than an action). Notice that no
assumption is made here about whether the sort Lit is included in Exp.

10

module Lit
imports AN
exports
sorts Lit LitValue
context-free syntax

"value" "[[" Lit "]]" -> LitValue
LitValue -> Datum

variables "L"[1-9]? -> Lit

Shown below is a semantic equations module which specifies the syntax and
semantics of literal constants in expressions. Exactly what constitutes the
literal constants is left unspecified.

module Exp/literal
imports Exp Lit
exports
context-free syntax

Lit -> Exp
LitValue -> Value

equations
[3] evaluate [[L]] = give value [[L]]

The notation Lit -> Exp above specifies the inclusion of the abstract syntax
of Lit in Exp, and corresponds to the usual BNF notation Exp ::= Lit. Equa-
tion [3] above specifies how the values of literal constants contribute to the
actions that evaluate expressions.

Note that what kinds of literals there might be is still left unspecified in
the above module. Some specific literals, such as numeric constants, can be
specified in separate modules.

The sort Nat of natural numbers used in the following module is provided by
AN, together with ordinary decimal notation. The following semantic equations
merely confirm that the semantics of a numeric literal is indeed decimal. 11

module Lit/numeric
imports Lit
exports
sorts Num
context-free syntax

Num -> Lit
Nat -> LitValue

lexical syntax
[0-9]+ -> Num

11 In fact it isn’t necessary to be so pedantic: an alternative is to include Nat in the
syntax of literals, and let value[[N]] = N.

11

hiddens
variables "C+" -> CHAR+

"C" -> CHAR
equations
[4-0] value [[num("0")]] = 0
%% ...
[4-9] value [[num("9")]] = 9
[4-10] value [[num(C+ C)]] =

(10 * value [[num(C+)]]) + value [[num(C)]]

The variables C and C+ are declared as hidden above since the module is
essentially declaring both the syntax and semantics for Num.

The next module departs slightly from the strictly minimalist style proposed in
this paper, by specifying the semantics of two different constructs together. In
general, it seems best to stick to specifying all constructs separately, although
here, it indeed seems quite unlikely that a language would include true without
false, or vice versa.

module Lit/boolean
imports Lit
exports
context-free syntax

"true" -> Lit
"false" -> Lit
Bool -> LitValue

equations
[5] value [[true]] = true
[6] value [[false]] = false

By the way, the Bool values true and false used on the right of the above
equations are provided by the standard action notation (which is imported
indirectly, via the module Lit).

By now, the reader should have become reasonably familiar with our use
of Asf+Sdf to specify semantic functions and semantic equations module.
Some further examples of modules specifying semantic entities will be provided
in Section 4. As a further example, relational expressions and conditional
expressions can be similarly specified by defining modules as follows:

module Op1
imports Values
exports
sorts Op1
context-free syntax

"operate1" "[[" Op1 "]]" -> Action %% taking Value
%% giving Value

12

variables "O1" -> Op1

module Op1/not
imports Op1
exports
context-free syntax

"not" -> Op1
Bool -> Value

equations
[7] operate1 [[not]] = give (not the bool)

module Op2/equal
imports Op2
exports
context-free syntax

"=" -> Op2
Bool -> Value

equations
[8] operate2 [[=]] =

when (the value #1 = the value #2)
then give true otherwise give false

module Exp/unary
imports Exp Op1
exports
context-free syntax

Op1 Exp -> Exp
equations
[9] evaluate [[O1 E]] =

evaluate [[E]] then operate1 [[O1]]

module Exp/if-then-else
imports Exp
exports
context-free syntax

"if" Exp "then" Exp "else" Exp -> Exp
Bool -> Value

equations
[10] evaluate [[if E1 then E2 else E3]] =

evaluate [[E1]] then
select(
(given true then evaluate [[E2]]) or
(given false then evaluate [[E3]]))

Notice that the action combinator or above, generally used for nondetermin-
istic choice, here represents a deterministic choice, since at least one of two
sub-actions must always fail.

13

ExpressionLanguage

Op2/
equal

Op2/
plus

Op2/
minus

Op2/
times

Exp/
if-then-else

Exp/
unary

Exp/
literal

Op1/
not

Lit/
numeric

Lit/
boolean

Op2

Exp/
binary

Exp/
group

Exp Op1 Lit

Values

AN

F
ig.

1.
T

he
m

odule
dependency

graph
for

E
x
p
r
e
s
s
i
o
n
L
a
n
g
u
a
g
e

14

Modules can be combined to specify a programming language. For example,
the modules defined so far can be combined to define an expression language
as follows:

module ExpressionLanguage
imports
Exp/literal Exp/unary Exp/binary
Exp/group Exp/if-then-else
Lit/numeric Lit/boolean
Op1/not Op2/equal
Op2/plus Op2/minus Op2/times

Note that shared notation is the crucial feature when combining modules:
their internal structure and import relationship are irrelevant. The dependency
relationships among imported modules in ExpressionLanguage are depicted
as a graph in Figure 1. The graph shown is the exact copy of the one generated
by the Meta-Environment with a minor layout modification to fit in a page.

4 Modules as Building Blocks for Programming Languages

In this section, we define modules for expression bindings, expression blocks,
expression parameters, and expressions with effects, in turn. On the way, we
contemplate the semantics of eager vs. lazy binding, static vs. dynamic scop-
ing, call-by-value vs. call-by-name parameter passing schemes, and expressions
with effects.

4.1 Modules for Expression Bindings

According to the Landin-Tennent programming-language design principles,
the phrases in any semantically meaningful syntactic class may be named,
which is specifically called the abstraction principle. The process of giving a
name to a program construct is called binding. A named expression is called
an expression abstraction, which can be invoked later by simply mentioning
its name.

The semantic functions module Ide for names (identifiers) is as follows:

module Ide
imports AN
exports
sorts Ide
context-free syntax

15

"token" "[[" Ide "]]" -> Token
variables "I"[1-9]? -> Ide

The symbol Ide in the body of the above module is a syntactic sort for names,
whereas Token, imported from AN, is the sort of all data items that may be
bound to values in actions.

The semantic function module Dec for declarations (binding constructs) is
specified as follows:

module Dec
imports AN
exports
sorts Dec
context-free syntax

"declare" "[[" Dec "]]" -> Action %% giving Bindings
variables "D"[1-9]? -> Dec

The constructs for declarations are grouped into a separate syntax sort, Dec,
the details of which are yet to be specified. The functionality of the semantic
function declare indicates that for every abstract-syntax tree D in the syntactic
sort Dec, the semantic entity declare [[D]] is an action which gives bindings.

The meaning of an expression abstraction may be different depending on when
the expression is evaluated. An expression may be evaluated before it is bound
to a name (called eager binding), or after it is invoked (called lazy binding).

4.1.1 Eager Binding

The semantic equations module for expression-binding with eager evaluation,
Dec/val, is specified as follows:

module Dec/val
imports Dec Ide Exp
exports
context-free syntax

"val" Ide "=" Exp -> Dec
equations
[11] declare [[val I = E]] =

evaluate [[E]] then
give binding (token [[I]], the bindable)

The semantic equation [11] above shows that the body of an expression bind-
ing, E, is evaluated before being bound to a token, implying eager evaluation.
The sort of all values that can be bound to tokens in actions is called Bindable,
and is yet to be specified. In the case of eager binding, the Landin-Tennent

16

principle motivates identifying Bindable with Value, or at least letting it in-
clude all values; but by leaving the relationship between Bindable and Value

open, the above module may be useful also for composing languages whose
design does not dogmatically adhere to the mentioned principle. Note that
when not all values are bindable, the above action may fail.

The semantic equation module Exp/const-val for name invocation is defined
as follows:

module Exp/const-val
imports Exp Ide
exports
context-free syntax

Ide -> Exp
equations
[12] evaluate [[I]] =

give the value bound to token [[I]]

The name invocation looks up current bindings and gives the value bound to
the name. Here, the action may fail when not all bindables are values — just
the opposite of the situation with the module Dec/val.

4.1.2 Lazy Binding

In lazy binding, an expression is not evaluated and is bound to a name. The
semantic entities module Functions introduces a new sort, Function, repre-
senting a function abstraction. It also specifies a new action apply which takes
a tuple of an action and a datum and performs the action with the given da-
tum. The primitive action enact simply performs the action given to it as data
(Action is actually a subsort of Data).

module Functions
imports AN
exports
sorts Function
context-free syntax

Function -> Datum
apply -> Action %% taking (Action,Datum)

equations
[13] apply = enact (provide the datum#2 then the action#1)

The next semantic entities module is defined specifically for nullary functions.
A nullary function is constructed from an action that corresponds to an un-
evaluated expression, and the action can be retrieved by applying the selector
action to it:

17

module Functions/nullary
imports Functions
exports
context-free syntax

nullary-function(action:Action) -> Function

The semantic functions module for expression binding with lazy evaluation,
Dec/fun-nullary, is now defined as follows:

module Dec/fun-nullary
imports Dec Ide Exp Functions/nullary
exports
context-free syntax

"fun" Ide "=" Exp -> Dec
Function -> Bindable

equations
[14] declare [[fun I = E]] =

give binding (token [[I]],
nullary-function (closure (evaluate [[E]])))

The yielder nullary-function A, where A is an action, yields a datum en-
capsulating A, but keeping no bindings. In order to keep the bindings that
are current at the evaluation of nullary-function A, closure must be used:
closure lets the encapsulated action keep the current bindings, and then
when the encapsulated action is performed, it receives the kept bindings.
Thus, nullary-function (closure (evaluate [[E]])) yields an encapsulated
action of evaluate E, but the action incorporates the bindings available at
the time, i.e., at declaration-time. Thus, the action evaluate [[E]] in Equa-
tion [14] above is not performed, but encapsulated with the current bindings
and bound to a name (i.e., the evaluation is delayed). Since a nullary function
is bound to a name, Function is specified to be included in Bindable.

The semantic equations module Exp/fun-nullary for lazy invocation is defined
as follows:

module Exp/fun-nullary
imports Exp Ide Functions/nullary
exports
context-free syntax

Ide -> Exp
Function -> Bindable

equations
[15] evaluate [[I]] =

enact action(the function bound to token [[I]])

The encapsulated action (function) is enacted and performed, receiving the
bindings incorporated at declaration-time, when the name is invoked as shown

18

in Equation [15] above. Since the encapsulated action receives the same bind-
ings regardless of where it is enacted and performed, it is called static binding.

4.1.3 Dynamic Binding

The semantic equations modules for expression binding with lazy evaluation
and dynamic binding are defined as follows:

module Dec/fun-nullary-dynamic
imports Dec Ide Exp Functions/nullary
exports
context-free syntax

"fun" Ide "=" Exp -> Dec
Function -> Bindable

equations
[16] declare [[fun I = E]] =

give binding (token [[I]],
nullary-function (evaluate [[E]]))

module Exp/fun-nullary-dynamic
imports Exp Ide Functions/nullary
exports
context-free syntax

Ide -> Exp
Function -> Bindable

equations
[17] evaluate [[I]] =

enact (closure action(the function bound to token [[I]]))

The yielder closure action(the function bound to token [[I]]) yields an
action that incorporates the bindings available at the time, i.e., at invocation-
time. Thus the enaction performs the action encapsulated in the action, letting
it receive the current bindings. (The primitive action enact does not itself add
any further bindings to those already incorporated in the action given to it.)

4.1.4 Modules for Multiple Declarations

The semantic equations module for multiple, independent declarations is de-
fined as follows:

module Dec/seq-indep
imports Dec
exports
context-free syntax

Dec "," Dec -> Dec

19

equations
[18] declare [[D1 , D2]] =

declare [[D1]] and then declare [[D2]]
then give disjoint union

The action combinator and then indicates that the declarations are declared
sequentially, and then the disjoint union of the produced bindings is formed
(with exceptional termination when both declarations produce a binding for
the same token).

The module for multiple, sequential declarations is defined as follows:

module Dec/seq
imports Dec
exports
context-free syntax

Dec ";" Dec -> Dec
equations
[19] declare [[D1 ; D2]] =

declare [[D1]] before declare [[D2]]

The action combinator before indicates that the bindings created by declare

[[D1]] can be used in declare [[D2]], and the bindings created by declare

[[D2]] overrides the bindings created by declare [[D1]].

4.2 Modules for Expression Blocks

The Landin-Tennent qualification principle says that any semantically mean-
ingful syntactic class may admit local declarations. This means in particular
that any expression belonging to the syntax class Exp can have local defini-
tions. A construct admitting local definitions is called a block. The semantic
equations module for an expression block is defined as follows 12 :

module Exp/let
imports Exp Dec
exports
context-free syntax

"let" Dec "in" Exp -> Exp
equations
[20] evaluate [[let D in E]] =

furthermore declare [[D]] hence evaluate [[E]]

12 In future versions of Asf+Sdf, it should be possible to specify a single parame-
terized module for arbitrary blocks, and instantiate it to get the desired expression
blocks.

20

The action furthermore declare [[D]] overlays the current bindings with
the ones produced by declare [[D]]. Then the hence combinator passes the
overlaid bindings to the action evaluate [[E]]. This corresponds exactly to
an ordinary block structure. Thus, bindings declared in D can only be referred
in the body E, not outside the block.

The distinction between static and dynamic binding arises when an abstrac-
tion created in the scope of one set of bindings may get applied in the scope of
another set. In the examples given above, let blocks could involve both static
and dynamic scopes for expression abstractions: it is the semantics of the
abstractions themselves that determines whether or not the abstraction-time
bindings get encapsulated together with the action representing the expres-
sion evaluation, for later use; and it is the semantics of name lookup that
determines whether or not the lookup-time bindings are made available to the
encapsulated action. When an abstraction has determined that it is using the
static bindings, it simply ignores any lookup-time bindings supplied by the
semantics of name reference. On the other hand, when the semantics of the
abstraction ignores the abstraction-time bindings, it depends on the semantics
of name lookup as to whether the dynamic bindings will be supplied or not.

4.3 Modules for Expression Parameters

The Landin-Tennent parameterization principle says that phrases from any
semantically meaningful syntactic class may be parameters. In particular, any
expression belonging to the syntax class Exp can be a parameter. In this sub-
section, we define modules for an expression abstraction with an expression
parameter, along with an invocation construct. Modules dealing with decla-
ration abstractions and declaration parameters may be specified analogously.

The meaning of an abstraction invocation with an actual parameter can be
varied depending on when its parameter (argument) is evaluated. Here we
examine the semantics of two different parameter-passing schemes: call-by-
value and call-by-name.

4.3.1 Call-by-Value Parameter-Passing

In the call-by-value parameter-passing scheme, an argument is fully evaluated
at the time of invocation of a parameterized abstraction. Then the evaluated
value is bound to a formal parameter.

The following semantic entities module is defined specifically for call-by-value
unary functions.

21

module Functions/unary-value
imports Functions
exports
sorts Unary-Value-Function
context-free syntax

unary-value-function(action:Action) -> Unary-Value-Function
Unary-Value-Function -> Function

The semantic equations modules for call-by-value parameter passing are de-
fined as follows:

module Dec/fun-unary-value
imports Dec Ide Exp Functions/unary-value
exports
context-free syntax

"fun" Ide "(" "val" Ide ")" "=" Exp -> Dec
Unary-Value-Function -> Bindable

equations
[21] declare [[fun I1 (val I2) = E]] =

give binding
(token [[I1]],
unary-value-function (
closure (furthermore bind (token [[I2]], the value)

hence evaluate [[E]])))

module Exp/fun-unary-value
imports Exp Ide Functions/unary-value
exports
context-free syntax

Ide "(" Exp ")" -> Exp
Unary-Value-Function -> Bindable

equations
[22] evaluate [[I (E)]] =

(give the unary-value-function bound to token [[I]]
and then evaluate [[E]])

then apply (action(the function#1), the value#2)

Equation [22] in the module Exp/fun-unary-value shows that an argument
E of function application is evaluated to a value, and then the unary function
bound to a token I is applied to the value, so that the evaluated argument value
is bound to a formal parameter. The binding acts as a local declaration in the
body of the function. Equation [21] in the module Dec/fun-unary-value indi-
cates that the bindings current at the definition are used when the unary func-
tion is applied, implying static scoping. Note that the module Exp/const-val

in Section 4.1.1 (rather than Exp/fun-nullary in Section 4.1.2) is combined
smoothly together with these modules, which shows that eager binding and
call-by-value scheme fit well together.

22

4.3.2 Call-by-Name Parameter-Passing

In the call-by-name parameter-passing scheme, the evaluation of an argument
is delayed until it is used in the body of the called function. That is, the
unevaluated argument is bound to a formal parameter, and then evaluated
every time the formal parameter is invoked in the body of the called function.

The following semantic entities module is defined specifically for call-by-name
unary functions.

module Functions/unary-name
imports Functions
exports
sorts Unary-Name-Function
context-free syntax

unary-name-function(action:Action) -> Unary-Name-Function
Unary-Name-Function -> Function

The semantic equations modules for call-by-name parameter passing are de-
fined as follows:

module Dec/fun-unary-name
imports Dec Ide Exp Functions/unary-name
exports
context-free syntax

"fun" Ide "(" "name" Ide ")" "=" Exp -> Dec
Unary-Name-Function -> Bindable

equations
[23] declare [[fun I1 (name I2) = E]] =

give binding
(token [[I1]],
unary-name-function (
closure (furthermore bind (token [[I2]], the action)

hence evaluate [[E]])))

module Exp/fun-unary-name
imports Exp Ide Functions/unary-name
exports
context-free syntax

Ide "(" Exp ")" -> Exp
Unary-Name-Function -> Bindable

equations
[24] evaluate [[I (E)]] =

(give the unary-name-function bound to token [[I]]
and give closure (evaluate [[E]]))

then apply (action(the function#1), the action#2)

Equation [24] in the module Exp/fun-unary-name shows that an argument E of

23

function application is not evaluated (i.e., the corresponding action evaluate

E is encapsulated), and then the unary function is applied to the uneval-
uated argument, with the result that the encapsulated action representing
the unevaluated argument is bound to a formal parameter as shown in the
module Dec/fun-unary-name. The closure in Equation [24] in the module
Exp/fun-unary-name suggests that the bindings available when the parame-
terized abstraction is invoked should be used when the argument is invoked
and evaluated in the body of parameterized abstraction, implying static bind-
ing. Since the action representing unevaluated argument is enacted in the
body of parameterized function, the module Exp/name-val below (instead of
Exp/const-val in Section 4.1.1) should be used with these modules. As a re-
sult, we can see that lazy binding and call-by-name fit well together.

module Exp/name-val
imports Exp Ide
exports
context-free syntax

Ide -> Exp
Action -> Bindable

equations
[25] evaluate [[I]] = enact the action bound to token [[I]]

4.4 Modules for Expressions with Effects

In this section, we examine modules for expressions with effects. We first
show the semantic entities module Variables introducing a new sort Variable
and two new actions, assign and dereference, necessary to define expression
modules with effects.

module Variables
imports AN
exports
sorts Variable
context-free syntax

Variable -> Datum
"assign" -> Action %% taking (Variable,Value)

%% giving ()
"dereference" -> Action %% taking Variable

%% giving Value

We then define the semantic entities module Variables/simple specifying the
meanings of the actions, assign and dereference, for simple variables.

module Variables/simple
imports Variables

24

exports
sorts Simple-Variable
context-free syntax

"simple-variable"(cell:Cell) -> Simple-Variable
Simple-Variable -> Variable

equations
[26] assign =

given (the simple-variable#1, the storable#2)
then update (cell(the simple-variable#1), the storable#2)

[27] dereference =
given the simple-variable
then inspect (cell(the simple-variable))

We next define semantic equations modules for expressions with effects, with
an ML-like syntax. Equation [28] in the module Exp/new-var-init below
states the meaning of evaluating ref E is: the expression E evaluates to a
value, a new cell is allocated, the evaluated value is stored in the cell, and
then the allocated cell is returned as a variable.

module Exp/new-var-init
imports Exp Variables/simple
exports
context-free syntax

"ref" Exp -> Exp
Simple-Variable -> Value

equations
[28] evaluate [[ref E]] =

evaluate [[E]] then create
then give simple-variable(the cell)

Equation [29] in the module Exp/var-val below indicates that the meaning
of evaluating ! E is: the expression E evaluates to a variable and the value
stored in the variable is returned. Notice that this module would remain un-
changed if compound variables are introduced, provided that the definition
of dereference is extended appropriately (which can be done by adding new
modules, leaving those given above unchanged).

module Exp/var-val
imports Exp Variables
exports
context-free syntax

"!" Exp -> Exp
Variable -> Value

equations
[29] evaluate [[! E]] =

evaluate [[E]] then dereference the variable

25

Equation [30] in the module Exp/assign below defines the meaning of eval-
uating E1 := E2 as: an expression E1 evaluates to a variable and an expres-
sion E2 evaluates to a value; then the value is assigned to the variable. As with
dereferencing, the use of assign allows the modules to remain unchanged if
compound variables are introduced.

module Exp/assign
imports Exp Variables
exports
context-free syntax

Exp ":=" Exp -> Exp
Variable -> Value

equations
[30] evaluate [[E1 := E2]] =

(evaluate [[E1]] and evaluate [[E2]])
then assign (the variable#1, the value#2)

Note that the values are now extended to include variables.

Finally, the semantic equations module for expression sequencing is defined as
follows:

module Exp/seq
imports Exp
exports
context-free syntax

Exp ";" Exp -> Exp
equations
[31] evaluate [[E1 ; E2]] =

evaluate [[E1]] then skip then evaluate [[E2]]

The action combinator then in Equation [31] above forces its sub-actions to
be performed sequentially. The basic action skip discards the value given by
evaluate [[E1]].

In this section, we have built modules for various language constructs: ex-
pression bindings, expression blocks, expression parameters and expressions
with effects. One could also define declaration bindings, declaration blocks,
and declaration parameters in a similar fashion, but the presentation would
not illustrate any new points of interest, so we do not bother with that here.

5 Combining Modules

The modules developed in the previous sections can be combined to be-
come complete programming-language modules, as indicated by the module

26

ExpressionLanguage in Section 3. Combining modules can be achieved simply
by importing them together into another module, assuming that the symbols
they share correspond to common features. This is because the actions in the
semantic equations remain well-formed (and meaningful), regardless of how
rich the denotations of component constructs become (e.g. when purely func-
tional expressions are enriched with side-effects). However, we need to consider
what should happen when the modules to be combined specify different sort
inclusions involving the same sorts, or different semantic equations for the
same syntactic constructs.

The only problem with sort inclusions is when both S1 -> S2 and S2 -> S1

occur together in a combined module (directly or indirectly): they imply that
the sorts are identical, including exactly the same values. In Asf+Sdf, it
appears that such mutual inclusions do not affect parsing, but one might
alternatively make the sorts into so-called aliases.

When there are two different semantic equations for the same syntactic con-
struct in the modules to be combined, we say that there is a conflict. In fact,
some combinations of the modules specified in Section 4 do result in conflicts.
Such conflicts may be resolved automatically by unifying the actions in con-
flicting semantic equations, using (tentatively A1) otherwise A2 to form a
choice between them. To avoid patently undesirable combinations, however,
we require the resulting action to be equivalent to the combination in the
opposite order. 13

For instance, let us try to combine the two modules Exp/const-val and
Exp/fun-nullary. Then we have a conflict between the following two equa-
tions:

evaluate [[I]] = give the value bound to token [[I]]
evaluate [[I]] = enact action(the function bound to token [[I]])

The two actions can be unified provided that the semantic entities of sort
value do not include any of sort function:

evaluate [[I]] = (tentatively
give the value bound to token [[I]])

otherwise
enact action(the function bound to token [[I]])

where the action combination (tentatively A1) otherwise A2 performs A1,
and skips A2 if A1 terminates normally, but performs A2 (with the same data

13 Action equivalence is undecidable, but we may use any safe decidable approxi-
mation to it.

27

as A1) in the case that A1 terminates exceptionally. 14

The action in the new equation above means that if the datum bound to I is of
sort value, then the expression evaluation must simply give that value; if the
datum is of sort function, then the evaluation must enact the action; and if it
is neither a value nor a function, the evaluation must terminate exceptionally.
Since the given datum cannot be simultaneously of sort value and of sort
function, the order of combination is insignificant, as required.

Such unification of actions permits the modular composition of the languages
that, for example, use the same syntax for applying parameterless functions
and for referring to ordinary constant values, provided that parameterless
functions themselves are not regarded as values. Note, however, that if modules
do need to use values of sort function in representing expressible values, the
function abstractions there should always be embedded into other sorts by
use of distinct constructor functions, to allow subsequent combination with
modules such as Exp/fun-nullary. Safest of all is to follow the usual practice
in action-semantic descriptions, and always embed entities such as function
abstractions in distinct abstraction sorts when using them as (expressible,
bindable, or storable) values. For example, a constructor for parameterized
functions could embed the action in an abstraction sort Function, which could
then be included in Value, whereas a sort Thunk embedding the values of
parameterless expression abstractions would be excluded from Value.

It appears that Dec/fun-nullary and Dec/fun-nullary-dynamic cannot be uni-
fied since, as the following equation shows, the order of combination is signif-
icant:

declare [[fun I = E]] =
(tentatively
give binding (token [[I]],

nullary-function closure (evaluate [[E]])))
otherwise
give binding (token [[I]],

nullary-function (evaluate [[E]]))

When two modules cannot be unified, we say that they are inconsistent.

Let us look at some modules with no conflict. A first-order lazy functional
language supporting static scoping is defined by including modules as follows:

module FirstOrderLazyFunctionalLanguage
imports ExpressionLanguage

Dec/fun-nullary Exp/fun-nullary
Dec/seq-indep Exp/let

14 tentatively A fails when A terminates exceptionally with no data.

28

Expr es si onLanguage

Fi r s t Or der Laz yFunc t i onal Language

Ex p/
l et

Exp/
name- v al

Dec /
s eq- i ndep

Dec /
f un- unar y - name

Ex p/
f un- unar y - name

Dec /
f un- nul l ar y

Ex p/
f un- nul l ar y

Ex pDec

Funct i ons /
unar y - name

Func t i ons /
nul l ar y

I de

Funct i ons Val ues

AN

F
ig.

2.
T

he
m

odule
dependency

graph
for

F
i
r
s
t
O
r
d
e
r
L
a
z
y
F
u
n
c
t
i
o
n
a
l
La
n
g
ua
g
e

29

Dec/fun-unary-name Exp/fun-unary-name
Exp/name-val

The dependency relationships among imported modules in
FirstOrderLazyFunctionalLanguage are shown in Figure 2. Since there are
no conflicting semantic equations in the combined modules above, we say
that the modules are safely combined. Notice that although Exp/fun-nullary

imports only Exp, which does not itself specify the syntax or semantics of any
particular expression constructs, the effect of the combination is just as if all
the modules for expression constructs had also been imported.

As an another example, let us look at the module for a first-order eager func-
tional language with effects:

module FirstOrderEagerFunctionalLanguageWithEffects
imports ExpressionLanguage

Dec/val Exp/const-val
Dec/seq Exp/let
Dec/fun-unary-value Exp/fun-unary-value
Exp/new-var-init Exp/var-val
Exp/assign Exp/seq

exports
context-free syntax

Simple-Variable -> Bindable
Int -> Storable

The dependency relationships among imported modules in
FirstOrderEagerFunctionalLanguageWithEffects are shown in Fig-
ure 3. The combination in the above module presents no conflicting semantic
equations. However, since the sorts Bindable and Storable have remained
unspecified in the imported modules, they need to be fully specified in the
combined module in order for the language to be complete. This means that
the decision about which sorts of values should be bindable and/or storable
has been left open until we form a complete language. In fact, we might
choose them minimally, to be no more than required in the above combined
module; at the other extreme, we might choose them as follows:

Simple-Variable | Int | Bool -> Bindable
Simple-Variable | Int | Bool -> Storable

Note that in the meanwhile Value in the combined module must include at
least the following sorts:

Simple-Variable | Int | Bool -> Value

The observant reader may have noticed that the combination of the func-
tional ExpressionLanguage module with the modules, Exp/new-var-init,

30

Fi r st Or der Eager Func t i onal LanguageWi t hEf f ec t

Ex pr es si onLanguage

Ex p/
s eq

Dec /
s eq

Ex p/
v ar - val

Ex p/
as s i gn

Ex p/
c onst - v al

Exp/
f un- unar y - v al ue

Ex p/
l et

Dec /
v al

Dec /
f un- unar y - v al ue

Ex p

Var i abl es

I de

Func t i ons

Dec

Ex p/
new- v ar - i n i t

Var i abl es /
s i mpl e

Func t i ons /
unar y - v al ue

Val ues

AN

F
ig.

3.
T

he
m

odule
dependency

graph
for

F
i
r
s
t
O
r
d
e
r
E
a
g
e
r
F
u
n
c
t
i
o
na
l
L
an
g
u
ag
e

W
i
t
h
E
f
f
e
c
t
s

31

Exp/var-val and Exp/assign, has undermined the determinism of the de-
scribed language: assignments occurring in sub-expressions of the same arith-
metic expression may be interleaved in any order, and this clearly may lead to
different possible values of expressions. Such nondeterminism is quite differ-
ent from that arising when unifying actions, since it does not involve a choice
between performing different actions, and merely reflects the possibility of ob-
serving an internal nondeterminism that was already present in the computa-
tional semantics of actions representing expression evaluation; its appearance
should therefore not invalidate module combination. Incidentally, even if one
does regard nondeterminism due to interleaving as undesirable, and perhaps
wishes to prohibit just those programs whose outcome may depend on which
interleaving is chosen, the nondeterministic semantics is still needed, in order
to distinguish the prohibited programs from the others.

We have illustrated our approach by combining action-semantics modules
based on expression-based constructs taken from functional programming lan-
guages. It is, of course, equally possible to develop imperative languages by
defining a language module for conventional imperative constructs, with a new
syntax domain Command including assignment, loop and sequencing constructs,
and then defining and combining modules as we have done in this paper.

With the modular structure previously adopted in action semantics, each mod-
ule typically defines a semantic function on an entire syntactic sort. Thus a
conventional action-semantic description of the first-order language with ef-
fects would have essentially just two modules defining semantic functions: one
for evaluating expressions, the other for declaring definitions. The inherent
modularity of action notation allows reuse of individual semantic equations in
other descriptions, but it is unlikely that such large modules would ever be
reused in toto, merely by referring to them.

In contrast, the much finer modular structure proposed in this paper should
encourage the direct reuse of modules from one action-semantic description
in later ones. Note however that although the direct use of Asf+Sdf as
shown in this paper is quite convenient and perspicuous, it would probably
be advantageous to generate the desired Asf+Sdf modules from a more con-
cise meta-notation (e.g. eliminating lengthy keywords such as context-free

syntax), as in the ASD Tools developed by van Deursen and Mosses [16].

Finally, let us note that we have here focused on the modules defining semantic
equations. In large-scale action-semantic descriptions, also the specification of
semantic entities (providing data types and action abbreviations for higher-
level concepts, such as compound variables and communication protocols) has
an interesting modular structure. When the modules defining semantic equa-
tions are structured so as to group related constructs together, the modules
defining semantic entities may be more easily localized, making it apparent

32

that they are only needed in connection with the semantics of particular lan-
guage constructs. However, an appropriate visualization of the import rela-
tionship between modules may be as effective as (and more flexible than) an
explicit indication of the intended grouping of modules for semantic entities
with those for semantic equations.

6 Conclusion

We have demonstrated how to use action semantics to define and combine
language modules. The good modularity and extensibility of action semantics
help us systematically develop programming languages. Particularly in the
presence of the language modules for similar languages, new language modules
can be defined with only a few modifications when using the fine-grained
modular structure proposed here.

The ideas developed in this article can be adopted to guide the design
of domain-specific languages and/or rapidly prototyped special-purpose lan-
guages. When one designs such a language, one can analyze its problem do-
main, design a core language, and then gradually build up language features
to it according to some rational design principles, such as the Landin-Tennent
principles.

It should also be possible to reuse modules in the style of those shown in this
paper when describing previously-designed languages; in a future paper, we
intend to report on a case-study involving the action-semantic description of
an existing domain-specific language.

Good tool support [19] is clearly essential for checking the well-formedness and
consistency of modules (and ultimately, for generating prototype implementa-
tions from them). It appears that use of Asf+Sdf and the Meta-Environment
[15] is a good basis for such tool support. The implementation of tools should
be facilitated by our adoption of the much-simplified version of action nota-
tion that was proposed by Lassen, Mosses, and Watt at the Action Semantics
Workshop [13].

Other semantic frameworks that aim to provide a high degree of modular-
ity have been developed. For example, Moggi [20] has proposed the use of
monads and monad transformers in denotational semantics. Cartwright and
Felleisen [21] have proposed the use of an operationally-motivated style of de-
notational semantics, in the interests of modularity; it uses auxiliary notation
similar to that of Moggi, but appears to be not so general (nondeterminism
and concurrency are excluded). Liang and Hudak have implemented Moggi’s
monad transformers [20] in their modular monadic semantics framework [22].

33

Wansbrough and Hamer have used the modular monadic framework to give a
modular monadic semantics of action notation, and called it modular monadic
action semantics [23]. In response to such work, Mosses has developed Mod-
ular SOS [24] which provides significantly greater modularity in SOS, and he
has redefined action notation in Modular SOS, improving dramatically the
modularity of the definition [6]. The Abstract State Machine (ASM) approach
[25] also provides modularity for operational semantics, through the use of a
particularly neat notation for updating and accessing components of a global
configuration. Although the ASM approach generally lacks the compositional-
ity of SOS-based frameworks, the Montages presentation of ASM [26] provides
a separate module for each syntactic construct, specifying how a local ASM
for that construct is plugged into the global ASM, together with the firing
rules associated with the local ASM.

It appears that none of the above frameworks supports the definition and
combination of language modules to the same extent as action semantics does.
For instance, the monadic approach to denotational semantics would require
a particular composition of monad transformers to be specified for each mod-
ule; not only would this be repetitive, but also it is unclear how to combine
independently-specified compositions. Similarly, Modular SOS requires the
specification of compositions of so-called label transformers—although there it
would be quite straightforward to combine the transformers (since their order
of composition is insignificant, and their symbolic indices allow duplication to
be avoided). The Montages approach to ASM inspired our reconsideration of
the modular structure of action semantics, and it also supports combination of
modules for individual constructs into a complete language. However, it seems
that Montages modules from one language description cannot in general be
reused without reformulation in other descriptions, since the notation used in
the underlying ASM formalism may well vary.

In a recent paper [27] Menezes and Moura propose a novel “component-based”
style of action semantics. Although their proposal has some interesting aspects,
it requires the semantic equations to be formulated in a style that is signifi-
cantly different from that previously used in action semantics. We believe that
our proposal in the present paper, which is based on a simple rearrangement
of the pieces already found in previous action-semantic descriptions without
changes to the semantic equations themselves, provides an easier route towards
easier composition of programming languages by combing action-semantics
modules.

There is no silver bullet in designing a good programming language. However,
we hope a design tool such as the one proposed in this article may be used to
enhance the quality of language-design activity.

34

Appendix A: Inclusions Between Sorts of Semantic Entities

ExpressionLanguage:

Datum

Value

Int

Nat

LitValue

Bool

FirstOrderLazyFunctionalLanguage:

Datum

Value

Int

Nat

LitValue

Bool

Bindable

Function

Unary-Name-Function

Action

FirstOrderEagerFunctionalLanguageWithEffects:

Datum

Value

Int

Nat

LitValue

Bool

Bindable

Function

Unary-Value-Function

Storable

Variable

Simple-Variable

35

Appendix B: List of Action Notation Symbols

The following list includes only those symbols used in the examples given in
this paper (a list of all symbols of AN-2 would be roughly twice as long).

sorts

Action Data Datum DataSort
Token Bindable Bindings
Cell Storable Nat Int Bool
Yielder DataSort DataOp Enquirer

context-free syntax

Action -> Datum %% actions as data
Token -> Datum %% used in bindings
Bindable -> Datum %% used in bindings
Bindings -> Datum %% binding maps
Cell -> Datum %% primitive storage
Storable -> Datum %% in cells
Int -> Datum %% integers
Bool -> Datum %% truth-values

Datum -> Data %% 1-tuple
"(" {Data ","}* ")" -> Data %% tuples

Nat -> Int %% integers

Action "and" Action -> Action %% tupling
Action "and" "then" Action -> Action %% sequencing
Action "then" Action -> Action %% composition
"tentatively" Action -> Action %% may fail
Action "otherwise" Action -> Action %% recovery
"select"

"(" Action "or" Action ")" -> Action %% alternatives
Action "hence" Action -> Action %% scope
Action "before" Action -> Action %% scope sequencing
"furthermore" Action -> Action %% scope extension

"skip" -> Action %% null
"enact" -> Action %% action performance
"create" -> Action %% gives storage cell
"update" -> Action %% changes cell contents
"inspect" -> Action %% reads cell contents

"provide" Data -> Action %% giving fixed data

36

"give" Yielder -> Action %% giving variable data
"given" Yielder -> Action %% matching given data
"when" Enquirer -> Action %% testing predicate
Action Yielder -> Action %% give yielded data

%% then perform action

Data -> Yielder %% constant
DataOp -> Yielder %% application
DataOp Yielder -> Yielder %% composition
"(" {Yielder ","}* ")" -> Yielder %% tupling

"bound" "to" Yielder -> Yielder %% current binding
"closure" Yielder -> Yielder %% freeze yielded action

"the" DataSort -> DataOp %% project to subsort
"#" Nat -> DataOp %% select component
"binding" -> DataOp %% construct binding
"+" | "-" | "*" -> DataOp %% integer operations

action | yielder |
data | datum |
token | bindable | bindings |
cell | storable |
nat | int | bool -> DataSort %% subsort projectors

Yielder "=" Yielder -> Enquirer %% equality test

%% DataOp includes all data operations (and action combinators).
%% Applications of data operations may be written infix.
%% Prefix applications have higher priority than infix applications.
%% Infix applications are left associative.
%% Conventional notation for Nat, Int, and Bool is included.

Acknowledgements

David Schmidt provided the idea of defining and combining language-
definition modules; Olivier Danvy encouraged us to write this paper and made
numerous comments on the contents and structure of previous drafts; Tae-
Hyung Choi and Soo-Kang Lee showed their expertise in Visio 15 by drawing
figures in the paper; and the anonymous referees supplied useful comments
and corrections.

15 Visio is a trademark of Microsoft Corporation.

37

References

[1] C. A. R. Hoare, Hints on programming language design, in: POPL’73, Proc. 1st
ACM Symp. on Principles of Programming Languages, ACM Press, New York,
1973, also in [28].

[2] D. A. Schmidt, The Structure of Typed Programming Languages, MIT Press,
1994.

[3] P. D. Mosses, Action Semantics, no. 26 in Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1992.

[4] P. D. Mosses, Theory and practice of action semantics, in: MFCS’96, Proc.
21st Int. Symp. on Mathematical Foundations of Computer Science, Cracow,
Poland, Vol. 1113 of Lecture Notes in Computer Science, Springer-Verlag, 1996,
pp. 37–61.

[5] P. D. Mosses, A tutorial on action semantics, tutorial notes for
FME’94 (Formal Methods Europe, Barcelona, 1994) and FME’96 (Formal
Methods Europe, Oxford, 1996), also available from the author at
http://www.brics.dk/Projects/AS/ (Mar. 1996).

[6] P. D. Mosses, A modular SOS for action notation, Tech. Rep. BRICS RS-99-56,
Dept. of Computer Science, University of Aarhus (Dec. 1999).

[7] D. A. Watt, Programming Language Syntax and Semantics, Prentice-Hall, 1991.

[8] P. D. Mosses, D. A. Watt, Pascal: Action semantics, draft, Version 0.6, Available
from the authors at http://www.brics.dk/Projects/AS/ (Mar. 1993).

[9] D. A. Watt, Standard ML action semantics, draft, Version 0.5, Available from
the author at http://www.brics.dk/Projects/AS/ (May 1997).

[10] D. A. Watt, The static and dynamic semantics of Standard ML, in: AS’99, 2nd
International Workshop on Action Semantics (ed. Mosses, P. D., and Watt, D.
A.), BRICS NS-99-3, Dept. of Computer Science, University of Aarhus, 1999,
pp. 155–172.

[11] R. D. Tennent, Language design methods based on semantic principles, Acta
Informatica 8 (1977) 97–112.

[12] G. D. Plotkin, A structural approach to operational semantics, Lecture Notes
DAIMI FN-19, Dept. of Computer Science, University of Aarhus (1981).

[13] S. B. Lassen, P. D. Mosses, D. A. Watt, An introduction to AN-2, the proposed
new version of Action Notation, in: AS 2000, no. NS-00-6 in Notes Series,
BRICS, Dept. of Computer Science, Univ. of Aarhus, 2000, pp. 19–36.

[14] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, J. Visser, The ASF+SDF Meta Environment: a component-based

38

language development environment, in: R. Wilhelm (Ed.), CC’2001, Compiler
Construction, Vol. 2027 of Lecture Notes in Computer Science, Springer-Verlag,
2001, pp. 365–370.

[15] A. van Deursen, J. Heering, P. Klint (Eds.), Language Prototyping, Vol. 5 of
AMAST Series in Computing, World Scientific, 1996.

[16] A. van Deursen, P. D. Mosses, ASD: The action semantic description tools,
in: AMAST’96, Proc. 5th Intl. Conf. on Algebraic Methodology and Software
Technology, Munich, Vol. 1101 of Lecture Notes in Computer Science, Springer-
Verlag, 1996, pp. 579–582.

[17] D. A. Schmidt, Denotational Semantics: A Methodology for Language
Development, Allyn and Bacon, 1986.

[18] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory, MIT Press, 1977.

[19] J. Heering, P. Klint, Semantics of programming languages: A tool-oriented
approach, ACM SIGPLAN Notices 35 (3) (2000) 39–48.

[20] E. Moggi, An abstract view of programming languages, Tech. Rep. ECS-LFCS-
90-113, Computer Science Dept., University of Edinburgh (1990).

[21] R. Cartwright, M. Felleisen, Extensible denotational language specifications, in:
M. Hagiya, J. C. Mitchell (Eds.), TACS’94, Symposium on Theoretical Aspects
of Computer Software, Sendai, Japan, Vol. 789 of Lecture Notes in Computer
Science, Springer-Verlag, 1994, pp. 244–272.

[22] S. Liang, P. Hudak, Modular denotational semantics for compiler construction,
in: ESOP’96, Proc. 6th European Symp. on Programming, Linköping, Vol. 1058
of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp. 219–234.

[23] K. Wansbrough, J. Hamer, A modular monadic action semantics, in: Proc. Conf.
on Domain-Specific Languages, The USENIX Association, 1997, pp. 157–170.

[24] P. D. Mosses, Foundations of Modular SOS (extended abstract), in: MFCS’99,
Proc. 24th Intl. Symp. on Mathematical Foundations of Computer Science,
Szklarska Poreba, Poland, Lecture Notes in Computer Science, Springer-Verlag,
1999, pp. 70–80, full version published as BRICS RS-99-54, Dept. of Computer
Science, University of Aarhus, 1999.

[25] Y. Gurevich, Evolving algebras 1993: Lipari guide, in: E. Börger (Ed.),
Specification and Validation Methods, Oxford University Press, 1995.

[26] P. Kutter, A. Pierantonio, Montages: Specifications of realistic programming
languages, Journal of Universal Computer Science 3 (5) (1997) 416–442.

[27] L. Menezes, H. Moura, Component-based action semantics: A new approach for
programming language specification, in: SBLP 2001, V Brazilian Symposium
on Programming Languages, 2001.

[28] C. A. R. Hoare, C. B. Jones, Essays in Computing Science, Prentice-Hall, 1989.

39

Recent BRICS Report Series Publications

RS-03-53 Kyung-Goo Doh and Peter D. Mosses.Composing Program-
ming Languages by Combining Action-Semantics Modules. De-
cember 2003. 39 pp. Appears inScience of Computer Program-
ming, 47(1):2–36, 2003.

RS-03-52 Peter D. Mosses.Pragmatics of Modular SOS. December 2003.
22 pp. Invited paper, published in Kirchner and Ringeissen, ed-
itors, Algebraic Methodology and Software Technology: 9th In-
ternational Conference, AMAST ’02 Proceedings, LNCS 2422,
2002, pages 21–40.

RS-03-51 Ulrich Kohlenbach and Branimir Lambov. Bounds on Itera-
tions of Asymptotically Quasi-Nonexpansive Mappings. Decem-
ber 2003. 24 pp.

RS-03-50 Branimir Lambov. A Two-Layer Approach to the Computability
and Complexity of Real Numbers. December 2003. 16 pp.

RS-03-49 Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. On-
line On-the-Fly Testing of Real-time Systems. December 2003.
14 pp.

RS-03-48 Kim G. Larsen, Ulrik Larsen, Brian Nielsen, Arne Skou, and
Andrzej Wasowski. Danfoss EKC Trial Project Deliverables.
December 2003. 53 pp.

RS-03-47 Hans Ḧuttel and Jiř ı́ Srba. Recursive Ping-Pong Protocols. De-
cember 2003. To appear in the proceedings of 2004 IFIP WG
1.7, ACM SIGPLAN and GI FoMSESS Workshop on Issues in
the Theory of Security (WITS’04).

RS-03-46 Philipp Gerhardy. The Role of Quantifier Alternations in Cut
Elimination. December 2003. 10 pp. Extends paper appear-
ing in Baaz and Makowsky, editors,European Association for
Computer Science Logic: 17th International Workshop, CSL ’03
Proceedings, LNCS 2803, 2003, pages 212-225.

RS-03-45 Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo We-
gener. On converting CNF to DNF. December 2003. 11 pp.
A preliminary version appeared in Rovan and Vojtás, editors,
Mathematical Foundations of Computer Science: 28th Interna-
tional Symposium, MFCS ’03 Proceedings, LNCS 2747, 2003,
pages 612–621.

