
B
R

IC
S

R
S

-03-47
Ḧuttel&

S
rba:

R
ecursive

P
ing-P

ong
P

rotocols

BRICS
Basic Research in Computer Science

Recursive Ping-Pong Protocols

Hans Hüttel
Jiř ı́ Srba

BRICS Report Series RS-03-47

ISSN 0909-0878 December 2003

Copyright c© 2003, Hans Ḧuttel & Ji ř ı́ Srba.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/47/

Recursive Ping-Pong Protocols

Hans Hüttel? and Jǐŕı Srba??

BRICS? ? ?, Dep. of Computer Science, University of Aalborg
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

Abstract. This paper introduces a process calculus with recursion which
allows us to express an unbounded number of runs of the ping-pong pro-
tocols introduced by Dolev and Yao. We study the decidability issues
associated with two common approaches to checking security properties,
namely reachability analysis and bisimulation checking. Our main result
is that our channel-free and memory-less calculus is Turing powerful,
assuming that at least three principals are involved. We also investigate
the expressive power of the calculus in the case of two participants. Here,
our main results are that reachability and, under certain conditions, also
strong bisimilarity become decidable.

1 Introduction

The study of correctness properties of cryptographic protocols has become an
increasingly important research topic. Today, research on cryptographic proto-
cols is often conducted using methods from program semantics together with the
so-called Dolev-Yao assumptions about protocol principals and intruders intro-
duced in [11]. In the Dolev-Yao model, all communications of a protocol may be
visible to the hostile environment which is capable of interfering with the proto-
col by altering or blocking any message and by creating new messages. Moreover,
these are the only kinds of attacks — an intruder cannot exploit weaknesses of
the encryption algorithm itself (the ’perfect encryption hypothesis’).

Process calculi have been suggested as a natural vehicle for reasoning about
cryptographic protocols. In [1], Abadi and Gordon introduced the spi-calculus (a
variant of the π-calculus) and described how properties such as secrecy and au-
thenticity can be expressed via observational equivalence. Alternatively, security
properties can be expressed and examined using reachability analysis [4, 6, 14].
An important question is: Given the Dolev-Yao assumptions, to which extent
are the properties of cryptographic protocols decidable?

A number of security properties are decidable for the class of finite protocols
[4, 16]. In the case of an unbounded number of protocol configurations, the pic-
ture is more complex. Durgin et al. showed in [12] that security properties are

? hans@cs.auc.dk
?? srba@cs.auc.dk, supported in part by the GACR, grant No. 201/03/1161.

? ? ? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

undecidable in a restricted class of so-called bounded protocols (that still allows
for infinitely many reachable configurations). In [3] Amadio and Charatonik con-
sider a language of tail-recursive protocols with bounded encryption depth and
name generation; they show that, whenever certain restrictions on decryption
are violated, one can encode two-counter machines in the process language. On
the other hand, Amadio, Lugiez and Vanackère show in [5] that the reachability
problem is in PTIME for a class of protocols with replication (as opposed to
recursion).

Another contribution by Dolev and Yao in [11] is the study of ping-pong
protocols. These are memory-less protocols which may be subjected to arbitrarily
long attacks. Here, the secrecy of a finite ping-pong protocol can be decided in
polynomial time. Later, Dolev, Even and Karp found a cubic-time algorithm [10]
by expressing secrecy as emptiness of the intersection of a context-free language
with a regular language. The class of protocols studied by Amadio et al. in [5]
contains iterative ping-pong protocols and, as a consequence, secrecy properties
remain polynomially decidable even in this case.

In this paper we examine decision problems for a process calculus capable
of describing exactly the class of recursive ping-pong protocols. We study the
calculus from the perspective of equivalence checking (for a general scheme see
e.g. [15]) and consider no explicit model of the environment. The reason for
considering this tiny calculus is that all negative results for it carry over to
richer calculi capable of expressing a wider class of protocols (it is possible to
describe an active intruder in the setting of bisimilarity/reachability checking of
ping-pong protocols and this will be treated in our forthcoming paper).

The considered calculus is a channel-free process calculus, reminiscent of the
tail-recursive processes studied by Amadio and Charatonik [3]. In the case of
three principals, we can encode any Turing machine as a ping-pong protocol.
Hence even this very restricted formalism is sufficiently expressive to encode
universal computations. This implies that any richer calculus (and indeed any
reasonable cryptographic calculus should subsume the ping-pong behaviour) is
beyond the reach of automatic verification. The underlying idea of our construc-
tion is to encode the content of the tape as a series of encryptions and to express
the transition function as a series of protocol steps. As a consequence, both
reachability and bisimilarity are undecidable.

On the other hand, if the protocol is restricted to two principals, many prop-
erties become decidable. In particular, we show that the reachability problem
is in PTIME, and under a certain natural observational condition also strong
bisimilarity becomes decidable.

2 Basic Definitions

2.1 Transition Systems and Bisimilarity

We describe the semantics of our process calculi using unlabelled transition sys-
tems where every state has an associated set of its knowledge, which is an element

2

of a given domain D. Intuitively, knowledge represents observations visible to the
environment.

A transition system (with knowledge) is a triple (S,−→, kn) where S is a set
of states (or processes), −→⊆ S × S is a transition relation, written α −→ β,
for (α, β) ∈−→, and kn : S 7→ D is a knowledge function from the set of states
to the given knowledge domain D.

Let T = (S,−→, kn) be a transition system. A binary relation R ⊆ S × S
is a (strong) bisimulation iff whenever (α, β) ∈ R then kn(α) = kn(β) and if
α −→ α′ then β −→ β′ for some β′ such that (α′, β′) ∈ R, and if β −→ β′ then
α −→ α′ for some α′ such that (α′, β′) ∈ R.

Processes α1, α2 ∈ S are (strongly) bisimilar in T , written (α1, T) ∼ (α2, T)
(or simply α1 ∼ α2 if T is clear from the context), iff there is a (strong) bisim-
ulation R such that (α1, α2) ∈ R.

Given a pair of processes α1 in a transition system T1 = (S1,−→1, kn) and
α2 in T2 = (S2,−→2, kn) such that S1 ∩ S2 = ∅ and kn : S1 ∪ S2 7→ D, we write
(α1, T1) ∼ (α2, T2) iff (α1, T) ∼ (α2, T) such that T def= (S1 ∪ S2,−→, kn) where
α −→ β iff α, β ∈ S1 and α −→1 β, or α, β ∈ S2 and α −→2 β. Similarly if
S1 and S2 are not disjoint, we simply rename the states of one of the transition
systems and use the same notation (α1, T1) ∼ (α2, T2).

Bisimilarity has an elegant characterization in terms of bisimulation games
[19, 18]. A bisimulation game on a pair of processes (α1, T) and (α2, T) is a two-
player game of an ‘attacker’ and a ‘defender’. The game is played in rounds. In
each round the attacker chooses one of the processes and performs a transition
in the selected process; the defender must respond by performing a transition
in the other process. Now the game repeats, starting from the new processes.
If a pair of processes α1 and α2 such that kn(α1) 6= kn(α2) is reached during
the game, the attacker wins. If a player cannot perform a transition, the other
player wins. If the game is infinite, the defender wins.

Processes (α1, T) and (α2, T) are bisimilar iff the defender has a winning
strategy (and non-bisimilar iff the attacker has a winning strategy).

Two main decidability problems we shall investigate are (strong) bisimilarity
checking and reachability analysis. The first problem asks the question (i) Are
two given states α and β in a transition system (strongly) bisimilar (α ∼ β) ?
and the second problem asks the question (ii) Is a given state β reachable from
a state α, i.e., α −→∗ β ?

2.2 Ping-Pong Protocols

Let T be a set of plain-text messages and let K be a set of encryption keys. We
let t range over T and k range over K. The set of messages over T encrypted
with the keys from K is denoted byM(T, K) and given by the following abstract
syntax.

m ::= t | {m}k

Hence a message m (either a plain-text or an already encrypted message) can
be encrypted with a key k, and such a message is written as {m}k.

3

Let Const be a finite set of process constants. A specification of a ping-pong
protocol is a finite set of process definitions ∆ such that every process constant
P ∈ Const has exactly one process definition of the form

P
def=

∑
i∈I

vi.wi.Pi

where I is a finite set of indices, vi and wi are messages over a fixed variable
name x encrypted with the keys from K (i.e. vi, wi ∈ M({x}, K)), and Pi is
either a process constant or the empty process ‘0’ (i.e. Pi ∈ Const∪{0}). We call
vi (resp. wi) the input (resp. output) prefix.

Process definitions like these will often be written in their unfolded forms
P

def= v1.w1.P1 +v2.w2.P2 + · · ·+vn.wn.Pn and whenever Pi is the empty process
0 then instead of vi.wi.0 we write only vi.wi. Also, let keys(u) denote the set
of keys used in u for u ∈ M(T, K), formally keys(t) def= ∅ and keys({m}k) def=
{k} ∪ keys(m).

Example 1. A simple protocol specification may look as follows:

∆
def= {P def= {x}k.{{x}k′}k.P}

where K
def= {k, k′}. The cyclic behaviour of the process constant P is described

as follows: P receives a message and decrypts it by using the key k; the decrypted
message is encrypted (using first the key k′ and then k), and sent off.

Let us finally also recall that for the prefixes {x}k and {{x}k′}k we have
keys({x}k) = {k} and keys({{x}k′}k) = {k, k′}. ut

A configuration of a ping-pong protocol specification ∆ is a parallel compo-
sition of process constants, possibly preceded by output prefixes. Formally the
set Conf of configurations is given by the following abstract syntax

C ::= P | w.P | C||C

where P ∈ Const∪{0} ranges over process constants including the empty process,
w ∈ M(T, K) ranges over the set of messages, and ‘||’ is the operator of the
parallel composition.

We introduce a structural congruence which identifies configurations that
represent the same state of the protocol. ≡ is defined as the least congruence
over configurations (≡⊆ Conf × Conf) such that (Conf, ||,0) is a commutative
monoid. We identify configurations up to structural congruence.

The width of a configuration C is the minimal number of the parallel com-
ponents in the ≡-equivalence class represented by C. Hence e.g. the width of 0
is 0 and the width of P ||0||Q is 2.

We shall now impose two natural restrictions on knowledge functions. We say
that a knowledge function kn : Conf 7→ D for a given set D respects structural
equivalence if C1 ≡ C2 implies kn(C1) = kn(C2) for any C1, C2 ∈ Conf. Let C ∈
Conf be a configuration with the corresponding specification ∆. The set prefix(C)

4

of available prefixes of C is defined by: prefix (0) def= ∅; prefix (C) def= ∪i∈I{vi, wi}
if C ∈ Const such that

(
C

def=
∑

i∈I vi.wi.Pi

)
∈ ∆; prefix(C) def= {w} if C = w.P

for some P ∈ Const; and prefix(C) def= prefix (C1) ∪ prefix(C2) if C = C1||C2.
The intuition is that the input/output capabilities of a configuration depend
only on the available prefixes and not on the names of process constants. If
we consistently rename the process constants in C and ∆ and obtain a new
configuration C′ and a new specification ∆′, it is the case that prefix(C) =
prefix (C ′). Hence we say that a knowledge function kn respects renaming of
process constants if prefix (C1) = prefix (C2) implies kn(C1) = kn(C2) for any
C1, C2 ∈ Conf.

We only consider knowledge functions that respect structural congruence and
renaming of process constants; we will call such functions respecting.

Example 2. Define the following knowledge functions kn∅, knpriv and knplain :

– The empty knowledge function kn∅ : Conf 7→ {⊥} is defined by kn∅(C) def= ⊥
for all C ∈ Conf.

– The private-keys knowledge function knpriv : Conf 7→ 2K (where K is the

set of keys) is defined by knpriv (C) def=
⋃

i∈I keys(vi) if C ∈ Const and

C
def=

∑
i∈I vi.wi.Pi, knpriv (C) def= knpriv (C1) ∪ knpriv (C2) if C = C1||C2

and knpriv (C) def= ∅ otherwise.
– The plain-text knowledge function knplain : Conf 7→ 2T (where T is the set

of plain-text messages), is defined by knplain(C) def= {t} if C = t.P for some

t ∈ T and P ∈ Const, knplain (C) def= knplain(C1) ∪ knplain(C2) if C = C1||C2

and knplain(C) def= ∅ otherwise.

It is easy to see that these knowledge functions are respecting. The intuition is
that kn∅ does not take the knowledge of configurations into account and hence
in bisimilarity checking only the branching structure induced by −→ is relevant.
The knowledge function knpriv makes sure that any two bisimilar configurations
have the same decryption keys currently available. Finally, the function knplain

identifies configurations which are currently capable of communicating the same
set of plain-text messages. ut
Example 3. Consider a ping-pong protocol motivated by a simple example men-
tioned e.g. in [10] and [11]. A participant X wants to send a message m ∈ {0, 1}∗
to a participant Y and get a confirmation that the message was received. The
protocol is informally described as follows: (i) participant X encrypts the mes-
sage m by a public key of Y and sends the encrypted message to Y , (ii) partic-
ipant Y decrypts the received message by his private key and answers to X by
the same message m encrypted with X ’s public key, (iii) finally X receives the
confirmation message and decrypts it by his private key.

In our formalism let T
def= {0, 1}∗, K

def= {kX , kY }, and Const
def= {X, Y }. The

protocol specification ∆ is given by two equations

X
def= {x}kX .{x}kY .X Y

def= {x}kY .{x}kX

5

(P
def
=

P
i∈I vi.wi.Pi) ∈ ∆ u = vi[m/x] m ∈ M(T, K) i ∈ I

P || u.Q −→ wi[m/x].Pi || Q

P −→ P ′

P ||Q −→ P ′||Q

Fig. 1. SOS rules of ping-pong protocols

and the initial configuration of the protocol is {m}kY .X || Y for a given m ∈ T .
The intuition is that the process {m}kY .X can output the message m en-

crypted with the key kY and become the process X . Similarly, Y can input this
message and become the process {m}kX .Y . After the communication is estab-
lished, the new configuration X || {m}kX .Y is reached. The conformation phase
of the protocol is analogous to the first communication. ut

Note that we do not distinguish explicitly between private and public keys.
This is done implicitly: a key supposed to be a private key for one or more process
constants cannot be used in the input prefixes of other process constants. E.g.
in our example kX is a private key of X which means the process constant Y
can use the key only in its output prefix and vice versa.

A formal semantics of ping-pong protocols is given in terms of transition
systems. First, we define inductively a substitution u[m′/x] of the message m′

for the variable x in the prefix u (m′ ∈ M(T, K) and u ∈ M({x}, K)) by
x[m′/x] def= m′ and {m}k[m′/x] def= {m[m′/x]}k.

A given protocol specification ∆ determines a transition system T (∆) def=
(S,−→, kn) where states are configurations of the protocol modulo the structural
congruence (S def= Conf/≡); the transition relation −→ is given by the SOS rules
in Figure 1 (recall that ‘||’ is commutative); and the knowledge function kn :
S 7→ D is assumed to be explicitly given. Note that the width of a configuration
does not increase by performing a transition.

Example 4. Let us consider the ping-pong protocol specification from Example 3.
The interesting fragment of the transition system T (∆) is

{m}kY .X || Y // X || {m}kX .Y // {m}kY .X ut

In the rest of this section we will discuss the usefulness of bisimilarity checking
with knowledge functions for validation of authenticity and secrecy of ping-pong
protocols. The correctness checking of such protocols is done by comparing the
protocol specification with its ideal behaviour [2] under an appropriate choice of
the knowledge function.

For example, assume that we want to check whether a given protocol speci-
fication ∆ ever outputs a plain-text message. Let us fix an arbitrary key k ∈ K.

6

We define an ideal protocol ∆′ which has the same behaviour as ∆ but never
communicates any plain-text message. This can be achieved e.g. by defining

∆′ def= {P def=
∑
i∈I

{vi}k.{wi}k.Pi | (P def=
∑
i∈I

vi.wi.Pi) ∈ ∆}.

For any configuration C ∈ Conf let C′ be a configuration where every occur-
rence of an output prefix of the form w.P is replaced with {w}k.P . Under the
assumption that the plain-text knowledge function knplain is used, it holds that
(C, T (∆)) ∼ (C ′, T (∆′)) if and only if the protocol ∆ starting from its initial
configuration C is never capable of outputting any plain-text message.

Assume now that ∆ contains input prefixes only of the from {x}k for some key
k ∈ K (only one key decryption at a time). The question whether a computation
from a given configuration C of the protocol specification ∆ never deadlocks
and it is always possible to decrypt messages encrypted with a fixed key k can
be expressed as follows. Let ∆′ def= {X def= {x}k.{x}k.X} and let C′ be the
configuration {t}k.X || X for some t ∈ T . Obviously, from C′ there is exactly
one transition leading back to C′ and moreover C′ is always capable of decrypting
a message encrypted with the key k. We also define a knowledge function kn :
Conf 7→ {0, 1} by kn(C1)

def= 1 if k ∈ knpriv (C1); and kn(C1)
def= 0 otherwise. Here

knpriv is the private-keys knowledge function introduced before. The considered
validation question is now equivalent to the problem (C, T (∆)) ∼ (C′, T (∆′)).

Remark 1. If instead of kn defined above we use kn∅, the bisimilarity question
(C, T (∆)) ∼ (C ′, T (∆′)) is equivalent to the problem whether there is no termi-
nating computation of the protocol ∆ starting in C.

3 Ping-Pong Protocols of Width 3

In this section we show that ping-pong protocols of width at least 3 are surpris-
ingly powerful enough to simulate Turing machines.

Let M = (Q, Σ, γ, q0, qF) be a Turing machine such that Q is a finite set of
control states, Σ is a finite tape alphabet containing special symbols c, $ ∈ Σ (c
is the left mark of the tape and $ it the right mark; let Σ1

def= Σ r{c, $}), q0 ∈ Q
is the initial state, qF is the final state and

γ : Σ×Q×Σ 7→ (Q×Σ×Σ ∪ Σ×Σ×Q ∪ {halt})

is a total function such that

– γ(aqb) ∈
(
Q×{a}×Σ1 ∪ {a}×Σ1×Q

)
for all a, b ∈ Σ1 and q ∈ Q

(the head moves either to the left or to the right)
– γ(cqa) ∈ {c}×Σ1×Q for all a ∈ Σ and q ∈ Q

(the head is not allowed to move on the left mark)
– γ(aq$) ∈

(
Q×{a}×{$} ∪ {a}×Σ1×Q

)
for all a ∈ Σ and q ∈ Q

(the right mark cannot be changed but the head can move to the right)

7

– γ(aqF b) = halt for all a, b ∈ Σ
(when the final state qF is reached, the computation stops).

A configuration of the machine M is an element from the set {c}×Σ∗
1×Q×Σ∗

1×{$}.
A computational step between configurations c1 and c2 (written c1 −→ c2) is
defined in the usual way, i.e.,

– c1 −→ c2 if c1 ≡ w1aqbw2 and c2 ≡ w1γ(aqb)w2 where w1, w2 ∈ Σ∗, a, b ∈ Σ
and q ∈ Q such that b 6= $, or

(
b = $ ∧ γ(aqb) ∈ Q×{a}×{$}

)
(the head

does not write on the right mark), or
– c1 −→ c2 if c1 ≡ w1aq$ and c2 ≡ w1γ(aq$)$ where w1 ∈ Σ∗, a ∈ Σ and

q ∈ Q such that γ(aq$) ∈ {a}×Σ1×Q (the head is at the end mark and
moves to the right).

It is a well known fact that the problem whether the machine halts from the
initial configuration cq0$ (i.e. reaches a configuration containing the state qF in
a finite number of computational steps) is undecidable.

Let M = (Q, Σ, γ, q0, qF) be a Turing machine and let S
def= Q∪Σ ∪{z} and

S′ def= {s′ | s ∈ S} such that z is a fresh symbol and S∩S′ = ∅. We define a ping-
pong protocol ∆ that will simulate the computation of the machine M . The set
of plain-text messages is a singleton set T

def= {t}, the set of keys is K
def= S ∪S′,

and the set of process constants consists of Const
def= {BS , BS′ , P, R}∪ {Pa′ , Ra |

a ∈ S} ∪ {Va′b′c′ , Va′b′c′$′ | a, b, c ∈ S}.
First, we define the equations for process constants BS and BS′ (buffers over

S and S′).

BS
def=

∑
s∈S

{x}s.{x}s.BS BS′
def=

∑
s′∈S′

{x}s′ .{x}s′ .BS′

The intuition is that the buffers BS and B′
S can store their content as a sequence

of encryption keys over S resp. S′. In our case the buffers will store configurations
of the machine M .

The process constant P transfers the content of the buffer BS to the buffer
BS′ and as soon as a control state is present, the computational step is performed.
This is formally defined by

P
def=

∑
a,b,c∈S, b6∈Q

{{{x}c}b}a.{{x}c}b.Pa′ +

∑
a,c∈Σ, q∈Q, γ(aqc)=efg, ¬ω

{{{x}c}q}a.x.Ve′f ′g′ +

∑
a,c∈Σ, q∈Q, γ(aqc)=efg, ω

{{{x}c}q}a.x.Ve′f ′g′$′

where ω is the condition saying that the head is at the end of the tape and it
moves to the right, i.e., ω ≡ c = $ ∧ g ∈ Q.

8

The process constant Pa′ for all a′ ∈ S′ simply adds the symbol a′ to the
buffer BS′ and then it continues as P .

Pa′
def=

∑
s′∈S′

{x}s′ .{{x}s′}a′ .P

The process constants Va′b′c′ and Va′b′c′$′ (for a′, b′, c′ ∈ S′) add the correspond-
ing sequence of keys to the buffer BS′ and then continue as R.

Va′b′c′
def=

∑
s′∈S′

{x}s′ .{{{{x}s′}a′}b′}c′ .R

Va′b′c′$′
def=

∑
s′∈S′

{x}s′ .{{{{{x}s′}a′}b′}c′}$′ .R

We finish the definition of the process constants by introducing R (standing
for ‘reverse’), which transfers the content of the buffer BS′ back to BS .

R
def=

∑
a′∈S′

{x}a′ .x.Ra

Similarly as Pa′ , Ra for all a ∈ S r {c} adds the symbol a to the buffer BS

and continues as R, except for the situation when the beginning of the tape was
reached (in this case Rc continues as P).

Ra
def=

∑
s∈S

{x}s.{{x}s}a.R Rc
def=

∑
s∈S

{x}s.{{x}s}c.P

Let m
def= {t}z and m′ def= {t}z′ (recall that t ∈ T is the only plain-text

message). The following configuration of width 3 can simulate the computation
of the machine M from the initial configuration cq0$.

{{{m}$}q0}c.BS || m′.BS′ || P

In order to see how the simulation works we use the notations [w]m and [w]m′

to denote the messages m and m′ encrypted with the sequence of keys w, i.e.,
[ε]m

def= m, [ε]m′
def= m′, [aw]m

def= {[w]m}a and [aw]m′
def= {[w]m′}a where ε is the

empty sequence, a ∈ K and w ∈ K∗.
Now every configuration c of the machine M corresponds to the configura-

tion f(c) def= ([c]m.BS || [ε]m′ .BS′ || P) of the protocol ∆. Note that the initial
configuration of ∆ defined above is exactly f(cq0$).

The following considerations will describe the simulation of the Turing ma-
chine M by the protocol ∆. A single step of the machine M will be simulated
by a finite number of transitions in the protocol.

Let c1 = w1aqcw2 and c2 = w1efgw2 be configurations of M such that
w1, w2 ∈ Σ∗, a, c ∈ Σ, q ∈ Q, γ(aqc) = efg, and ¬ω. This means that c1 −→ c2.
We will show that f(c1) −→∗ f(c2) such that the computation of the protocol
from f(c1) is deterministic, i.e., for any C ∈ Conf such that f(c1) −→∗ C it is

9

the case that C −→ C′ and C −→ C′′ implies C′ ≡ C′′. For w1 in the form
a1 · · · an let w′

1,R
def= a′n · · · a′1 be the reversed word w1 such that every letter is

primed. The computation from f(c1) looks as follows.

f(c1) = [w1aqcw2]m.BS || [ε]m′ .BS′ || P −→∗ [aqcw2]m.BS || [w′
1,R]m′ .BS′ || P −→

BS || [w′
1,R]m′ .BS′ || [w2]m.Ve′f ′g′ −→ [w2]m.BS || [w′

1,R]m′ .BS′ || Ve′f ′g′ −→

[w2]m.BS || BS′ || [g′f ′e′w′
1,R]m′ .R −→ [w2]m.BS || [g′f ′e′w′

1,R]m′ .BS′ || R −→∗

[w1efgw2]m.BS || [ε]m′ .BS′ || P = f(c2)

It is easy to observe that such a computation is unique (deterministic).
Let c1 = w1aq$ and c2 = w1efg$ be configurations of M as before, however,

this time the condition ω holds. This case is analogous to the previous one. The
only difference is that Ve′f ′g′ is replaced with Ve′f ′g′$′ and the end of the tape
$ is added (the tape hence becomes longer by one cell). Assume now that f(c1)
represents a halting configuration. The computation of the protocol from f(c1)
starts as before, however, there is no summand in the definition of the process
constant P for the situation that γ(aqc) = halt and hence the computation gets
stuck in the configuration [aqcw2]m.BS || [w′

1,R]m′ .BS′ || P.
The following theorems are applications of the presented simulation.

Theorem 1. Reachability is undecidable for ping-pong protocols of width 3.

Theorem 2. Bisimilarity is undecidable for ping-pong protocols of width 3 for
any knowledge function which respects structural congruence and renaming of
process constants.

4 Ping-Pong Protocols of Width 2

If the family of protocols we consider contains at most two participants (par-
allel components), we get a class similar to that of the traditional ping-pong
protocols [10, 11]. In fact, our class is more general in the sense that we allow
for recursive definitions in the protocol specification. In the situation of at most
two parallel components in any reachable configuration we may without loss of
generality assume that such configurations are always of the form P || w.Q for
some P ∈ Const, Q ∈ Const ∪ {0} and w ∈ M(T, K). If this is not the case, the
computation of such a protocol is stuck — no communication can take place.

We shall now observe that the class of ping-pong protocols of width 2 is not
Turing powerful since e.g. reachability becomes decidable. Hence we can still
hope for automatic verification of some protocol properties.

Theorem 3. The reachability problem for ping-pong protocols of width 2 is de-
cidable in polynomial time.

In contrast, the bisimilarity problem is again undecidable.

10

Theorem 4. The problem of bisimilarity checking between a pair of ping-pong
protocol configurations of width 2 is undecidable (provided that we allow for gen-
eral but still computable, respecting and finite-domain knowledge functions).

In most of the examples of knowledge functions we, however, do not use
knowledge functions similar to the one described in the undecidability proof. In
fact, it is quite satisfactory to consider knowledge functions which depend only
on a constant number of the upper-most symbols in the output prefix. We shall
prove that if this is the case then bisimilarity becomes decidable.

Let P || w.Q be a general form of a protocol configuration of width 2. A
knowledge function kn is local if there is a constant M ∈ N

0 and a function

f : (Const ∪ {0})× (Const ∪ {0})×
(
(K<M × T) ∪KM

)
7→ D

such that kn(P || w.Q) = f(P, Q, w′) where w′ is 〈w〉 if |〈w〉| ≤ M , and w′ is the
prefix of 〈w〉 of length M otherwise. In other words, a local knowledge function
depends only on P , Q and at most M outer-most keys of w.

Remark 2. Observe that local knowledge functions have finite co-domains. Hence
for every local knowledge function there is an equivalent local knowledge function
with a finite domain D. In what follows we shall assume that D is finite.

Theorem 5. The problem of bisimilarity checking between a pair of ping-pong
protocol configurations of width 2 is decidable for local knowledge functions.

5 Conclusion

We have studied a simple, channel-free process calculus capable of describing
recursive ping-pong protocols. Surprisingly, the calculus turns out to be Turing-
powerful when we allow three or more principals. This implies that all interesting
verification problems will remain undecidable in any richer calculus which can
express at least the ping-pong behaviour. This fact remains valid even if we allow
active attacks on the protocol since the syntax of ping-pong protocols is capable
of describing this situation. This is, however, nontrivial to see and it is a part of
our current work.

In the case of two principals, the reachability problem is in PTIME. Depend-
ing on our notion of observability, other properties (including strong bisimilarity)
may also become decidable.

Amadio et al. in [5] have proved that reachability is polynomially decidable
for processes with replication. However, they have only shown the result for
a class of processes that, unlike the class studied in the present paper, does
not involve an explicit representation of nondeterministic choice. It remains to
be seen whether security properties are decidable for a version of our process
calculus with replication replacing recursion, and whether our calculus without
explicit nondeterminism remains Turing powerful. We claim that at least the
latter is indeed the case and in our future work we shall further investigate the
problem (including the connection with the results from [9] where it is shown that
secrecy is decidable for protocols with replication but without nondeterminism).

11

References

1. Martin Abadi and Andrew D. Gordon. A bisimulation method for cryptographic
protocols. Nordic Journal of Computing, 5(4):267–303, 1998.

2. Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, 1999.

3. R.M. Amadio and W. Charatonik. On name generation and set-based analy-
sis in the Dolev-Yao model. In Proceedings of the 13th International Conference
on Concurrency Theory (CONCUR’02), volume 2421 of LNCS, pages 499–514.
Springer-Verlag, 2002.

4. R.M. Amadio and D. Lugiez. On the reachability problem in cryptographic proto-
cols. In Proceedings of the 11th International Conference on Concurrency Theory
(CONCUR’00), volume 1877 of LNCS, pages 380–394. Springer-Verlag, 2000.

5. Roberto M. Amadio, Denis Lugiez, and Vincent Vanackère. On the symbolic re-
duction of processes with cryptographic functions. Theoretical Computer Science,
290(1):695–740, October 2002.

6. Michele Boreale. Symbolic trace analysis of cryptographic protocols. In 28th
Colloquium on Automata, Languages and Programming (ICALP), volume 2076
of LNCS, pages 667–681. Springer, July 2001.

7. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proceedings of the 8th International
Conference on Concurrency Theory (CONCUR’97), volume 1243 of LNCS, pages
135–150. Springer-Verlag, 1997.

8. J.R. Büchi. Regular canonical systems. Arch. Math. Logik u. Grundlagenforschung,
6:91–111, 1964.

9. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In Proceedings of Rewriting
Techniques and Applications (RTA’03), number 2706 in LNCS, pages 148–164.
Springer-Verlag, 2003.

10. D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Infor-
mation and Control, 55(1–3):57–68, 1982.

11. D. Dolev and A.C. Yao. On the security of public key protocols. Transactions on
Information Theory, IT-29(2):198–208, 1983.

12. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In N. Heintze and E. Clarke, editors, Proceedings of Workshop
on Formal Methods and Security Protocols (FMSP’99), July 1999.

13. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of the 12th International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages
232–247. Springer-Verlag, 2000.

14. M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In 14th IEEE Computer Security Foundations Workshop (CSFW ’01),
pages 160–173, Washington - Brussels - Tokyo, June 2001. IEEE.

15. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proceedings of the 27th International Colloquium on
Automata, Languages and Programming (ICALP’00), volume 1853 of LNCS, pages
354–372. Springer-Verlag, 2000.

16. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions and composed keys is NP-complete. TCS: Theoretical Computer Science,
299, 2003.

12

17. G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of
finite out-degree. In Proceedings of the 39th Annual Symposium on Foundations of
Computer Science(FOCS’98), pages 120–129. IEEE Computer Society, 1998.

18. C. Stirling. Local model checking games. In Proceedings of the 6th International
Conference on Concurrency Theory (CONCUR’95), volume 962 of LNCS, pages
1–11. Springer-Verlag, 1995.

19. W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer science
(extended abstract). In Proceedings of the 4th International Joint Conference
CAAP/FASE, Theory and Practice of Software Development (TAPSOFT’93), vol-
ume 668 of LNCS, pages 559–568. Springer-Verlag, 1993.

13

A Appendix

Theorem 1. Reachability is undecidable for ping-pong protocols of width 3.

Proof. Let M be a Turing machine and let ∆ be the ping-pong protocol con-
structed above. We modify ∆ by adding the following summand to the definition
of the process constant P ∑

a,c∈Σ, q∈Q, γ(aqc)=halt

{{{x}c}q}a.x.D

where D is a new process constant with its definition

D
def=

∑
a∈S∪S′

{x}a.x.D.

This means that M halts if and only if a protocol configuration containing D
is reachable. The process constant D can remove the content of both of the
buffers and hence the question whether the configuration m.BS || m′.BS′ || D is
reachable from the initial configuration f(cq0$) is undecidable. ut

Theorem 2. Bisimilarity is undecidable for ping-pong protocols of width 3 for
any knowledge function which respects structural congruence and renaming of
process constants.

Proof. Let M be a Turing machine and let ∆ be the ping-pong protocol con-
structed above. Let ∆′ be a copy of ∆ such that every process constant X ∈ Const
in ∆′ is replaced with X ′. Moreover, ∆ also contains the following extra sum-
mand in the definition of the process constant P∑

a,c∈Σ, q∈Q, γ(aqc)=halt

{{{x}c}q}a.{{{x}c}q}a

and ∆′ contains the following extra summand in the definition of the process
constant P ′ plus a definition of a fresh process constant Z ′

∑
a,c∈Σ, q∈Q, γ(aqc)=halt

{{{x}c}q}a.{{{x}c}q}a.Z ′

Z ′ def=
∑

a,c∈Σ, q∈Q, γ(aqc)=halt

{{{x}c}q}a.{{{x}c}q}a.Z ′.

If the machine M diverges then the initial configurations (as described above)
of ∆ and ∆′ are bisimilar since both of them are capable of performing infinite
computations (these computations are deterministic) and the knowledge function
cannot distinguish between them (it respects renaming of process constants).

If the machine M halts then ∆′ can still perform an infinite sequence of
transitions but ∆ gets stuck after using the extra summand in P defined above.
Hence their initial configurations cannot be bisimilar for any knowledge function.

ut

14

Theorem 3. The reachability problem for ping-pong protocols of width 2 is de-
cidable in polynomial time.

Proof. We reduce reachability of ping-pong protocols of width 2 to reachability
of pushdown automata (PDA), disregarding the input alphabet. In fact, we will
use a slightly more general notion of PDA where several stack symbols can be
removed in one computational step.

Let ∆ be a given protocol specification and let P1 || w1.Q1 and P2 || w2.Q2 be
two configurations of the protocol. We shall construct a PDA system together
with two configurations p1α1 and p2α2 such that P1 || w1.Q1 −→∗ P2 || w2.Q2 if
and only if p1α1 −→∗ p2α2.

Let m ∈ M(T, K). By 〈m〉 ∈ (K ∪ T)∗ we understand the sequence of keys
that occur in m followed by the corresponding plain-text message, i.e., 〈t〉 = t
for t ∈ T and 〈{m}k〉 = k〈m〉. Similarly, if m ∈ M({x}, K) then 〈m〉 ∈ K∗

denotes the sequence of keys that occur in m, i.e., 〈x〉 = ε and 〈{m}k〉 = k〈m〉.
The set of control states of the PDA automaton is {(P, Q) | P, Q ∈ Const ∪

{0}} and the stack alphabet contains the encryption keys plus plain-text mes-
sages, i.e., it is the set K ∪ T . The set of (input) actions is a singleton set {a}.
We have now a natural correspondence between configurations of the protocol
and those of the PDA system. A protocol configuration P || w.Q corresponds to
a PDA configuration (P, Q)〈w〉 such that (P, Q) is the control state (its second
component is always the one that has an output prefix) and 〈w〉 is the stack con-
tent. The PDA rewrite rules are defined as follows: (P, Q)〈vi〉 a−→ (Q, Pi)〈wi〉
for every P ∈ Const and Q ∈ Const ∪ {0} such that P

def=
∑

i∈I vi.wi.Pi.
It is now easy to see that P1 || w1.Q1 −→∗ P2 || w2.Q2 if and only if

(P1, Q1)〈w1〉 −→∗ (P2, Q2)〈w2〉.
The reachability problem of extended PDA is by standard techniques re-

ducible to reachability of ordinary PDA where at most one stack symbol is
removed by performing a single transition (it is enough to replace every rule
of the form px1x2 . . . xm −→ qα by the rules px1 −→ p1, p1x2 −→ p2, . . . ,
pm−1xm −→ qα where p1, . . . , pm−1 are new control states).

Since reachability of PDA is decidable [8], we can conclude that reachability
of ping-pong protocols of width 2 is also decidable. Moreover, the reachability
problem of ordinary PDA can be solved in polynomial time [7, 13], which implies
that reachability of ping-pong protocols of width 2 is decidable also in PTIME.

ut

Definition 1. A Minsky machine R with two counters c1 and c2 is a finite
sequence of instructions

R = (I1, I2, . . . , In−1, n : halt)

where n ≥ 1 and every Ip, 1 ≤ p ≤ n − 1 is an instruction of one from the
following two types:

– increment: p : ci := ci + 1; goto q
– test and decrement: p : if ci = 0 then goto q else ci := ci − 1; goto r

15

where 1 ≤ i ≤ 2 and 1 ≤ q, r ≤ n.

Definition 2. A configuration of a Minsky machine R is a triple (p, v1, v2)
where p is an instruction label (1 ≤ p ≤ n), and v1, v2 ∈ N

0 are nonnegative
integers representing the values of the counters c1 and c2, respectively. The tran-
sition relation −→ between configurations is defined in the natural way.

Note that the computation of R is deterministic, i.e., if (p, v1, v2) −→ (p′, v′1, v
′
2)

and (p, v1, v2) −→ (p′′, v′′1 , v′′2) the p′ = p′′, v′1 = v′′1 and v′2 = v′′2 .

Definition 3. A Minsky machine R halts with the initial counter values set to
zero if (1, 0, 0) −→∗ (n, v1, v2) for some v1, v2 ∈ N

0. If R does not halt we say
that it diverges.

Proposition 1. The halting problem for Minsky machines in undecidable.

Let R be a given Minsky machine. We now construct a ping-pong protocol
specification ∆ and two configurations C1 and C2 of width 2 such that R diverges
if and only if (C1, T (∆)) ∼ (C2, T (∆)).

Let the set of plain-text messages be T
def= {t}, let the set of encryption keys

be K
def= {1, . . . , n} ∪ {+i,−i | 1 ≤ i ≤ 2} ∪ {pi

=0, p
i
≥0, p

cheat | 1 ≤ p < n, 1 ≤
i ≤ 2} and let Const

def= {BK , P, Q}. The constant BK stands for a buffer over a
certain subset of K.

Let #k(m) denote the number of occurrences of the key k ∈ K in the
message m ∈ M(T, K). The intuition of the reduction is that a configuration
(p, v1, v2) of the Minsky machine R corresponds to a pair of protocol configu-
rations {m}p.BK || P and {m}p.BK || Q such that #+i(m) −#−i(m) = vi for
1 ≤ i ≤ 2. The definitions of the process constants P and Q are almost sym-
metric except for the situation when a halting configuration of the machine R
is reachable. In this case the computation from the configuration containing Q
is stuck while the configuration containing P performs an infinite sequence of
transition. The knowledge function is designed in such a way that if a correct
computation of the machine R is simulated by the attacker in the bisimulation
game (a single step in the computation of R will be simulated by two transitions
in ∆), the defender can only mimic the same transitions in the other process.
However, if the attacker “cheats” in the bisimulation game (e.g. decreases a
value of a counter into negative integers), the defender threatens by entering a
syntactically equal (and hence bisimilar) pair of protocol configurations.

Formally, the protocol ∆ is given as follows.

BK
def=

∑
k∈{1,...,n}

{x}k.{x}k.BK +

∑
All(p)

(
{x}pi

=0
.{x}p.BK + {x}pi

≥0
.{x}p.BK +

{x}pcheat .{x}p.BK

)

16

P
def=

∑
Inc(p)

{x}p.{{x}+i}q.P +

∑
Dec(p)

(
{x}p.{x}qi

=0
.P + {x}p.{x}qcheat .P +

{x}p.{x}qcheat .Q
)

+

∑
Dec(p)

(
{x}p.{{x}−i}ri

≥0
.P + {x}p.{{x}−i}rcheat .P +

{x}p.{{x}−i}rcheat .Q
)

+ {x}n.{x}n.P

Q
def=

∑
Inc(p)

{x}p.{{x}+i}q.Q +

∑
Dec(p)

(
{x}p.{x}qi

=0
.Q + {x}p.{x}qcheat .Q +

{x}p.{x}qcheat .P
)

+

∑
Dec(p)

(
{x}p.{{x}−i}ri

≥0
.Q + {x}p.{{x}−i}rcheat .Q +

{x}p.{{x}−i}rcheat .P
)

where Inc(p) def= 1 ≤ p < n ∧ Ip = (p : ci := ci + 1; goto q), and Dec(p) def=
1 ≤ p < n ∧ Ip = (p : if ci = 0 then goto q else ci := ci − 1; goto r),

and All(p) def= 1 ≤ p ≤ n ∧ 1 ≤ i ≤ 2.
We shall now argue that R diverges if and only if

{t}1.BK || P ∼ {t}1.BK || Q

in T (∆) where the knowledge function

kn : Conf 7→ {OK=0 ,OK≥0 ,CHEAT ,OTHER}

is defined as follows (let i ∈ {1, 2}, X, Y ∈ {BK , P, Q}, and p ∈ {1, . . . , n− 1}).

kn(X || {m}pi
=0

.Y) def=
{

OK=0 if #+i(m) = #−i(m)
CHEAT otherwise

17

kn(X || {m}pi
≥0

.Y) def=
{

OK≥0 if #+i(m) ≥ #−i(m)
CHEAT otherwise

kn(X || {m}pcheat .Y) def= CHEAT

For all other configurations C let kn(C) def= OTHER.

Remark 3. Note that kn is a computable and respecting knowledge function,
and that its knowledge domain is finite.

Lemma 1. If R halts then the attacker has a winning strategy in the bisimula-
tion game played from the pair of configurations {t}1.BK || P and {t}1.BK || Q.

Proof. Assume that (1, 0, 0) −→∗ (n, v1, v2) for some v1, v2 ∈ N
0. We will show

that the attacker can force the defender to reach a pair of configurations

{m}n.BK || P and {m}n.BK || Q

for some m ∈ M(T, {+i,−i | 1 ≤ i ≤ 2}) such that #+i(m) −#−i(m) = vi for
1 ≤ i ≤ 2. From this pair of configurations the attacker wins because

{m}n.BK || P −→ BK || {m}n.P

whereas {m}n.BK || Q 6−→.
In order to show that the attacker can force the defender to faithfully simulate

the computation of the Minsky machine, we assume that the current configura-
tion of R is (p, v1, v2) where 1 ≤ p < n and that the bisimulation game starts
from the pair

{m}p.BK || P and {m}p.BK || Q

such that #+i(m)−#−i(m) = vi for 1 ≤ i ≤ 2. We will show that if (p, v1, v2) −→
(p′, v′1, v

′
2) then after two rounds of the bisimulation game the attacker can force

the defender to reach a pair of configurations {m′}p′ .BK || P and {m′}p′ .BK || Q
such that #+i(m

′) −#−i(m
′) = v′i for 1 ≤ i ≤ 2. There are three situations to

be discussed.
(1) If the instruction Ip is of the form

p : ci := ci + 1; goto q

then the attacker makes two moves

{m}p.BK || P −→ BK || {{m}+i}q.P −→ {{m}+i}q.BK || P

and the defender can only answer by

{m}p.BK || Q −→ BK || {{m}+i}q.Q −→ {{m}+i}q.BK || Q.

(2) If the instruction Ip is of the form

p : if ci = 0 then goto q else ci := ci − 1; goto r

18

and vi = 0 then the attacker plays

{m}p.BK || P −→ BK || {m}qi
=0

.P −→ {m}q.BK || P.

This time the defender has six choices how to respond to the first move of the
attacker. However, notice that

kn(BK || {m}qi
=0

.P) = OK=0

because vi = 0 and hence the defender can only answer by

{m}p.BK || Q −→ BK || {m}qi
=0

.Q −→ {m}q.BK || Q.

In all other possible moves the defender loses after the first move because the
knowledge function returns different values.

(3) If the instruction Ip is of the form

p : if ci = 0 then goto q else ci := ci − 1; goto r

and vi > 0 then the attacker plays

{m}p.BK || P −→ BK || {{m}−i}ri
≥0

.P −→ {{m}−i}r.BK || P.

Again, because
kn(BK || {{m}−i}ri

≥0
.P) = OK≥0

the defender can only answer by

{m}p.BK || Q −→ BK || {{m}−i}ri
≥0

.Q −→ {{m}−i}r.BK || Q.

ut

Lemma 2. If R diverges then the defender has a winning strategy in the bisim-
ulation game played from the pair {t}1.BK || P and {t}1.BK || Q.

Proof. We will show that the defender in the bisimulation game from {t}1.BK || P
and {t}1.BK || Q can force the attacker to faithfully simulate the computation
of the Minsky machine. Since the computation of R diverges, the bisimulation
game is infinite and the defender wins.

Consider a configuration (p, v1, v2) where 1 ≤ p < n of the machine R that
was reached during the computation from (1, 0, 0). Let the corresponding pair
of protocol configurations be

{m}p.BK || P and {m}p.BK || Q

such that #+i(m)−#−i(m) = vi for 1 ≤ i ≤ 2.
We will show that if (p, v1, v2) −→ (p′, v′1, v

′
2) then after two rounds of the

bisimulation game the defender can force the attacker to reach a pair of config-
urations {m′}p′ .BK || P and {m′}p′ .BK || Q such that #+i(m′)−#−i(m′) = v′i

19

for 1 ≤ i ≤ 2, or the defender can win by reaching a pair of syntactically equal
(and hence bisimilar) configurations. There are three situations to be discussed.

(1) If the instruction Ip is of the form

p : ci := ci + 1; goto q

then there is only one possible continuation of the bisimulation game such that
after two rounds the players reach the pair

{{m}+i}q.BK || P and {{m}+i}q.BK || Q.

(2) If the instruction Ip is of the form

p : if ci = 0 then goto q else ci := ci − 1; goto r

and vi = 0, the attacker is forced to make either the move {m}p.BK || P −→
BK || {m}qi

=0
.P or {m}p.BK || Q −→ BK || {m}qi

=0
.Q and the game faithfully

simulates the computation of R as before. In all other attacker’s moves the
defender wins:

– if the attacker takes any of the four transitions (either from P or Q) introduc-
ing the key of the form pcheat as the upper most encryption, the defender
simply mimics the corresponding move in the other configuration except
for the fact that he may switch P for Q or vice versa in order to achieve a
pair of syntactically equal configurations (the knowledge function will return
CHEAT in these situations);

– if the attacker takes a transition that should decrement a value of the counter
ci but the counter is already empty, i.e.,

{m}p.BK || P −→ BK || {{m}−i}ri
≥0

.P or

{m}p.BK || Q −→ BK || {{m}−i}ri
≥0

.Q,

the defender answers by the transitions

{m}p.BK || Q −→ BK || {{m}−i}rcheat .P resp.

{m}p.BK || P −→ BK || {{m}−i}rcheat .Q.

Since the attacker “cheated” the knowledge function allows this response
(it returns the value CHEAT for these configurations). After the second
round (there is only one possible continuation of the game which transfers
the encrypted messages to the buffer), the protocol configurations become
syntactically equal and hence the attacker loses.

(3) If the instruction Ip is of the form

p : if ci = 0 then goto q else ci := ci − 1; goto r

and vi > 0, the situation is similar to the previous case. ut

20

Theorem 4. The problem of bisimilarity checking between a pair of ping-pong
protocol configurations of width 2 is undecidable (provided that we allow for gen-
eral but still computable, respecting and finite-domain knowledge functions).

Proof. From Lemma 1 and Lemma 2. ut

Theorem 5. The problem of bisimilarity checking between a pair of ping-pong
protocol configurations of width 2 is decidable for local knowledge functions.

Proof. We shall reduce our problem to strong bisimilarity checking of PDA. The
result then follows from the fact that strong bisimilarity of PDA is decidable [17].

In the reduction we extend the construction provided in the proof of Theo-
rem 3. We consider not only the PDA rules

(P, Q)〈vi〉 a−→ (Q, Pi)〈wi〉

for every P ∈ Const and Q ∈ Const∪ {0} such that P
def=

∑
i∈I vi.wi.Pi but also

the rules
(P, Q)〈w′〉 f(P,Q,w′)−→ (P, Q)〈w′〉

for all elements (P, Q, w′) in the co-domain of the function f . Hence the reduction
steps in the ping-pong protocol correspond to the a-labelled transitions in the
PDA system, and the condition that the knowledge function agrees on bisimilar
states is tested in the PDA by executing loops labelled by the elements from D.
It is now easy to see that protocol configurations P1 || w1.Q1 and P2 || w2.Q2 are
bisimilar if and only if the PDA configurations (P1, Q1)〈w1〉 and (P2, Q2)〈w2〉
are strongly bisimilar. ut

Remark 4. By standard techniques for pushdown automata one can extend the
previous theorem to allow a slightly more general definition of local knowledge
functions. In particular, the functions kn can depend also on a constant number
of inner-most keys of the encrypted message in addition to the M outer-most
keys.

21

Recent BRICS Report Series Publications

RS-03-47 Hans Ḧuttel and Jiř ı́ Srba. Recursive Ping-Pong Protocols. De-
cember 2003. 21 pp. To appear in the proceedings of 2004 IFIP
WG 1.7, ACM SIGPLAN and GI FoMSESS Workshop on Is-
sues in the Theory of Security (WITS’04).

RS-03-46 Philipp Gerhardy. The Role of Quantifier Alternations in Cut
Elimination. December 2003. 10 pp. Extends paper appear-
ing in Baaz and Makowsky, editors,European Association for
Computer Science Logic: 17th International Workshop, CSL ’03
Proceedings, LNCS 2803, 2003, pages 212-225.

RS-03-45 Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo We-
gener. On converting CNF to DNF. December 2003. 11 pp.
A preliminary version appeared in Rovan and Vojtás, editors,
Mathematical Foundations of Computer Science: 28th Interna-
tional Symposium, MFCS ’03 Proceedings, LNCS 2747, 2003,
pages 612–621.

RS-03-44 Anna Ǵal and Peter Bro Miltersen. The Cell Probe Complex-
ity of Succinct Data Structures. December 2003. 17 pp. An
early version of this paper appeared in Baeten, Lenstra, Par-
row and Woeginger, editors,30th International Colloquium on
Automata, Languages, and Programming, ICALP ’03 Proceed-
ings, LNCS 2719, 2003, pages 332–344.

RS-03-43 Mikkel Nygaard and Glynn Winskel. Domain Theory for Con-
currency. December 2003. 45 pp. To appear in aTheoretical
Computer Sciencespecial issue on Domain Theory.

RS-03-42 Mikkel Nygaard and Glynn Winskel. Full Abstraction for HO-
PLA. December 2003. 25 pp. Appears in Amadio and Lugiez,
editors, Concurrency Theory: 14th International Conference,
CONCUR ’03 Proceedings, LNCS 2761, 2003, pages 383–398.

RS-03-41 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations. De-
cember 2003. 21 pp.

RS-03-40 Andrzej Filinski and Henning Korsholm Rohde. A Denota-
tional Account of Untyped Normalization by Evaluation. De-
cember 2003. 29 pp.

