
B
R

IC
S

R
S

-03-45
M

iltersen
etal.:

O
n

converting
C

N
F

to
D

N
F

BRICS
Basic Research in Computer Science

On converting CNF to DNF

Peter Bro Miltersen
Jaikumar Radhakrishnan
Ingo Wegener

BRICS Report Series RS-03-45

ISSN 0909-0878 December 2003

Copyright c© 2003, Peter Bro Miltersen & Jaikumar
Radhakrishnan & Ingo Wegener.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/45/

On Converting CNF to DNF

Peter Bro Miltersen?1, Jaikumar Radhakrishnan??2, and Ingo Wegener? ? ?3

1 Department of Computer Science, University of Aarhus, Denmark,
e-mail: bromille@daimi.au.dk.

2 School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai 400005, India

e-mail:jaikumar@tifr.res.in
3 FB Informatik LS2

University of Dortmund, 44221 Dortmund, Germany.
e-mail: wegener@ls2.cs.uni-dortmund.de.

Abstract. We study how big the blow-up in size can be when one
switches between the CNF and DNF representations of boolean func-
tions. For a function f : {0, 1}n → {0, 1}, cnfsize(f) denotes the min-
imum number of clauses in a CNF for f ; similarly, dnfsize(f) denotes
the minimum number of terms in a DNF for f . For 0 ≤ m ≤ 2n−1, let
dnfsize(m, n) be the maximum dnfsize(f) for a function f : {0, 1}n →
{0, 1} with cnfsize(f) ≤ m. We show that there are constants c1, c2 ≥ 1
and ε > 0, such that for all large n and all m ∈ [1

ε
n, 2εn], we have

2
n−c1

n
log(m/n) ≤ dnfsize(m, n) ≤ 2

n−c2
n

log(m/n) .

In particular, when m is the polynomial nc, we get dnfsize(nc, n) =

2
n−θ(c−1 n

log n
)
.

1 Introduction

Boolean functions are often represented as disjunctions of terms (i.e. in DNF) or
as conjunctions of clauses (i.e. in CNF). Which of these representations is prefer-
able depends on the application. Some functions are represented more succinctly
in DNF whereas others are represented more succinctly in CNF, and switching
between these representations can involve an exponential increase in size. In this
paper, we study how big this blow-up in size can be.

We recall some well-known concepts (for more details see Wegener [16]). The
set of variables is denoted by Xn = {x1, . . . , xn}. Literals are variables and
negated variables. Terms are conjunctions of literals. Clauses are disjunctions of
literals. Every Boolean function f can be represented as a conjunction of clauses,

s∧
i=1

∨
`∈Ci

`, (1)

? Supported by BRICS, Basic Research in Computer Science (www.brics.dk), funded
by the Danish National Research Foundation.

?? Work done while the author was visiting Aarhus.
? ? ? Supported by DFG-grant We 1066/9.

as well as a disjunction of terms,

s∨
i=1

∧
`∈Ti

`, (2)

where Ti and Ci are sets of literals. The form (1) is usually referred to as con-
junctive normal form (CNF) and the form (2) is usually referred to as disjunctive
normal form (DNF), although it would be historically more correct to call them
conjunctive and disjunctive forms and use normal only when the sets Ci and Ti

have n literals on distinct variables. In particular, this would ensure that normal
forms are unique. However, in the computer science literature such a distinction
is not made, and we will use CNF and DNF while referring to expressions such
as (1) or (2) even when no restriction is imposed on the sets Ci and Ti, and there
is no guarantee of uniqueness. The size of a CNF is the number of clauses (the
parameter s in (1)), and cnfsize(f) is the minimum number of clauses in a CNF
for f . Similarly, dnfsize(f) is the minimum number of terms in a DNF for f .

We are interested in the maximal blow-up of size when switching from the
CNF representation to the DNF representation (or vice versa). For 0 ≤ m ≤
2n−1, let dnfsize(m, n) be the maximum dnfsize(f) for a function f : {0, 1}n →
{0, 1} with cnfsize(f) ≤ m. Since ∧ distributes over ∨, a CNF with m clauses
each with k literals can be converted to a DNF with km terms each with at
most m literals. If the clauses do not share any variable, this blow-up cannot be
avoided. If the clauses don’t share variables, we have km ≤ n, and the maximum
dnfsize(f) that one can achieve by this method is 2

n
2 . Can the blow-up be worse?

In particular, we want to know the answer to the following question:

For a function f : {0, 1}n → {0, 1}, how large can dnfsize(f) be if
cnfsize(f) is bounded by a fixed polynomial in n?

The problem is motivated by its fundamental nature: dnfsize(f) and cnfsize(f)
are fundamental complexity measures. Practical circuit designs like programma-
ble logic arrays (PLAs) are based on DNFs and CNFs. Lower bounds on un-
bounded fan-in circuits are based on the celebrated switching lemma of H̊astad
(1989) which is a statement about converting CNFs to DNFs where some vari-
ables randomly are replaced by constants. Hence, it seems that the exact re-
lationship between CNFs and DNFs ought to be understood as completely as
possible. Fortunately, CNFs and DNFs have simple combinatorial properties al-
lowing the application of current combinatorial arguments to obtain such an
understanding. In contrast, the results of Razborov and Rudich [13] show that
this is not likely to be possible for complexity measures like circuit size and
circuit depth.

Another motivation for considering the question is the study of SAT algo-
rithms and heuristics with “mild” exponential behaviour; a study which has
gained a lot of momentum in recent years (e.g., Monien and Speckenmeyer[10],
Paturi et al. [11], Dantsin et al. [4], Schöning [14], Hofmeister et al. [7], and
Dantsin et al. [5]). Despite many successes, the following fundamental question

2

is still open: Is there an algorithm that decides SAT of a CNF with n vari-
ables and m clauses (without any restrictions on the length of clauses) in time
mO(1)2cn for some constant c < 1? The obvious brute force algorithm solves the
problem in time mO(1)2n. One method for solving SAT is to convert the CNF
to a DNF, perhaps using sophisticated heuristics to keep the final DNF and any
intermediate results small (though presumably not optimally small, due to the
hardness of such a task). Once converted to a DNF, satisfiability of the formula
is trivial to decide. A CNF-DNF conversion method for solving SAT, phrased
in a more general constraint satisfaction framework was recently studied exper-
imentally by Katajainen and Madsen [8]. Answering the question above limits
the worst case complexity of any algorithm obtained within this framework.

The monotone case: Our final motivation for considering the question comes
from the monotone version of the problem. Let dnfsize+(m, n) denote the maxi-
mum dnfsize(f) for a monotone function f : {0, 1}n → {0, 1}. In this case (see,
e.g., Wegener [16, Chapter 2, Theorem 4.2]), the number of prime clauses of f is
equal to cnfsize(f) and the number of prime implicants of f is equal to dnfsize(f).
Our problem can then be modelled on a hypergraph Hf whose edges are pre-
cisely the prime clauses of f . A vertex cover or hitting set for a hypergraph is
a subset of vertices that intersects every edge of the hypergraph. The number
of prime implicants of f is precisely the number of minimal vertex covers in
Hf . The problem of determining dnfsize+(m, n) then immediately translates to
the following problem on hypergraphs: What is the maximum number of distinct
minimal vertex covers in a hypergraph on n vertices with m distinct edges? In
particular, how many minimal vertex covers can a hypergraph with nO(1) edges
have?

Previous work: Somewhat surprisingly, the exact question we consider does not
seem to have been considered before, although some related research has been
reported. As mentioned, H̊astad’s switching lemma can be considered as a result
about approximating CNFs by DNFs. The problem of converting polynomial-
size CNFs and DNFs into representations by restricted branching programs for
the purpose of hardware verification has been considered since a long time (see
Wegener [17]). The best lower bounds for ordered binary decision diagrams
(OBDDs) and read-once branching programs (BP1s) are due to Bollig and We-
gener [3] and are of size 2Ω(n1/2) even for monotone functions representable as
disjunctions of terms of length 2.

The results in this paper: In Section 2, we show functions where the the blow-up
when going from CNF to DNF is large:

for 2 ≤ m ≤ 2n−1, dnfsize(m, n) ≥ 2n−2 n
log(m/n) ;

for 2 ≤ m ≤ (
n

dne2
)
, dnfsize+(m, n) ≥ 2n−n log log(m/n)

log(m/n) −log(m/n).

In particular, for m = nO(1), we have

dnfsize(m, n) = 2n−O(n
log n) and dnfsize+(m, n) = 2n−O(n log log n

log n).

3

In Section 3, we show that functions with small CNFs do not need very
large DNFs. There is a constant c > 0 such that for all large n and all m ∈
[104n, 210−4n],

dnfsize(m, n) ≤ 2n−c n
log(m/n) .

In particular, for m = nO(1), we have dnfsize(m, n) = 2n−Ω(n/log n).
For the class of CNF-DNF conversion based SAT algorithms described above,

our results imply that no algorithm within this framework has complexity
mO(1)2cn for some constant c < 1, though we cannot rule out an algorithm
of this kind with complexity mO(1)2n−Ω(n/ log n) which would still be a very
interesting result.

2 Functions with a Large Blow-up

In this section, we show functions with small cnfsize but large dnfsize. Our func-
tions will be the conjunction of a small number of parity and majority functions.
To estimate the cnfsize and the dnfsize of such functions, we will need a lemma.
Recall, that a prime implicant t of a boolean function f is called an essential
prime implicant if there is an input x such that t(x) = 1 but t′(x) = 0 for all other
prime implicants t′ of f . We denote the number of essential prime implicants of
f by ess(f).

Lemma 1. Let f(x) =
∧`

i=1 gi(x), where the gi’s depend on disjoint sets of
variables and no gi is identically 0. Then,

cnfsize(f) =
∑̀
i=1

cnfsize(gi) and dnfsize(f) ≥ ess(f) =
∏̀
i=1

ess(gi).

Proof. First, consider cnfsize(f). This part is essentially Theorem 1 of Voigt and
Wegener [15]. We recall their argument. Clearly, we can put together the CNFs
of the gi’s and produce a CNF for f with size at most

∑`
i=1 cnfsize(gi). To show

that cnfsize(f) ≥ ∑`
i=1 cnfsize(gi), let C be the set of clauses of the smallest CNF

of f . We may assume that all clauses in C are prime clauses of f . Because the
gi’s depend on disjoint variables, every prime clause of f is a prime clause of
exactly one gi. Thus we obtain a natural partition {C1, C2, . . . , C`} of C where
each clause in Ci is a prime clause of gi. Consider a setting to the variables of
gj (j 6= i) that makes each such gj take the value 1 (this is possible because no
gj is identically 0). Under this restriction, the function f reduces to gi and all
clauses outside Ci are set to 1. Thus, gi ≡

∧
c∈Ci

c, and |Ci| ≥ cnfsize(gi). The
first claim follows from this.

It is well known since Quine [12] (see also, e.g., Wegener [16, Chapter 2,
Lemma 2.2]) that dnfsize(f) ≥ ess(f). Also, it is easy to see that any essential
prime implicant of f is the conjunction of essential prime implicants of gi and
every conjunction of essential prime implicants of gi is an essential prime impli-
cant of f . Our second claim follows from this. ut

4

We will apply the above lemma with the parity and majority functions as
gi’s. It is well-known that the parity function on n variables, defined by

Parn(x) ∆=
n⊕

i=1

xi =
n∑

i=1

xi (mod 2),

has cnfsize and dnfsize equal to 2n−1. For monotone functions, it is known that
for the majority function on n variables, defined by

Maj(x) = 1 ⇔
n∑

i=1

xi ≥ n

2
,

has cnfsize and dnfsize equal to
(

n
dn/2e

)
.

Definition 1. Let the set of n variables {x1, x2, . . . , xn} be partitioned into ` =
dn/ke sets S1, . . . S` where |Si| = k for i < `. The functions fk,n, hk,n : {0, 1}n →
{0, 1} are defined as follows:

fk,n(x) =
∧̀
i=1

⊕
j∈Si

xj and hk,n(x) =
∧̀
i=1

Maj(xj : j ∈ Si).

Theorem 1. Suppose 1 ≤ k ≤ n. Then

cnfsize(fk,n) ≤
⌈n

k

⌉
· 2k−1 and dnfsize(fk,n) = 2n−dn/ke;

cnfsize(hk,n) ≤
⌈n

k

⌉
·
(

k

dk/2e
)

and dnfsize(hk,n) ≥
(

k

dk/2e
)bn/kc

.

Proof. As noted above cnfsize(Park) = 2k−1 and cnfsize(Majn) =
(

k
dk/2e

)
. Also,

it is easy to verify that ess(Park) = 2k−1 and ess(Majn) =
(

k
dk/2e

)
. Our theorem

follows easily from this using Lemma 1. ut

Remark: One can determine the dnfsize of fk,n and hk,n directly using a gen-
eral result of Voigt and Wegener [15], which states that the dnfsize(g1 ∧ g2) =
dnfsize(g1) · dnfsize(g2) whenever g1 and g2 are symmetric functions on disjoint
sets of variables. This is not true for general functions g1 and g2 (see Voigt and
Wegener [15]).

Corollary 1. 1. Let 2n ≤ m ≤ 2n−1. There is a function f with

cnfsize(f) ≤ m and dnfsize(f) ≥ 2n−2n/ log(m/n).

2. Let 4n ≤ m ≤ (
n

dn/2e
)
. Then, there is a monotone function h with

cnfsize(h) ≤ m and dnfsize(h) ≥ 2n−n log log(m/n)
log(m/n) −log(m/n).

5

Proof. The first part follows from Theorem 1, by considering fk,n for k =
blog2(m/n)c. The second part follows from the Theorem 1, by considering hk,n

with the same value of k. We use the inequality 2k/k ≤ (
k

dk/2e
) ≤ 2k−1 (valid for

k ≥ 2). ut
Let us understand what this result says for a range of parameters, assuming

n is large.

Case m = cn: There is a function with linear cnfsize but exponential dnfsize.
For ε > 0, by choosing c = θ(22/ε), the dnfsize can be made at least 2(1−ε)n.

Case m = nc: We can make dnfsize(f) = 2n−O(c−1 n
log n). By choosing c large we

obtain in the exponent an arbitrarily small constant for the (n/ logn)-term.
Case m = 2o(n): We can make dnfsize(f) grow at least as fast as 2n−α(n), for

each α = ω(1).
Monotone functions: We obtain a monotone function whose cnfsize is at most

a polynomial m = nc, but whose dnfsize can be made as large as 2n−ε n log log n
log n .

Here, ε = O(c−1).

3 Upper Bounds on the Blow-up

In this section, we show the upper bound on dnfsize(m, n) claimed in the in-
troduction. We will use restrictions to analyse CNFs. So, we first present the
necessary background about restrictions, and then use it to derive our result.

3.1 Preliminaries

Definition 2 (Restriction). A restriction on a set of variables V is a function
ρ : V → {0, 1, ?}. The set of variables in V assigned ? by ρ are said to have been
left free by ρ and denoted by free(ρ); the remaining variables set(ρ) = V − free(ρ)
are said to be set by ρ. Let S ⊆ V . We use RV

S to denote the set of all restrictions
ρ with set(ρ) = S. For a Boolean function f on variables V and a restriction ρ,
we denote by fρ the function with variables free(ρ) obtained from f by fixing all
variables x ∈ set(V) at the value ρ(x).

The following easy observation lets us conclude that if the subfunctions ob-
tained by applying restrictions have small dnfsize then the original function also
has small dnfsize.

Lemma 2. For all S ⊆ V and all boolean functions f with variables V ,

dnfsize(f) ≤
∑

ρ∈RV
S

dnfsize(fρ).

Proof. Let Φfρ denote the smallest DNF for fρ. For a restriction ρ ∈ RV
S , let

t(ρ) be the term consisting of literals from variables in S that is made 1 by ρ
and 0 by all other restrictions in RV

S . (No variables outside S appears in t(ρ).
Every variable in S appears in t(ρ): the variable x appears unnegated if and only
if ρ(x) = 1.) Then, Φ =

∨
ρ∈RV

S
t(ρ) ∧ Φfρ gives us a DNF for f of the required

size. ut

6

In light of this observation, to show that the dnfsize of some function f is
small, it suffices to somehow obtain restrictions of f that have small dnfsize.
Random restrictions are good for this. We will use random restrictions in two
ways. If the clauses of a CNF have a small number of literals, then the switching
lemma of H̊astad[6] and Beame [1] when combined with Lemma 2 immediately
gives us a small DNF (see Lemma 4 below). We are, however, given a general
CNF not necessarily one with small clauses. Again, random restrictions come to
our aid: with high probability large clauses are destroyed by random restrictions
(see Lemma 5).

Definition 3 (Random restriction). When we say that ρ is a random restric-
tion on the variables in V leaving ` variables free, we mean that ρ is generated
as follows: first, pick a set S of size |V |− ` at random with uniform distribution;
next, pick ρ with uniform distribution from RV

S .

We will need the following version of the switching lemma due to Beame [1].

Lemma 3 (Switching Lemma). Let f be a function on n variables with a a
CNF whose clauses have at most r literals. Let ρ be a random restriction leaving
` variables free. Then

Pr[fρ does not have a decision tree of depth d] < (7r`/n)d.

We can combine Lemma 2 and the switching lemma to obtain small DNFs for
functions with CNFs with small clauses.

Lemma 4. Let 1 ≤ r ≤ n
100 . Let f have a CNF on n variables where each clause

has at most r literals. Then, dnfsize(f) ≤ 2n− 1
100 ·n

r .

Proof. Let V be the set of variables of f . Let ρ be a random restriction on V
that leaves ` =

⌊
1
15 · nr

⌋
variables free. By the switching lemma, with probability

more than 1 − 2−d, fρ has a decision tree of depth at most d. We can fix S ⊆
V so that this event happens with this probability even when conditioned on
set(ρ) = S, that is, when ρ is chosen at random with uniform distribution from
RV

S . If fρ has a decision tree of depth at most d, then it is easy to see that
dnfsize(fρ) ≤ 2d. In any case, dnfsize(fρ) ≤ 2`−1. Thus, by Lemma 2, we have

dnfsize(f) ≤ 2n−` · 2d + 2n−` · 2−d · 2`−1.

Set d =
⌊

`
2

⌋
. Then, dnfsize(f) ≤ ∑

ρ∈RV
S

dnfsize(fρ) ≤ 2n− `
2 +1 ≤ 2n− 1

100 ·n
r . ut

Lemma 5. Let V be a set of n variables, and K a set of literals on distinct
variables. Let |K| = k. Let ρ be a random restriction that leaves

⌊
n
2

⌋
variables

free. Then,

Pr
ρ

[no literal in K is assigned 1] ≤ 2e−
k
8 .

7

Proof. Let W be the set of variables that appear in K either in negated or non-
negated form. Using estimates for the tail of the hypergeometric distribution [2],
we see first have

Pr[|W ∩ set(ρ)| ≤ k

4
] ≤ exp(−k

8
).

Furthermore,

Pr[no literal in K is assigned 1 | |W ∩ set(ρ)| ≥ k

4
] ≤ 2−

k
4 .

Thus,
Pr
ρ

[no literal in K is assigned 1] ≤ e−
k
8 + 2−

k
4 < 2e−

k
8 .

ut

3.2 Small DNFs from Small CNFs

We now show that the blow-up obtained in the previous section (see Corollary 1)
is essentially optimal.

Theorem 2. There is a constant c > 0, such that for all large n, and m ∈
[104n, 210−4n],

dnfsize(m, n) ≤ 2n−c n
log(m/n) .

Proof. Let f be a Boolean function on a set V of n variables, and let Φ be
a CNF for f with at most m clauses. We wish to show that f has a DNF of
small size. By comparing the present bound with Lemma 4, we see that our job
would be done if we could somehow ensure that the clauses in Φ have at most
O(log(m/n)) literals. All we know, however, is that Φ has at most m clauses. In
order to prepare Φ for an application of Lemma 4, we will attempt to destroy
the large clauses of Φ by applying a random restriction. Let ρ be a random
restriction on V that leaves

⌊
n
2

⌋
variables free. We cannot claim immediately

that all large clause are likely to be destroyed by this restriction. Instead, we
will use the structure of the surviving large clauses to get around them. The
following predicate will play a crucial role in our proof.

E(ρ): There is a set S0 ⊆ free(ρ) of size at most n/10 so that every clause
of Φ that is not killed by ρ has at most r

∆= b100 log(m/n)c free variables
outside S0.

Claim. Prρ[E(ρ)] ≥ 1− 2−
n

100 .

Before we justify this claim, let us see how we can exploit it to prove our
theorem. Fix a choice of S ⊆ V such that Pr[E(ρ) | set(ρ) = S] ≥ 1− 2−

n
100 . Let

F = V − S. We will concentrate only on ρ’s with set(ρ) = S, that is, ρ’s from
the set RV

S . We will build a small DNF for f by putting together the DNFs for
the different fρ’s. The key point is that whenever E(ρ) is true, we will be able
to show that fρ has a small DNF.

8

E(ρ) is true: Consider the set S0 ⊆ free(ρ) whose existence is promised in
the definition of E(ρ). The definition of S0 implies that for each σ ∈ RF

S0

all clauses of Φσ◦ρ have at most r literals. By Lemma 4, dnfsize(fσ◦ρ) ≤
2|F |−|S0|− |F |−|S0|

100r , and by Lemma 2, we have

dnfsize(fρ) ≤
∑

σ∈RF
S0

dnfsize(fσ◦ρ) ≤ 2|S0|2|F |−|S0|− |F |−|S0|
100r ≤ 2|F |−

|F |−|S0|
100r .

E(ρ) is false: We have dnfsize(fρ) ≤ 2|F |−1.

Using these bounds for dnfsize(fρ) for ρ ∈ RV
S in Lemma 2 we obtain

dnfsize(f) ≤ 2|S| · 2|F |− |F |−|S0|
100r + 2|S|2−

n
100 2|F |−1 = 2n(2−

|F |−|S0|
100r + 2−

n
100).

The theorem follows from this because |F | − |S0| = Ω(n) and r = O(log(m/n)).
We still have to prove the claim.

Proof of claim. Suppose E(ρ) is false. We will first show that there is a set of at
most dn/(10(r + 1))e surviving clauses in Φρ that together involve at least n/10
variables. The following sequential procedure will produce this set of clauses.
Since E does not hold, there is some (surviving) clause c1 of Φρ with at least r+1
variables. Let T be the set of variables that appear in this clause. If |T | ≥ n/10,
then we stop: {c1} is the set we seek. If |T | < n/10, there must be another clause
c2 of Φρ with r + 1 variables outside T , for otherwise, we could take S0 = T and
E(ρ) would be true. Add to T all the variables in c2. If |T | ≥ n/10, we stop with
the set of clauses {c1, c2}; otherwise, arguing as before there must be another
clause c3 of Φρ with r + 1 variables outside T . We continue in this manner,
picking a new clause and adding at least r + 1 elements to T each time, as long
as |T | < n

10 . Within dn/(10(r + 1))e steps we will have |T | ≥ n
10 , at which point

we stop.
For a set C of clauses of Φ, let K(C) be a set of literals obtained by picking

one literal for each variable that appears in some clause in C. By the discussion
above, for E(ρ) to be false, there must be some set C of clauses of Φ such that
|C| ≤ dn/(10(r + 1))e ∆= a, K(C) ≥ n

10 and no literal in K(C) is assigned 1 by ρ.
Thus, using Lemma 5, we have

Pr
ρ

[¬E(ρ)] ≤
∑

C,|C|≤a,|K(C)|≥ n
10

Pr
ρ

[no literal in K(C) is assigned 1 by ρ]

≤
a∑

j=1

(
m

j

)
· 2e−

n
80

≤ a

(
m

a

)
· 2e−

n
80

≤ a

(
em

dn/(10r)e
)dn/(10r)e

2e−
n
80

9

≤ a

(
em10r

n

)dn/(10r)e
2e−

n
80

≤ a
(m

n
· 1000e log(

m

n
)
)
dn/(10r)e2e−

n
80

≤ a
(m

n
· 1000e log(

m

n
)
)
dn/(10r)e2e−

n
80

≤
(m

n

)2dn/(10r)e
2e−

n
80

Note: m
n ≥ 1000e log(m

n) follows from 104n ≤ m

≤ a2
2 log(m

n)[n
1000 log(m

n
) +1]

2e−
n
80

≤ a2
n

500 +2 log(m
n)2e−

n
80

≤ a2
n

400 2e−
n
80

2 log(m/n) ≤ n
5000 follows from m ≤ 210−4n

≤ 2
n

400 2−
n
80 = 2−

n
100 .

This completes the proof of the claim. ut

Conclusion and Open Problems

We have shown lower and upper bounds for dnfsize(m, n) of the form 2n−c n
log(m/n) .

The constant c in the lower and upper bounds are far, and it would be inter-
esting to bring them closer, especially when m = An for some constant A. Our
bounds are not tight for monotone functions. In particular, what is the largest
possible blow-up in size when converting a polynomial-size monotone CNF to an
equivalent optimal-size monotone DNF? Equivalently, what is the largest possi-
ble number of distinct minimal vertex covers for a hypergraph with n vertices
and nO(1) edges? We have given an upper bound 2n−Ω(n/ log n) and a lower bound
2n−O(n log log n/ log n). Getting tight bounds seems challenging.

Acknowledgements: An earlier version of this paper was submitted to the con-
ference on Mathematical Foundations of Computer Science (MFCS). We thank
the referees of MFCS for their comments on that version. The conference version
of this paper appeared in [9].

References

1. Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, De-
partment of Computer Science and Engineering, University of Washington (Novem-
ber 1994). Available online at www.cs.washington.edu/homes/beame/.

2. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics 25
(1979) 285–287.

3. Bollig, B. and Wegener, I.: A very simple function that requires exponential size
read-once branching programs. Information Processing Letters 66 (1998) 53–57.

10

4. Dantsin, E., Goerdt, A., Hirsch, E.A., and Schöning, U.: Deterministic algorithms
for k-SAT based on covering codes and local search. Proceedings of the 27th Inter-
national Colloquium on Automata, Languages and Programming. Springer. LNCS
1853 (2000) 236–247.

5. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou,
C., Raghavan, P., and Schöning, U.: A deterministic (2−2/(k +1))n algorithm for
k-SAT based on local search. Theoretical Computer Science, to appear.

6. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Micali, S.
(Ed.): Randomness and Computation. Advances in Computing Research, 5 (1989)
143–170. JAI Press.

7. Hofmeister, T., Schöning, U., Schuler, R., and Watanabe, O.: A probabilistic 3-SAT
algorithm further improved. Proceedings of STACS, LNCS 2285 (2002) 192–202.

8. Katajainen, J. and Madsen, J.N.: Performance tuning an algorithm for compressing
relational tables. Proceedings of SWAT, LNCS 2368 (2002) 398–407.

9. Miltersen, P.B., Radhakrishnan, J., and Wegener, I.: On converting CNF to DNF.
Proceedings of MFCS, LNCS 2747 (2003) 612–621.

10. Monien, B. and Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Dis-
crete Applied Mathematics 10 (1985) 287–295.

11. Paturi, R., Pudlàk, P., Saks, M.E., and Zane, F.: An improved exponential-time
algorithm for k-SAT. Proceedings of the 39th IEEE Symposium on the Foundations
of Computer Science (1998) 628–637.

12. W. V. O. Quine: On cores and prime implicants of truth functions. American
Mathematics Monthly 66 (1959) 755–760.

13. Razborov, A. and Rudich, S.: Natural proofs. Journal of Computer and System
Sciences 55 (1997) 24–35.

14. Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search
and restart. Algorithmica 32 (2002) 615–623.

15. Voigt, B., Wegener, I.: Minimal polynomials for the conjunctions of functions on
disjoint variables an be very simple. Information and Computation 83 (1989) 65–
79.

16. Wegener, I.: The Complexity of Boolean Functions. Wiley 1987. Freely available
via http://ls2-www.cs.uni-dortmund.de/∼wegener.

17. Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications 2000.

11

Recent BRICS Report Series Publications

RS-03-45 Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo We-
gener. On converting CNF to DNF. December 2003. 11 pp.
A preliminary version appeared in Rovan and Vojtás, editors,
Mathematical Foundations of Computer Science: 28th Interna-
tional Symposium, MFCS ’03 Proceedings, LNCS 2747, 2003,
pages 612–621.

RS-03-44 Anna Ǵal and Peter Bro Miltersen. The Cell Probe Complex-
ity of Succinct Data Structures. December 2003. 17 pp. An
early version of this paper appeared in Baeten, Lenstra, Par-
row and Woeginger, editors,30th International Colloquium on
Automata, Languages, and Programming, ICALP ’03 Proceed-
ings, LNCS 2719, 2003, pages 332–344.

RS-03-43 Mikkel Nygaard and Glynn Winskel. Domain Theory for Con-
currency. December 2003. 45 pp. To appear in aTheoretical
Computer Sciencespecial issue on Domain Theory.

RS-03-42 Mikkel Nygaard and Glynn Winskel. Full Abstraction for HO-
PLA. December 2003. 25 pp. Appears in Amadio and Lugiez,
editors, Concurrency Theory: 14th International Conference,
CONCUR ’03 Proceedings, LNCS 2761, 2003, pages 383–398.

RS-03-41 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations. De-
cember 2003. 21 pp.

RS-03-40 Andrzej Filinski and Henning Korsholm Rohde. A Denota-
tional Account of Untyped Normalization by Evaluation. De-
cember 2003. 29 pp.

RS-03-39 J̈org Abendroth. Applyingπ-Calculus to Practice: An Example
of a Unified Security Mechanism. November 2003. 35 pp.

RS-03-38 Henning B̈ottger, Anders Møller, and Michael I.
Schwartzbach. Contracts for Cooperation between Web
Service Programmers and HTML Designers. November 2003.
23 pp.

RS-03-37 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. Computational Collapse of Quantum State with Appli-
cation to Oblivious Transfer. November 2003. 30 pp.

