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Domain Theory for Concurrency

Mikkel Nygaard Glynn Winskel

BRICS∗ Computer Laboratory
University of Aarhus University of Cambridge

Abstract

A simple domain theory for concurrency is presented. Based on
a categorical model of linear logic and associated comonads, it high-
lights the role of linearity in concurrent computation. Two choices
of comonad yield two expressive metalanguages for higher-order pro-
cesses, both arising from canonical constructions in the model. Their
denotational semantics are fully abstract with respect to contextual
equivalence. One language derives from an exponential of linear logic;
it supports a straightforward operational semantics with simple proofs
of soundness and adequacy. The other choice of comonad yields a
model of affine-linear logic, and a process language with a tensor op-
eration to be understood as a parallel composition of independent
processes. The domain theory can be generalised to presheaf models,
providing a more refined treatment of nondeterministic branching. The
article concludes with a discussion of a broader programme of research,
towards a fully fledged domain theory for concurrency.

1 Introduction

Denotational semantics and domain theory of Scott and Strachey provide a
global mathematical setting for sequential computation, and thereby place
programming languages in connection with each other; connect with the ma-
thematical worlds of algebra, topology and logic; and inspire programming
languages, type disciplines and methods of reasoning.

In concurrent/distributed/interactive computation that global mathema-
tical guidance is missing, and domain theory has had little direct influence

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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on theories of concurrent computation. One reason is that classical domain
theory has not scaled up to the more intricate models used there.

Broadly speaking, approaches to concurrency are either based on a spe-
cific mathematical model of processes or start from the syntax of a process
calculus. Among the variety of models for concurrency, one can discern an
increasing use of causal/independence/partial-order models (such as Petri
nets and event structures) in which computation paths are partial orders
of events. Independence models thread through partial-order model check-
ing [45], security protocols [50], nondeterministic dataflow [17], self-timed cir-
cuits [18], term-rewriting, game semantics [3], and the analysis of distributed
algorithms [29]. There are a variety of process calculi, most of them based
on an operational semantics. Following on from the π-calculus [37, 47], new-
name generation is central to almost all calculi of topical interest. Many are
higher-order (allowing process passing) which presents a challenge in under-
standing suitable equivalences, of which forms of bisimulation are prevalent.

Theories of concurrency form a rather fragmented picture. Relations be-
tween different approaches are often unclear; ideas are rediscovered (for exam-
ple, special event structures reappear as “strand spaces” in reasoning about
security protocols [50, 16]). A lot of energy is used on local optimisations to
specific process calculi, optimisations that may obscure connections and the
global picture. Research is often “modelling-driven” in the sense that many
approaches are based on formalising some feature observed in the computing
world; the feature may be general such as locality of computation, or specific
as in the study of a particular protocol. But the lessons learnt often remain
isolated for lack of the commonality a global framework would provide.

A domain theory which handled higher-order processes, independence
models, name-generation, and possessed an operational interpretation would
provide a global mathematical framework for most theories of concurrency.
In case incorporating independence models into a domain theory seems a tall
order, there are now arguments (based on event-structure representations of
process denotations—see Sect. 6.4) that the operational semantics associated
with a domain theory for concurrency will involve event structures. It should
be remarked that a traditional use of powerdomains [46], based on domains
of resumptions, will fall short because, insisting on a nondeterministic choice
of actions one at a time, it cannot accommodate independence models where
computation paths have more structure than strings of actions.

How do we work towards such a domain theory for concurrency? The
potentially complicated structure of computation paths suggests building a
domain theory directly on computation paths. This line has been followed
in what seemed originally to be two different directions, one being Matthew
Hennessy’s semantics for CCS with process passing [22], in which a process
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denotes the set of its computation paths. We’ll call this kind of semantics a
path semantics because of its similarity to trace semantics [24]; in both cases,
processes denote downwards-closed sets of computation paths and the corre-
sponding notion of process equivalence, called path equivalence, is given by
equality of such sets. Computation paths, however, may have more structure
than traditional traces, e.g. allowing path semantics to take nondeterminis-
tic branching into account in a limited way. For example, path equivalence
is related to simulation equivalence in Sect. 3.5 below. The other path-based
approach is that of categories of presheaf models [14] in which processes de-
note mappings from computation paths to sets of “realisers” saying how each
computation path may be realised. This extra structure allows the incorpo-
ration of complete branching information, and the corresponding notion of
process equivalence is a form of bisimulation [26]. The two approaches are
variations on a common idea: that a process denotes a form of characteristic
function in which the truth values are sets of realisers. A path set may be
viewed as a special presheaf that yields at most one realiser for each path.

The study of presheaf models for concurrency has drawn attention to a 2-
categorical model of linear logic and associated pseudo-comonads [15]. This
led to the discovery of two expressive metalanguages for concurrency, one
based on an exponential of linear logic (from which one derives a model of
intuitionistic logic), the other based on a weakening comonad (from which
one derives a model of affine-linear logic). The presheaf semantics led to op-
erational semantics, guided by the idea that derivations of transitions in the
operational semantics, associated with paths, should correspond to elements
of the presheaf denotations. The presheaf models capture the nondetermin-
istic branching of processes and support notions of bisimulation. But there
is a significant overhead in terms of the category theory needed.

In this paper we concentrate on the simpler path semantics of the lan-
guages. Path sets give rise to a simpler version of the categorical models,
avoiding the 2-categorical structure. Though path sets are considerably sim-
pler than presheaves they furnish models which are sufficiently rich in struc-
ture to show how both languages arise from canonical constructions on path
sets. The path semantics admits simple proofs of full abstraction, showing
that path equivalence coincides with contextual equivalence.

One language, called HOPLA for Higher-Order Process LAnguage [41,
42], derives from an exponential of linear logic. It can be viewed as an exten-
sion of the lambda-calculus with CCS-like nondeterministic sum and prefix
operations, in which types express the form of computation path of which a
process is capable. HOPLA can directly encode calculi like CCS [35], CCS
with process passing [22], and mobile ambients with public names [10, 11],
and it can be given a straightforward operational semantics supporting a
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standard bisimulation congruence. We relate the denotational and opera-
tional semantics giving pleasingly simple proofs of soundness and adequacy.
Full abstraction implies that contextual equivalence coincides with logical
equivalence for a fragment of Hennessy-Milner logic, linking up with simula-
tion equivalence [21]. Work is in progress on extending HOPLA with name
generation [55].

The other language is here called Affine HOPLA [40] and is based on a
weakening comonad that yields a model of affine-linear logic in the sense of
Jacobs [25]. This language adds to HOPLA an interesting tensor operation at
the price of linearity constraints on the occurrences of variables. The tensor
can be understood as a parallel composition of independent processes and
allows Affine HOPLA to encode processes of the kind found in treatments of
nondeterministic dataflow [27].

We conclude with a discussion of how the results fit within a broader pro-
gramme of research, towards a fully fledged domain theory for concurrency.
Important leads come by moving to categories obtained from presheaves
rather than path sets. These categories are very rich in structure. They point
towards more expressive languages than HOPLA and Affine HOPLA. In par-
ticular, the affine category accommodates the independence model of event
structures to the extent of supporting the standard event structure semantics
of CCS and related languages [12], as well as the trace of nondeterministic
dataflow [23]. In fact, Affine HOPLA can be given an event structure seman-
tics which at first order provides a representation of the presheaf denota-
tions. Nevertheless, it is here we meet the limitations of Affine HOPLA, and
HOPLA. They can be shown not to support definitions of the standard event
structure semantics of CCS and the trace of nondeterministic dataflow [43].

2 Domain Theory of Path Sets

In the path semantics, processes are intuitively represented as collections of
their computation paths. Paths are elements of preorders P, Q, . . . called path
orders which function as process types, each describing the set of possible
paths for processes of that type together with their sub-path ordering.1 A
process of type P is then represented as a downwards-closed subset X ⊆ P,
called a path set. Path sets ordered by inclusion form the elements of the
poset P̂ which we’ll think of as a domain of meanings of processes of type P.

The poset P̂ has many interesting properties. First of all, it is a complete

1It is possible to work with straight posets rather than preorders—indeed, the mathe-
matics is virtually unaffected by this choice—but preorders will be helpful in dealing with
recursive types in Sect. 3.1.
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lattice with joins given by union. In the sense of Hennessy and Plotkin [20], P̂
is a “nondeterministic domain”, with joins used to interpret nondeterministic
sums of processes. Accordingly, given a family (Xi)i∈I of elements of P̂, we’ll
often write Σi∈IXi for their join. A typical finite join is written X1 + · · ·+Xk

while the empty join is the empty path set, the inactive process, written ∅.
A second important property of P̂ is that any X ∈ P̂ is the join of certain

“prime” elements below it; P̂ is a prime algebraic complete lattice [39]. Primes
are down-closures yPp = {p′ : p′ ≤P p} of individual elements p ∈ P, rep-
resenting a process that may perform the computation path p. The map yP

reflects as well as preserves order, so that p ≤P p′ iff yPp ⊆ yPp
′, and yP thus

“embeds” P in P̂. We clearly have yPp ⊆ X iff p ∈ X and prime algebraicity
of P̂ amounts to saying that any X ∈ P̂ is the union of its elements:

X =
⋃

p∈X yPp . (1)

Finally, P̂ is characterised abstractly as the free join-completion of P,
meaning (i) it is join-complete and (ii) given any join-complete poset C and

a monotone map f : P → C, there is a unique join-preserving map f † : P̂ → C
such that the diagram on the left below commutes.

P
yP //

f $$HHH
HHH

HH P̂
f†��

C

f †X =
⋃

p∈X fp . (2)

We call f † the extension of f along yP. Uniqueness of f † follows from (1).

Notice that we may instantiate C to any poset of the form Q̂, drawing our
attention to join-preserving maps P̂ → Q̂. By the freeness property (2), join-

preserving maps P̂ → Q̂ are in bijective correspondence with monotone maps
P → Q̂. Each element Y of Q̂ can be represented using its “characteristic
function”, a monotone map fY : Qop → 2 from the opposite order to the
simple poset 0 < 1 such that Y = {q : fY q = 1} and Q̂ ∼= [Qop, 2]. Uncurrying
then yields the following chain:

[P, Q̂] ∼= [P, [Qop, 2]] ∼= [P×Qop, 2] = [(Pop ×Q)op, 2] ∼= ̂Pop ×Q . (3)

So the order Pop × Q provides a function space type. We’ll now investigate
what additional type structure is at hand.
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2.1 Linear and Continuous Categories

Write Lin for the category with path orders P, Q, . . . as objects and join-
preserving maps P̂ → Q̂ as arrows. It turns out Lin has enough structure
to be understood as a categorical model of Girard’s linear logic [19, 49].
Accordingly, we’ll call arrows of Lin linear maps.

Linear maps are represented by elements of ̂Pop ×Q and so by downwards-
closed subsets of the order Pop ×Q. This relational presentation exposes an
involution central in understanding Lin as a categorical model of classical
linear logic. The involution of linear logic, yielding P⊥ on an object P, is
given by Pop; clearly, downwards-closed subsets of Pop × Q correspond to
downwards-closed subsets of (Qop)op × Pop, showing how maps P → Q cor-
respond to maps Q⊥ → P⊥ in Lin. The tensor product of P and Q is given
by the product of preorders P×Q; the singleton order 1 is a unit for tensor.
Linear function space P ( Q is then obtained as Pop × Q. Products P & Q
are given by P + Q, the disjoint juxtaposition of preorders. An element of

P̂ & Q can be identified with a pair (X, Y ) with X ∈ P̂ and Y ∈ Q̂, which
provides the projections π1 : P & Q → P and π2 : P & Q → Q in Lin. More
general, not just binary, products &i∈I Pi with projections πj , for j ∈ I, are
defined similarly. From the universal property of products, a collection of
maps fi : P → Pi, for i ∈ I, can be tupled together to form a unique map
〈fi〉i∈I : P → &i∈I Pi with the property that πj ◦ 〈fi〉i∈I = fj for all j ∈ I.
The empty product is given by the empty order O and, as the terminal ob-
ject, is associated with unique maps ∅P : P → O, constantly ∅, for any path
order P. All told, Lin is a ∗-autonomous category, so a symmetric monoidal
closed category with a dualising object, and has finite products (indeed, all
products) as required by Seely’s definition of a model of linear logic [49].

In fact, Lin also has all coproducts, also given on objects P and Q by the
juxtaposition P+Q and so coinciding with products. Injection maps in1 : P →
P+Q and in2 : Q → P+Q in Lin derive from the obvious injections into the
disjoint sum of preorders. The empty coproduct is the empty order O which is
then a zero object. This collapse of products and coproducts highlights that

Lin has arbitrary biproducts. Via the isomorphism Lin(P, Q) ∼= ̂Pop ×Q, each
homset of Lin can be seen as a commutative monoid with neutral element the
always ∅ map, itself written ∅ : P → Q, and sum given by union, written +.
Composition in Lin is bilinear in that, given f, f ′ : P → Q and g, g′ : Q → R,
we have (g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′. Further, given a
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family of objects (Pα)α∈A, we have for each β ∈ A a diagram

Pβ
inβ

// Σα∈APα

πβoo such that

πβ ◦ inβ = 1Pβ
,

πβ ◦ inα = ∅ if α 6= β, and

Σα∈A(inα ◦ πα) = 1Σα∈APα .

(4)

Processes of type Σα∈APα may intuitively perform computation paths in any
of the component path orders Pα.

We see that Lin is rich in structure. But linear maps alone are too re-
strictive. Being join-preserving, they in particular preserve the empty join.
So, unlike e.g. prefixing, linear maps always send the inactive process ∅ to
itself. Looking for a broader notion of maps between nondeterministic do-
mains we follow the discipline of linear logic and consider non-linear maps
whose domain is under an exponential, !. One choice of a suitable exponential
for Lin is got by taking !P to be the preorder obtained as the free finite-join
completion of P. Concretely, !P can be defined to have finite subsets of P as
elements with ordering given by �P, defined for arbitrary subsets X, Y of P
as follows:

X �P Y ⇐⇒def ∀p ∈ X.∃q ∈ Y. p ≤P q . (5)

When !P is quotiented by the equivalence induced by the preorder we obtain
a poset which is the free finite-join completion of P. By further using the
obvious inclusion of this completion into P̂, we get a map iP : !P → P̂ sending
a finite set {p1, . . . , pn} to the join yPp1 + · · · + yPpn. Such finite sums of

primes are the finite (isolated, compact) elements of P̂. The map iP assumes

the role of yP above. For any X ∈ P̂ and P ∈ !P, we have iPP ⊆ X iff
P �P X, and X is the directed join of the finite elements below it:

X =
⋃

P�PX iPP . (6)

Further, P̂ is the free directed-join completion of !P (also known as the ideal
completion of !P). This means that given any monotone map f : !P → C
for some directed-join complete poset C, there is a unique directed-join pre-
serving (i.e. Scott continuous) map f ‡ : P̂ → C such that the diagram below
commutes.

!P
iP //

f $$IIIIIII P̂
f‡��

C

f ‡X =
⋃

P�PX fP . (7)

Uniqueness of f ‡, called the extension of f along iP, follows from (6). As

before, we can replace C by a nondeterministic domain Q̂ and by the freeness
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properties (2) and (7), there is a bijective correspondence between linear maps

!P → Q and continuous maps P̂ → Q̂.
We define the category Cts to have path orders P, Q, . . . as objects and

continuous maps P̂ → Q̂ as arrows. These arrows allow more process opera-
tions, including prefixing, to be expressed. The structure of Cts is induced
by that of Lin via an adjunction between the two categories.

2.2 An Adjunction

As linear maps are continuous, Cts has Lin as a sub-category, one which
shares the same objects. We saw above that there is a bijection

Lin(!P, Q) ∼= Cts(P, Q) . (8)

This is in fact natural in P and Q so an adjunction with the inclusion Lin ↪→
Cts as right adjoint. Via (7) the map y!P : !P → !̂P extends to a map

ηP = y‡!P : P → !P in Cts. Conversely, iP : !P → P̂ extends to a map

εP = i†P : !P → P in Lin using (2). These maps are the unit and counit,
respectively, of the adjunction:

ηPX =
⋃

P�PX y!PP εPX =
⋃

P∈X iPP (9)

The left adjoint is the functor ! : Cts → Lin given on arrows f : P → Q
by (ηQ ◦ f ◦ iP)

† : !P → !Q. The bijection (8) then maps g : !P → Q in Lin
to ḡ = g ◦ ηP : P → Q in Cts while its inverse maps f : P → Q in Cts to
f̄ = εQ ◦ !f in Lin. We call ḡ and f̄ the transpose of g and f , respectively;
of course, transposing twice yields back the original map. As Lin is a sub-
category of Cts, the counit is also a map in Cts. We have εP ◦ ηP = 1P and
1!P ≤ ηP ◦ εP, the pointwise order, for all objects P.

Right adjoints preserve products, and so Cts has finite products given as
in Lin. Hence, Cts is a symmetric monoidal category like Lin, and in fact,
our adjunction is symmetric monoidal (see [31] pp. 251–6). In detail, there
are isomorphisms of path orders,

k : 1 ∼= !O and mP,Q : !P× !Q ∼= !(P & Q) , (10)

with mP,Q mapping a pair (P, Q) ∈ !P × !Q to the union in1 P ∪ in2 Q; any
element of !(P & Q) can be written on this form. These isomorphisms induce
isomorphisms with the same names in Lin with m natural. Moreover, k and
m commute with the associativity, symmetry and unit maps of Lin and Cts,
such as sLin

P,Q : P × Q ∼= Q × P and rCts
Q : Q & O ∼= Q, making ! symmetric

monoidal. It then follows [28] that the inclusion Lin ↪→ Cts is symmetric
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monoidal as well, and that the unit and counit are monoidal transformations.
Thus, there are maps

l : O → 1 and nP,Q : P & Q → P×Q (11)

in Cts, with n natural, corresponding to k and m above; l maps ∅ to {∗}
while nP,Q is the extension h‡ of the map h(in1 P ∪ in2 Q) = iPP × iQQ. The
unit also makes the diagrams below commute and the counit satisfies similar
properties.

P & Q
ηP&ηQ

vvmmmmmmmm ηP&Q

((RRRRRRRR O l //

ηO $$IIIIIII 1

k
��

!P & !Q n!P,!Q

// !P× !Q mP,Q

// !(P & Q) !O

(12)

The diagram on the left can be written as strP,Q ◦(1P&ηQ) = ηP&Q where str ,
the strength of ! viewed as a monad on Cts, is the natural transformation

P & !Q
ηP&1!Q// !P & !Q

n!P,!Q // !P× !Q
mP,Q // !(P & Q) . (13)

Finally, recall that the category Lin is symmetric monoidal closed so that
the functor (Q ( −) is right adjoint to (−×Q) for any object Q. Together
with the natural isomorphism m this provides a right adjoint (Q → −),
defined by (!Q ( −), to the functor (−& Q) in Cts via the chain

Cts(P & Q, R) ∼= Lin(!(P & Q), R) ∼= Lin(!P× !Q, R)
∼= Lin(!P, !Q ( R) ∼= Cts(P, !Q ( R) = Cts(P, Q → R) (14)

—natural in P and R. This demonstrates that Cts is cartesian closed, as is
well known. The adjunction between Lin and Cts now satisfies the conditions
put forward by Benton, Bierman, Hyland, and de Paiva for a categorical
model of intuitionistic linear logic, strengthening those of Seely [5, 4, 49]; see
also [33] for a recent survey of such models.

3 HOPLA

HOPLA is a typed process language directly suggested by the structure of
the category Cts [41, 42]. A typing judgement

x1 : P1, . . . , xk : Pk ` t : Q (15)

means that a process t yields computation paths in Q once processes with
computation paths in P1, . . . , Pk are assigned to the variables x1, . . . , xk re-
spectively.
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3.1 Denotational Semantics

Types are given by the grammar

T ::= T1 → T2 | Σα∈ATα | !T | T | µj
~T .~T . (16)

The symbol T is drawn from a set of type variables used in defining recursive
types; closed type expressions are interpreted as path orders. Using vector
notation, µj

~T .~T abbreviates µjT1, . . . , Tk.(T1, . . . , Tk) and is interpreted as
the j-component, for 1 ≤ j ≤ k, of “the least” solution to the defining
equations T1 = T1, . . . , Tk = Tk, in which the expressions T1, . . . , Tk may
contain the Tj ’s. What “the least” means will be explained below. We shall

write µ~T .~T as an abbreviation for the k-tuple with j-component µj
~T .~T, and

confuse a closed expression for a path order with the path order itself.
Simultaneous recursive equations for path orders can be solved using in-

formation systems [48, 30]. Here, it will be convenient to give a concrete,
inductive characterisation based on a language of paths:

p, q ::= P 7→ q | βp | P | abs p . (17)

Above, P ranges over finite sets of paths. We use P 7→ q as notation for pairs
in the function space (!P)op×Q. The language is complemented by formation
rules using judgements p : P, meaning that p belongs to P, displayed below
alongside rules defining the ordering on P using judgements p ≤P p′. Recall
that P �P P ′ means ∀p ∈ P.∃p′ ∈ P ′. p ≤P p′.

P : !P q : Q

P 7→ q : P → Q

P ′ ≤!P P q ≤Q q′

P 7→ q ≤P→Q P ′ 7→ q′

p : Pβ β ∈ A

βp : Σα∈APα

p ≤Pβ
p′ βinA

βp ≤Σα∈APα βp′

p1 : P · · · pn : P

{p1, . . . , pn} : !P

P �P P ′

P ≤!P P ′

p : Tj[µ~T .~T/~T ]

abs p : µj
~T .~T

p ≤
Tj [µ~T .~T/~T ] p′

abs p ≤µj
~T .~T abs p′

(18)

Using information systems as in [30] yields the same representation, except
for the tagging with abs in recursive types, done to help in the proof of
adequacy in Section 3.4.1. So rather than the straight equality between a
recursive type and its unfolding which we are used to from [30], we get an

isomorphism abs : Tj [µ~T .~T/~T ] ∼= µj
~T .~T whose inverse we call rep.

The raw syntax of terms is given by

t, u ::= x |rec x.t |Σi∈Iti |λx.t | t u |βt |πβt | !t | [u > !x ⇒ t] |abs t |rep t . (19)
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The variable x in the “match” term [u > !x ⇒ t] is a binding occurrence
and so binds later occurrences of the variable in the body t. We shall take
for granted an understanding of free and bound variables, and substitution
on raw terms. The syntax will be subject to typing constraints below.

Let P1, . . . , Pk, Q be closed type expressions and x1, . . . , xk distinct vari-
ables. A syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q stands for a map

Jx1 : P1, . . . , xk : Pk ` t : QK : P1 & · · ·& Pk → Q (20)

in Cts. We’ll write Γ, or Λ, for an environment list x1 : P1, . . . , xk : Pk and

most often abbreviate the denotation to P1&· · ·&Pk
t−→ Q, or Γ

t−→ Q, or even
JtK, suppressing the type information. When the environment list is empty,
the corresponding product is the empty path order O.

The term-formation rules are displayed below alongside their interpre-
tations as constructors on maps of Cts, taking the maps denoted by the
premises to that denoted by the conclusion (cf. [8]). We assume that the
variables in any environment list are distinct.

Structural rules. The rules handling environment lists (identity, weakening,
exchange, and contraction) are given as follows:

x : P ` x : P P
1P−→ P

(21)

Γ ` t : Q

Γ, x : P ` t : Q

Γ
t−→ Q

Γ & P
t&∅P−−−→ Q & O

rCts
Q−−→ Q

(22)

Γ, y : Q, x : P, Λ ` t : R

Γ, x : P, y : Q, Λ ` t : R

Γ & Q & P & Λ
t−→ R

Γ & P & Q & Λ
t◦(1Γ&sCts

P,Q &1Λ)−−−−−−−−−→ R
(23)

Γ, x : P, y : P ` t : Q

Γ, z : P ` t[z/x, z/y] : Q

Γ & P & P
t−→ Q

Γ & P
1Γ&∆P−−−−→ Γ & P & P

t−→ Q
(24)

In the formation rule for contraction (24), the variable z must be fresh; the
map ∆P is the usual diagonal, given as 〈1P, 1P〉.
Recursive definition. Since each P̂ is a complete lattice, it admits least fixed-
points of continuous maps. If f : P̂ → P̂ is continuous, it has a least fixed-
point, fix f ∈ P̂ obtained as

⋃
n∈ω fn(∅). This allows us to interpret recur-

sively defined processes:

Γ, x : P ` t : P

Γ ` rec x.t : P

Γ & P
t−→ P

Γ
fix F−−→ P

(25)

11



Here, fix F is the fixpoint in Cts(Γ, P) ∼= Γ̂ → P of the continuous operation
F mapping g : Γ → P in Cts to the composition

Γ
∆Γ−−→ Γ & Γ

1Γ&g−−−→ Γ & P
t−→ P . (26)

Nondeterministic sum. Each path order P is associated with a join operation,
Σ : &i∈I P → P in Cts taking a tuple 〈ti〉i∈I to the nondeterministic sum

Σi∈Iti in P̂. We’ll write ∅ and t1 + · · ·+ tk for finite sums.

Γ ` tj : P all j ∈ I

Γ ` Σi∈Iti : P

Γ
tj−→ P all j ∈ I

Γ
〈ti〉i∈I−−−→ &i∈I P

Σ−→ P
(27)

Function space. As noted at the end of Sect. 2.2, the category Cts is cartesian
closed with function space P → Q. Thus, there is a 1-1 correspondence curry
from maps P & Q → R to maps P → (Q → R) in Cts; its inverse is called
uncurry . We obtain application, app : (P → Q) & P → Q as uncurry(1P→Q).

Γ, x : P ` t : Q

Γ ` λx.t : P → Q

Γ & P
t−→ Q

Γ
curry t−−−→ P → Q

(28)

Γ ` t : P → Q Λ ` u : P

Γ, Λ ` t u : Q

Γ
t−→ P → Q Λ

u−→ P

Γ & Λ
t&u−−→ (P → Q) & P

app−−→ Q
(29)

Sum type. The category Cts does not have coproducts, but we can build a
useful sum type out of the biproduct of Lin. The properties (4) are obviously
also satisfied in Cts, even though the construction is universal only in the
subcategory of linear maps because composition is generally not bilinear in
Cts. We’ll write O and P1 + · · ·+Pk for the empty and finite sum types. The
product P1 & P2 of [41] with pairing (t, u) and projection terms fst t, snd t
can be encoded as, respectively, P1 + P2, 1t + 2u and π1t, π2t.

Γ ` t : Pβ β ∈ A

Γ ` βt : Σα∈APα

Γ
t−→ Pβ β ∈ A

Γ
t−→ Pβ

inβ−−→ Σα∈APα

(30)

Γ ` t : Σα∈APα β ∈ A

Γ ` πβt : Pβ

Γ
t−→ Σα∈APα β ∈ A

Γ
t−→ Σα∈APα

πβ−→ Pβ

(31)

Prefixing. The adjunction between Lin and Cts provides a type constructor,
!(−), for which the unit ηP : P → !P and counit εP : !P → P play a role
in interpreting term constructors and deconstructors, respectively. The be-
haviour of ηP with respect to maps of Cts fits that of an anonymous prefix

12



operation. We’ll say that ηP maps u of type P to a “prefixed” process !u of
type !P; intuitively, the process !u will be able to perform an action, which
we call !, before continuing as the process u.

Γ ` u : P

Γ ` !u : !P

Γ
u−→ P

Γ
u−→ P

ηP−→ !P
(32)

By the universal property of ηP, if t of type Q has a free variable of type P,
and so is interpreted as a map t : P → Q in Cts, then the transpose t̄ = εQ◦!t
is the unique map !P → Q in Lin such that t = t̄◦ηP. With u of type !P, we’ll
write [u > !x ⇒ t] for t̄u. Intuitively, this construction “tests” or matches u
against the pattern !x and passes the results of successful matches for x on
to t. Indeed, first prefixing a term u of type P and then matching yields a
successful match u for x as t̄(ηPu) = tu. By linearity of t̄, the possibly multiple
results of successful matches are nondeterministically summed together; the
denotations of [Σi∈Iui > !x ⇒ t] and Σi∈I [ui > !x ⇒ t] are identical.

The above clearly generalises to the case where u is an open term, but if
t has free variables other than x, we need to make use of the strength map
given by (13), see Proposition 3.5 below.

Γ, x : P ` t : Q Λ ` u : !P

Γ, Λ ` [u > !x ⇒ t] : Q

Γ & P
t−→ Q Λ

u−→ !P

Γ & Λ
1Γ&u−−−→ Γ & !P

strΓ,P−−−→ !(Γ & P)
t̄−→ Q

(33)

Recursive type definitions. Folding and unfolding recursive types is accompa-
nied by term constructors abs and rep:

Γ ` t : Tj [µ~T .~T/~T ]

Γ ` abs t : µj
~T .~T

Γ
t−→ Tj [µ~T .~T/~T ]

Γ
t−→ Tj [µ~T .~T/~T ]

abs−−→ µj
~T .~T

(34)

Γ ` t : µj
~T .~T

Γ ` rep t : Tj [µ~T .~T/~T ]

Γ
t−→ µj

~T .~T

Γ
t−→ µj

~T .~T
rep−→ Tj [µ~T .~T/~T ]

(35)

3.2 Useful Identities

We provide some technical results about the path semantics which are used
in the proofs of full abstraction and soundness below. They are also useful
for reasoning about encodings of process calculi, see Sect. 3.6.

Lemma 3.1 (Substitution) Suppose Γ, x : P ` t : Q and Λ ` u : P with Γ
and Λ disjoint. Then Γ, Λ ` t[u/x] : Q with denotation given by the compo-
sition

Γ & Λ
1Γ&u−−−→ Γ & P

t−→ Q . (36)

13



Corollary 3.2 Application amounts to substitution. In the situation of the
substitution lemma, we have J(λx.t) uK = Jt[u/x]K.

Corollary 3.3 Recursion amounts to unfolding. Suppose Γ, x : P ` t : P.
Then Γ ` t[rec x.t/x] : P and Jrec x.tK = Jt[rec x.t/x]K.

Proof. By renaming variables y of Γ to y′ and y′′ we get Γ′, x : P ` t′ : P and
Γ′′, x : P ` t′′ : P with Γ′ and Γ′′ disjoint. Then by the substitution lemma,
Γ′, Γ′′ ` t′[rec x.t′′/x] : P with denotation given by

Γ′ & Γ′′ 1Γ′&rec x.t′′−−−−−−−→ Γ′ & P
t′−→ P . (37)

By suitable use of exchange and contraction, substituting y for y′ and y′′, we
get Γ ` t[rec x.t/x] : P with denotation

Γ
∆Γ−−→ Γ & Γ

1Γ&rec x.t−−−−−→ Γ & P
t−→ P . (38)

This is the same as F (fix F ) where fix F is the denotation of rec x.t, and by
property of the fixed-point, F (fix F ) = fix F as wanted. 2

Proposition 3.4 From the properties of the biproduct we get:

Jπβ(βt)K = JtK

Jπα(βt)K = ∅ if α 6= β

JΣα∈Aα(πα(t))K = JtK where Γ ` t : Σα∈APα

(39)

In addition, Jβ(Σi∈Iti)K = JΣi∈I(βti)K and Jπβ(Σi∈Iti)K = JΣi∈I(πβti)K by
linearity of injection and projection.

Proposition 3.5 The prefix match satisfies the properties:

J[!u > !x ⇒ t]K = Jt[u/x]K

J[Σi∈Iui > !x ⇒ t]K = JΣi∈I [ui > !x ⇒ t]K
(40)

Proof. By the properties of str and t̄, and using the substitution lemma, we
have

[!u > !x ⇒ t] = t̄ ◦ strΓ,P ◦(1Γ & (ηP ◦ u))
= t̄ ◦ strΓ,P ◦(1Γ & ηP) ◦ (1Γ & u)
= t̄ ◦ ηΓ&P ◦ (1Γ & u)
= t ◦ (1Γ & u)
= t[u/x] .

(41)
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Note that we are e.g. abbreviating JtK to t. Linearity of t̄ and mΓ,P and
naturality of n yields

[Σi∈Iui > !x ⇒ t] = t̄ ◦ strΓ,P ◦(1Γ & Σi∈Iui)
= t̄ ◦mΓ,P ◦ n!Γ,!P ◦ (ηΓ & 1!P) ◦ (1Γ & Σi∈Iui)
= t̄ ◦mΓ,P ◦ n!Γ,!P ◦ (ηΓ & Σi∈Iui)
= t̄ ◦mΓ,P ◦ (ηΓ × Σi∈Iui) ◦ nΓ,Λ

= Σi∈I(t̄ ◦mΓ,P ◦ (ηΓ × ui) ◦ nΓ,Λ)
= Σi∈I(t̄ ◦mΓ,P ◦ n!Γ,!P ◦ (ηΓ & ui))
= Σi∈I [ui > !x ⇒ t]

(42)

—as wanted. 2

3.3 Full Abstraction

We define a program to be a closed term t of type !O, the simplest type
with at least two values. A (Γ, P)-program context C is a term with holes
into which a term t with Γ ` t : P may be put to form a program ` C(t) :
!O. The denotational semantics gives rise to a type-respecting contextual
preorder [38]:

Definition 3.6 Suppose Γ ` t1 : P and Γ ` t2 : P. We say that t1 and t2
are related by contextual preorder, written t1 <∼ t2, iff for all (Γ, P)-program
contexts C, we have JC(t1)K 6= ∅ =⇒ JC(t2)K 6= ∅. If both t1 <∼ t2 and
t2 <∼ t1, we say that t1 and t2 are contextually equivalent.

Contextual equivalence coincides with path equivalence, as do the associated
preorders:

Theorem 3.7 (Full abstraction) Suppose Γ ` t1 : P and Γ ` t2 : P. Then

Jt1K ⊆ Jt2K ⇐⇒ t1 <∼ t2 . (43)

Proof. Suppose Jt1K ⊆ Jt2K and let C be a (Γ, P)-program context with
JC(t1)K 6= ∅. As Jt1K ⊆ Jt2K we have JC(t2)K 6= ∅ by compositionality and
monotonicity, and so t1 <∼ t2 as wanted.

To prove the converse we define for each path p : P a closed term tp
of type P and a (O, P)-program context Cp that respectively “realise” and
“consume” the path p, by induction on the structure of p.2 We’ll also need

2We have recently become aware that this technique has been applied by Guy McCusker
to prove full abstraction for a version of Idealized Algol [32].
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realisers t′P and consumers C ′
P of finite sets of paths:

tP 7→q ≡def λx.[C ′
P (x) > !x′ ⇒ tq]

tβp ≡def βtp

tP ≡def !t′P
tabs p ≡def abs tp

CP 7→q ≡def Cq(− t′P )

Cβp ≡def Cp(πβ−)

CP ≡def [− > !x ⇒ C ′
P (x)]

Cabs p ≡def Cp(rep−)

t′{p1,...,pn} ≡def tp1 + · · ·+ tpn

C ′
{p1,...,pn} ≡def [Cp1 > !x1 ⇒ · · · ⇒ [Cpn > !xn ⇒ !∅] · · · ]

(44)

Note that t′∅ ≡ ∅ and C ′
∅ ≡ !∅. Although the syntax of t′P and C ′

P depends
on a choice of permutation of the elements of P , the semantics obtained for
different permutations is the same. Indeed, we have (z being a fresh variable):

JtpK = yPp

Jt′P K = iPP

Jλz.Cp(z)K = yP→!O({p} 7→ ∅)

Jλz.C ′
P (z)K = yP→!O(P 7→ ∅)

(45)

It then follows from the substitution lemma that for any p : P and ` t : P,

p ∈ JtK ⇐⇒ JCp(t)K 6= ∅ . (46)

Suppose t1 <∼ t2 with t1 and t2 closed. Given any p ∈ Jt1K we have JCp(t1)K 6=
∅ and so using t1 <∼ t2, we get JCp(t2)K 6= ∅, so that p ∈ Jt2K. It follows that
Jt1K ⊆ Jt2K.

As for open terms, suppose Γ ≡ x1 : P1, . . . , xk : Pk. Writing λ~x.t1 for the
closed term λx1. · · ·λxk.t1 and likewise for t2, we get

t1 <∼ t2 =⇒ λ~x.t1 <∼ λ~x.t2
=⇒ Jλ~x.t1K ⊆ Jλ~x.t2K
=⇒ Jt1K ⊆ Jt2K .

(47)

The proof is complete. 2

3.4 Operational Semantics

HOPLA can be given a straightforward operational semantics [42] using ac-
tions defined by the grammar

a ::= u 7→ a | βa | ! | abs a . (48)

We assign types to actions a using a judgement of the form P : a : P′.
Intuitively, after performing the action a, what remains of a computation
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P : t[rec x.t/x] a−→ t′

P : rec x.t
a−→ t′

P : tj
a−→ t′

P : Σi∈Iti
a−→ t′

j ∈ I

Q : t[u/x] a−→ t′

P → Q : λx.t
u 7→a−−−→ t′

P → Q : t
u 7→a−−−→ t′

Q : t u
a−→ t′

Pβ : t
a−→ t′

Σα∈APα : βt
βa−→ t′

Σα∈APα : t
βa−→ t′

Pβ : πβt
a−→ t′

!P : !t !−→ t

!P : u
!−→ u′ Q : t[u′/x] a−→ t′

Q : [u > !x ⇒ t] a−→ t′

Tj[µ~T .~T/~T ] : t
a−→ t′

µj
~T .~T : abs t

abs a−−−→ t′
µj

~T .~T : t
abs a−−−→ t′

Tj[µ~T .~T/~T ] : rep t
a−→ t′

Figure 1: Operational rules

path in P is a computation path in P′:

` u : P Q : a : P′

P → Q : u 7→ a : P′
Pβ : a : P′ β ∈ A

Σα∈APα : βa : P′

!P : ! : P

Tj [µ~T .~T/~T ] : a : P′

µj
~T .~T : abs a : P′

(49)

Notice that in P : a : P′, the type P′ is unique given P and a. The operational
rules of Fig. 1 define a relation P : t

a−→ t′ where ` t : P and P : a : P′. By rule
induction on the transition rules, we have

Proposition 3.8 If P : t
a−→ t′ with P : a : P′, then ` t′ : P′.

Accordingly, we’ll write P : t
a−→ t′ : P′ when P : t

a−→ t′ and P : a : P′.

3.4.1 Soundness and Adequacy

For P : a : P′ we define a linear map a∗ : P → !P′ which intuitively maps
a process t of type P to a representation of its possible successors after per-
forming the action a. In order to distinguish between, say, the successor ∅
and no successors, a∗ embeds into the type !P′ rather than using P′ itself.
For instance, the successors after action ! of the processes !∅ and ∅ are,
respectively,

!∗J!∅K = 1!P(ηP∅) = ηP∅ and !∗J∅K = 1!P∅ = ∅ . (50)
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It will be convenient to treat a∗ as a syntactic operation and so we define a
term a∗t such that Ja∗tK = a∗JtK:

(u 7→ a)∗ = a∗ ◦ app ◦ (−& JuK)

(βa)∗ = a∗ ◦ πβ

!∗ = 1!P

(abs a)∗ = a∗ ◦ rep

(u 7→ a)∗t ≡ a∗(t u)

(βa)∗t ≡ a∗(πβt)

!∗t ≡ t

(abs a)∗t ≡ a∗(rep t)

(51)

The syntactic operation a∗ can be viewed as providing a context which re-
duces a-transitions to !-transitions:

Lemma 3.9 P : t
a−→ t′ : P′ ⇐⇒ !P′ : a∗t !−→ t′ : P′.

Proof. By structural induction on actions. For the prefix action ! the re-
sult is immediate. We present the case for u 7→ a, the two remaining cases
being similar. As there is only one operational rule deriving transitions for
applications t u we have

P → Q : t
u 7→a−−→ t′ : P′ ⇐⇒ Q : t u

a−→ t′ : P′ . (52)

By the induction hypothesis the right-hand side is equivalent to

!P′ : a∗(t u)
!−→ t′ : P′ , (53)

and by definition of (u 7→ a)∗t we are done. 2

Writing P : t
a−→ when there exists t′ such that P : t

a−→ t′ : P′, the following
are equivalent:

(i) P : t
a−→ (ii) !P′ : a∗t !−→ (iii) !O : C∅(a∗t) !−→ . (54)

Here, C∅ is the (O, !P′)-program context [− > !x ⇒ !∅] from the proof of
full abstraction.

Thus, observations of general transitions and !-transitions are reducible
to observations of !-transitions at type !O. We’ll exploit this below to give an
operational formulation of full abstraction.

Proposition 3.10 (Soundness) If P : t
a−→ t′ : P′, then J!t′K ⊆ a∗JtK.

Proof. By rule-induction on the transition rules, see App. A. 2
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We obtain an adequacy result using logical relations X EP t between subsets
X ⊆ P and closed terms of type P. Intuitively, X EP t means that all paths
in X can be “operationally realised” by t. Because of recursive types, these
relations cannot be defined by structural induction on the type P and we
therefore employ a trick essentially due to Martin-Löf (see [53]). We define
auxiliary relations p εP t between paths p : P and closed terms t of type P,
by induction on the structure of p:

X EP t ⇐⇒def ∀p ∈ X. p εP t

P 7→ q εP→Q t ⇐⇒def ∀u. (P EP u =⇒ q εQ t u)

βp εΣα∈APα t ⇐⇒def p εPβ
πβt

P ε!P t ⇐⇒def ∃t′. !P : t
!−→ t′ : P and P EP t′

abs p εµj
~T .~T t ⇐⇒def p ε

Tj [µ~T .~T/~T ] rep t

(55)

Lemma 3.11 (Main Lemma) Suppose ` t : P. Then JtK EP t.

Proof. By structural induction on terms, see App. B. 2

Proposition 3.12 (Adequacy) For ` t : !P we have JtK 6= ∅ ⇐⇒ !P :

t
!−→ .

Proof. The “⇐” direction follows from soundness. Assume JtK 6= ∅. Then
because JtK is a downwards-closed subset of !P which has least element ∅, we
must have ∅ ∈ JtK. Thus ∅ ε!P t by Lemma 3.11, which implies the existence

of a term t′ such that !P : t
!−→ t′ : P as wanted. 2

By (54), adequacy is equivalent to a∗JtK 6= ∅ ⇐⇒ P : t
a−→ for general terms

` t : P.

3.4.2 Full Abstraction w.r.t. Operational Semantics

Adequacy allows an operational formulation of contextual equivalence. For

programs ` t : !O we have !O : t
!−→ iff JtK 6= ∅ by adequacy. Hence, two terms

t1 and t2 with Γ ` t1 : P and Γ ` t2 : P are related by contextual preorder iff

for all (Γ, P)-program contexts C, we have !O : C(t1)
!−→ =⇒ !O : C(t2)

!−→.
Full abstraction is often formulated in terms of this operational preorder.

With t1 and t2 as above, the inclusion Jt1K ⊆ Jt2K holds iff for all (Γ, P)-

program contexts C, we have !O : C(t1)
!−→ =⇒ !O : C(t2)

!−→.
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3.5 Simulation

The operational semantics supports a standard bisimulation [44, 35]:

Definition 3.13 A type-respecting relation R on closed terms is a bisimu-
lation if the following holds. If t1 R t2 with t1, t2 of the same type P, then

1. if P : t1
a−→ t′1 : P′, then P : t2

a−→ t′2 : P′ for some t′2 such that t′1 R t′2;

2. if P : t2
a−→ t′2 : P′, then P : t1

a−→ t′1 : P′ for some t′1 such that t′1 R t′2.

Bisimilarity, written ∼, is the largest bisimulation.

Bisimilarity is a congruence for HOPLA and coincides with notions of ap-
plicative bisimilarity [1] and higher order bisimilarity [51]—see [41].

The path semantics does not capture enough of the branching behaviour
of processes to characterise bisimilarity (for that, the presheaf semantics is
needed, see Sect. 6.1). As an example, the processes !∅ + !!∅ and !!∅ have
the same denotation, but are clearly not bisimilar. However, using Hennessy-
Milner logic we can link path equivalence to simulation, obtained as in Defi-
nition 3.13, but leaving out condition 2. In detail, we consider the fragment of
Hennessy-Milner logic given by possibility and finite conjunctions; it is char-
acteristic for simulation equivalence in the case of image-finite processes [21].
With a ranging over actions, formulae are given by

φ ::= 〈a〉φ | ∧i≤n φi . (56)

The empty conjunction is written > and we sometimes write φ1 ∧ · · · ∧ φn

for the conjunction
∧

i≤n φi. We type formulae using judgements φ : P, the
idea being that only processes of type P should be described by formulae of
type P.

P : a : P′ φ : P′

〈a〉φ : P

φi : P all i ≤ n∧
i≤n φi : P

(57)

A typed notion of satisfaction, written t � φ : P, is defined by

t � 〈a〉φ : P ⇐⇒def ∃t′. P : t
a−→ t′ : P′ and t′ � φ : P′

t �
∧

i≤n φi : P ⇐⇒def t � φi : P for each i ≤ n .
(58)

Note that > : P and t � > : P for all terms ` t : P.

Definition 3.14 Suppose ` t1 : P and ` t2 : P. We say that t1 and t2 are
related by the logical preorder, written t1 <∼L t2, iff for all formulae φ : P we
have t1 � φ : P =⇒ t2 � φ : P. If both t1 <∼L t2 and t2 <∼L t1, we say that t1
and t2 are logically equivalent.
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Using adequacy and adapting the proof of full abstraction, we can show that
logical equivalence coincides with contextual equivalence:

Theorem 3.15 For closed terms t1 and t2 of the same type P,

t1 <∼ t2 ⇐⇒ t1 <∼L t2 . (59)

Proof. To each formula φ : P we can construct a (O, P)-program context Cφ

with the property that

!O : Cφ(t)
!−→ ⇐⇒ t � φ : P . (60)

Define

C〈u 7→a〉φ ≡def C〈a〉φ(− u) ,

C〈βa〉φ ≡def C〈a〉φ(πβ−) ,

C〈!〉φ ≡def [− > !x ⇒ Cφ(x)] ,

C〈abs a〉φ ≡def C〈a〉φ(rep−) ,

C∧
i≤n φi

≡def [Cφ1 > !x1 ⇒ · · · ⇒ [Cφn > !xn ⇒ !∅] · · · ] .

(61)

It follows by (60) that t1 <∼L t2 iff for all formulae φ : P we have that

!O : Cφ(t1)
!−→ implies !O : Cφ(t2)

!−→. The direction “⇒” then follows by
adequacy.

For the converse, we observe that the program contexts Cp used in the
full-abstraction proof are all subsumed by the contexts Cφ. In detail, using
the terms t′P realising finite sets of paths, we can define actions P : ap : P′

and formulae φp : P by induction on paths p : P such that Cp ≡ C〈ap〉φp :

aP 7→q ≡def t′P 7→ aq

aβp ≡def βap

aP ≡def !

aabs p ≡def abs ap

φP 7→q ≡def φq

φβp ≡def φp

φP ≡def

∧
p∈P 〈ap〉φp

φabs p ≡def φp

(62)

With p : P and ` t : P we obtain p ∈ JtK ⇐⇒ JC〈ap〉φp(t)K 6= ∅ as in the
proof of full abstraction, and so by adequacy and (60), we have p ∈ JtK ⇐⇒
t � 〈ap〉φp : P. It follows that t1 <∼L t2 implies Jt1K ⊆ Jt2K, and so t1 <∼ t2. 2

We note that the proof above establishes a link between paths and actions:

p ∈ JtK ⇐⇒ P : t
ap−→ t′ : P′ and t′ � φp : P′ . (63)
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3.6 Expressive Power

HOPLA does not have many features typical of process calculi built-in, be-
yond that of a nondeterministic sum and a prefix operation. It is therefore
notable that we can express many kinds of concurrent processes in the lan-
guage. We start by encoding the “prefix-sum” construct of [41], useful for
subsequent examples. We’ll dispense with the abstract syntax abs and rep
for brevity.

3.6.1 Prefixed Sum

In the original presentation of HOPLA, prefixing and the sum type where
part of a single construct, the prefixed sum [41]. Consider a family of types
(Pα)α∈A. Their prefixed sum is the type Σα∈Aα.Pα which stands for Σα∈A!Pα.
This type describes computation paths in which first an action β ∈ A is
performed before resuming as a computation path in Pβ . We’ll write α1.Pα1 +
· · ·+ αk.Pαk

for a typical finite prefixed sum. The prefixed sum is associated
with prefix operations taking a process t of type Pβ to β.t ≡def β(!t) of type
Σα∈Aα.Pα as well as a prefix match [u > β.x ⇒ t] ≡def [πβu > !x ⇒ t], where
u has prefix-sum type, x has type Pβ and t generally involves the variable x.

Proposition 3.16 Using Propositions 3.4 and 3.5, we get:

J[β.u > β.x ⇒ t]K = Jt[u/x]K

J[α.u > β.x ⇒ t]K = ∅ if α 6= β

J[Σi∈Iui > β.x ⇒ t]K = JΣi∈I [ui > β.x ⇒ t]K

(64)

Note that the prefixed sum is obtained using the biproduct, so coproduct,
of Lin. This implies that prefixed sum is a “weak coproduct” in Cts. Because
of the universal property of the coproduct in Lin and using the adjunction
between Lin and Cts, there is a chain of isomorphisms

Lin(Σα∈A!Pα, Q) ∼= Πα∈ALin(!Pα, Q) ∼= Πα∈ACts(Pα, Q) (65)

—natural in Q. Hence, linear maps f : Σα∈A!Pα → Q from the prefixed sum
in Cts are in bijective correspondence with tuples 〈fα〉α∈A of maps from the
components of the sum to Q in Cts. Thus, the prefixed sum is a coproduct
in Cts but for the fact that the required mediating morphism is unique only
within the subcategory of linear maps.

3.6.2 CCS

As in CCS [35], let N be a set of names and N̄ the set of complemented names
{n̄ | n ∈ N}. Let l range over labels L =def N ∪ N̄ , with complementation
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extended to L by taking ¯̄n =def n, and let τ be a distinct label. The type of
CCS processes can then be specified as the solution to the equation

P = τ.P + Σn∈Nn.P + Σn∈N n̄.P . (66)

Below, we let α range over L ∪ {τ}. The terms of CCS are translated into
HOPLA by the function HJ−K,

HJxK ≡def x

HJrec x.tK ≡def rec x.HJtK

HJΣi∈ItiK ≡def Σi∈IHJtiK

HJα.tK ≡def α.HJtK

HJt|uK ≡def Par HJtK HJuK

HJt \ SK ≡def ResS HJtK

HJt[f ]K ≡def Relf HJtK

(67)

Here, Par : P → (P → P) (curried for convenience), ResS : P → P, and
Rel f : P → P are abbreviations for the following recursively defined processes:

Par ≡def rec p.λx.λy.Σα[x > α.x′ ⇒ α.(p x′ y)] +
Σα[y > α.y′ ⇒ α.(p x y′)] +
Σl[x > l.x′ ⇒ [y > l̄.y′ ⇒ τ.(p x′ y′)]]

ResS ≡def rec r.λx.Σα6∈(S∪S̄)[x > α.x′ ⇒ α.(r x′)]

Relf ≡def rec r.λx.Σα[x > α.x′ ⇒ f(α).(r x′)]

(68)

The operational semantics for CCS induced by the translation agrees with
that given by Milner:

Proposition 3.17 If t
α−→ t′ is derivable in CCS, then P : HJtK

α!−→ HJt′K : P.
Conversely, if P : HJtK

a−→ u : P, then a ≡ α! and u ≡ HJt′K for some α, t′

such that t
α−→ t′ according to CCS.

It follows that the translations of two CCS terms are bisimilar in HOPLA iff
they are strongly bisimilar in CCS.

We can recover Milner’s expansion law [34] directly from the properties
of the prefixed sum. Write t|u for the application Par t u, where t and u are
terms of type P. Suppose

JtK = JΣαΣi∈I(α)α.tiK and JuK = JΣαΣj∈J(α)α.ujK . (69)

Using Corollaries 3.3 and 3.2, then Proposition 3.16, Jt|uK equals the deno-
tation of the expansion

ΣαΣi∈I(α)α.(ti|u) + ΣαΣj∈J(α)α.(t|uj) + ΣlΣi∈I(l),j∈J(l̄)τ.(ti|uj) . (70)
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3.6.3 Higher-Order CCS

The language considered by Hennessy [22] is like CCS but where processes are
passed at channels C; the language can be seen as an extension of Thomsen’s
CHOCS [51]. For a translation into HOPLA, we follow Hennessy in defining
types that satisfy the equations3

P = τ.P + Σc∈C c̄.C + Σc∈Cc.F C = P & P F = P → P . (71)

We are chiefly interested in the parallel composition of processes, ParP,P

of type P & P → P. But parallel composition is really a family of mutu-
ally dependent operations also including components such as ParF,C of type
F & C → P to say how abstractions compose in parallel with concretions
etc. All these components can be tupled together in a product and parallel
composition defined as a simultaneous recursive definition. Writing (−|−) for
all the components of the solution, the denotation of a parallel composition
t|u of processes equals the denotation of the expansion

Σα[t > α.x ⇒ α.(x|u)] +
Σα[u > α.y ⇒ α.(t|y)] +
Σc[t > c.f ⇒ [u > c̄.p ⇒ τ.((f π1p)|π2p)]] +
Σc[t > c̄.p ⇒ [u > c.f ⇒ τ.(π2p|(f π1p))]] .

(72)

In the summations, c ∈ C and α ranges over labels c, c̄, τ .
The bisimulation induced on higher-order CCS terms is perhaps the one

to be expected; a corresponding bisimulation relation is defined like an ap-
plicative bisimulation but restricted to the types of processes P, concretions
C, and abstractions F.

In a similar way, we can encode Cardelli and Gordon’s Ambient Calculus
with public names [10, 11], see [41]. HOPLA can thus express certain forms of
mobility of processes by virtue of allowing process passing. Another kind of
mobility, mobility of communication links, arises from name-generation as in
the π-calculus [36]. Inspired by HOPLA, Francesco Zappa Nardelli and GW
have defined a higher-order process language with name-generation, allowing
encodings of full ambient calculus and π-calculus. Bisimulation properties
and semantic underpinnings are being developed [55].

3See Page 12 for how to encode the binary product P & P.
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4 Linearity

The move from Lin to Cts has allowed us to interpret prefixing. In fact, we
can do much the same more cheaply.

The category Cts is obtained from Lin using an exponential which allows
arbitrary copying in linear logic. An element P ∈ !P consists of several,
possibly no, computation paths of P. An element of the path order !P can
therefore be understood intuitively as describing a compound computation
path associated with running several copies of a process of type P. Maps
P → Q of Cts, corresponding to maps !P → Q of Lin, allow their input to
be copied, as witnessed by the fact that the type system of HOPLA allows
contraction.

However, copying is generally restricted in a distributed computation. A
communication received is most often the result of a single run of the process
communicated with. Of course, process code can be sent and copied. But
generally the receiver has no possibility of rewinding or copying the state
of an ongoing computation. On the other hand, ignoring another process is
often easy. For this reason, many operations of distributed computation have
the following property [40]:

Affine linearity: a computation path of the process arising from
the application of an operation to an input process has resulted
from at most one computation path of the input process.

Note in particular that prefix operations are affine in this sense: if we wish
to observe just the initial action of a process !t, no computation path of t is
needed, though observing any longer path will involve a (single) computation
path of t.

Recall the diagram (2) which says that linear maps P → Q are determined
by their values on single paths, elements of P. Via the adjunction between
Lin and Cts, continuous maps P → Q are determined by their values on
compound paths in !P (diagram (7)). To summarise:

• linear operations use a single path of the input;

• affine operations use at most one path of the input;

• continuous operations use any number of paths of the input.

Affine maps are defined by their values on singleton copies of paths to-
gether with the empty path. Accordingly, affine maps derive from the lifting
operation (−)⊥ adding a new element ⊥, to be thought of as the empty com-
putation path, below a copy of a path order P to produce a path order P⊥.
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Abstractly, P⊥ is the empty-join completion of P; concretely, we can take P⊥
to contain the empty set, written ⊥, together with singletons {p} for p ∈ P,
ordered by �P. There is an obvious inclusion of the empty-join completion of
P into P̂, in the form of a map jP : P⊥ → P̂ sending ⊥ to ∅ and {p} to yPp.
We’ll use P to range over P⊥ in what follows. The map jP assumes the role
of iP; for any X ∈ P̂ and P ∈ P⊥ we have jPP ⊆ X iff P �P X, and from (1)
we get

X =
⋃

p∈X yPp = ∅ ∪⋃
p∈X yPp =

⋃
P�PX jPP . (73)

This join is manifestly nonempty and in fact, P̂ is the free closure of P⊥
under nonempty joins. This means that given any monotone map f : P⊥ →
C for some nonempty-join complete poset C, there is a unique nonempty-
join preserving (i.e. affine) map f § : P̂ → C such that the diagram below
commutes:

P⊥
jP //

f %%JJJJJJJ P̂
f§��

C

f §X =
⋃

P�PX fP . (74)

Uniqueness of f §, called the extension of f along jP, follows from (73). As

before, we can replace C by a nondeterministic domain Q̂ and by the freeness
properties (2) and (74), there is a bijective correspondence between linear

maps P⊥ → Q and affine maps P̂ → Q̂.
We define the category Aff to have path orders P, Q, . . . as objects and

affine maps P̂ → Q̂ as arrows. Again, the structure of Aff is induced by
that of Lin via an adjunction between the two categories with the inclusion
Lin ↪→ Aff (linear maps are affine) as right adjoint:

Lin(P⊥, Q) ∼= Aff(P, Q) . (75)

The unit ηP : P → P⊥ in Aff , the counit εP : P⊥ → P in Lin, and the left
adjoint (−)⊥ : Aff → Lin are obtained precisely as in Sect. 2.2.

Aff inherits products Σα∈APα with weak coproduct properties from Lin
in the same way as Cts does. However, unlike Cts, the category Aff is not
cartesian closed because P⊥ × Q⊥ and (P & Q)⊥ are not isomorphic in Lin.
On the other hand we can easily define a tensor operation ⊗ on Aff such that
the path orders P⊥×Q⊥ and (P⊗Q)⊥ become isomorphic: simply take P⊗Q
to be (P⊥×Q⊥)\{(⊥,⊥)}. Paths of P⊗Q then consist of a (possibly empty)

path of P and a (possibly empty) path of Q, and so a path set X ∈ P̂⊗Q
can be thought of as a process performing two parallel computation paths,
one of type P and one of type Q. On arrows f : P → P′ and g : Q → Q′

in Aff , we define f ⊗ g : P ⊗ Q → P′ ⊗ Q′ as the extension h§ of the map
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h : P⊥ ×Q⊥ ∼= (P⊗Q)⊥ → P̂′ ⊗Q′ defined by

(P ′, Q′) ∈ h(P, Q) ⇐⇒ P ′ ∈ (ηP′ ◦ f ◦ jP)P and Q′ ∈ (ηQ′ ◦ g ◦ jQ)Q . (76)

The unit of tensor is the empty path order O. Elements X ∈ P̂ correspond to
maps X̄ : O → P in Aff and with Y ∈ Q̂, we’ll write X ⊗ Y for the element

of P̂⊗Q pointed to by the map X̄ ⊗ Ȳ . The tensor makes Aff a symmetric
monoidal category, and again, the adjunction (75) is symmetric monoidal.
The obvious isomorphisms of path orders,

1 ∼= O⊥ and P⊥ ×Q⊥ ∼= (P⊗Q)⊥ , (77)

induce natural isomorphisms in Lin and we obtain a monoidal strength P⊗
Q⊥ → (P⊗Q)⊥ precisely as for Cts.

Finally, the monoidal closed structure of Lin together with the natural
isomorphism P⊥×Q⊥ ∼= (P⊗Q)⊥ provide a right adjoint (Q ( −), defined
by (Q⊥ ( −), to the functor (−⊗Q) in Aff via the chain

Aff(P⊗Q, R) ∼= Lin((P⊗Q)⊥, R) ∼= Lin(P⊥ ×Q⊥, R)
∼= Lin(P⊥, Q⊥ ( R) ∼= Aff(P, Q⊥ ( R) = Aff(P, Q ( R) (78)

—natural in P and R. This demonstrates that Aff is symmetric monoidal
closed and since the unit of the tensor is terminal, a model of affine linear
logic, as already observed in [25].

5 Affine HOPLA

Affine HOPLA is a typed process language suggested by the structure of
Aff [40]. Even though we replace the type constructor !(−) by (−)⊥, we’ll
continue to use ! for the action in prefixing.

5.1 Denotational Semantics

Types are given by the grammar

T ::= T1 ( T2 | T1 ⊗ T2 | Σα∈ATα | T⊥ | T | µj
~T .~T . (79)

Again, closed type expressions are interpreted as path orders. For the solution
of recursive type definitions we proceed as for HOPLA, replacing finite sets
of paths by sets P of size at most one, writing ⊥ for the empty set.

p, q ::= P 7→ q | P ⊗Q | βp | P | abs p (80)
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Here, P ⊗Q stands for a pair of paths P of P⊥ and Q of Q⊥ where at least
one is non-⊥. Formation rules are displayed below alongside rules defining
the ordering. Note that all path orders interpreting types of Affine HOPLA
are posets because, unlike the exponential, the comonad (−)⊥ maps posets
to posets.

P : P⊥ q : Q

P 7→ q : P ( Q

P ′ ≤P⊥ P q ≤Q q′

P 7→ q ≤P(Q P ′ 7→ q′

P : P⊥ Q : Q⊥ (P, Q) 6= (⊥,⊥)

P ⊗Q : P⊗Q

P ≤P⊥ P ′ Q ≤Q⊥ Q′

P ⊗Q ≤P⊗Q P ′ ⊗Q′

p : Pβ β ∈ A

βp : Σα∈APα

p ≤Pβ
p′ β ∈ A

βp ≤Σα∈APα βp′

⊥ : P⊥

p : P

{p} : P⊥

P �P P ′

P ≤P⊥ P ′

p : Tj [µ~T .~T/~T ]

abs p : µj
~T .~T

p ≤
Tj [µ~T .~T/~T ] p′

abs p ≤µj
~T .~T abs p′

(81)

The raw syntax of terms is given by

t, u ::= x | rec x.t | Σi∈Iti | λx.t | t u | t⊗ u | [u > x⊗ y ⇒ t] |
αt | παt | !t | [u > !x ⇒ t] | abs t | rep t .

(82)

The use of a pattern match term for tensor is similar to that in [2]. Let
P1, . . . , Pk, Q be closed type expressions and x1, . . . , xk distinct variables. A
syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q stands for a map

Jx1 : P1, . . . , xk : Pk ` t : QK : P1 ⊗ · · · ⊗ Pk → Q (83)

in Aff . When the environment list is empty, the corresponding tensor product
is the empty path order O. The term-formation rules for Affine HOPLA
are very similar to those for HOPLA, replacing & by ⊗ in the handling of
environment lists and the type constructors !(−) and → by (−)⊥ and (. We
discuss the remaining differences in the following.

New rules are introduced for the tensor operation:

Γ ` t : P Λ ` u : Q

Γ, Λ ` t⊗ u : P⊗Q

Γ
t−→ P Λ

u−→ Q

Γ⊗ Λ
t⊗u−−→ P⊗Q

(84)

Γ, x : P, y : Q ` t : R Λ ` u : P⊗Q

Γ, Λ ` [u > x⊗ y ⇒ t] : R

Γ⊗ P⊗Q
t−→ R Λ

u−→ P⊗Q

Γ⊗ Λ
1Γ⊗u−−−→ Γ⊗ P⊗Q

t−→ R
(85)
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One important difference is the lack of contraction for the affine language.
This restricts substitution of a common term into distinct variables, and so
copying. The counterpart in the model is the absence of a suitable diagonal
map from objects P to P⊗ P; for example, the map X 7→ X ⊗X from P̂ to

P̂⊗ P is not in general a map in Aff .4 Consider a term t(x, y), with its free
variables x and y shown explicitly, for which

x : P, y : P ` t(x, y) : Q , (86)

corresponding to a map P ⊗ P
t−→ Q in Aff . This does not generally entail

that x : P ` t(x, x) : Q—there may not be a corresponding map in Aff ,
for example if t(x, y) = x ⊗ y. Intuitively, if any computation for t involves
both inputs, then x : P ` t(x, x) : Q would use the same input twice and
therefore cannot be interpreted in Aff . There is a syntactic condition on the
occurrences of variables which ensures that in any computation, at most one
of a set of variables is used.

Definition 5.1 Let v be a raw term. Say a set of variables V is crossed in
v iff there are subterms of v of the form tensor t⊗ u, application t u, tensor
match [u > x ⊗ y ⇒ t], or prefix match [u > !x ⇒ t], for which v has free
occurrences of variables from V appearing in both t and u.

If the set {x, y} is not crossed in t(x, y) above, then t uses at most one of
its inputs x, y in each computation; semantically, t is interpreted as a map
P⊗P → Q of Aff which behaves identically on input X⊗Y and X⊗∅+∅⊗Y
for all X, Y ∈ P̂. In this case x : P ` t(x, x) : Q holds and is interpreted as
the composition

P
δP−→ P⊗ P

t−→ Q (87)

—where δP : P → P⊗ P maps X to X ⊗∅ + ∅⊗X. We’ll write δk
P : P → Pk

for the obvious generalisation to a k-fold tensor product Pk = P⊗ · · · ⊗ P.
We can now give the rule for recursively defined processes in Affine

HOPLA:

Γ, x : P ` t : P {x, y} not crossed in t for any y in Γ

Γ ` rec x.t : P

Γ⊗ P
t−→ P

Γ
fix F−−→ P

(88)

Here, fix F is the fixpoint in Aff(Γ, P) ∼= Γ̂ ( P of the continuous operation
F mapping g : Γ → P in Aff to the composition

Γ
δΓ−→ Γ⊗ Γ

1Γ⊗g−−−→ Γ⊗ P
t−→ P . (89)

4To see this, assume that P is the prefixed sum α.O + β.O with paths abbreviated to
α, β. Confusing paths with the corresponding primes, the nonempty join α + β is sent by
X 7→ X ⊗X to α⊗α +β⊗β +α⊗β +β⊗α instead of α⊗α +β⊗β as would be needed
to preserve nonempty joins.
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5.2 Useful Identities

Counterparts of the results for HOPLA of Sect. 3.2 can now be proved for
Affine HOPLA. In particular, a general substitution lemma can be formulated
as follows:

Lemma 5.2 (Substitution) Suppose Γ, x1 : P, . . . , xk : P ` t : Q with
{x1, . . . , xk} not crossed in t. If Λ ` u : P with Γ and Λ disjoint, then
Γ, Λ ` t[u/x1, . . . , u/xk] : Q with denotation given by the composition

Γ⊗ Λ
1Γ⊗(δk

P
◦u)−−−−−−→ Γ⊗ Pk t−→ Q . (90)

An easy induction on typing derivations shows that if Γ, x : P ` t : Q, then
{x} is not crossed in t, and so the substitution lemma specialises to

Corollary 5.3 If Γ, x : P ` t : Q and Λ ` u : P with Γ and Λ disjoint, then
we have Γ, Λ ` t[u/x] : Q with J(λx.t) uK = Jt[u/x]K.

Corollary 5.4 Suppose Γ, x : P ` t : P. Then Γ ` t[rec x.t/x] : P with
Jrec x.tK = Jt[rec x.t/x]K.

Proof. We proceed as in the proof of Corollary 3.3, obtaining Γ′, x : P ` t′ : P
and Γ′′, x : P ` t′′ : P with Γ′ and Γ′′ disjoint by renaming variables y of Γ to y′

and y′′. By the substitution lemma with k = 1, we get Γ′, Γ′′ ` t′[rec x.t′′/x] :
P denoting

Γ′ ⊗ Γ′′ 1Γ′⊗rec x.t′′−−−−−−−→ Γ′ ⊗ P
t′−→ P . (91)

Now, since the sets {x, y} are not crossed in t, the sets {y′, y′′} are not crossed
in t′[rec x.t′′/x]. Hence, by repeated use of exchange and the substitution
lemma with k = 2, we may perform substitutions [y/y′, y/y′′] to obtain Γ `
t[rec x.t/x] : P with denotation

Γ
δΓ−→ Γ⊗ Γ

1Γ⊗rec x.t−−−−−→ Γ⊗ P
t−→ P . (92)

Again, this is the same as F (fix F ) = fix F , the denotation of rec x.t. 2

The properties of sums and prefixing are the same as for HOPLA.
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Proposition 5.5 The tensor match satisfies

J[u1 ⊗ u2 > x⊗ y ⇒ t]K = Jt[u1/x, u2/y]K (93)

J[u > x⊗ y ⇒ Σi∈Iti]K = JΣi∈I [u > x⊗ y ⇒ ti]K (94)

J[Σi∈Iui > x⊗ y ⇒ t]K = JΣi∈I [ui > x⊗ y ⇒ t]K if I 6= ∅ (95)

Further, if x1 and y1 are not free in t, then

J[[u1 > x1 ⊗ y1 ⇒ u2] > x2 ⊗ y2 ⇒ t]K

= J[u1 > x1 ⊗ y1 ⇒ [u2 > x2 ⊗ y2 ⇒ t]]K . (96)

Proof. All the properties are consequences of tensor match being interpreted
as composition in Aff . Equation (93) follows by exchange and two applica-
tions of the substitution lemma. The two distributive properties hold since
composition f ◦ g in Aff is linear in f and affine in g. Finally, (96) follows
from associativity of composition. 2

5.3 Full Abstraction

As for HOPLA, we take a program to be a closed term t of type O⊥, but
because of linearity constraints, program contexts will now have at most one
hole. Otherwise, the notion of contextual preorder is the same as in Sect. 3.3.
Again, contextual equivalence coincides with path equivalence:

Theorem 5.6 (Full abstraction) For any terms Γ ` t1 : P and Γ ` t2 : P,

Jt1K ⊆ Jt2K ⇐⇒ t1 <∼ t2 . (97)

Proof. Path “realisers” and “consumers” are defined as in the proof of full
abstraction for HOPLA, restricting the terms t′P and C ′

P to the cases where
P has at most one element. Terms corresponding to paths of tensor type are
defined by

tP⊗Q ≡ t′P ⊗ t′Q
CP⊗Q ≡ [− > x⊗ y ⇒ [C ′

P (x) > !x′ ⇒ C ′
Q(y)]]

(98)

For any p : P and P : P we then have (z being a fresh variable):

JtpK = yPp

Jt′P K = jPP

Jλz.Cp(z)K = yP(O⊥({p} 7→ ∅)

Jλz.C ′
P (z)K = yP(O⊥(P 7→ ∅)

(99)

We can now proceed as in the proof of Theorem 3.7. 2
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5.4 Expressive Power

Subject to the linearity constraints on variables, Affine HOPLA has much
of the expressive power of HOPLA. In particular, the calculi discussed in
Sects. 3.6.2 and 3.6.3 can be encoded with the restriction that no variable
can occur freely on both sides of a parallel composition. The prefixed sum
Σα∈Aα.Pα stands for Σα∈A(Pα)⊥ in Affine HOPLA. Prefixing β.t is still trans-
lated into β!t, but now has a different semantics. For example, by replacing
!(−) with (−)⊥, the solution of the equation (66) defining the type of CCS
processes becomes isomorphic to the partial order of strings over the alpha-
bet of CCS actions. Thus, the semantics of CCS given by the translation into
Affine HOPLA is a traditional trace semantics. This is illustrated by the fact
that the two CCS processes α.β.∅ + α.γ.∅ and α.(β.∅ + γ.∅) are given the
same semantics by the Affine HOPLA translation, but can be told apart by
the HOPLA context C〈α〉(〈β〉>∧〈γ〉>), see Sect. 3.5.

More interestingly, the tensor type of Affine HOPLA allows us to de-
fine processes of the kind encountered in treatments of nondeterministic
dataflow [27], something which is not possible using HOPLA. To illustrate,
define P recursively as the prefixed sum

P = α.P + β.P , (100)

so that P essentially consists of streams (or sequences) of α’s and β’s. We can
then define dataflow processes whose properties can be determined from the
above results about the denotational semantics—in particular using Propo-
sition 5.5:

• A process A of type P⊗P which produces two identical, parallel streams
of α’s and β’s as output:

A ≡ rec p.[p > x⊗ y ⇒ (α.x⊗ α.y) + (β.x⊗ β.y)] . (101)

The denotation of A is the set of pairs (s, s′) with s and s′ strings
of α’s and β’s, such that s is a prefix of s′ or vice versa. Notice the
“entanglement” between the two sides of the tensor—choices made on
one side affect choice on the other.

• A process B of type P ( (P ⊗ P) which is like A, except it produces
its two output streams as copies of the input stream:

B ≡ rec f.λz.[z > α.z′ ⇒ [f z′ > x⊗ y ⇒ α.x⊗ α.y]] +
[z > β.z′ ⇒ [f z′ > x⊗ y ⇒ β.x⊗ β.y]] .

(102)

We have e.g. JB (α.β.∅)K = Jα.β.∅⊗ α.β.∅K and JB (α.∅ + β.∅)K =
Jα.∅⊗ α.∅ + β.∅⊗ β.∅K, the latter not containing “cross terms” like
α.∅⊗ β.∅.
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• A process C of type (P⊗ P) ( P which merges two streams into one:

C ≡ rec f.λz.[z > x⊗ y ⇒ [x > α.x′ ⇒ α.f (y ⊗ x′)] +
[x > β.x′ ⇒ β.f (y ⊗ x′)]] .

(103)

We have e.g. JC (α.α.∅⊗ β.β.∅)K = Jα.β.α.β.∅K.

A “trace operation” to represent dataflow processes with feedback loops is
not definable in Affine HOPLA, because then we would have obtained a com-
positional relational semantics of nondeterministic dataflow with feedback,
shown impossible by Brock and Ackerman [9]. However, with a more refined
notion of “relation”, which spells out the different ways in which input and
output of a dataflow process are related, such a semantics is in fact possi-
ble [23].

6 Related Work

We conclude by setting the specific results of this paper in the context of
what we see as a promising broader enterprise towards a full domain theory
for concurrency.

6.1 Presheaf Semantics

We have investigated the path semantics of HOPLA and Affine HOPLA.
In reality HOPLA and Affine HOPLA were discovered within a more infor-
mative domain theory than that based on path sets. As remarked earlier,
the domain of path sets P̂, of a path order P, is isomorphic to character-
istic functions [Pop, 2], ordered pointwise. In modelling a process as a path
set we are in effect representing a process by a characteristic function from
paths to truth values 0 < 1. If instead of these simple truth values we take
sets of realisers, replacing 2 by the category of sets Set, we obtain a functor
category [Pop,Set], whose objects, traditionally called presheaves, provide an
alternative “domain” of meanings; now a process denotes a presheaf in which
a path is associated with the set of elements standing for the ways in which
the path can be realised.

For the presheaf semantics of HOPLA we can obtain a more refined ad-
equacy result than that for the path semantics: Letting ` t : !P, the set of

realisers JtK(∅) corresponds to the set of derivations of !P : t
!−→ t′ : P. In

fact, a guiding principle in designing the operational semantics has been that
derivations of transitions of which the actions are essentially paths should
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correspond to the realisers associated to the path in the denotational seman-
tics; this generally determines the form of rules.

A presheaf captures the nondeterministic branching of a process and a
presheaf semantics can support equivalences such as forms of bisimulation
which are sensitive to the branching behaviour of processes. Though here
our understanding of the role of open maps and open map bisimulation,
intrinsic to presheaf models [26], is very incomplete.

The presheaf semantics helps expose a range of possible pseudo comonads
with which to interpret !P [15, 40].

6.2 Powerdomains

The adjunction between Lin and Cts, key to our semantics of HOPLA,
determines a monad, the monad of the “Hoare powerdomain” [52]. The ad-
junction between Lin and Cts is of the kind already studied in the early work
of Hennessy and Plotkin [20]; they were concerned with adjunctions between
categories of nondeterministic cpos and categories of cpos associated with
a variety of powerdomains. This was in the days prior to linear logic. But
models of linear logic are obtained by cutting down their adjunctions.

Like the model of linear logic formed from Lin and Cts, we expect that
each model furnishes a denotational semantics of HOPLA. Presumably there
are full abstraction results companion to that here based on detecting the
“must” as well as “may” behaviour of processes. Just as there is an abstrac-
tion function from the presheaf semantics of HOPLA to its path semantics
(induced by sending nonempty sets of realisers to 1 and the empty set to 0),
so can we expect other abstraction functions from the presheaf semantics to
other powerdomain semantics. But presently all this is conjectural.

Note that this use of powerdomains doesn’t fit the original pattern pro-
posed for handling concurrency via a recursively defined powerdomain of
resumptions [46]; rather one defines domains of paths recursively and only
then adjoins nondeterminism.

6.3 An Underlying Language?

Most process languages have developed incrementally, based on previously
known languages. Even HOPLA and Affine HOPLA are essentially lambda-
calculi extended by nondeterministic sum and prefix operations (though the
latter are understood as arising from a comonad associated with models of
linear logic). Proof theory is beginning to influence ideas on the nature of
processes. A recent impetus has been the discovery of linear logic, a discovery
founded on the domain theory of coherence spaces with linear and stable
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maps [19]. Similarly we can hope that a persuasive mathematical model of
processes can guide us towards a fuller understanding of processes and their
syntax.

We have a rich model in the linear category analogous to Lin but based
on presheaves rather than path sets. Just as maps in Lin correspond to
relations, the analogous maps correspond to profunctors, a generalisation of
relations (see e.g. [7] for an elementary introduction to profunctors, there
called “distributors”). The bicategory of profunctors Prof is analogous to
Lin.5 Like Lin the bicategory Prof has an involution so that maps f : P → Q
correspond to their dual f⊥ : Q⊥ → P⊥. Indeed, again just as in Lin, a map
f : P → Q corresponds to a map f ′ : P × Q⊥ → 1, in which we have
“dualised” the output to input.

It is because of this duality that open maps and open-map bisimulation
for higher-order processes take as much account of input as they do output.
Most often two higher-order processes are defined to be bisimilar iff they yield
bisimilar outputs on any common input. But this simply won’t do within a
type discipline in which all nontrivial output can be “dualised” to input. On
the other hand, traditional process languages and their types don’t support
this duality.

One line towards understanding open-map bisimulation at higher order
is to design a process language in which this duality is present. The language
could support the types of Prof extended by a suitable pseudo comonad.
Ideally one would obtain a coinductive charactisation of open map bisimu-
lation at higher order based on an operational semantics. (The mathematics
for this enterprise is developed in [15].)

6.4 Affine Models

Linear maps alone are too restrictive to support a semantics of processes. To
do so they must be moderated through the use of a (pseudo) comonad, the
simplest of which is lifting.

There is a category analogous to Aff based on presheaves rather than path
sets; its maps preserve connected colimits in presheaf categories [40, 15]. This
affine category is host to the semantics of nondeterministic dataflow [23],
event-structure semantics of CCS and related languages [12] as well as a
semantics for Affine HOPLA.

It came as a recent surprise [43] that the presheaf denotations of first-
order processes in Affine HOPLA can be represented by event structures; the

5The bicategory Prof is equivalent to the 2-category in which maps are colimit-
preserving functors between presheaf categories, perhaps a more immediate analogue of
Lin.
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elements of definable presheaves can be understood as finite configurations
of an event structure. In more detail, maps definable in Affine HOPLA by
open terms can be represented by certain spans of event structures with
composition given by pullbacks. This sheds light on the tensor operation and
the form of entanglement associated with it, revealing the tensor as a form
of parallel composition of event structures and entanglement as a pattern
of concurrency/conflict. The event-structure semantics extends to all types,
so higher-order processes. Though, as one would expect, the event-structure
semantics diverges from the presheaf semantics at higher-order; the event-
structure semantics is analogous to stable domain theory [6].

As mentioned above, we can define a semantics for CCS using Affine
HOPLA subject to certain restrictions on occurrences of variables. Unfortu-
nately, one can show the event-structure denotations of Affine HOPLA are
too impoverished to coincide with the standard “true concurrency” semantics
of CCS as e.g. given in [54]. A language must go beyond Affine HOPLA if it is
to express such semantics. Guidelines on what’s lacking in Affine HOPLA can
be got from work on presheaf models for concurrency [12], where the ingre-
dients of product of presheaves, pomset augmentation and cartesian liftings
(extending the match operators of Affine HOPLA) all play a critical role.
This work suggests exploring other event-structure representations, based on
more general spans of event structures, and perhaps a new comonad yielding
a less rigid form of prefixing.

As a general point, the affine category based on presheaves is very rich in
structure and supports a great many mathematical constructions which lie
outside the scope of the present syntax of Affine HOPLA.

An operational semantics for the tensor-fragment of Affine HOPLA (leav-
ing out function space) was given in [40]. But it has proved very challeng-
ing to extend this to higher order. Linearity obliges us to work with rather
complicated environments, and entanglement of terms of tensor type in the
execution of processes. (Note that the simplifying equation (95) is not valid
in the presheaf semantics, not even up to isomorphism, because there, affine
maps preserve connected colimits, and any nontrivial sum is manifestly not
connected.) It is the interaction of the environments with higher-order pro-
cesses which has been problematic in giving an operational semantics to full
Affine HOPLA.

However the event-structure denotational semantics of Affine HOPLA
suggests an alternative operational semantics obviating the need for com-
plicated environments. It is at the cost of having transitions between open
terms. Taking advantage of stability, the configurations of an event structure
representing an open term x : P ` t : Q, will be associated with both an out-
put q ∈ Q and a minimal input, P ∈ P⊥ necessary for that output. The idea

36



is that such a configuration will correspond to a derivation in the operational
semantics of a transition x : P ` t

q−→ t′ [43].

6.5 Name Generation

Process languages often follow the pioneering work on the π-calculus and
allow name generation. HOPLA can be extended to encompass such lan-
guages [55]. The extensions are to add a type of names N , function spaces,
as well as a type δP supporting new-name generation through the abstrac-
tion new x.t. The denotational semantics of the extension to name generation
is currently being developed; this addresses the question of when function
spaces exist in the obvious model (extending that of [13]). There is already
an operational semantics; it is like that of HOPLA but given at stages indexed
by the current set of names.
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A Proof of Soundness

We want to show that if P : t
a−→ t′ : P′, then J!t′K ⊆ a∗JtK. The proof is by

rule-induction on the transition rules:

Recursive definition. If P : rec x.t
a−→ t′ : P′ we have P : t[rec x.t/x]

a−→ t′ : P′

as premise. By the induction hypothesis and Corollary 3.3,

J!t′K ⊆ a∗Jt[rec x.t/x]K = a∗Jrec x.tK . (104)

Nondeterministic sum. If P : Σi∈Iti
a−→ t′ : P′ we have the premise P : tj

a−→
t′ : P′ for some j ∈ I. By the induction hypothesis and linearity of a∗,

J!t′K ⊆ a∗JtjK = Ja∗tjK ⊆ JΣi∈Ia
∗tiK = a∗JΣi∈ItiK . (105)

Abstraction. If P → Q : λx.t
u 7→a−−→ t′ : P′ we have Q : t[u/x]

a−→ t′ : P′ as
premise. By the induction hypothesis and Corollary 3.2,

J!t′K ⊆ a∗Jt[u/x]K = a∗J(λx.t) uK = (u 7→ a)∗Jλx.tK . (106)

Application. If Q : t u
a−→ t′ : P′ we have the premise P → Q : t

u 7→a−−→ t′ : P′.
By the induction hypothesis,

J!t′K ⊆ (u 7→ a)∗JtK = a∗Jt uK . (107)

Injection. If Σα∈APα : βt
βa−→ t′ : P′ we have the premise Pβ : t

a−→ t′′ : P′. By
the induction hypothesis and Proposition 3.4,

J!t′K ⊆ a∗JtK = a∗Jπβ(βt)K = (βa)∗JβtK . (108)
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Projection. If Pβ : πβt
a−→ t′ : P′ we have the premise Σα∈APα : t

βa−→ t′ : P′.
By the induction hypothesis,

J!t′K ⊆ (βa)∗JtK = a∗JπβtK . (109)

Prefixing. Consider the transition !P : !t
!−→ t : P. By definition, !∗J!tK = J!tK,

a subset of itself.

Prefix match. If Q : [u > !x ⇒ t]
a−→ t′ : P′ we have the premises !P : u

!−→ u′ : P
and Q : t[u′/x]

a−→ t′ : P′. By the induction hypothesis for u,

J!u′K ⊆ !∗JuK = JuK (110)

Now by the induction hypothesis for t, Proposition 3.5 and monotonicity,

J!t′K ⊆ a∗Jt[u′/x]K = a∗J[!u′ > !x ⇒ t]K ⊆ a∗J[u > !x ⇒ t]K . (111)

Fold. If µj
~T .~T : abs t

abs a−−→ t′ : P′ we have the premise Tj [µ~T .~T/~T ] : t
a−→ t′ :

P′. By the induction hypothesis and since abs and rep are inverses,

J!t′K ⊆ a∗JtK = a∗Jrep(abs t)K = (abs a)∗Jabs tK . (112)

Unfold. If Tj [µ~T .~T/~T ] : rep t
a−→ t′ : P′ we have the premise µj

~T .~T : t
abs a−−→

t′ : P′. By the induction hypothesis,

J!t′K ⊆ (abs a)∗JtK = a∗Jrep tK . (113)

The rule-induction is complete. 2

B Proof of Adequacy (Main Lemma)

For the proof of Lemma 3.11 we need two technical results, which can both
be proved by induction on the structure of paths. One says that εP is closed
on the left by ≤P, the other that εP is closed on the right by the relation <∼1,
defined by t1 <∼1 t2 iff P : t1

a−→ t′ : P′ implies P : t2
a−→ t′ : P′.

Lemma B.1 If p ≤P p′ and p′ εP t, then p εP t.

Lemma B.2 If p εP t1 and t1 <∼1 t2, then p εP t2.

It follows from Lemma B.1 that for any subset X of P we have X EP t iff
the down-closure of X, written X̄, satisfies X̄ EP t.

The proof of Lemma 3.11 proceeds by structural induction on terms using
the induction hypothesis
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Suppose x1 : P1, . . . , xk : Pk ` t : P and let ` sj : Pj with Xj EPj

sj for 1 ≤ j ≤ k. Then JtK(X̄1, . . . , X̄k) EP t[s1/x1, . . . , sk/xk].

We’ll abbreviate x1 : P1, . . . , xk : Pk to Γ, (X̄1, . . . , X̄k) to X, and the substi-
tution [s1/x1, . . . , sk/xk] to [s]. Lemma B.2 will be used freely below.

Variable. Let Γ ` xj : Pj , with j between 1 and k, and ` sj : Pj with Xj EPj
sj

for 1 ≤ j ≤ k. We must show that JxjKX EPj
xj [s]. Now, JxjKX = X̄j and

xj [s] ≡ sj so this amounts to X̄j EPj
sj which by the remarks above is

equivalent to Xj EPj
sj.

Recursive definition. Let Γ ` rec x.t : P and ` sj : Pj with Xj EPj
sj for

1 ≤ j ≤ k. We must show that Jrec x.tKX EP rec x.t[s]. Now, Jrec x.tKX =
(fix F )X where F maps g : Γ → P to the composition

Γ
∆Γ−−→ Γ & Γ

1Γ&g−−−→ Γ & P
t−→ P . (114)

We’ll show by induction on n that F n(∅)X EP rec x.t[s] for all n ∈ ω. Having
done so we may argue as follows: Since

Jrec x.tKX = (fix F )X = (
⋃

n∈ω F n∅)X =
⋃

n∈ω ((F n∅)X) , (115)

we have that p ∈ Jrec x.tKX implies the existence of an n ∈ ω such that
p ∈ (F n∅)X. Therefore Jrec x.tKX EP rec x.t[s] as wanted.

Basis. Here, (F 0∅)X = ∅. By definition of EP we get ∅ EP t for any type P
and term ` t : P.

Step. Suppose (F n∅)X EP rec x.t[s]. By the assumption of the lemma, Xj EP

sj for each 1 ≤ j ≤ k, and so by the induction hypothesis of the structural
induction,

JtK(X, (F n∅)X) EP t[s][rec x.t[s]/x] . (116)

So if p ∈ (F n+1∅)X, then since (F n+1∅)X = JtK(X, (F n∅)X) we have p εP

t[s][rec x.t[s]/x]. By the transition rules we have t[s][rec x.t[s]/x] <∼1 rec x.t[s],
and so p εP rec x.t[s]. We conclude (F n+1∅)X EP rec x.t[s] and the mathe-
matical induction is complete.

Nondeterministic sum. Let Γ ` Σi∈Iti : P and ` sj : Pj with Xj EPj
sj for

1 ≤ j ≤ k. We must show that JΣi∈ItiKX EP Σi∈Iti[s]. Now, JΣi∈ItiKX =
Σi∈IJtiKX. So if p ∈ JΣi∈ItiKX, there exists j ∈ I with p ∈ JtjKX. Using
the induction hypothesis for tj we have p εP tj [s]. By the transition rules,
tj [s] <∼1 Σi∈Iti[s] and so p εP Σi∈Iti[s] as wanted.
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Abstraction. Let Γ ` λx.t : P → Q and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k.

We must show that Jλx.tKX EP→Q (λx.t)[s]. So let P 7→ q ∈ Jλx.tKX. By the
denotational semantics, we then have q ∈ JtK(X, iPP ). We must show that
P 7→ q εP→Q (λx.t)[s]. So suppose ` u : P with P EP u. We must then show
q εQ (λx.t)[s] u. By the transition rules, t[s][u/x] <∼1 (λx.t)[s] u and so it is
sufficient to show q εQ t[s][u/x]. Now, by the induction hypothesis, we know
that JtK(X, iPP ) EQ t[s][u/x] and so, with q ∈ JtK(X, iPP ), we are done.

Application. Let Γ ` t u : Q and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k.

We must show that Jt uKX EQ (t u)[s]. So suppose q ∈ Jt uKX. By the
denotational semantics, there exists P ∈ !P such that P 7→ q ∈ JtKX and
P ⊆ JuKX. By the induction hypothesis for t, we have JtKX EP→Q t[s] and
so P 7→ q εP→Q t[s]. This means that given any ` u′ : P with P EP u′,
we have q εQ t[s] u′. Now using the induction hypothesis for u we get that
JuKX EP u[s] and so, since P ⊆ JuKX, we have P EP u[s] so that q εQ

t[s] u[s] ≡ (t u)[s] as wanted.

Injection. Let Γ ` βt : Σα∈APα and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k.

We must show that JβtKX EΣα∈APα (βt)[s]. So suppose βp ∈ JβtKX; by
the denotational semantics, p ∈ JtKX. We must then show that βp εΣα∈APα

(βt)[s] which means that p εPβ
πβ(βt[s]). By the transition rules, we have

t[s] <∼1 πβ(βt[s]) so it is sufficient to show that p εPβ
t[s]. By the induction

hypothesis, JtKX EPβ
t[s] and so, since p ∈ JtKX we have p εPβ

t[s] as wanted.

Projection. Let Γ ` πβt : Pβ with Γ ` t : Σα∈APα and β ∈ A, and ` sj : Pj

with Xj EPj
sj for 1 ≤ j ≤ k. We must show that JπβtKX EPβ

πβt[s].
So suppose p ∈ JπβtKX; by the denotational semantics, βp ∈ JtKX. By the
induction hypothesis, JtKX EΣα∈APα t[s] and so βp εΣα∈APα t[s] which means
that p εPβ

πβt[s] as wanted.

Prefixing. Let Γ ` !t : !P and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k. We

must show that J!tKX E!P !t[s]. So suppose P ∈ J!tKX; by the denotational
semantics, P ⊆ JtKX. We must then show that P ε!P !t[s], and so since the

transition rules provide a derivation !P : !t[s]
!−→ t[s] : P, that P EP t[s]. Now,

by the induction hypothesis, JtKX EP t[s] and so, since P ⊆ JtKX we have
P EP t[s] as wanted.

Prefix match. Let Γ ` [u > !x ⇒ t] : Q and ` sj : Pj with Xj EPj
sj for

1 ≤ j ≤ k. By renaming x if necessary, we may assume that x is not one of
the xj . We must show that J[u > !x ⇒ t]KX EQ [u > !x ⇒ t][s]. So suppose
q ∈ J[u > !x ⇒ t]KX; by the denotational semantics, there exists P ∈ !P
such that q ∈ JtK(X, iPP ) and P ∈ JuKX. By the induction hypothesis for
u we have JuKX E!P u[s] and so since P ∈ JuKX, there exists u′ such that

!P : u[s]
!−→ u′ : P and P EP u′. Hence, by the induction hypothesis for
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t we have JtK(X, iPP ) EQ t[s][u′/x] and so since q ∈ JtK(X, iPP ) we have
q εQ t[s][u′/x]. Now, by the transition rules, t[s][u′/x] <∼1 [u > !x ⇒ t][s] and
so q εQ [u > !x ⇒ t][s] as wanted.

Fold. Let Γ ` abs t : µj
~T .~T and ` sj : Pj with Xj EPj

sj for 1 ≤ j ≤ k. We
must show that Jabs tKX Eµj

~P .~T abs t[s]. So suppose abs q ∈ Jabs tKX such

that q ∈ JtKX. By the induction hypothesis, q ε
Tj [µ~T .~T/~T ] t[s] and since t[s] <∼1

rep abs t[s], we have q ε
Tj [µ~T .~T/~T ] rep abs t[s] which means that abs q εµj

~P .~T

abs t[s] as wanted.

Unfold. Let Γ ` rep t : Tj [µ~T .~T/~T ] and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤

k. We must show that Jrep tKX E
Tj [µ~T .~T/~T ] rep t[s]. So suppose q ∈ Jrep tKX

such that abs q ∈ JtKX. By the induction hypothesis, abs q εµj
~T .~T t[s] and so

q ε
Tj [µ~T .~T/~T ] rep t[s] as wanted.

The structural induction is complete. 2
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