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Unfair Noisy Channels and Oblivious Transfer ?

Ivan Damg̊ard1, Serge Fehr2??, Kirill Morozov1, and Louis Salvail1? ? ?

1 BRICS†, FICS ‡, Aarhus University, Denmark
{ivan,kirill,salvail}@brics.dk

2 ACAC§, Department of Computing, Macquarie University, Australia
sfehr@ics.mq.edu.au

Abstract. In a paper from EuroCrypt’99, Damg̊ard, Kilian and Salvail
show various positive and negative results on constructing Bit Com-
mitment (BC) and Oblivious Transfer (OT) from Unfair Noisy Chan-
nels (UNC), i.e., binary symmetric channels where the error rate is only
known to be in a certain interval [γ..δ] and can be chosen adversarily.
They also introduce a related primitive called PassiveUNC. We prove
in this paper that any OT protocol that can be constructed based on
a PassiveUNC and is secure against a passive adversary can be trans-
formed using a generic “compiler” into an OT protocol based on a UNC
which is secure against an active adversary. Apart from making positive
results easier to prove in general, this also allows correcting a problem
in the EuroCrypt’99 paper: There, a positive result was claimed on con-
structing from UNC an OT that is secure against active cheating. We
point out that the proof sketch given for this was incomplete, and we
show that a correct proof of a much stronger result follows from our gen-
eral compilation result and a new technique for transforming between
weaker versions of OT with different parameters.

1 Introduction

Bit Commitment (BC) and Oblivious Transfer (OT) are the most fundamen-
tal primitives in cryptographic protocol design [8, 1, 3, 9, 10]. But in a scenario
with only two players, neither primitive can be implemented with unconditional
security based only on standard, error free communication. Even quantum com-
munication does not help [14, 13]. However, Crépeau and Kilian have shown that
both primitives can be implemented based on a binary symmetric channel (BSC)
[5]. A BSC is a channel for transmitting single bits, and for every bit transmit-
ted, the channel decides with some fixed probability to flip the bit before it is
? This is the full version of [6].
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given to the receiver. Unfortunately, results based on BSCs do not give realistic
security guarantees. The reason for this is that one must expect that a cheating
player will try to influence the channel and have this work to his/her advantage,
for instance by lowering the noise rate in order to learn more than expected
about what the other party sent or received. Note that one can always hide the
fact that the channel was made less noisy by pretending to have sent(received)
a more noisy signal than the one actually sent(received). Moreover, even in the
absence of such attacks, it is hardly realistic to assume that the noise rate is
known exactly.

In [7], Damg̊ard, Kilian and Salvail introduce the Unfair Noisy Channel
(UNC) as a model of a noisy channel that is more realistic in cryptographic
applications than a BSC. A (γ, δ)-UNC is basically a BSC, where, however,
the noise rate is only known to be in a certain interval [γ..δ], and where if the
sender or receiver has been corrupted by an adversary, the adversary can set the
noise rate to any desired value in the interval. So a UNC models active cheating
directed against the way a physical channel works in order to manipulate the
error rate. If the channel is a radio link, for instance, the adversary could invest
in more sophisticated receiving equipment without telling the other party and
thereby lowering the noise rate from his point of view. However, it may still be
realistic to assume that he cannot remove all noise from the channel, so such a
case can be captured in the UNC model.

Another primitive was also introduced, namely a (γ, δ)-PassiveUNC. This is a
BSC with error rate δ, but where the adversary gets for every transmission some
side information z with the property that given z, the bit received/sent by the
other (honest) player can be guessed with error probability γ. In other words,
knowledge of z brings the error rate down to γ from the adversary’s point of
view. This models a passive, i.e., “honest but curious” adversary, who measures
somewhere “in the middle” of the channel, and then later uses the information
obtained to compute data he should not have access to.

In [7], it was proved that Bit Commitment (BC) can be implemented with
unconditional security based on a (γ, δ)-UNC if and only if the interval [γ..δ] is
not too wide, more precisely, if and only if δ < 2γ(1− γ). It was also shown that
one cannot base Oblivious Transfer (OT) on a (γ, δ)-UNC (nor on a PassiveUNC)
if δ ≥ 2γ(1 − γ). On the positive side, it was shown that if γ and δ satisfy a
rather complex condition (stronger than δ < 2γ(1− γ)), then OT (with passive
security) can be based on a (γ, δ)-PassiveUNC.

Finally, it was claimed that this same result also holds when using a (γ, δ)-
UNC, and with security against active cheating. This was based on a standard
idea where the players use bit commitments to commit to all private data, includ-
ing what is sent and received on the channel, and then use generic zero-knowledge
techniques to demonstrate that they follow the protocol. This technique indeed
works assuming that we can force a cheating player to commit to the bits he
actually sends or receives over the channel (except with arbitrarily small prob-
ability). This assumption is true for a BSC: for instance the sender S can be
instructed to commit to bits bi, i = 1..n, and send them over the BSC with
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noise rate, say, δ. Having received bits b̂i, i = 1..n, the receiver R then asks to
have all committed bits opened except one, say bj. If S was honest, we expect
that a fraction of about δ of the opened bits will be different from the received
bits b̂i, i = 1..n. So R is instructed to reject if the fraction of disagreement is
significantly larger than δ. If R does not reject, this means intuitively that he
believes that the committed bit bj really is the bit that was sent over the channel
and resulted in R receiving b̂j . This is justified since it follows from standard
probability theory that the probability of having bj different from the j’th bit
actually sent and still have the receiver accept, can be made arbitrarily small by
increasing n.

Unfortunately, no such technique can work for a UNC. We show below that
for any protocol that aims to implement a “committed UNC”, the probability
of error is at least a constant, namely (δ − γ)/(1 − 2γ). This problem was not
taken care of in [7].

In this paper, we show a different (and correct) way to apply the idea of
using commitments and zero-knowledge proofs to enforce correct behavior. This
turns out to lead to a result that is much more general than what was claimed
in [7] and which can be informally stated as follows: Any two-party protocol
that, based on a (γ, δ)-PassiveUNC, implements an OT secure against passive
cheating, can be transformed using a generic “compiler” into a protocol that
uses a (γ, δ)-UNC for communication and builds an OT secure against active
cheating.

The opposite direction of this result is also true, and trivial to prove. So this
implies that, to prove positive or negative results, on building OT from UNC
or PassiveUNC, we can now concentrate only on the case of PassiveUNC and
passive cheating - which is clearly much simpler. It also immediately implies a
complete proof of the claim made in [7].

In the final part of the paper we exploit this, and a new technique for trans-
forming between the weaker versions of OT, in order to prove a stronger positive
OT result than the one claimed in [7]. In other words, there is now a much larger
range of (γ, δ)-values for which we can implement OT based on a (γ, δ)-UNC.
For instance we can now show that robust OT follows from a (γ, δ)-UNC with
any value of δ between 0 and 1/2, provided γ is close enough to δ.

2 Models of Communication and Adversaries

Our protocols throughout the paper take place in a model with two players
A, B connected by an error free channel and also by a noisy channel with some
particular characteristic, such as a UNC or a PassiveUNC. We assume a bounded
delay in message delivery for all channels such that failure to send a message
can be detected.

In order to specify formally the channels and reductions we study, we will use
the universally composable framework of Canetti [2]. In this framework, players
in a protocol can be given access to one or more ideal functionalities. Such a
functionality can be thought of as a trusted party T with whom every player
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can communicate privately. There is a number of commands specified that T will
execute. Every player can send a command to T , and T will faithfully carry out
the command according to its specification, and may send results back to (some
of) the players. Many cryptographic constructions – including ours – actually
aim at building a protocol for the players only (without a trusted party) that
does “the same thing” as some ideal functionality T , even if an adversary can
corrupt some of the players and make them behave as he likes. The framework
provides a precise definition of what it means that a protocol π in this way
securely implements T . If this definition is satisfied, then any protocol that is
secure when using T is also secure if T is replaced by π. In its full generality, the
definition is robust against adaptive adversaries and concurrent composition of
protocols.

All our protocols are in the 2-player case with information theoretic security.
Here, the standard approach in previous research to security proofs has been
to assume that either A or B is cheating, then prove some relevant security
properties, and finally to prove that if both parties are honest, then the protocol
“works correctly”. We express this in the UC framework by assuming an infinitely
powerful non-adaptive adversary who from the start has corrupted no one, or
either A or B. While we believe that our results extend to adaptive adversaries,
we do not prove or claim this in this paper. Furthermore, if the noisy channel is
a UNC, then the adversary is assumed to be active, i.e., can decide the corrupted
player’s behavior. If the channel is a PassiveUNC, the adversary is passive.

Another consequence of being in the two-player case, is that we do not think
of our protocols as subroutines in a multiplayer protocol, nor are we worried
about external observers, only about what a corrupted A or B might do or
learn. We therefore assume that unless the adversary corrupts a player, he gets
no information about the communication between A and B. At the cost of
more complex proofs, our results extend to the case where the adversary always
eavesdrops the error free channel.

To prove that a protocol π satisfies the UC definition, one has to construct, for
every adversary Adv attacking the protocol in question, an ideal model adversary,
or simulator S, which gets to attack an ideal scenario where only the players
and T are present. The goal of S is to achieve “the same” as Adv could have
achieved by an attack on the real protocol. In the framework, this is formalized
by assuming an environment machine Z which can communicate in a real life
attack with Adv and the honest players, and in the ideal model with S and the
honest players. The protocol is said to be secure if for every adversary Adv there
exists a simulator S, such that Z cannot tell if it is in the real-life or the ideal
model. For details, see [2].

In proofs of this type of security, S usually works by running internally a
copy of the adversary Adv, and passing interaction back and forth between Z
and Adv with no change. If S can simulate with an indistinguishable distribution
both the view of Adv attacking π and simultaneously make the input/output
behavior of the honest players be as in the real attack, then Z will not be able
to tell any difference.
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The noisy channels we study in this paper can very conveniently be mod-
eled as ideal functionalities, and reductions that build one type of channel from
another can be proved secure in this framework. Since the results we prove are
information theoretic in nature, we modify the UC model as given in [2] by al-
lowing our adversaries and simulators infinite computing power - but we stress
that honest players can execute our protocols efficiently.

3 Some functionalities

We can now specify our basic types of channels precisely but for completeness we
start by describing the functionality for standard (1-out-of-2) OT as well as for a
weak version as introduced in [7] with parameters 0 ≤ p, q ≤ 1 and 0 ≤ ε ≤ 1/2:

Functionality OT

Send (b0, b1): The issuer of the Send command is called the sender, the other
party is the receiver. On receipt of this command, the functionality records
(b0, b1) and outputs “which bit?” to the receiver. It ignores all further com-
mands until the receiver sends a “Choice” command.

Choice c: Receiving this command from the receiver, the functionality sends
bc to the receiver if c ∈ {0, 1} and otherwise ignores the command.

For later convenience, we call the receiver’s choice c the selection bit and the bit
b1−c (which is not revealed to the receiver) the secret bit.

Functionality (p, q, ε)-WOT

Send (b0, b1): The functionality’s action on this command is the same as in OT.
Choice c: If c 6∈ {0, 1} then the functionality ignores the command. Otherwise,

it chooses b̃c ∈ {0, 1} such that Pr(b̃c 6= bc) = ε and sends it to the receiver.
Additionally, if the sender is corrupted, then with probability p it sends c to
the sender, and if the receiver is corrupted, then with probability q it sends
b1−c to the receiver.

A (γ, δ)-UNC is specified by the following functionality.

Functionality (γ, δ)-UNC

Send b: The issuer of the Send command is called the sender, the other party
is the receiver. On receipt of this command, the functionality records b and
outputs a string “which error probability?” to the adversary. It ignores all
further commands until the adversary sends an “Error probability” com-
mand.

Error probability ε: Receiving this command from the adversary, the func-
tionality checks if γ ≤ ε ≤ δ. If not, the command is ignored. Otherwise, it
chooses a random bit b′, such that Pr(b′ = 1) = ε, and sends b̂ = b ⊕ b′ to
the receiver.
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What we want to model here is intuitively that a corrupted player may influence
the error rate or even block the channel. But if both players are honest, trans-
missions will always go through, however, the error rate will fluctuate in some
arbitrary way in the given interval. We therefore assume throughout about the
adversary that if both players are honest, then the adversary will always give a
legal error probability back when receiving a request from the UNC.

As mentioned, the adversary is allowed to set the error probability to any
value in [γ..δ] for every transmission. However, if the adversary corrupts a player,
any attack he can do following, say, algorithm Alg can be simulated perfectly
by an adversary that sets the error rate to γ always, but adds artificial noise to
any bit sent(received) in case Alg wanted a larger error rate. We may therefore
always assume that an active adversary who corrupts A or B always sets the
error rate of the UNC to γ.

We introduce some notation that will be convenient: if we cascade a BSC
with error rate x and a BSC with error rate y, the result is again a BSC, we
define x � y to be the resulting error rate, x(1 − y) + (1 − x)y. Note that the
operator � is commutative, associative and satisfies that if |x − x′| < ν, then
|x � y − x′ � y| < ν for all y.

Functionality (γ, δ)-PassiveUNC

Send b: The issuer of the Send command is called the sender, the other party is
the receiver. On receipt of this command, the functionality chooses random
bits b′, b′′, such that Pr(b′ = 1) = γ and Pr(b′′ = 1) = ν, where ν � γ = δ.
This ensures that Pr(b′⊕b′′ = 1) = δ. The functionality sends b̂ = b⊕b′⊕b′′

to the receiver. If the adversary has corrupted a player, it sends to the
adversary a bit z, where z = b⊕ b′′ if the sender is corrupted, and z = b⊕ b′

if the receiver is corrupted. Intuitively, given z, the noise rate goes down
to γ.

We need to consider the use of commitments and zero-knowledge proofs in
our protocols. This can also be modeled by an ideal functionality, where one
commits simply by giving the bit to the trusted party, who will then later open
it on request from the committer. Furthermore, the trusted party will confirm
that committed bits satisfy a given formula, if this is indeed true.

Functionality Commit-and-prove (CaP)

Commit cID, b: Receiving this command, where cID is a bitstring and b is a
bit, do as follows: if no message containing cID has been received yet, record
the value of cID, b and send as output Commit, cID to all players.

Open cID: if cID, b has been received earlier from the player issuing this com-
mand, send b to all players.

Prove L, Φ: Receiving this command, where L is a list of bit strings and Φ is
a Boolean formula, check if L contains only strings that has been used as
identifiers for bits committed to by the issuer of the Prove command. If so,
find the corresponding bits and check if they satisfy Φ. If so, sends (OK, L, Φ)
to all players. Else, send (Fail, L, Φ).
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As bit commitment scheme in our protocols, we will use the UNC-based
construction from [7], which works assuming δ < 2γ(1−γ) which we will assume
throughout. This scheme is statistically close to perfect, regardless of A and B’s
computing power. Furthermore, given any commitment scheme, one can always
construct a new one, where one can prove in zero-knowledge that committed
bits satisfy a given Boolean formula (see [11]). It follows that in any protocol
where we assume access to a UNC, we may assume also a CaP without loss of
generality.

A final functionality that will come in handy is the ability to choose random
bits and numbers with a prescribed distribution:

Functionality RandomChoice

Flip sID, ν: Here sID is a session ID and ν must be a probability. Once the
functionality has received this command from every player containing iden-
tical values of sID, ν, it chooses a bit b at random such that Pr(b = 1) = ν
and sends b to all players.

Uniform, sID, j: Here sID is a session ID and j must be a natural number.
Once the functionality has received this command from every player con-
taining identical values of sID, j, it chooses i uniformly from [0..j − 1] and
sends i to all players.

Using standard techniques, one can implement this functionality based on the
CaP, with a statistically good simulation. It should be noted that in our two-
player scenario, functionalities such as RandomChoice can only be realized if the
adversary is allowed to abort after seeing the output. But this is consistent with
the UC framework, where adversary and simulator are indeed allowed to abort
any time.

4 Committed (Passive)UNC

We first define informally the notion of a committed UNC. This is a protocol for
players A, B, using a (γ, δ)-UNC and an error free channel. We will assume that
δ < 2γ(1 − γ), so that bit commitment can be done, based on the UNC. Note
that if the UNC can only send bits from A to B, we can still simulate a UNC in
the opposite direction using the error free channel, so that we can assume that
both A and B can commit to bits without loss of generality.

Intuitively, the purpose of a committed UNC is to act just like an ordinary
UNC, but such that players are committed to the bits they send/receive on the
UNC, at least except with some bounded probability.

We now define this concept more formally: a committed UNC protocol may
halt because A or B reject. Otherwise it outputs two commitments, one from
A containing a bit bA, and one from B containing a bit bB. Finally, the output
designates one of the transmissions that were made over the UNC from A to B.
Let sA resp. rB be the bit sent, respectively received in this transmission.

We require that if A, B both follow the protocol, then both players accept
except with probability negligible in the security parameter k. Also, whenever
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A is honest, we have that bA is uniformly random and bA = sA. Whenever B
is honest, we have rB = bB. When A is corrupted and B is honest, we let pA

be the probability of the event that B accepts and bA 6= sA. Similarly, when B
is corrupted and A is honest, we let pB be the probability that A accepts and
rB 6= bB. In general, the error probabilities pA, pB will be functions of γ, δ and
the security parameter k.

The argument sketched in [7] on constructing OT from UNC took as point
of departure a protocol that builds OT from a (γ, δ)-PassiveUNC for certain
values of γ, δ and is secure assuming that players cheat only passively, i.e., are
honest, but curious. It was then noted that one can replace the PassiveUNC
with a UNC, still assuming that only passive cheating occurs. The final idea
was then to replace the UNC with a committed UNC (although this notion
was not formally defined there) and have players prove in ZK that they were
following the protocol. If the error probabilities of the committed UNC could
be made arbitrarily small with increasing k, then this would result in an OT
secure against active cheating for essentially the same values of γ, δ that could
be handled in the passive case. But unfortunately, this is impossible:

Theorem 1. Any committed UNC as defined above, based on a (γ, δ)-UNC must
have pA, pB ≥ δ−γ

1−2γ .

Proof. Suppose, for instance, that A is cheating. Then A sets always the minimal
noise level for the UNC, but adds artificial noise to each transmission with
noise rate δ−γ

1−2γ such that the total error probability for each transmission is
δ−γ
1−2γ � γ = δ. On the resulting transmissions, he runs a copy A0 of the honest
algorithm for A. Clearly, B (who is honest) cannot distinguish this from an all
honest situation where the noise rate happens to be δ all the time, and so he
must accept with overwhelming probability. However, it now holds for every
transmission that the bit committed to and also sent by A0, differs from the one
A actually sent with probability δ−γ

1−2γ . The theorem follows. ut
Theorem 1 essentially says that we cannot force a player to commit to the bit

he physically sends on a UNC. To get around this problem, we take a different
point of view: we will create a new virtual channel from the UNC, where a bit
committed to by the sender is by definition the bit sent on the new channel. Any
difference between the committed bit and what is sent on the original UNC is
regarded as noise. With appropriate checking that a cheating player does not
introduce too much noise this way, it turns out that we obtain something that
behaves as essentially like a PassiveUNC, even in presence of active cheating.
We model this by an ideal functionality called (γ, δ, q())-Committed Passive-
UNC (CPUNC). It combines a functionality similar to the PassiveUNC with
the Commit-and-Prove functionality. In particular, it allows to commit to bits
with or without sending them on the channel. But if they are sent, sender and
receiver will be committed to what they send/receive. With security parameter
k, the error rate will be in the range δ ± 1/q(k), but will drop to γ given the
view of a cheating player. Note that a CPUNC is not a committed UNC, and so
Theorem 1 does not forbid the existence of a secure implementation.
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Functionality (γ, δ, q())-CPUNC

Stop On receiving this command from the adversary, the CPUNC stops working
and ignores all further commands.

Send cID, b: CPUNC comes with parameters 0 ≤ γ ≤ δ ≤ 1/2, a security
parameter value k and a polynomial q(). The issuer of the Send command
is called the sender, the other party is the receiver. The string cID must
not have been used before to identify a sent, received or committed bit,
else the command is ignored. On receipt of this command from A or B, the
functionality records cID, b and outputs a string “which error probability?”
to the adversary, it ignores all further commands until the adversary sends
an “Error probability” command.

Error probability κ′: Receiving this command from the adversary, the func-
tionality checks if |δ − κ′| ≤ 1/q(k). If not, the command is ignored. Other-
wise, the functionality chooses random bits b′, b′′, such that Pr(b′ = 1) = γ
and Pr(b′′ = 1) = ν, where ν�γ = κ′. This ensures that Pr(b′⊕b′′ = 1) = κ′.
The functionality sets b̂ = b⊕b′⊕b′′. If the adversary has corrupted a player,
it sends to the adversary a bit z, where z = b⊕ b′′ if the sender is corrupted,
and z = b⊕ b′ if the receiver is corrupted. It records cID, b as if the sender
had committed to b. It then sends cID to all players, and ignores all further
commands until the receiver sends a ”ReciptID” command.

ReceiptID ˆcID: This command is ignored if ˆcID has been used to identify any
committed, sent or received bit earlier. If this is not the case, the CPUNC
records ˆcID, b̂ as if the receiver had committed to b̂, it sends ˆcID to all
players and b̂ to the receiver.

Commit cID, b: Receiving this command, where cID is a bitstring and b is a
bit, do as follows: if cID has not been used to identify a sent, received or com-
mitted bit before, record the value of cID, b and send as output Commit, cID
to all players.

Open cID: if cID, b has been recorded as a commitment from the player issuing
this command, send b to all players.

Prove L, Φ: Receiving this command, where L is a list of bit strings and Φ is
a Boolean formula, check if L contains only strings that has been used as
identifiers for bits committed to by the issuer of the Prove command. If so,
find the corresponding bits and check if they satisfy Φ. If so, sends (OK, L, Φ)
to all players. Else, send (Fail, L, Φ).

We now describe a protocol that securely realizes the functionality we just
described. We assume that the protocol has access to the UNC, CaP and Ran-
domChoice functionalities. The protocol is described by specifying how each of
the commands are implemented. The amount of work done in the protocol is
specified by a polynomial p(k), where k is the security parameter.

Stop This command has no direct implementation, the idea is that whenever the
adversary behaves such that the honest party detects cheating and aborts,
this is equivalent to sending a Stop command in the ideal scenario.
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Send (Transmission Step) We describe how A will send a bit b to B.
1. A commits to b
2. A chooses at random bits B̄ = b1, ..., bkp(k)3 , commits to each bit and

sends each bit to B over the UNC. B commits to every bit B̂ = b̂1, ..., b̂kp(k)3

he receives.
3. Call RandomChoice kp(k)2 times to generate integers ji chosen uni-

formly in the range [1..kp(k)3], for i = 1, ..., kp(k)2.
4. All bits bji , b̂ji are opened. Let κ be the fraction of the kp(k)2 opened

positions where bji 6= b̂ji . A and B check that κ ≤ δ + 1/p(k). They
abort all interaction if this is not satisfied.

5. Call RandomChoice to generate an integer j uniformly chosen among
the indices of positions that were not opened in the previous step. A
sends b′ = b ⊕ bj using error free transmission and proves (using CaP)
that this value is correct.

6. Let µ be defined by κ � µ = δ + 1/p(k). By a call to RandomChoice,
generate a bit c such that Pr(c = 1) = µ.

7. B defines the bit he receives as b̂ = b̂j ⊕ b′ ⊕ c. He commits to b̂ and
proves (using CaP) that the committed value is correct.

If B wants to send a bit to A, we implement this in the same way as above,
by interchanging the roles of A and B and of bj and b̂j .

Commit, Open, Prove Each of these commands correspond directly to com-
mands that are already available in the Commit-and-Prove functionality
we assume we have access to. Therefore these commands are implemented
by directly calling the corresponding command with the same input in the
Commit-and-Prove. Note that inputs to the Prove or Open command may
include bits that were sent or received during a Send command, since these
are also committed to.

Before proving anything about this construction, we describe first the intu-
ition behind it: for bit strings X, Y of equal length, let err(X, Y ) be the fraction
of positions where X disagrees with Y . Now, if both parties are honest, the ex-
pected value of err(B̄, B̂) is at most δ, so allowing the estimate κ to be up to
δ+1/p(k) implies that we reject with negligible probability, as we shall see. Then
assume that one player, say A, is corrupted, and let B̃ = b̃1, ..., b̃kp(k)3 be the bits
actually sent by A on the UNC when a bit is transmitted. Let ε = err(B̄, B̃).
Since the UNC introduces errors with probability γ independently of anything
else, we expect that ε�γ ≈ err(B̄, B̂) ≈ κ, and hence that ε�γ �µ ≈ κ�µ ≈ δ.
Here, ≈ means equality up to a 1/poly() term.

We can now see that after doing the transmission step, A is actually in a
position approximately equivalent to having sent b on a (γ, δ)-PassiveUNC: we
have that the bit b sent is related to the bit b̂ received as b = b̂⊕(bj⊕ b̃j)⊕c⊕nj ,
where nj is a noise bit chosen by the UNC, such that Pr(nj = 1) = γ. By the
choice of c, and random choice of j, we have

Pr(b 6= b̂) = Pr((bj ⊕ b̃j)⊕ c⊕ nj = 1) ≈ ε � µ � γ ≈ κ � µ ≈ δ.
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But since the adversary knows (bj ⊕ b̃j)⊕ c, the error rate from his point of view
is only what is introduced by the UNC, namely γ.

In the appendix we show the theorem below. First, some terminology to
state the result: we say that a simulator (in the UC framework) is non-blocking,
if it stops the CPUNC (by sending a stop command or refusing to give correct
input when asked for it) with only negligible probability.

Theorem 2. The Committed Passive UNC protocol securely realizes the (γ, δ, q())-
CPUNC functionality when given access to ideal (γ, δ)-UNC, CaP and Random-
Choice functionalities, and for any polynomial q(), provided we choose the poly-
nomial p() measuring the work done in the protocol as p(k) = 4q(k). Moreover,
for the case where both players are honest, the simulator is non-blocking.

Remark 1. The last claim in the theorem is a way to state in the UC framework
the traditional completeness property for a 2-party protocol: if both players are
honest, the protocol completes successfully with overwhelming probability.

5 From passive to active security

In this section, we sketch a proof of the following result:

Theorem 3. Let π be any protocol that securely realizes OT based on a (γ, δ)-
PassiveUNC assuming a passive adversary. Then there exists a protocol with
complexity polynomial in that of π that also securely realizes OT based on a
(γ, δ)-UNC, assuming an active adversary.

So we assume we have a protocol π that implements Oblivious Transfer given
access to a (γ, δ)-PassiveUNC functionality, and that this protocol is secure
against a passive adversary.

We then note that the previous section showed how to implement the CPUNC
functionality based on the UNC. Therefore from π, we may construct a protocol
π̄ as follows: active cheating is prevented by first making players commit to
all inputs, and furthermore, the random coins of a player are decided using a
standard trick: the player in question commits to a random string a, the other
player sends a random string b in the clear and the random coins to be used are
a ⊕ b. Second, all transmissions over the PassiveUNC now take place using the
CPUNC, and each time something is sent, you use the CPUNC to prove that
what was sent was computed according to π with the given (committed) inputs,
random coins and messages received earlier.

Note that a player trying to send an incorrect message will be caught with
certainty. Therefore, the views obtained by the players are always (a possibly
truncated version of) what would be obtained in presence of a passive adversary.

Our first goal will be to show that π̄ implements a weak form of OT (which
then implies standard OT), namely a (p, q, ε)-WOT as defined in Section 3.

Lemma 1. π̄ as described above realizes (with statistically good simulation) a
(p, q, ε)-WOT with p = q = ε = 3/k, when π̄ is executed with security parameter
value k.

11



Proof. (Sketch) The above discussion implies that we only have to show the
lemma for a passive adversary: the only difference between a passive and an
active attack on π̄ is that the adversary may stop early in the active case, and
this can never be prevented in an active attack. Assuming a passive adversary,
the only difference between π̄ and π is that π̄ does not use a (γ, δ)-PassiveUNC
but a (γ, δ, f())-CPUNC where the adversary can make the error probability
fluctuate slightly around δ. This fluctuation is not negligible, namely it is of size
1/f(k). However, by Theorem 2, we can choose f() to be any polynomial we
like, so assuming π calls the PassiveUNC t(k) times, for some polynomial t(),
we choose f(k) = kt(k).

Consider the view of a (passively) corrupted sender in π, represented by
random variable V . Let advπ(k, v) be the advantage over 1/2 with which the
selection bit can be guessed given that V = v and the protocol was executed
with security parameter value k. Let advπ(k) =

∑
v Pr(V = v) · advπ(k, v) be

the expected value. Since π was assumed to be secure, advπ(k) is negligible
in k (this is equivalent to asserting that the mutual information between the
selection bit and V is negligible). Then define a particular possible value v of
V to be good if advπ(k, v) ≤ √

advπ(k), and let E be the event that V takes
a bad value. Then clearly, E occurs with probability at most

√
advπ(k). We

now define t(k) + 1 hybrids that are in between π and π̄: namely in the i’th
hybrid, where i = 0..t(k), we run the normal protocol, but for communication,
we use a (γ, δ)-PassiveUNC for the first i calls to the communication channel,
and then the (γ, δ)-CPUNC for the rest. Then hybrid 0 is π̄ while hybrid t(k) is
π. When executing hybrid i, we define Ei to be the event that the information
contained in the sender’s view about the selection bit is larger than

√
advπ(k).

Let εi be the probability that Ei occurs. Of course εt(k) = Pr(E) ≤ √
advπ(k).

Also, the only difference between hybrid i and i + 1 is that in the i + 1’st
call to the communication channel, the results returned by the channel have
distributions with statistical difference at most 2/f(k) between them. It follows
that |εi − εi+1| ≤ 2/f(k), and hence ε0 ≤ εt(k) + 2t(k)/f(k) ≤ √

advπ(k) + 2/k.
The “OT”, that π̄ implements is therefore no worse than a protocol that with
probability, say 3/k reveals the selection bit to the sender, and otherwise leaks
a negligible amount of information. A similar argument holds for the view of a
corrupted receiver; also this type of argument shows that an honest receiver will
receive the correct bit, except with probability at most 3/k. Thus what we have
is statistically indistinguishable from a (p, q, ε)-WOT, with p = q = ε = 3/k. ut

We can then complete the argument for the theorem: In [7], a reduction is
shown that implements OT based on any (p, q, ε)-WOT, as long as p + q + 2ε <
0.45. Moreover, it is easy to verify that by choosing k large enough the reduction
implements OT efficiently, i.e., it only makes a polynomial number of calls to
the underlying WOT. Therefore, by the above lemma, we can replace the WOT
by π̄ and still obtain a secure OT (even though π̄ is only statistically close to
the required WOT). This implies the result we wanted.
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6 Extended positive results

In this section, we shall assume the result of Theorem 3 and focus on reducing
OT to (γ, δ)-PassiveUNC securely against passive adversaries. The strategy of
[7] is as follows. First, the (γ, δ)-PassiveUNC is used to construct an imperfect
version of OT which may leak information about the parties’ private inputs.
This imperfect OT is modeled by a WOT. OT is then shown to be reducible to
WOT for certain values of (γ, δ).

However, WOT does not precisely capture the imperfect OT obtained in the
construction: In WOT the corrupted sender/receiver gets the selection/secret
bit (which he is not supposed to see) with a certain probability, while in the
imperfect OT obtained the corrupted sender/receiver only gets some informa-
tion about that bit with a certain probability. As a consequence, in order to
fit the imperfect OT into the WOT model, it is assumed in [7] that every time
the dishonest sender/receiver gets some information about the selection/secret
bit, he actually gets full information. Hence, the information leakage is overesti-
mated in [7]. We introduce a new Generalized Weak Oblivious Transfer (GWOT)
primitive which allows to model imperfect OTs which leak information about
the parties’ private inputs in a much more general way than WOTs, without
overestimating the information leakage. In particular, it precisely captures the
imperfect OT resulting from the construction of [7]. Informally, in a GWOT the
corrupted sender/receiver gets the selection/secret bit over a BSC with some er-
ror probability which is chosen according to some distribution (and announced
to the corrupted party). Formally, consider parameters {si, αi}i and {ri, βi}i,
where i = 1, . . . , N , and ε such that {si}i and {ri}i are probability distribu-
tions (over {1, . . . , N}) and 0 ≤ αi, βi, ε ≤ 1/2 for i = 1, . . . , N . A GWOT with
respect to these parameters is specified by a functionality of the following kind.

Functionality
({(si, αi)}N

i=1; {(ri, βi)}N
i=1; ε

)
-GWOT

Send (b0, b1): The functionality’s action on this command is the same as in OT.
Choice c: If c 6∈ {0, 1} then the functionality ignores the command. Otherwise,

it chooses b̃c ∈ {0, 1} such that Pr(b̃c 6= bc) = ε and sends it to the receiver.
Additionally, if the sender is corrupted, then it chooses I ∈ {1, . . . , N} and
c̃ ∈ {0, 1} such that Pr(I = i) = si and Pr(c̃ 6= c | I = i) = αi, and it
sends I and c̃ to the sender. And/or, if the receiver is corrupted, then it
chooses I ∈ {1, . . . , N}, and b̃1−c ∈ {0, 1} such that Pr(I = i) = ri and
Pr(b̃1−c 6= b1−c | I = i) = βi, and it sends I and b̃1−c to the receiver.

We will say that a corrupted sender gets c “sent through {(si, αi)}N
i=1” and

similarly a corrupted receiver gets b1−c “sent through {(ri, βi)}N
i=1”.

Note that there is some ambiguity in the functionality’s action in that it is not
required that b̃c is chosen independently of I and c̃, respectively of I and b̃1−c, as
long as the marginal distribution of b̃c is correct. Furthermore, a (p, q, ε)-WOT
coincides obviously with a

({(p, 0), (1− p, 1/2)}; {(q, 0), (1− q, 1/2)}; ε)-GWOT.
It will be convenient to introduce a GWOT of a very particular form, a

Special Generalized Oblivious Transfer (SGWOT). Informally, in a SGWOT the
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corrupted sender/receiver either gets no information on the selection/secret bit
or he receives it over a BSC with a certain (fixed) error probability. Formally,
for parameters s, α, r, β, ε with 0 ≤ s, r ≤ 1 and 0 ≤ α, β ≤ 1/2,

(
(s, α), (r, β), ε

)
-SGWOT

def
=

({(s, 1/2), (1−s, α)}; {(r, 1/2), (1−r, β)}; ε)-GWOT.

Consider the reduction of WOT to (γ, δ)-PassiveUNC given in Appendix A
of [7]. As mentioned above, this construction actually results in a GWOT (which
is modeled by a WOT by giving away information to the adversary). As a matter
of fact, as can easily be seen, it results in a SGWOT. The following Lemma
expresses the parameters of the resulting SGWOT as a function of (γ, δ). For
convenience, we write µ = δ−γ

1−2γ , such that γ � µ = δ. The proof of the Lemma
follows by straightforward analysis of reduction WOTfromPassiveUNC of [7].

Lemma 2. When run with a (γ, δ)-UNC, reduction WOTfromPassiveUNC de-
fined in [7] produces a

(
(s, α), (r, β), ε

)
-SGWOT with the following parameters:

s =
γ(1− γ)(γ2 + (1− γ)2)(µ4 + 6µ2(1− µ)2 + (1− µ)4)

δ(1 − δ)(δ2 + (1− δ)2)
, α =

4γ2(1− γ)2

γ4 + 6γ2(1− γ2) + (1 − γ4)
, (1)

r =
γ(1− γ)(µ2 + (1− µ)2)

δ(1 − δ)
, β =

γ2

γ2 + (1− γ)2
, (2)

ε =
δ2

δ2 + (1− δ)2
. (3)

We have expressed the parameters of
(
(s, α), (r, β), ε

)
-SGWOT with that of

the underlying (γ, δ)-PassiveUNC. Now we would like to exploit the machinery
of [7] in order to reduce OT to SGWOT. A composition of three basic reductions
is used in order to transform a WOT into an OT. The first reduction, S-Red(l)
decreases the sender’s information about the selection bit by executing WOT
l times such that the final selection bit is the parity of all selection bits used
during the l executions (this reduction was introduced in [5]). The second reduc-
tion, R-Red(l), decreases the receiver’s information about the bit that was not
selected by encoding it into the parity of l transmissions. The final reduction,
E-Red(l), decreases the error rate by executing l identical transmissions through
a WOT. Every of these reductions transforms the WOT into a new one (with
new parameters), and it is shown in [7] that for certain initial parameters the
sequence of WOTs converges to an OT (in some well defined meaningful sense).

In [7], the
(
(s, α), (r, β), ε

)
-SGWOT obtained after invoking WOTfromPas-

siveUNC was modeled by a (1−s, 1−r, ε)-WOT. I.e., in order to fit the imperfect
OT into the WOT framework, the error probabilities α and β were assumed
to be zero by giving the corrupted party some information for free. Clearly, a
tighter analysis should avoid this kind of strengthening of the corrupted party
for proof-technical conveniences. A straight forward approach would be to try to
show that for certain initial parameters, the sequence of GWOTs, resulting by
applying the S-, R- and E-Red reductions to the initial SGWOT, converges to
an OT. Unfortunately, as the reduction of OT to WOT defined in [7] is executed,
the shape of the GWOTs becomes quickly very complex and difficult to analyze.
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In order to avoid this problem, we give a generic way to replace a (possibly very
complex) GWOT by another (ideally simpler) one such that if the new GWOT
allows for OT then the initial GWOT also allows for OT; however, in contrast to
the strategy of [7] of simply setting the error probabilities to zero, we are trying
to be much more tight.

Next definition introduces a partial ordering “�” among probability distribu-
tions over BSCs, i.e. among sets of the form {(si, αi)}i or {(ri, βi)}i as considered
above, that will be shown (in Lemma 3) to capture the relative difficulty to gen-
erate OT using the reduction considered in [7]. Intuitively, we say that S � S′

if S can be transformed into S′ by removing BSCs in S and replacing each of
them by a Bernoulli distribution over 2 BSCs such that the average guessing
probability for the bit sent through S is the same as when sent through S′.

Definition 1. Let S = {(pi, εi)}N
i=1 and S′ be two probability distributions over

BSCs. We say that S � S′ if there exists 1 ≤ ` ≤ N as well as 0 ≤ δ ≤ 1 and
0 ≤ ε− ≤ ε ≤ ε+ ≤ 1/2 such that

1. S′ is of the form S′ = S \ {(p`, ε`)} ∪ {((1− δ)p`, ε
−), (δp`, ε

+)} and
2. ε` = ε = (1− δ) · ε− + δ · ε+,

or if there exists a sequence S = S0, S1, . . . , Sk = S′ of probability distributions
over BSCs such that Sκ−1 � Sκ in the above sense for κ = 1, . . . , k.

Note that in case εj = εk for some 1 ≤ j < k ≤ N , we identify S = {(pi, εi)}N
i=1

with S∗ = S \ {(pj , εj), (pk, εk)} ∪ {(pj + pk, εj)}. This is justified in that it is
immaterial in our context whether a bit is sent thorough S or through S∗.

The next lemma, proved in Appendix B, shows that the partial ordering
S � S′ means that as long as reductions S-Red, R-Red, and E-Red are concerned,
S is easier to deal with than S′.

Lemma 3. If OT can be reduced to (S′; R′; ε)-GWOT by a sequence of reduc-
tions S-Red,R-Red, and E-Red, then OT can be reduced to any (S; R; ε)-GWOT
with S � S′ and R � R′.

One application of Lemma 3 allows to improve the analysis of [7]. As we have
seen in Lemma 2, the imperfect OT obtained from a UNC using reduction
WOTfromPassiveUNC produces a

(
(s, α), (r, β), ε)

)
-SGWOT. Using Lemma 3

it is straightforward to verify that we can replace this SGWOT by a (ps, qr, ε)-
WOT with ps = (1 − s)(1 − 2α) and qr = (1 − r)(1 − 2β). Indeed, for in-
stance the corrupted sender’s guessing probability for the selection bit is in the
first case s/2 + (1 − s)(1 − α) = 1 − s/2 − α + sα and in the second case
ps + (1 − ps)/2 = 1 − s/2 − α + sα. Applying Lemma 5 of [7] (OT is possible
based on (p, q, ε)-WOT if p + q + 2ε ≤ 0.45) to the transformed SGWOT results
in the following Lemma.

Lemma 4. The reduction from OT to WOT of [7] implements OT from any(
(s, α), (r, β), ε

)
-SGWOT with ps + qr + 2ε ≤ 0.45, where ps = (1 − s)(1 − 2α)

and qr = (1− r)(1 − 2β).
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Combining Lemmas 4 and 2, gives directly the following result:

Lemma 5. OT may be reduced to (γ, δ)-PassiveUNC if ps + qr + 2ε ≤ 0.45,
where ps = (1− s)(1− 2α), qr = (1− r)(1− 2β) and s, α, r, β, ε are defined by
equations (1)–(3).

Note that [7] only guarantees that OT can be achieved if p + q + 2ε ≤ 0.45
where p = 1 − s and q = 1 − r. Hence, the possibility range given in Lemma 5
strictly contains the one obtained in [7].

Despite this improvement, Lemma 5 still shares the following restriction
with [7]. OT cannot be provably achieved for δ > 0.35 even when γ is almost
equal to δ (i.e. the resulting UNC has almost no unfairness) since in that case
ε > 0.45 (see Figure 1). This stands somewhat in contrast to the fact that OT
can be achieved based on any (non-trivial) BSC [4, 12, 15]. Hence, one would
expect that OT can be achieved based on any (non-trivial) UNC as long as the
unfairness is small enough. The following lemma shows that this is indeed true.

Lemma 6. There exists a reduction from OT to any (γ, δ)-PassiveUNC that
satisfies 1 − (1 − ps)l + 1 − (1 − qr)l + 2 εl

εl+(1−ε)l ≤ 0.45 for some l ≥ 1, where
ps = (1− s)(1− 2α) and qr = (1− r)(1− 2β) with s, α, r, β, ε defined by (1)–(3).

Clearly, for any 0 < δ < 1/2, for l large enough, and for γ close enough to δ
(where the closer δ is to 1/2, the closer γ has to be to δ), the values ps and qr

are small enough for the condition expressed in Lemma 6 to be satisfied. Hence,
OT is possible based on (γ, δ)-PassiveUNC’s for any 0 < δ < 1/2 as long as γ is
close enough to δ (see Figure 1). This further improves on [7].

Proof. We implement a
(
(s, α), (r, β), ε

)
-SGWOT from the (γ, δ)-PassiveUNC

according to Lemma 2. Then, by Lemma 3, we convert it into a (ps, qr, ε)-WOT
before applying the reduction E-Red(l) [7] with parameter l. As shown in [7], this
results in a (1 − (1− ps)l, 1− (1− qr)l, εl

εl+(1−ε)l )-WOT. The claim now follows
from the above. ut

It can be shown by straightforward calculations that the new possibility range
includes UNC’s for which the techniques of [7] results in a “simulatable” WOT
(i.e., a trivial WOT), that is, could not be used to implement OT (see Lemma 1
from [7]). In other words, our approach allows to implement and prove secure
OT in a range where it is provably impossible using the techniques of [7]. The
following example illustrates this.

Example 1. Let γ0 = 0.39, δ0 = 0.4 be the parameters of a PassiveUNC. The(
p(γ0, δ0), q(γ0, δ0), ε(δ0)

)
-WOT obtained from a (γ0, δ0)-PassiveUNC the crude

way (by giving away all partial information to the adversary as in [7]) achieves
p(γ0, δ0) + q(γ0, δ0) + 2ε(δ0) ≈ 0.869. It can be shown that from this WOT, any
sequence of reductions S-, R- and E-Red generates a simulatable WOT, i.e., OT
is not reducible to the

(
p(γ0, δ0), q(γ0, δ0), ε(δ0)

)
-WOT using S-, R- and E-Red.

At the same time, the
(
ps(γ0, δ0), qr(γ0, δ0), ε(δ0)

)
-WOT (obtained according

Lemma 3) achieves ps(γ0, δ0) + qr(γ0, δ0) + 2ε(δ0) ≈ 0.671. Moreover, E-Red(2)
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applied to this WOT generates a (p′, q′, ε′)-WOT with p′ + q′ + 2ε′ ≈ 0.438,
which we know from Lemma 5 implies OT.

There exists an even larger range than the one described in Lemma 6 for
which a possibility result can be shown. This follows from the fact that the
approach of Lemma 6 still gives information for free to the adversary. Indeed,
the SGWOT obtained from a (γ, δ)-PassiveUNC is converted into a (ps, qr, ε)-
WOT before reductions S-Red, R-Red and E-Red are applied. We may benefit
from trying preserving the SGWOT through the sequence of reductions.

The problem is that the reductions do not preserve the SGWOT per se
but produce more complex GWOTs with a quickly growing set of parame-
ters. An approach is to use Lemma 3 in order to immediately convert any re-
sulting GWOT (which is not a SGWOT) back into a SGWOT. Specifically, a({(si, αi)}i; {(ri, βi)}i; ε

)
-GWOT can be replaced by a

(
(s, α), (r, β), ε

)
-SGWOT,

where α = mini{αi} and β = mini{βi}, and s and r are appropriately chosen
such that {(si, αi)}i � {(s, 1/2), (1−s, α)} and {(ri, βi)}i � {(r, 1/2), (1−r, β)}.
This indeed results in an increased possibility range:

Lemma 7. There exists a range of values (γ, δ) which do not satisfy the condi-
tions of Lemma 6 but where OT can still be implemented from such (γ, δ)-UNC’s.

Proof. (sketch) By brute force analysis for any fixed value of δ0, 0 < δ0 < 1/2, we
find the smallest value of γ0, such that a SGWOT based on (γ0, δ0)-PassiveUNC
can be reduced to a SGWOT with ps+qr +2ε ≤ 0.45 using the reductions S-Red,
R-Red and E-Red, and replacing any GWOT by a SGWOT as sketched above.

For example, let γ0 = 0.365, δ0 = 0.4. The value ps + qr + 2ε of the SGWOT
resulting from (γ0, δ0)-PassiveUNC is equal to 0.793. It is easy to check that the
conditions of Lemma 6 are not satisfied with respect to this SGWOT. Nonethe-
less, the sequence of reductions “EERSRESERRSESRERSESERRS” (each with
parameter l = 2) produces as output a SGWOT with ps + qr +2ε = 0.329 which
implies OT according Lemma 5. ut

Using brute-force analysis, it is possible to find experimentally the range for
which the reduction considered in Lemma 7 produces OT. The new range is
depicted on Figure 1.

On the other hand, even the approach described above is limited in power.
The following example suggests that in order to get a possibility result closer to
the (γ, δ)-PassiveUNC simulation bound δ = 2γ(1− γ) from [7], one has to find
different reduction methods and/or analytical tools.

Example 2. Let γ0 = 0.33, δ0 = 0.4. A SGWOT based on (γ0, δ0)-PassiveUNC
has the potential ps(γ0, δ0) + qr(γ0, δ0) + 2ε(δ0) ≈ 0.949. It can be shown by
brute force analysis that whatever sequence of reductions S-, R- and E-Reduce
applied with whatever parameters, it always results at some point a SGWOT
with ps + qr + 2ε ≥ 1.

We stress that in contrast to a (p, q, ε)-WOT with p + q + 2ε ≥ 1, a SGWOT
with ps + qr + 2ε ≥ 1 is not proven to be simulateable; however, it seems to be
a very strong indication that OT cannot be based on such a SGWOT.
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Fig. 1. Positive results on OT from (γ, δ)-PassiveUNC

7 Conclusion and Open Questions

In this paper, we have shown how to transform any OT protocol secure against
passive adversaries given access to a PassiveUNC into one that is secure against
active adversaries given access to a standard UNC. This is possible since any
non-trivial UNC allows for bit commitment as it was shown in [7]. Our transfor-
mation is general enough to be applicable to a wider class of 2-party protocols.
Applying it to a passively secure protocol π implementing task T given access to
a PassiveUNC produces an actively secure protocol π′ that implements T given
access to a UNC, however, π′ may fail with non-negligible (1/poly) probability.
When T is OT, this can be cleaned up using known techniques, in general T can
be any task where such “cleaning” is possible.

We have also provided a more refined analysis for the reduction of OT to
(γ, δ)-UNC introduced in [7]. As a result, OT is now possible based on a signifi-
cantly larger range of (γ, δ) than what was known before. Unfortunately, we also
show the approach has limits that even a more careful analysis cannot overcome.
Thus, a grey area is left where no positive or negative results are known to apply.
Closing this gap is the obvious open problem suggested by this work.
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A Proof of Theorem 2

We begin with some technical lemmas. First a basic fact from probability theory
which follows from the Hoefding inequality:

Lemma 8. Assume we do l independent experiments, such that in the i’th ex-
periment the event E occurs with probability qi, and let q =

∑
i qi/l. Let β be the

fraction of the l experiments in which E was observed. Then Pr(|β − q| > ν) ≤
2 exp(−lν2/2)

Note that when q1 = q2 = ... = ql = q, this reduces to (a variant of) the well
known Bernstein’s law of large numbers or the Chernoff bound.
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Now, assume that A or B is corrupted, let C̃ be the string actually sent or
received by this player during a transmission step, let C̄ be the string committed
to by that player, and let Ĉ be the string the honest players sends or receives
(and commits to). We can now describe the transmission step by the following
equivalent random experiment: Adv chooses C̄, C̃, and Ĉ is generated by sending
C̃ through a binary symmetric channel with error probability γ. Then kp(k)2

positions are chosen uniformly at random, C̄, Ĉ are compared in these positions,
and κ is the fraction of disagreements found. Finally, we define µ by κ � µ =
δ + 1/p(k).

As usual, a probability is called negligible in k if as a function of k, it con-
verges to 0 faster than any polynomial fraction. Now Lemma 8 trivially implies
that κ is a good estimate of err(C̄, Ĉ):

Lemma 9. For any given C̄, Ĉ, Pr(|κ− err(C̄, Ĉ)| > 1/p(k) is negligible in k.

Lemma 8 also implies:

Lemma 10. For any given C̄, C̃, let ε = err(C̄, C̃), and let N be the length of
C̄, C̃ (N = kp(k)3). Then Pr(|err(C̄ , Ĉ)− ε � γ| > 1/p(k)) is negligible in k.

Proof. We apply Lemma 8 with l = N , where the i’th experiment consists of
flipping the i’th bit of C̃ with probability to get the i’th bit of Ĉ. The event E is
i’th bit of Ĉ turns out to be different from the i’th bit of C̄. Then β = err(C̄, Ĉ),
and the average of all the qi’s is easily seen to be ε � γ. The lemma now follows
immediately. ut

The two previous lemmas immediately imply:

Lemma 11. Except with negligible probability, any choice of Ĉ, C̃ will lead to a
value of κ (and hence µ) such that |κ− ε � γ| ≤ 2/p(k), and hence by definition
of µ, that |δ + 1/p(k)− ε � γ � µ| ≤ 2/p(k).

Since the number of positions we sample and compare between C̄, Ĉ is much
smaller than N , removing these positions does not change the expected error
rates much. Concretely, let C̄uns be the unsampled part of C̄, and let C̃uns be
the corresponding positions from C̃. We get:

Lemma 12. Let ε′ = err(C̄uns, C̃uns). Then |ε− ε′| ≤ 1/(p(k)− 1) for all large
enough k.

Proof. Before we sample, C̄ and C̃ disagree in εN positions. Sampling removes
s ≤ kp(k)2 positions, so the number of disagreements for the unsampled part
must be between εN and εN − s. It follows that

ε +
ε

N/s− 1
=

εN

N − s
≥ ε′ ≥ εN − s

N − s
= ε− 1− ε

N/s− 1

The lemma follows. ut
Since 1/(p(k) − 1) ≤ 2/p(k) for all large enough k, combining the previous

two lemmas immediately implies:
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Lemma 13. Except with negligible probability, any choice of Ĉ, C̃ will lead to a
value of κ (and hence of µ) such that |δ − ε′ � γ � µ| ≤ 4/p(k).

The significance of this lemma is that, given the adversary’s view up to the
point where κ has just been determined, the probability that b = b̂ is exactly
ε′ � γ � µ, and this will be important later.

We also need some technical lemmas for the case where both parties are
honest:

Lemma 14. If no player is corrupted, the transmission step will abort with only
negligible probability.

Proof. Clearly, the probability that the transmission step is aborted is maximal
when the error rate of the UNC is always δ. In this case, the probability that
one opened positions shows disagreement is δ and this happens independently
for each of the kp(k)2 sampled positions, so we have Pr(abort) ≤ Pr(|κ − δ| >
1/p(k)) ≤ 2 exp(−k/2).

Now, let α1, ..., αkp(k)3 be a sequence of error probabilities chosen by the ad-
versary for the UNC-transmissions in a transmission step as above, and consider
the experiment where we run the protocol for A and B using the αi’s as error
probabilities, until the point where κ and µ have been determined. Let α be the
probability that b̂ will be different from b, given the αi’s and the communication
between A and B at this point, i.e., α = µ � ᾱ, where ᾱ is the average of αi’s
corresponding to unsampled positions.

Lemma 15. Assume no player is corrupted. Starting from any (legal) sequence
α1, ..., αkp(k)3 as above, we obtain a value of α such that |δ−α| ≤ 4/p(k), except
with negligible probability.

Proof. Let e(α) =
∑

i αi/kp(k)3 be the average of all the αi’s It follows imme-
diately from Lemma 8 that |κ− e(α)| ≤ 1/p(k) except with exponentially small
probability. Now, let ᾱ be the average of the αi’s taken only over unsampled
positions. Since most positions are unsampled, clearly ᾱ must be close to e(α).
A straightforward calculation shows that in fact we always have |ᾱ − e(α)| ≤
2/(p(k) − 1). These two observations imply that |κ − ᾱ| ≤ 3/(p(k) − 1) except
with negligible probability, which in turns implies that we also have |δ − α| =
|κ � µ− ᾱ � µ| ≤ 3/(p(k)− 1), which is less than 4/p(k) for all large enough k.

We are now finally ready to show that we have a good implementation of
the CPUNC functionality. Some terminology to state the result: we say that a
simulator (in the UC framework) is non-blocking, if it stops the CPUNC (by
sending a stop command or refusing to give correct input when asked for it)
with only negligible probability.

Theorem 4. The Committed Passive UNC protocol securely realizes the CPUNC
functionality when given access to ideal UNC, CaP and RandomChoice function-
alities, and if we choose p(k) = 4q(k). Moreover, for the case where both players
are honest, the simulator is non-blocking.
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Remark 2. The last claim in the theorem is a way to state in the UC framework
the traditional completeness property for a 2-party protocol: if both players are
honest, the protocol completes successfully with overwhelming probability.

To prove this, we need to construct a simulator S which will on one side interact
with the adversary Adv. Since Adv expects to attack a scenario where the UNC,
CaP and RandomChoice functionalities are available, S will simulate these in the
natural way, for instance if Adv sends a bit on the UNC, S simply records this bit
for later use. If the protocol calls for the received bit to become known to A, S
adds a noise bit chosen by itself and gives the result to A. When RandomChoice is
called, S just generates the output itself. As for calls to Commit, Open and Prove,
S will record the bits sent, and then forward to the corresponding commands
of the CPUNC. This is possible, since on the other side, S gets to attack an
ideal scenario where we have the players A, B and the CPUNC. The goal is now
to simulate Adv’s view of a real attack, as well as the results obtained by the
honest player(s). We will only look at the cases where either A is corrupted or
no one is corrupted. The case where where B is corrupted is similar and easily
derived from the first case.

For the first: since Adv corrupts A, S will of course corrupt A in the ideal
process. We then specify S by describing how it will react in each possible case
where it is activated:

Send Command issued by A When a send command is issued by Adv (who
plays for A), the adversary must first commit to a bit b to send. S now
goes through the protocol with Adv until κ, µ have been determined. If
this leads to abort, S sends a Stop command to the CPUNC and halts.
Otherwise S sends a Send b command to the CPUNC (on behalf of A). Then
S looks at the unsampled bits from B̄ and B̂, and computes the fraction ε′

of positions where they disagree. It sends an Error probability κ′ command
to the CPUNC, where κ′ = ε � γ � µ. It gets back a bit z.
S now chooses and sends to Adv the choices of j, c, to simulate the outputs
of RandomChoice at this point. Of these, j is chosen among the indices
of unsampled positions, either uniformly among indices where bj = b̃j , or
among those where bj = b̃j – we say that we choose bj ⊕ b̃j to be 0 or 1.
Also c is chosen as 0 or 1. We choose among the 4 possible combinations as
follows:
– If z⊕ b = 0, we let bj⊕ b̃j = 0, c = 0 with probability (1− ε′)(1−µ)/(1−

ε′ � µ), and we let bj ⊕ b̃j = 1, c = 1 with probability ε′µ/(1− ε′ � µ).
– If z ⊕ b = 1, we let bj ⊕ b̃j = 1, c = 0 with probability ε′(1 − µ)/ε′ � µ,

and we let bj ⊕ b̃j = 0, c = 1 with probability (1− ε′)µ/ε′ � µ.
After this, S simply lets Adv finish the protocol (publishing b′ and proving
it relates in the right way to b and bj). If Adv does not do this correctly, S
will not deliver the output from the CPUNC to the receiver and will send a
Stop-command to the CPUNC.

Send command issued by B S will learn that this command was issued when
receiving a request for an error rate from the CPUNC. Having received this,
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S goes through the first part of the protocol for sending a bit with Adv,
where Adv plays the role of the receiver. As above, this results in an error
rate κ′ being determined, where κ′ = ε′ � γ � µ, and where ε′ is the error
rate between the (unsampled) bits committed to by A and the bits actually
received.
S sends κ′ to CPUNC and gets a bit z from the CPUNC. Moreover, the
CPUNC sends a bit b̂ to the receiver which is A, but since S corrupted A in
the ideal process, the bit goes to S.
S now determines values j, c in the same way as above (where b̂ replaces
b), and sets b′ = b̂ ⊕ b̂j . It now tells the adversary that B sent b′ and
RandomChoice output b, j. Finally, it lets Adv complete the protocol, and
sends a stop command to the CPUNC if this fails.

Commit, Open, Prove Since these commands correspond to commands al-
ready available in the CaP, S can simulate any event relating to these com-
mands by simply relaying input from the Adv to the CPUNC and output
from the CPUNC back to Adv.

We now look at simulation in the second case, where no player is corrupted.
In this case, all the adversary can do, is to select error probabilities each time a
transmission takes place over the UNC (note that the argument that the adver-
sary may as well select error probability γ always only holds in case a player is
corrupted). What S does is therefore as follows:

Send Command issued by A S learns that such a command has been issued
when it receives a request for an error probability from the CPUNC. S then
goes through the protocol with Adv which in this case just amounts to asking
Adv for kp(k)3 error probabilities α1, ..., αkp(k)3 (which should all be between
γ and δ).
Assuming Adv did this correctly, S selects an error probability α in the
“right” way, given the αi’s. Concretely, S simulates (honestly) both A’s and
B’s part of the protocol for sending a bit using the αi’s as error probabilities
for the UNC transmissions. This simulation goes on until κ and µ have been
determined. If κ > δ +1/p(k), S sends a Stop command to the CPUNC and
halts. Otherwise we compute an error probability α = µ � ᾱ, where ᾱ is the
average of the αi’s corresponding to unsampled bit positions. The value α is
sent the CPUNC.

Send Command issued by B - is handled in exactly the same way as if A
issued the command.

Commit, Open, Prove Since these commands correspond to commands al-
ready available in the CaP, S can simulate any event relating to these com-
mands by simply relaying output from the CPUNC to Adv, typically cID’s
of bits committed to. However, there is no input from Adv to send to the
CPUNC when no one is corrupted.

We sketch a proof that this simulation is good. We first look at the case
where A is corrupted:
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Send Command issued by A We can first remark that the simulation of A’s
view is perfect until the point where κ, µ are determined. In particular,
by Lemma 13 we have |δ − ε′ � γ � µ| < 1/q(k), except with negligible
probability, so we may assume in the following that this holds. Therefore,
the κ′ that S asks the CPUNC to use will be close enough to δ for the
CPUNC to accept this. Note that if A fails to complete the protocol for
the Send command, no output is generated and no further interaction takes
place. This happens both in simulation and in real life. So we now argue,
assuming that A completes the protocol. Note first that, given Adv’s view,
the probability that b = b̂ is exactly ε′ � γ � µ in both simulation and in
real life, so the honest player receives a correctly distributed bit. Moreover,
it follows directly from the algorithm of CPUNC that Pr(z 6= b) = ε′ � µ.
Therefore elementary probability calculations show that j will be uniformly
distributed over the unsampled positions, and c will be independent, and
be 1 with probability µ. So this matches the distribution of the view of A
in real life. Furthermore, in real life, the correlation between A’s view and
the bit received by B is completely described by Pr(b̃j ⊕ b′ ⊕ c 6= b̂) = γ.
But this is also the case in the simulation: the algorithm of S ensures that
z⊕ b = bj ⊕ b̃j ⊕ c, and A must prove that b = bj ⊕ b′. Combining these two,
we get z = b′ ⊕ b̃j ⊕ c, and by definition of the CPUNC, Pr(z 6= b̂) = γ.

Send command Issued by B The argument for this case is easily derived
from the above case.

Commit,Open,Prove The simulation of these events is trivially perfect, since
the CPUNC by definition behaves exactly like CaP on any of these com-
mands.

We finally show that the simulation is good in the case where both players
are honest:

Send Command issued by A The simulation is clearly perfect, except for the
cases where the α sent by S is further away than 1/q(k) from δ. In these cases
the real-life protocol may complete, whereas the CPUNC would always block
the transmission. However, by Lemma 15, this only happens with negligible
probability. Furthermore, the simulator only blocks the CPUNC if α is illegal,
or if the value of κ is too large. By lemmas 15,14, this only happens with
negligible probability, so the simulator is non-blocking in this case.

Send command Issued by B The argument for this case is the same as for
the above case.

Commit,Open,Prove The simulation of these events is trivially perfect, since
the CPUNC by definition behaves exactly like CaP on any of these com-
mands.

B Proof of Lemma 3

Proof. In the following we show that S can be replaced by S′ and R can be
replaced by R′ to the advantage of the adversary for any sequence of the basic
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reductions S-Red(l), R-Red(l), or E-Red(l). We write P = S, P ′ = S′ and b = c
for the selection bit c in case the sender is corrupted, and P = R, P ′ = R′ and
b = b1−c for the secret bit b1−c in case the receiver is corrupted. P � P ′ implies
that there exists a sequence of transformations P = P0, P1, . . . , Pk = P ′ where
each Pκ is obtained from Pκ−1 as described in Definition 1. We show that the
(expected) guessing probability of the corrupted sender respectively receiver for
the bit b does not decrease when Pκ−1 is replaced by Pκ in the description of the
GWOT. In the following we fix 0 < κ ≤ k and assume Pκ−1 = {(pi, εi)}N

i=1. Let
0 < ` ≤ N , 0 ≤ δ ≤ 1 and 0 ≤ ε− ≤ ε ≤ ε+ ≤ 1/2, be defined as in Definition 1.

We fix some notation. Consider the transmission of l bits x1, . . . , xl which
encode b as specified later through Pκ−1. Formally, independently for j = 1, . . . , l,
a channel (index) Ij ∈ {1, . . . , N} is chosen such that Pr(Ij = i) = pi and a bit
yj such that it differs from xj with probability εIj . Write I = [I1, . . . , Il] and
y = [y1, . . . , yl]. Finally, let I ′ = [I ′1, . . . , I

′
l ] and y′ = [y′1, . . . , y

′
l] be such that

I ′j = Ij and y′j = yj if Ij 6= ` and otherwise I ′j is chosen from {+,−} such that
Pr(I ′j = +) = δ and y′j ∈ {0, 1} such that it differs from xj with probability εI′j .
Hence, I ′ and y′ can be viewed as the outcome of sending x1, . . . , xl through Pκ.
Let guess be the probability of guessing (random) b correctly given I and y
(using an optimal guessing strategy), and similarly let guess′ be the guessing
probability for b given I ′ and y′. We will show that guess ≥ guess′, i.e., replacing
Pκ−1 by Pκ only helps in guessing b.

For simplicity, we assume that there exists exactly one j such that Ij = `. If
there is none then the claim definitely holds, and the case of several Ij ’s being
equal to ` can be reduced to the case of one using a straightforward hybrid
argument. Let j∗ be that special j. Write v for the collection of the Ij ’s and yj ’s
(or, equivalently, I ′j ’s and y′j ’s) with j 6= j∗, and write c for yj∗ as well as c′ for
(I ′j∗ , y

′
j∗). In the following we assume an arbitrary but fixed value for v (which

has non-zero probability), and we show that guess ≥ guess′ for that v. This of
course implies that guess ≥ guess′ for v chosen according to its distribution.
Formally, in the following analysis, we consider the probability space obtained
by conditioning on the event that v takes on the considered value.

There are two distinct cases to analyze. The first case is when the bit b
was split into l parts (x1, . . . , xl) such that

⊕
j xj = b. This corresponds to

the situation where the adversary is the sender in S-Red(l) or the receiver in
R-Red(l). Consider the optimal guess for b ⊕ xj∗ =

⊕
j 6=j∗ xj . If this guess is

correct, then guess and guess′ are given by the guessing probabilities for xj∗

given c respectively c′. If it is incorrect, then guess and guess′ are given by the
probabilities of guessing xj∗ wrongly given c respectively c′. In either case, these
probability coincide by the assumption on δ, ε, ε+ and ε− posed in Definition 1,
and hence guess = guess′.

The second case is when b is sent l times through Pκ−1 respectively Pκ, i.e.,
x1 = · · · = xl = b. This corresponds to the situation where the adversary is
the sender in R-Red(l) or the receiver in S-Red(l) or the adversary is either
the receiver or the sender in E-Red(l). Let ρb be the probability of observing v
given b (in the original unconditioned probability space), and write α = ρ1/ρ0.
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Also, let G(c) denote the guessing probability for b depending on c. Then

G(0) = max
{

ρ0(1− ε)
ρ0(1− ε) + ρ1ε

,
ρ1ε

ρ0(1− ε) + ρ1ε

}
=

max{1− ε, αε}
(1− ε) + αε

and

G(1) = max
{

ρ0ε

ρ0ε + ρ1(1− ε)
,

ρ1(1− ε)
ρ0(1− ε) + ρ1ε

}
=

max{ε, α(1− ε)}
ε + α(1 − ε)

.

In both cases, the two terms in the max are the success probabilities when
guessing b to be 0 and 1, respectively. The probabilities that c = 0 and that
c = 1 are given by

Pr(c = 0) =
ρ0(1 − ε) + ρ1ε

ρ0 + ρ1
=

(1− ε) + αε

1 + α
and

Pr(c = 1) =
ρ0ε + ρ1(1− ε)

ρ0 + ρ1
=

ε + α(1− ε)
1 + α

.

Therefore,

guess =
(1− ε) + αε

1 + α
· max{1− ε, αε}

(1− ε) + αε
+

ε + α(1 − ε)
1 + α

· max{ε, α(1− ε)}
ε + α(1− ε)

=
max{1− ε, αε}

1 + α
+

max{ε, α(1− ε)}
1 + α

Since this expression is invariant under replacing α by 1/α, we may assume that
0 ≤ α ≤ 1, and hence

guess =
1

1 + α
· (αε + max{ε, α(1− ε)}) .

Similarly, it holds that

guess′ =
δ

1 + α
·(αε++max{ε+, α(1−ε+)})+ 1− δ

1 + α
·(αε−+max{ε−, α(1−ε−)}) .

Therefore,

guess′ =
1

1 + α
· (αε+ + δ ·max{ε+, α(1− ε+)} + (1− δ) ·max{ε−, α(1− ε−)})

=
1

1 + α
· (αε+ + max{δε+, δα(1 − ε+)} + max{(1− δ)ε−, (1− δ)α(1 − ε−)})

≥ 1
1 + α

· (αε+ + max{δε+ + (1 − δ)ε−, δα(1− ε+) + (1− δ)α(1 − ε−)})

=
1

1 + α
· (αε + max{ε, α(1− ε)})

= guess

This had to be shown. ut
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